BROADCAST AUDIO EQUIPMENT

Type BC-2B Studio Consolette and Power Supply

RADIO CORPORATION OF AMERICA

BROADCAST AUDIO EQUIPMENT

INSTRUCTIONS

Type BC-2B Studio Consolette and Power Supply

RADIO CORPORATION OF AMERICA ENGINEERING PRODUCTS DEPARTMENT, CAMDEN, N. J.
Page
Technical Data 4
Description 6
Equipment Supplied 6
Equipment Required 6
Associated Equipment 7
Circuit Description 9
Amplifier Circuits 9
Overall System. 10
Connection to Jack Fields or External Relays 12
Installation. 15
Unpacking. 15
Type of Installation 15
Mounting 15
Internal Accessories. 18
Audio Input Connections 19
Audio Output Connections. 20
Warning Lights and Relays. 21
Connections to Jack Fields or External Relays 21
Connections to Power Supply 21
Tubes. 21
Hum Adjustment 22
VU Meter Attenuator Connections 22
Connections at Audio Terminal Block 4TB1 23
Connections at Power Block 4TB3. 24
Operation 24
Precautions 24
Control Functions 25
Routine Procedures. 27
Emergency Operation 30
Relay Speaker and Warning Light Operation (Single Studio) 31
Relay Speaker and Warning Light Operation (Two Studio) 32
Maintenance. 36
Inspection and Check 36
Tube Check 36
Test Jack Voltages 36
Socket Voltages 36
Care of Variable Attenuators 37
Care of Switches, Relays, Tube Sockets 37
Replacement Parts. 37
Dual Preamplifier 37
Program Amplifier 37
Monitor Amplifier 38
Consolette Panel and Turret 38
Relay Strip. 39
Miscellaneous 39

LIST OF ILLUSTRATIONS

FigureTitlePage
1 Studio Consolette Type BC-2B (Signal Lights Added) 3
2 Block Diagram 8
3 Studio Consolette Type BC-2B with Master Switching Consolette Type BCS-11A. 9
4 Schematic for Dual Preamplifier MI-11241. 10
5 Connection Diagram for Dual Preamplifier MI-11241. 11
6 Schematic for Program Amplifier 127
Connection Diagram for Program Amplifier. 13
Schematic for Monitor Amplifier. 14
Connection Diagram for Monitor Amplifier. 15
Rear View, Louvred Cover in Place. 16
Terminal Board Connections for Single and Two Studio Operation. 16
Typical Layout for Two-Studio Installation. 17
Typical Installation Showing Relation of Cabinet and Conduit Box. 18
Dimensional Layout of Consolette. 18
Rear View, Consolette and Relay Covers Removed 19
Output Transformer Connections 21
Warning Light Relay. 22
Control Panel of Consolette 24
Schematic of Control Circuits 33
Internal View of Consolette. 34
Underside of Amplifiers, Chassis Mounting Frame Raised. 35
Overall Schematic. 41-42
Overall Connection Diagram. 43-44
FRRATA $18-024748$

Figure 1 - Studio Consolette Type $B C-2 B$ (Signal Lights Added)

TECHNICAL DATA
Inputs

6 Microphones	$30-150$ ohms balanced
2 Turntables	150 ohms unbalanced
1 Network Line	150 ohms unbalanced
5 Remote Lines	$600 / 150$ ohms balanced
3 Cue Lines	20,000 ohms bridging

VU Meter
One 4^{n} illuminated vumeterwith type B scale Semi-adjustable pad. Light dimmer.

Out puts

1 Program Line	600 ohms balanced
5 Remote Cue Lines	600 ohms balanced
4 Monitor Speakers	15 ohms unbalanced
2 Headphones	600 ohms unbalanced
1 Recording Circuit	600 ohms balanced
1 External Monitor	600 ohms balanced
1 Turntable Cue	150 ohms unbalanced

Channels

Program and Audition

Amplifiers

4 preamplifiers (2 dual units)
(Space and wiring included for one
additional dual preamplifier unit)
1 program amplifier
1 monitor amplifier
Gain in $d b$ (Controls set for minimum attenuation)

TECHNICAL DATA

```
Distortion
    Microphone input to line output (regular) 18 dbm output
        1% 30 cps .75% 50 cps .5% 100-15.000 cps
    Microphone input to speakers, 8 watt output
        1.5% 50-10.000 cps
```


Signal to Noise Ratio

```
Line: \(\quad 68 \mathrm{db}\) (microphone input -50 dbm . Mixer and Master gain controls set for +18 dbm output)
Speaker: 67 db (microphone input - 50 dbm . Mixer and Master and Monitor gain set for +39 dbm output)
```

Power Requirements
Power furnished by the MI-11313 Power Supply

	Two Dual Preamplifiers	Three Dual Preamplifiers	Program Amplifier	Monitor Amplifier
Heater (AC)	$6.3 \mathrm{~V}, 1.2 \mathrm{a}$	$6.3 \mathrm{v}, 1.8 \mathrm{a}$	$6.3 \mathrm{v}, .9 \mathrm{a}$	$6.3 \mathrm{v}, 1.50 \mathrm{a}$
Plate (DC)	$280 \mathrm{v}, 16 \mathrm{ma}$	$280 \mathrm{v}, 24 \mathrm{ma}$	$315,47 \mathrm{ma}$	$320 \mathrm{v}, 87 \mathrm{ma}$
vu Meter Lights				
Relays	$6.3 \mathrm{v}, .3 \mathrm{a} \mathrm{AC}$			

Tube Complement (Tubes not included with MI)
Consolette MI-II632
3 RCA 6V6GT
1 RCA $12 A X 7 \quad 1$ MI-11297 Set of operating
6 RCA SEL. 12 AY7 (M1-11299)
1 RCA 5879

Dual Preamplifier MI-II241
2 RCA SEL. 12 AY7 2 Mi-11299 operating electron tubes

Power Supply MI-II3I3
1 RCA 5R4GY 1 MI-11294 Operating electron tubes

Dimensions and Weight
Width - 33 inches
Depth $-21-1 / 4$ inches
Height - $11-1 / 4$ inches
Weight - 114 lbs

General

Mounting -	- flat top desk or table
Min. clearance - from wall $3 / 16$ inch	
Finish	- front panel - light umbergrey
Housing	- dark umber grey

DESCRIPTION

The Type $B C-2 B$ Consolette is designed to provide flexibility of all control room facilities required by the majority of $A M-F M$ and TV broadcasting stations. Except for the MI-11313 Power Supply, the consolette is completely self-contained. The instruction book IB-24750 for the MI-11313 Power Supply is included with the consolette instruction book IB-24748.

As shown in Figure 1, the consolette is compact in design. Mounted on the control panel are knobs and pushbuttons to control four microphones in one or two studios, an announce booth microphone, a control room microphone, two turntables, a network and five remote lines.

A new feature to facilitate ease and speed of operation has been initiated in the use of colored knobs and switches to tie related functions together.

The front panel tilts forward for easy access to the rear of the components mounted on the panel. The amplifier mounting frame is pivoted and tilts backward for servicing components underneath the chassis. Each amplifier is shock mounted and individually removable. Space and wiring are provided for
a third dual preamplifier MI-11241 to be used in the turntable circuits. Speaker muting relays are furnished for two studios and the control room. Space and wiring are provided for an additional relay for the announce booth speaker. Operation of the relays is interlocked with the audio switches. Terminals are provided for external warning light relays.

The VU meter is a standard four-inch model with an illuminated type B scale. The indicated output level is adjustable from -2 to 25 VU in 1 db steps by means of a semiadjustable pad. A screwdriver adjustment is provided on the back of the control panel near the meter for setting the brightness of illumination on the dial.

Electrical connections are made to power and audio terminal blocks at the back of the consolette. Knockout holes 1-1/16" in diameter are provided in the base and rear panel for the terminating conduits.

Equipment Supplied

The following chart lists the items included with the Type BC-2B Consolette:

Qty.	Unit	MI Number
1	Studio Consolette (including in place): 2 Dual Preamplifiers (M1-11241) 1 Program Amplifier 1 Monitor Amplifier 1 Relay Strip	M1-11632
1	Power Supply	MI-11313
6	Tube Shmields	
1	Bottle Davenoil	
1	Instruction Book	18-24748

Equipment Required

The following chart lists additional equipment required for the operation of the

Type 3C-2B Consolette, which should be ordered by the MI number:

Qty.	Unit	MI Number
1	Tube Complement for Type BC-2B Consolette	MI-11297
1	Tube Complement for Power Supply	$M 1-11294$

Associated Equipment

Only a brief description of the associated equipment is given here; installation and operating information is included as it pertains specifically to the consolette.

Microphones

The Type 44-BX microphone is a velocity type suitable for general studio application. The Type 77-D polydirectional microphone is designed for use where its directional characteristic is of special value as in close talking applications. The MI-11006-A model (Type 77-D with low-lustre gray finish) is intended for TV programs. The Type $3 K-1 A$ pressure microphone is designed for announcing and talk-back operations. Type BK-4A microphone is a ribbon pressure type specially designed for TV work. Known as the Starmaker, its small size and wide frequency range make it most suitable for interview and close work.

Microphone Stands

The best floor stand to use with the studio microphone is the Type $90-$ AS Program Stand. The Type $90-\mathrm{AS}$ is especially adaptable to the Type $B K-4 A$ microphone. The Type KS-11A s tand is the new design for the Type $B K-1 A$ microphone. Types 91 A and 91 B stands are used with the Type $44-B$ and $77-\mathrm{D}$ microphones in table applications. For boom applications, the Type KS-3B should be used. For TV, the more elaborate boom stand MI-26574, enables the operator to place the microphone with respect to the sound source. The perambulator on which the stand may be mounted makes it possible to move the microphone quietly from one location to another

Transcription Turntables

The Type $70-\mathrm{D}$ series of Transcription Turntables are recommended for the transcription booth or control-room installation.

Dual Preamplifier

A third dual preamplifier, MI-11241 may be installed in space provided within the consolette. It provides additional gain in the turntable channels, where booster amplifiers are not included with turntables. The tube complement for this amplifier consists of two MI-11299.

Transcription Turntable Cueing Amplifier

For external turntable cueing, the consolette may be connected to a Type BA-14A monitor amplifier.

Recorders and Recording Amplifiers

The Type 73 series of Professional Disc Recorders are recommended for high quality performance. The Type BA-14A amplifier may be used with these recorders. The Type RT-11B Professional Magnetic Tape Recorder may also be used with the consolette for recording and reproducing.

Loud speakers

A maximum of four loudspeakers may be connected to the consolette. For highfidelity reproduction, the Type LC-1A Loudspeaker, MI-11411, is recommended. Cabinets for the LC-1A speaker are available in umber gray MI-11401. The MI-11406 Wall Cabinet for the MI-11411 speaker is especially suitable for control room and studios. The MI-11411 speaker has a $15-\mathrm{ohm}$ voice coil impedance. The loudspeaker should have a voice coil impedance of 15 ohms, or impedance matching transformer must be provided.

Announce Booth Speaker Relay Kit

This kit may be installed within the consolette in applications where an announce booth speaker is used.

Warning Lights and Relays

The MI-11706 series of studio warning lights are recommended for the studios, announce booth and control room. Lights are available with inscriptions listed in the following table:

ON AIR	MI-11706-1
REHEARSAL	MI-11706-2
AUDITION	MI-11706-3
STAND BY	MI-11706-4
SILENCE	MI-11706-5

One Warning Light Relay Kit MI-11702-A is required for each MI-11706 Warning Light. Connection information is provided in the installation section.

Figure 2 - Block Diagram

Signal Lights

The Signal Light Kit MI-11714-A supplies the lamps and sockets necessary to mount two signal lights on the control panel of the consolette. The wiring is available on the back of the panel to make connections.

Line Equalizer

If it is desired to equalize the remote lines, a line equalizer such as the Type BE-1B $56-\mathrm{C}$ and $56-\mathrm{E}$ may be used.

Conduit Terminating Box

A conduit terminating box is desirable for the installation. This box may be constructed by the installing electrician as shown in Figure 14.

Multiple Channel Switching System

The Type BCS-11A Master Switching Consolette, MI-11633, provides complete master control of ten program sources to three outgoing lines. This switching system matches the Type BC-2B Consolette in shape and styling, and makes economical desk mounting possible. Refer to Figure 3.

CIRCUIT DESCRIPTION

Amplifier Circuits

There are three types of amplifiers, each individually mounted on the pivoted frame. These amplifiers are all of a new design which utilizes miniature tubes in all stages except the output stage of the program and monitor amplifiers. Negative feedback is employed to stabilize the gain and to reduce noise and distortion. The chassis are cushion mounted to eliminate microphonics.

Dual Preamplifier MI-1I24I

The dual preamplifier uses a 12 AY 7 twin triode tube for its two-stage amplification. This tube is designed especially for low level amplifiers. However, to minimize hiss, hum, microphonics and pops, the tubes should be selected. The tubes (12AY7) which meet these test specifications and are equivalent to the type 1620 in regard to these characteristics may be obtained as MI-11299. Two identical preamplifiers are mounted on one chassis. Space and wiring are included in the consolette for third dual preamplifier when the turntable output is at a low level. The

Figure 3 - Studio Consolette Type BC-2B with Master Switching Consolette Type BCS-IIA

Figure 4 - Schematic for Dual Preamplifier MI-11241
third dual preamplifier is available separately as MI-11241. These preamplifiers have a gain of 40 db . See Figures 4 and 5.

Program Amplifier

The program amplifier consists of four amplifier stages. A potentiometer type gain control, 4AT9, is inserted between the first and second stages which use a $12 \mathrm{AY7}$ tube. A 5879 pentode which is also a low noise tube, is used in the third stage and a 6V6-GT beam power tube is employed in the final stage. See Figures 6 and 7.

Monitor Amplifier

The first and second stages of the monitor amplifier are similar to those of the program amplifier. The third stage and phase inverter utilize a 12AX7 twin triode. The output stage consists of a pair of 6V6-GT tubes in a pushpull circuit. See Figures 8 and 9.

Overall System

As shown in the block diagram Figure 2, three of the six microphone inputs are permanently connected to the preamplifiers. Any one of the other three microphones may be connected through a selector switch 4S1.

The output of every mixer may be connected to either the program bus or the audition bus by means of key switches 4 S 2 to 4 S 9 . The program bus is permanently connected to the input of the program amplifier. The output of the program amplifier is connected through the line out switch and $a \mathrm{db}$ pad to the output line terminals. The purpose of the pad is to equalize the amplifier and line impedances.

The input of the monitor amplifier can be selected by means of a pushbutton switch. There are three talkback buttons which connect the control room microphone to the monitor amplifier and permit the operator to
talk to Studio A, Studio B and the remote lines respectively. Refer to Figure 2. The fourth pushbutton bridges the monitor input across the output of the program amplifier for monitoring the outgoing programs. The fifth button connects the input of the monitor anplifier to the audition bus and the remaining three pushbuttons connect it to the cue lines.

The "override" feature of the consolette is helpful when it is not known over which remote line a program will come in. By throwing the switch $4 S 13$ to OVERRIDE all unused remote lines are connected to the input of the monitor amplifiers and a call coming in on any one of the lines will override the signal coming out of the monitor speaker.

By throwing the switch $4 S 13$ to the REMOTE CUE position, the monitor amplifier sends cues over a remote line selected by switch 4 S11. With the switch $4 S 13$ on the PHONE REMOTE TALKBACK (PH - REM - TB) position of the monitor phone jack 4 J 1 is connected through switch $4 S 11$ to the remote lines or outputs of the program and monitor amplifiers. Under these conditions it is also possible to talk back to any unused remote line by pressing the remote talkback button. ("Unused" means those remote lines whose button on 4 S10 is not depressed.)

Should the program amplifiers fail, the monitor amplifier may be used as a line amplifier, the monitor gain control serving as the master gain control. To use the monitor amplifier as a line amplifier, the mixer output switches must be thrown from the

Figure 5 - Connection Diagram for Dual Preamplifier MI-|1241
program to the audition position, switch 4S12 depressed and 4S14 turned to EMERGENCY (EMG).

The output level of either the program or monitor amplifiers is indicated on the VU meter. Depending on whether the program or audition button on the VU meter switch is depressed. The V meter pad is wired at the factory so that the meter indicates 100% for a line output level of 8 VU . Refer to paragraph on VU meter attenuator connections in Installation.

Loudspeakers are controlled through a set of relays which are actuated by interlocking contacts on the microphone selector and mixer switches (4 S 1 to 4 S 5). A speaker is turned off whenever a microphone located in the same room is switched on; a load resistance is substituted for the speaker to prevent changes in output level and loading.

Warning light relays MI-11702-A, which are not supplied and must be ordered separately and installed externally, are interlocked with the mixer and other audio switches and speaker relays. Power for energizing all relays is supplied by the consolette power supply.

A set of contacts on the line out switch may be used to light a lamp at the master control when a program is being fed from the consolette. Refer to the schematic and wiring diagrams, Figures 22 and 23 for the complete system.

Connection to Jack Fields or External Relays

The flexibility of the Type $B C-2 B$ Consolette may be further increased by making connections from the inputs and outputs of the consolette amplifiers to a jack field. Terminals are provided on the audio block to make these connections. This arrangement permits patching out of amplifiers in case of failure and obtaining combinations of circuits not otherwise provided. It also makes possible easy insertion of special devices such as a sound effects filter.

It is also possible to connect relays to these terminals which permit certain switching operations to be accomplished from points remote to the consolette, such as the studio, announce booths, and master control.

Figure 6 - Schematic for Program Amplifier

Figure 7 - Connection Diagram for Program Amplifier

Figure 8 - Schematic for Monitor Amplifier

Figure 9 - Connection Diagram for Monitor Anplifier

I INSTALLATION

Unpacking

The Type BC-2B Consolette is shipped with the amplifier-chassis mounting frame secured to the base. Be sure to remove the two screws holding the frame at each forward corner before installing the consolette. To gain access to the screvs, open the front panel. To remove the top cover or release the front panel, press down with the thumb on the fasteners and turn counterclockwise approximately a half turn to release. Two of these fasteners secure the panel and four are used for the louvred top cover (see Figure 10).

Type of Installation

A typical broadcast installation for a two studio system is shown in Figure 12. The Type $B C-2 B$ Consolette is shipped from the factory with the jumpers on terminal board 4 TB2 wired for two-studio installation. However a small change in the connection of these jumpers will permit the consolette to be used with four microphones in singlestudio installation. Refer to Figure 11 which shows the position of the jumpers for each type of installation. This information is also included in the connection diagram, Figure 23.

Mounting

The consolette should be installed in the control room together with the MI-11313 Power Supply. To avoid hum, locate the power supply

Figure 10 - Rear View Louvred Cover in Place
at least three feet away from the consolette. For information regarding the installation of the Power Supply, refer to the Instruction Book IB-24750 included with the consolette instruction book.

To provide a convenient means of terminating conduits from associated equipment, purchase or construct a metal conduit box similar to the one shown in Figure 13 and mount it in the wall or floor near the

Figure ll - Terminal Board Connections for Single and Two-Studio Operations
consolette. Up to six $3 / 4$ inch conduits may be run into the bottom or back of the consolette where knockout holes are available. Refer to Figure 14 for overall dimensions and location of the knockout holes in the rear and bottom of the consolette. The necessary holes should be drilled on mounting surface before placing the consolette.

Internal Accessories

If it is planned to add a third dual preamplifier, announce booth relay, or consolette signal light kit, this should preferably be done before mounting the consolette.

1. Dual Preamplifier (MI-II241)

Mount the preamplifier in the space between the second dual preamplifier and the program amplifier, using the eyelets and screws supplied with the preamplifier. The eyelet must be inserted in the rubber grommet from the top. Open the amplifier mounting frame. Cut the ties securing the ends of the wires above and below the amplifiers being careful to avoid cutting the lacing of the cable. Remove sleeving from the ends of wires;
strip and tin wire, and connect as shown in Figure 23. Jumper terminals 57-61, 58-62, 59-63, and 60-64 on 4TB1.

2. Announce Booth Relay Kit (MI-|I722)

Remove relay cover. Refer to Figure 15. Install relay 5 K 4 in the space between relay 5 K 3 and transformer 5T1 using the two screws and lockwashers supplied. Cut ties securing the ends of wires to left and right of relay being careful to avoid cutting the lacing of the cable. Remove the sleeving from end and connect wires as shown on Figure 23. Also connect $15-o h m$ resistor $5 R 4$ and 0.5 mf capacitor 5C4.
3. Consolette Signal Light Kit (Pre-set, ON-AIR) (MI-11714A)
Fasten lamp sockets to brackets by means of the \#4-40 screws and \#4 lockwashers; the long part of the socket extending away from the bracket. Remove the monitor gain and selector switch knobs and the handles of switches 4S1 and 4S13. Remove the screws holding the end of the left and right or top escutcheon plates. Remove escutcheon plates

Figure 12 - Typical Layout for Two Studio Operation

Figure 13 - Typical Installation Showing Relation of Cabinet and Conduit Box

Figure 14 - Dimensional Layout of Consolette

Figure 15 - Rear View, Consolette and Relay Covers Removed
exposing mounting holes for signal light brackets. Remove plug button on either side of VU meter. Mount signal light brackets on the panel using $\# 6-32$ screws, nuts and lockwashers. Cut the ties securing ends of wires near sockets. Solder the wires to the lamp socket. Insert switchboard lamps. The lamps supplied are for use on a 24 V supply, lamps for use on a 12 v supply may be obtained under stock number 21322 and on a 6 v supply under stock number 55082. Two lamps must be ordered. Insert lamp caps in place of the plug buttons. Replace escutcheon plates, mounting screws, control knobs and handles.

Audio Input Connections

1. Precautions:

a. Place power and audio leads in separate conduits.
b. Place low and high level audio leads in separate conduits, using shielded pairs of wire.
c. Ground shields to ground terminals located under audio block 4TB1.
2. Microphones: - Connect the microphones to the terminal of the audio block as listed in
the table. The dual preamplifier input transformers 1 T 1 and 1 T 3 for the mixers numbered MIC 1, 2, 3 and 4 input channels are connected for $150-o h m$ microphones. If it is desired to connect a 30 -ohm microphone to any of these inputs, change the connections at the input transformers as follows:
a. Unsolder the wire from transformer terminal 1 and solder it to transformer terminal number 2.
b. Unsolder the wire from transformer terminal number 6 and solder it to transformer terminal number 5.

> IMPORTANT: FOR PROPER OPERATION, ALL MICROPHONES THAT ARE INSTALLED IN THE
> SAME STUDIO MUST BE CONNECTED IN PHASE
> WITH EACH OTHER.
3. Remote Lines, - The remote line transformer 5 T 1 is connected to present an impedance of 600 ohms to the remote lines. When the remote lines are long, the attenuation of high frequencies due to distributed capacitance may be reduced by connecting the line transformers for 150 ohms. To make these connections, proceed as follows:
a. On 5 Tl remove the jumpers that link terminals 3 and 4.
b. Connect terminal 1 to 4 and 3 to 6 .

Connect the remote lines to terminals as listed in chart, page 23.

The Type BE-1B, 56-C and 56-E Line Equalizer may also be used to equalize the remote lines. The jumper between terminals 29-33 and 30-34 on the audio block are removed, and the input of the equalizer connected to terminals 29-30, the output to terminals 33-34. To compensate for the insertion loss of the equalizer, the $150-\mathrm{ohm}$, 20 db pad consisting of resistors 4 R 16 . 4 R17 and 4 R18 should be taken out of the circuit or the values adjusted to obtain the desired loss.

4. Network Line.

The network input, terminals 17 and 18 require an external line transformer with a $150-$ ohm output winding. This transformer and an associated line equalizer are usually furnished by the telephone company. The 150ohm pad consisting of the resistors 4R13, $4 R 14$ and $4 R 15$ has an attenuation of 20 db . Should more or less gain be desired in the network channels, the attenuation of this pad should be changed by substituting resistors of the proper values, as listed below:

5. Transcription Turntables

When a booster amplifier, such as the RCA BA-12A is connected between the turntables and the consolette, connect the output of the booster amplifiers of turntables 1 and 2 to terminals 61 and 62 , and 63 and 64 respectively. When a third MI-11241 dual pre-
amplifier is installed in the consolette, connect the turntable 1 and 2 output to terminals 13 and 14 , and 15 and 16 respectively. Add jumpers between terminals 57 and 61,58 and 62,59 and 63 , and 60 and 64.

Audio Output Connections

1. Program Output Line.

A $600-\mathrm{ohm}$ pad having an attenuation of 6 db is provided within the consolette to equalize amplifier and line impedances. The outgoing program line may be connected directly to terminals 89 and 90.

2. Loudspeakers

Speakers are connected to terminals 97 to 104 as listed in the chart. Note that the speakers must have a voice coil impedance of 15 ohms, otherwise matching transformers must be connected between each speaker and the consolette output terminals.

The consolette is shipped wired for use with three speakers. If an announce booth speaker is required, install the MI-11702-A relay kit as described under that heading.

If less than three speakers are used, remove the 15 ohm speaker load resistor from the unused relay. If only two speakers are used, remove the red wire from terminal 9 of 3 T 2 and connect it to terminal 10. If only a single speaker is used, connect the red wire to terminal 11. This must be done to maintain proper loading on the monitor amplifier. For reference, the load impedance for the various taps on the output transformer 3 T 2 of the monitor amplifier are tabulated on following page.

RESISTANCE VALUES FOR $150-0 H M$ PAD S

Attenuation db	Series Arm Ohms 4RI3, 4R14, 4RI6, 4R17	Shunt Arm Ohms 4R15, 4RI8
0	0	infinite
5	42	247
10	78	105
15	106	55
20	122	30
25	134	17
30	141	9.5
35	145	5.4
40	147	3.0

[^0]| Terminal | Load Impedance
 Ohms |
| :---: | :---: |
| $8-9$ | 5 |
| $8-10$ | 7.5 |
| $8-11$ | 15 |
| $8-12$ | 150 |
| $7-12$ | 600 |

3. Turntable Cue

An external turntable cueing amplifier BA-14A may be connected to terminals 37 and 38 on 4 TB 1 . The input transformer of the amplifier should be connected for 150 ohms.

Warning Lights and Relays

The relays and lights are not supplied with the consolette. The MI-11702-A Relay and the MI-11706 Studio Warning Lights are recom-

Figure 16 - Output Transformer Connections
mended. Refer to page 7. Operating power for the relays is obtained from the MI-11313 Power Supply. An ON AIR and AUDITION signal light may be installed in the studios; the ON AIR light only can be installed in the control room and announce booth. Mount one or two relays in a metal box as shown in Figure 17. Install the box near the studio or control room for the respective installation of light. The connections for the relays to the consolette terminal board are as listed in the chart for block 4 TB 1.

Connect relays and warning lights as shown by Figure 19. The 0.47 mf capacitor supplied as part of the signal light relay kit is to be connected across the relay coil. The relays for the AUDITION lights are interlocked with the associated ON ALR light relay.

Connections to Jack Fields or External Relays

As shown in the schematic Figure 22, terminals are provided on the audio block 4 TB1 to make external connections to the inputs and outputs of all amplifiers.

Before making use of this feature, the jumpers between pairs of terminals on the back of the audio block 4TB1 must be removed.

Connections to Power Supply

Like-numbered terminals on the power block 4TB1 of the consolette are connected to likenumbered terminals on the terminal block 6TB3 of the power supply. Wires for supply or heater current, should be twisted pairs, \#14 or larger depending on length. The other wires may be \#18. Those used for the B supply must be insulated for 500 v . The a-c heater wires and the relay supply wires should be run in a conduit separate from the B supply.

Ground

Terminal 9 of 4 TB 3 should be connected to a reliable ground.

Tubes

The consolette is shipped without tubes. The tube complement in the Technical Data lists the types and numbers required. The type numbers are marked on the chassis beside
each socket. Press each tube firmly in each socket and secure the six shields on the chassis as indicated in the photographs.

Hum Ad justments

When the Type $B C-2 B$ Consolette and power supply have been installed, make the following adjustments. Whenever the 12AY7 tubes are changed, these adjustments should be checked.

Terminate all microphone inputs (turntable inputs also if additional preamplifier has been installed) in 150 -ohm load resistors. Set all mixer switches 4 S 2 to 4 S 9 to the center or off position. Set the Line Out switch $4 S 14$ to the REG position. Set the MASTER gain control 4AT9 to 20. Adjust the hum potentiometer 6R4 which is marked HUM ADJ. PGM AMP on the power supply chassis for
minimum hum at the line output terminals 89 and 90 .

Set the microphone and turntable mixers 4 AT1 to 4 AT6 to 20 , set the mixer switches 4S2 to 4S5 (turntable switches 4S6 and 4S7 when third preamplifier is installed) to the P position. With the other conditions as above, adjust the hum potentiometer $6 R 3$ marked HUM ADJ. PRE AMP on the power supply chassis for minimum hum on the line output terminals 89 and 90.

VU Meter Attenuator Connections

The vu meter attenuator 4 AT11 consists of a 3600 ohm input resistor and five T pad sections having losses of $1,2,4,8$ and 12 db . The attenuation is stencilled between the

TWO MI-II702;A RELAYS MOUNTED INA $6 \times 6 \times 4$ STEEL CABINET.

Figure 17 - Warning Light Relay
input and output terminals of each section. These sections may be connected in series to obtain a total attenuation ranging from 0 db to 27 db in steps of 1 db .

The input resistor section must always be used. Leave the red wire connected to terminal 1 (IN) and leave the black and bus wires connected to terminal 13 (C) of 4AT11. Refer to Figures 22 and 23

The line output level expressed in VU is two VU less than the total attenuation in the
pad. For example, when shipped, the input resistor is connected to the 2 db section which is connected to the 8 db section which in turn is connected to the V meter. The total loss in the $V U$ meter attenuator is 10 db and the line output level is 2 db less, or 8 VU .

Audio and Power Block Connections

For convenient reference the following charts list the terminal connections for terminal blocks 4 TB 1 and 4TB3:

CONNECTIONS AT AUDIO TERMINAL BLOCK 4 TBI

	Terminals
Microphone 1	$1-2$
Microphone 2	$3-4$
Microphone 3	$5-6$
Announce Booth Microphone	$7-8$
Microphone 4	$9-10$
Control Room Microphone	$11-12$
Turntable 1*	$13-14$
Turntable 2*	$15-16$
Network	$17-18$
Remote Line 1	$19-20$
Remote Line 2	$21-22$
Remote Line 3	$23-24$
Remote Line 4	$25-26$
Remote Line 5	$27-28$
Remote Line Switch 4S10	$29-30$
Remote Line Transformer 5T1 Out	$31-32$
Remote Line Transformer 5T1 In	$33-34$
Remote Line Pad In	$35-36$
Turntable Cue	$37-38$
Preamplifier 2B Input	$39-40$
Preamplifier 1A Output	$41-42$
Preamplifier 1B Output	$43-44$
Mixer 1 4AT1 In	$45-46$
Mixer 2 4AT2 In	$47-48$
Preamplifier 2A Out	$49-50$
Preamplifier 2B Out	$51-52$
Mixer 3 4AT3 In	$53-54$
Mixer 4 4AT4 In	$55-56$
Preamplifier 3A Out	$57-58$
Preamplifier 3B Out	$59-60$

	Terminals
Mixer 5 4AT5 In**	$61-62$
Mixer 6 4AT6 In**	$63-64$
Program Bus	$65-66$
Monitor Input Switch 4S12	$67-68$
Program Amplifier In	$69-70$
Monitor Amplifier In	$71-72$
Cue Line \#1	$73-74$
Cue Line \#2	$75-76$
Cue Line \#3	$77-78$
Remote Talk Back	$79-80$
Program Amplifier Out	$81-82$
Record	$83-84$
Line Out Switch 4S14	$85-86$
External Monitor	$87-88$
Line Out	$89-90$
Master Control Signal Light	$91-92$
Monitor Output 5 ohms	$93-94$
Monitor Output 600 ohms	$95-96$
Cont rol Room Speaker	$97-98$
Studio A Speaker	$99-100$
Studio B Speaker	$101-102$
Announce Booth Speaker	$103-104$
Consolette Signal Light (Left)	$105-106$
Signal Light (Right)	$107-108$
Control Room ON AIR	$109-110$
Studio A ON AIR	$111-112$
Studio B AUDrTroN	$113-114$
Studio B ON AIR	$115-116$
Studio B AUDrTION	$117-118$
Announce Booth ON AIR	$119-120$

[^1]| | Terminal |
| :---: | :---: |
| No connection
 Heater, preampiifiers, 6.3 v
 Heater, program, mon. amp and vu meter, 6.3 v
 Relay Supply, 24 v
 Ground
 B-
 Monitor Amplifier, B+, 320 v
 Program Amplifier, Bt, 315 v
 Preamplifier, B+, 285 V
 No connection | $\begin{gathered} 1-2 \\ 3-4 \\ 5-6 \\ 7-8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14-15 \end{gathered}$ |

OPERATION

Refer to Figure 18 and to the two charts for identification and function of all controls and switches on the control panel of the consolette. It is advisable to be familiar with this information for thorough understanding of the flexibility of the equipment.

Precautions

Do not use TB (Talk-Back) pushbuttons when the MIC 4 selector switch is in the $C R$ position.

Do not turn the MASTER mixer and the MON GAIN controls to maximum at the same time.

Preset the MIC 4 selector switch $4 S 1$ to the desired microphone before setting up mixer switch 4 S 5 .

Normally leave all key switches in central position and the switch marked SELECTOR in OFF position.

Figure 18 - Control Panel of Consolette

COHTROL FUNCTIONS

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Panel \\
Designations
\end{tabular} \& Symbol \& Color \& Function \& Coordinated with \\
\hline \multicolumn{5}{|l|}{MIXER ATTENUATORS} \\
\hline \begin{tabular}{l}
MIC 1 \\
MIC 2 \\
MIC 3 \\
MIC 4 \\
TT1 \\
TT2 \\
NET \\
REM
\end{tabular} \& \begin{tabular}{l}
4AT1 \\
4AT2 \\
4AT3 \\
4 AT4 \\
4ATE \\
4AT6 \\
4AT7 \\
4 AT8
\end{tabular} \& \begin{tabular}{l}
Black \\
Black \\
Black \\
Black \\
Blue \\
White \\
Red
\end{tabular} \& \begin{tabular}{l}
Controls the gain of microphone 1 \\
Controls the gain of microphone 2 \\
Controls the gain of microphone 3 \\
Controls the gain for microphone 4 announce booth microphone, and the control room microphone \\
Control the gain for the turntables 1 and 2 respectively; in the OFF position, connects the output of the turntables to the external cueing line Controls gain of network line Controls gain of the remote lines
\end{tabular} \& 4 S 2
4 S 3
4 S 4
4 S 5
\(\&\)
4 S 1
4 S 6

$4 \mathrm{4S}$
4 S 9 and 4 S 10

\hline \multicolumn{5}{|l|}{MASTER GAIN CONTROL}

\hline MASTER \& 4 AT9 \& Black \& Controls gain of the program channel \& 4S14

\hline \multicolumn{5}{|l|}{MIXER SWITCHES}

\hline A $=0-\mathrm{P}$ \& \[
$$
\begin{aligned}
& 4 S 2 \\
& 4 S 3 \\
& 4 S 4 \\
& 4 S 5 \\
& 4 S 6 \\
& 457 \\
& 4 S 8 \\
& 4 S 9
\end{aligned}
$$

\] \& | Black |
| :--- |
| Black |
| Black |
| Black |
| Blue |
| Blue |
| White |
| Red | \& | Key switches 4S2 thru 4S9 |
| :--- |
| Connect the mixer controls to |
| the input of the program amplifier when in the P position |
| These switches connect the mixer controls to the AUD pushbutton and then to the input of the monitor amplifier when in the A position. |
| In the center position the switches disconnect the mixers | \& | 4AT1 |
| :--- |
| 4AT2 |
| 4 AT3 |
| 4 AT4 |
| 4 AT5 |
| 4AT6 |
| 4AT7 |
| 4AT8 |

\hline \multicolumn{5}{|l|}{LINE OUTPUT SWITCH}

\hline | EMG |
| :--- |
| OFF |
| REG | \& 4S14 \& Black \& | Connects the program line to the output of the monitor amplifier |
| :--- |
| Disconnects the program line |
| Connects the program line to output of the program amplifier. | \&

\hline \multicolumn{5}{|l|}{MONITOR INPUT SWITCH}

\hline TB A \& 4S12A \& Black \& Connects the control room microphone to input of the monitor amplifier; cuts off all loudspeakers in Studio B and control room. Used for talkback to Studio A. \&

\hline
\end{tabular}

Panel Designations	Symbol	Color	Function	Coordinated with
TB B	$4 \mathrm{S12B}$	Black	Connects the control room microphone to the input of the monitor amplifier cuts off loudspeaker in Studio A and in control room. Used for talkback to Studio B.	
TB REM	4S12C	Black	Connects the control room microphone to the input of the monitor amplifier cuts off all loudspeakers, connects remote lines to the output of the monitor amplifier. Used for talkback to remote lines.	$\begin{gathered} 4 \mathrm{~S} 11 \\ \text { and } \\ 4 \mathrm{~S} 13 \end{gathered}$
PGM	4S12D	Black	Connects the input of the monitor amplifier to the output of the program amplifier; used for monitoring the program	
AJD	4S12E	Black	```Connects the input of the monitor amplifier to the audition bus; used for auditioning.```	
$\begin{array}{r} \text { CUE } 1 \\ 2 \\ 3 \end{array}$	$\begin{aligned} & 4 \mathrm{~S} 12 \mathrm{~F} \\ & 4 \mathrm{~S} 12 \mathrm{G} \\ & 4 \mathrm{~S} 12 \mathrm{H} \end{aligned}$	Black Black Black	```Connects the input of the monitor amplifier to the respective cue lines; used for receiving cues.```	
MON ITOR GAIN CONTROL				
MON GAIN	4AT10	Black	Adjusts the gain of the monitor amplifier.	
MICROPHONE SELECTOR SWITCH				
AN B	4S1	Black	Connects the announce booth microphone through preamplifier 2 B to MIC 4 mixer channel	$\begin{aligned} & \text { 4AT4 } \\ & \text { 4S5 } \end{aligned}$
MIC 4	4S1	Black	```Connects the microphone 4 through preamplifier 2B to the MIC 4 mixer channel```	
CR	4S1	Black	Connects the control room microphone through the preamplifier $2 B$ to the MIC 4 mixer channel	
OVERRIDE - PHONE MONITOR - REMOTE TALKBACK - REMOTE CUE SWITCH				
OVERRIDE	4S13	Black	Connects input of monitor amplifier through 4 S 11 to unused remote lines. Signal from remote line overrides program being monitored.	4S11
PH MON REM TB	4S13	Black	Connects phone jack MON $4 J 1$ through selector 4S11. Connects output of monitor amplifier to remote lines through 4S11 when remote talkback button is pressed.	$\begin{aligned} & 4 \mathrm{~S} 11 \\ & 4 \mathrm{~S} 12 \end{aligned}$
REM CUE	4S13	Black	Connects output of monitor amplifier to remote lines through 4 S 11 .	4S11

Panel Designations	Symbol	Color	Function	Coordinated with
SELECTOR SWITCH				
SELECTOR	4S11	Black	Selects remote line for remote cue and talk-back. Also selects input to monitor phones from program and monitor amplifier, and remote lines.	4S12
REMOTE INPUT SWITCH				
REMOTE INPUT OFF	$\begin{aligned} & 4 \mathrm{~S} 10 \\ & 4 \mathrm{~S} 10 \mathrm{~A} \end{aligned}$	Black	Terminates remote line Channel in resistance	4 AT8
1	4S10B	Red	Connects remote line 1 to remote line channel	4S9
2	4S10C	Red	Connects remote line 2 to remote line channel	
3	4S10D	Red	Connects remote line 3 to remote line channel	
4	4S10E	Red	Connects remote line 4 to remote line channel	
5	4S10F	Red	Connects remote line 5 to remote line channel	
VU METER SWITCH				
PGM AUD	$\begin{aligned} & 4 \mathrm{~S} 10 \mathrm{G} \\ & 4 \mathrm{~S} 10 \mathrm{G} \end{aligned}$	Black Black	Connects VU meter across the output of the program amplifier Connects VU meter across the output of the monitor amplifier	

Routine Procedure

As may be seen on the chart, page 28, each procedure in itself is simple. These routine procedures are used frequently and may be combined in many ways to function simultaneously.

To put a program on the air (Studio A)

1. Press PGM pushbutton of the VU meter switches to read the line output level on the VU meter.
2. Press PGM pushbutton of the Monitor Input switch to monitor the program.
3. Set the Line Out switch to REG.
4. Turn the mixer switch for MIC1/MIC2
to P.
5. Turn up MIC $1 /$ MIC 2 faders.
6. Adjust MASTER gain control to the desired level on the VU meter.
7. Adjust MON GAIN control to desired volume.

To put a program on the air (Studio B)
This procedure is the same as for the Studio A routine except the mixer switches and faders on MIC $3 / \mathrm{MIC} 4$ are used and selector switch 4 S1 must be turned to MIC 4 before setting up the switch 4S5.

To audition a program (Studio A)

1. Press AUD pushbutton of the VU meter switch to read the output level on the VU meter.
2. Press the AUD of the Monitor Input switch.
3. Turn the mixer switch for MIC 1 or MIC 2 to A.
4. Turn up MIC 1 or MIC 2 faders.

TABULATION OF SWITCH POSITIONS FOR FREQUENTLY USED OPERATIONS																
DESIGNATION SYMBOL			$\frac{-}{\frac{0}{2}}$	$\begin{gathered} N \\ \mathbf{N} \\ \hline \mathbf{x} \\ \hline p \end{gathered}$	$\begin{array}{\|c\|} \hline \infty \\ 0 \\ \hline \mathbf{x} \\ \hline p^{*} \end{array}$	$\begin{gathered} \underset{\sim}{ \pm} \\ \frac{0}{\Sigma} \\ p^{*} \end{gathered}$	E	\tilde{F}	華 -				$\begin{aligned} & \text { 응 } \\ & \text { 릉 } \\ & \text { 岕 } \\ & \hline- \end{aligned}$			
To Put	STD. A															
On Air (reg)	STD. B	MIC 4	-	-	P	${ }^{\text {P }}$	-	-	-	-	-	PGM	-	-	-	Reg
To Put Studio on Air (EMG)	STD. A	MIC 4	A	A	A^{*}	A^{*}	-	-	-	-	-	PGM	-	AUD	-	EMG
	STD. B	MIC 4	-	-	A	A	-	-	-	-	-	PGM	-	AUD	-	EMG
To Audition Studio	STD. A	MIC 4*	A	A	A^{*}	A^{*}	-	-	-	-	-	aUd	-	AUD	-	-
	STD. B	MIC 4	-	-	A	A	-	-	-	-	-	AUD	-	AUD	-	-
Talk Back To.	STD. A	MIC 4	-	-	-	-	-	-	-	-	-	-	-	tB. A	-	-
	STD. B	MIC 4	-	-	-	-	-	-	-	-	-	-		T8. B	-	-
	REM	MIC 4	-	-	-	-	-	-	-	-	-	-		TB REM	REM TB.	-
To Put Network on Air		-	-	-	-	-	-	-	${ }^{P}$	-	-	PGM	-	-	-	REg
To Monitor Network		-	-	-	-	-	-	-	A	-	-	AUD	-	AUD	-	-
To Put Remote on Air		-	-	-	-	-	-	-	-	P	$$	PGM	-	-	-	REG
To Monitor Remote Line		-	-	-	-	-	-	-	-	A	$\int_{1}^{\text {Line }}{ }_{\text {to }}$	AUD	-	aud	-	-
To Put Turntable On Air	TT 1	-	-	-	-	-	P	-	-	-	-	PGM	-	-	-	reg
	TT2	-	-	-	-	-	-	P	-	-	-	PGM	-	-	-	REG
To Cue Turntable	TT1	-	-	-	-	-	A	-	-	-	-	-	-	AUD	-	-
	TT2	-	-	-	-	-	-	A	-	-	-	-	-	AUD	-	-
To Monitor program	-	-	-	-	-	-	-	-	-	-	-	-	-	PGM	-	-
To Send Cue over Remote Line	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{gathered} \text { Line } \\ 1 \text { to } 5 \end{gathered}$	-	$\begin{aligned} & \text { Ren } \\ & \text { Cue } \end{aligned}$	-

5. Adjust MON GAIN control for the desired level on the VU meter.

To audition a program (Studio B)
This procedure is the same as for Studio A except the mixer switches and controls MIC 3 and MIC 4 are used and the selector switch 4 S1 must be turned to MIC 4 before setting up the switch 4S5.

To put a network program on the air

1. Set the net mixer switch to P.
2. Turn the NET mixer up.
3. Follow the procedure for putting a studio program on the air.

To monitor network line

1. Set the net mixer switch to A.
2. Turn NET mixer up.
3. Follow the procedure for auditioning a studio program.

To put a remote program on the air

1. Press pushbutton of desired remote line on the Remote Line Selector switch.
2. Set remote mixer switch to P.
3. Turn REM line mixer up.
4. Proceed as in putting a Studio program on the air.

To monitor a remote program

Proceed according to procedure above except, set the remote mixer switch to A and follow the procedure for auditioning a Studio program.

To identify incoming override call from remote line

1. Push the OFF button of the remote line input switch.
2. Set the SELECTOR switch to OFF position.
3. Set switch 4 S 13 to OVERRIDE.
4. Turn up MON GAIN to desired level.
5. Turn the selector switch 4 S 11 until incoming call is not heard on the control room speaker. Pointer on the knob of 4 S 11 indicates the remote line over which the call originates.

To monitor a program

1. Press PGM button on the monitor input switch.
2. Adjust MON GAIN control to desired level.

To monitor with headphones

1. Network line
a. Plug headphones into NET phone jack 4J2.
2. Program amplifier, monitor, amplifier and remote lines
a. Plug headphones into MON phone jack 4J1.
b. Set the switchh 4 S13 to center position (PH MON - REM - TB).
c. Set the SELECTOR switch to desired position (PGM, MON, or 1-2-3-4-5 Remote Line).

To monitor cue lines

1. Press desired CUE (1, 2, 3) on the Monitor Input switch.
2. Adjust MON GAIN control to desired volume.

To cue turntables

With monitor amplifier

1. Set TT mixer switch of turntable to be cued to A.
2. Turn up the associated mi.xer control.
3. Press AUD button of Monitor Input switch.
4. Adjust MON GAIN control for desired level.

With external cueing amplifier and speaker:

1. Turn TT mixer gain control of turntable to be cued to 0 .
2. Adjust gain on cueing amplifier to desired volume.

To send cue over remote lines:

1. Set the SELECTOR switch to remote line to be cued.
2. Set switch 4 SlI to REM CUE (Cue cannot be sent over remote line of which button on Remote Line Input switch 4S10 is depressed).

To talk-back to Studio A/Studio B

1. Press pushbutton A (or B according to studio selected) of the TB button.
2. Turn up MON GAIN to adjust volume.

Remember that the operator cannot talk back to a studio which is ON-THE-AIR.

To talk-back to remote lines:

1. Select remote line on switch 4S11. One cannot talk back to a remote line which is in use (i.e. has button on switch 4S10 depressed).
2. Press pushbutton REM of the $T B$ buttons on switch 4 S12.
3. Turn up MON GAIN to adjust volume.

Emergency Operation

In case the program amplifier should fail during the broadcasting time, proceed as follows:

1. Press the Monitor Input pushbutton marked AUD.
2. Turn the LINE OUT switch to EMG.
3. Turn mixer switches of input channels in use to A.
4. MON GAIN and the selected mixer control are now governing the output level.
relay, speaker and warning light operation

Switch Positions							Speaker Relay				Louds peakers				Warning Lights					
451	452	453	454	$4 S 5$	4S12	4S14	5KI	5K2	5K3	5K4	CR	ST. A	ST. B	AN. B	$\begin{aligned} & C R \\ & 0 . A . \end{aligned}$	$\begin{aligned} & \text { ST. A } \\ & \text { O. A. } \end{aligned}$	$\begin{aligned} & \text { ST. A. } \\ & \text { AUD } \end{aligned}$	$\begin{aligned} & \text { ST. B } \\ & \text { O.A. } \end{aligned}$	$\begin{aligned} & \text { ST. B } \\ & \text { AUD. } \end{aligned}$	$\begin{aligned} & \text { AN. B. } \\ & \text { O.A. } \end{aligned}$
MIC 4	OFF	OFF	OFF	OFF	PGM	OFF	0	c		c	ON	ON		ON	OFF	OFF	OFF			OFF
MIC 4	P	OFF	OFF	OFF	PGM	OFF	0	0		c	ON	OFF		ON	OFF	OFF	OFF			OFF
MIC 4	P	OFF	OFF	OFF	PGM	REG	0	0		C	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	OFF	P	OFF	OFF	PGM	REG	0	0		c	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	OFF	OFF	P	OFF	PGM	REG	0	0		c	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	OFF	OFF	OFF	P	PGM	REG	0	0		c	ON	OFF		ON	OFF	ON	OFF			OFF
CR	OFF	OFF	OFF	P	PGM	REG	c	C		c	OFF	ON		ON	ON	OFF	OFF			OFF
AN. B	OFF	OFF	OFF	P	PGM	REG	0	C		0	ON	ON		OFF	OFF	OFF	OFF			ON
MIC 4	A	OFF	OFF	OFF	PGM	OFF	0	0		c	ON	OFF		ON	OFF	OFF	OFF			OFF
MIC 4	A	OFF	OFF	OFF	AUD	OFF	0	0		c	ON	OFF		ON	OFF	OFF	ON			OFF
MIC 4	OFF	A	OFF	OFF	AUD	OFF	0	0		C	ON	OFF		ON	OFF	OFF	ON			OFF
MIC 4	OFF	OFF	A	OFF	AUD	OFF	0	0		C	ON	OFF		ON	OFF	OFF	ON			OFF
MIC 4	OFF	OFF	OFF	A	AUD	OFF	0	0		C	ON	OFF		ON	OFF	OFF	ON			OFF
CR	OFF	OFF	OFF	A	AUD	OFF	c	C		C	OFF	ON		ON	OFF	OFF	OFF			OFF
AN. ${ }^{\text {C }}$	OFF	OFF	OFF.	A	AUD	OFF	0	c		0	ON	ON		OFF	OFF	OFF	OFF			OFF
MIC 4	A	P	OFF	OFF	AUD	REG	0	0		C	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	P	A	OFF	OFF	AUD	REG	0	0		C	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	OFF	OFF	A	P	AUD	REG	0	0		C	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	OFF	OFF	P	A	AUD	REG	0	0		C	ON	OFF		ON	OFF	ON	OFF			OFF
MIC 4	OFF	OFF	OFF	OFF	TB. A	OFF	C	C		C	OFF	ON		ON	OFF	OFF	OFF			OFF
MIC 4	P	OFF	OFF	OFF	TB.A	REG	c	0		c	OFF	OFF		ON	ON	ON	OFF			OFF
MIC 4	OFF	OFF	P	OFF	TB. A	REG	c	0		c	OFF	OFF		ON	ON	ON	OFF			OFF
MIC 4	OFF	OFF	OFF	P	TB. A	REG	C	0		C	OFF	OFF		ON	ON	ON	OFF			OFF
MIC 4	OFF	OFF	OFF	OFF	TB	OFF	C	0		0	OFF	OFF		OFF	OFF	OFF	OFF			OFF

reLay，speaker and warning light operation

	$\begin{aligned} & \infty \\ & x^{\infty} \end{aligned}$	$\stackrel{L}{4}$	$\begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \mathbf{L} \\ & \mathbf{O} \end{aligned}\right.$	$\begin{gathered} 4 \\ \vdots \\ 0 \end{gathered}$	$\begin{array}{\|l} 4 \\ \mathbf{L} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{L} \\ & \mathbf{L} \\ & \mathbf{0} \end{aligned}$	Z	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\mathbf{L}}{\mathbf{L}} \mathbf{0}$	$\left\lvert\, \begin{aligned} & 4 \\ & \mathbf{L} \\ & \hline \end{aligned}\right.$	$\begin{array}{\|l} 4 \\ \mathbf{L} \\ 0 \end{array}$	$\left\|\begin{array}{c} \mathbf{u} \\ \mathbf{t} \end{array}\right\|$	$\begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}$	$\begin{array}{\|l\|l} \mathbf{L} \\ \mathbf{L} \end{array}$	$\stackrel{L}{\square}$	$\begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}$	$\begin{array}{\|c} 4 \\ \mathbf{L} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \hline \mathbf{O} \end{aligned}\right.$	$\stackrel{L}{4}$	岮	$\frac{4}{4}$
	6	$\begin{aligned} & 4 \\ & \hline \mathbf{L} \end{aligned}$	$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & \mathbf{1} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \mathbf{L} \\ \mathbf{L} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathbf{L} \\ \mathbf{L} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}$	$\begin{array}{\|l\|l\|} \mathbf{4} \\ \mathbf{0} \end{array}$	$\begin{aligned} & 4 \\ & \frac{1}{0} \end{aligned}$	2	\mathbf{z}	$\frac{4}{4}$	$\frac{1}{4}$	$\left\lvert\, \begin{aligned} & 4 \\ & \hline \mathbf{L} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \mathbf{L} \\ & \hline \end{aligned}\right.$	$\frac{4}{4}$		湺	$\left\lvert\, \begin{aligned} & 4 \\ & \hline 0 \end{aligned}\right.$	$\left.\right\|_{L} ^{L}$	$\left\lvert\, \begin{aligned} & \frac{4}{4} \\ & \mathbf{0} \end{aligned}\right.$	$\frac{1}{4}$
	にo	$\begin{aligned} & 4 \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & \mathbf{0} \end{aligned}$	$\begin{array}{\|l} 4 \\ \mathbf{u} \\ \hline \end{array}$	2	2	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { L } \\ & \stackrel{L}{\circ} \end{aligned}$	$\begin{aligned} & 4 \\ & \stackrel{4}{6} \end{aligned}$	$\begin{array}{\|l} 4 \\ \stackrel{L}{2} \\ \hline \end{array}$	$\begin{array}{\|l} \stackrel{4}{4} \\ \mathbf{O} \end{array}$	$\begin{aligned} & \frac{4}{4} \\ & \stackrel{1}{O} \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \hline 0 \end{aligned}\right.$	$\begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}$	$\frac{4}{4}$	$\begin{aligned} & L \\ & \hline \mathbf{O} \end{aligned}$	$\begin{aligned} & 4 \\ & \stackrel{L}{0} \end{aligned}$	\mathbf{z}	2	L	$1 \begin{aligned} & L \\ & \hline 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & L \\ & \hline \mathbf{L} \end{aligned}\right.$	2	$\frac{1}{4}$
	ю号		$\begin{aligned} & 4 \\ & \stackrel{L}{0} \end{aligned}$	$\left\|\begin{array}{l} 4 \\ L \\ 0 \end{array}\right\|$	$\begin{array}{\|l\|l} \mathbf{u} \\ \mathbf{L} \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{L} \\ & \mathbf{L} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & L \\ & L \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l} \text { L } \\ \hline \mathbf{O} \end{array}$	$\begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}$	2	\mathbf{z}	$\frac{4}{4}$	$\begin{aligned} & \text { L } \\ & \stackrel{L}{0} \end{aligned}$	$\stackrel{4}{4}$	$\begin{array}{\|l} \mathbf{L} \\ \mathbf{L} \\ \hline \end{array}$	$\begin{array}{\|l} \mathbf{u} \\ \mathbf{U} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \mathbf{L} \\ & \hline \end{aligned}\right.$	$\frac{u}{\stackrel{u}{0}}$	$\begin{array}{\|l} \mathbf{u} \\ \mathbf{1} \end{array}$	\|u	$\frac{L}{L}$	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{L}{0} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \stackrel{L}{0} \end{aligned}\right.$	$\frac{1}{4}$
	にo	$\stackrel{4}{4}$	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & \mathbf{O} \end{aligned}$	\mathbf{z}	2	$\begin{array}{\|l} \mathbf{L} \\ \mathbf{L} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & u \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & \stackrel{L}{\mathbf{L}} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}\right.$	$\stackrel{L}{4}$	$\begin{aligned} & \frac{4}{4} \\ & \mathbf{0} \end{aligned}$	$\begin{array}{\|l} \mathbf{L} \\ \mathbf{L} \\ \hline \end{array}$	$\begin{aligned} & \text { L } \\ & \mathbf{U} \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{4}{0} \end{aligned}\right.$	z	2	$\frac{4}{4}$	$\begin{array}{\|l} L \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 4 \\ & u \\ & 0 \end{aligned}\right.$	2		$\begin{array}{\|l\|l} \stackrel{4}{4} \\ \hline 0 \end{array}$	$\left.\right\|_{0} ^{4}$
	$\underset{\leftrightarrow 0}{\circ}$	$\begin{gathered} 4 \\ \mathbf{L} \\ 0 \end{gathered}$		$\frac{1}{4}$	$\frac{4}{4}$	$\begin{array}{\|l} \frac{L}{L} \\ \hline \mathbf{O} \end{array}$	$\stackrel{4}{\stackrel{u}{0}}$	2	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & \hline 0 \end{aligned}$	$\frac{L}{L}$	$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{L}{\circ} \end{aligned}$	$\begin{aligned} & \frac{u}{4} \\ & \mathbf{L} \end{aligned}$	$\frac{4}{4}$	$\frac{L}{0}$	$\frac{4}{4}$	$\left\lvert\, \frac{4}{4}\right.$	$\frac{L}{4}$	$\frac{1}{4}$	$\frac{\stackrel{4}{4}}{\stackrel{L}{\circ}}$		z	$\frac{4}{4}$	2	$\begin{array}{\|l} \frac{L}{L} \\ \stackrel{L}{\circ} \end{array}$
	<	2	\mathbf{z}	\mathbf{z}	z	\mathbf{z}	\mathbf{z}	z	$\left\lvert\, \begin{aligned} & \text { L } \\ & \mathbf{L} \end{aligned}\right.$	z	$\frac{z}{0}$	\mathbf{z}	12	2	z	\|L	z	z	\mathbf{z}	z	z	z	2	2	\|l
	$\stackrel{\circ}{\infty}$	2	2	z	z	花	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$	z_{0}	\mathbf{z}	z	z	Z	$\left\lvert\, \begin{aligned} & 4 \\ & \hline 0 \end{aligned}\right.$	$\frac{1}{4}$	3	z	z	12	$\left\lvert\, \begin{aligned} & 4 \\ & \hline 0 \end{aligned}\right.$	$\frac{4}{4}$	$\stackrel{L}{4}$	$\frac{4}{4}$	Z	$\begin{array}{\|l} \mathbf{L} \\ \stackrel{L}{\circ} \end{array}$	$\frac{\mathrm{L}}{\mathrm{~L}}$
	$\text { } \infty$	z_{0}^{2}	$\begin{array}{\|l} 4 \\ \hline \mathbf{L} \end{array}$	$\left\lvert\, \begin{aligned} & 4 \\ & \mathbf{L} \\ & 0 \end{aligned}\right.$	$\stackrel{L}{L}$	\mathbf{z}	\mathbf{z}	z	2	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \mathbf{L} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \stackrel{L}{0} \end{aligned}\right.$	$\stackrel{L}{L}$	z_{0}^{2}	$\frac{z}{0}$	z	\mathbf{z}	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & 0 \end{aligned}$	$\frac{L}{L}$	z	z	\mathbf{z}	$\frac{4}{4}$	$\frac{L}{4}$	$\begin{array}{\|l\|l} \stackrel{4}{4} \\ \mathbf{O} \end{array}$	$\frac{1}{L}$
	$\underset{0}{0}$	2	z	z	\mathbf{z}	z	\mathbf{z}	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{L}{0} \end{aligned}\right.$	z	z	2	\mathbf{z}	12	z	14	2	z	0	Z	z	$\left\lvert\, \begin{aligned} & 4 \\ & \hline 0 \end{aligned}\right.$	$\frac{4}{4}$	$\left\lvert\, \begin{aligned} & \frac{1}{2} \\ & 0 \end{aligned}\right.$		1
	\％	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	\cup	0	0	－
	$\frac{\varrho}{n}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	－	－	0	0	O．
	N	ω	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	O	\bigcirc	－
	\％	0	－	－	0	0	\bigcirc	0	－	0	0	\bigcirc	－	－	0	\bigcirc	\bigcirc	0	－	0	0	0	0	0	0
	$\stackrel{\rightharpoonup}{3}$	$\begin{aligned} & 4 \\ & \hline 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \hline 0 \end{aligned}\right.$	$\underset{\sim}{\underset{\alpha}{u}}$	$\begin{aligned} & 0 \\ & 山 ⿰ 亻 ⿱ 丶 ⿻ 工 二 十 \end{aligned}$	$\underset{\sim}{\underset{\sim}{0}}$	$\underset{\sim}{u}$	$\underset{\sim}{\underset{\sim}{u}}$	$\underset{\sim}{\underset{\sim}{u}}$	花	$1 \begin{aligned} & 4 \\ & \mathbf{L} \\ & 0 \end{aligned}$	$\left\lvert\, \frac{4}{4}\right.$	$\frac{4}{4}$	$\begin{aligned} & 4 \\ & \hline \mathbf{L} \end{aligned}$	$\left.\right\|_{\mathbf{L}} ^{\mathbf{L}}$	$\left.\right\|_{1} ^{L}$		$\underset{\sim}{u}$		$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \mathbf{L} \end{aligned}\right.$	$\underset{\sim}{\substack{0 \\ \underset{\sim}{u} \\ \hline}}$	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{L}{0} \end{aligned}\right.$	$\begin{aligned} & \text { 凹 } \\ & \underset{\sim}{\sim} \end{aligned}$	$\stackrel{\leftrightarrow}{4}$
	$\stackrel{N}{\sim}$	\sum_{0}	$\begin{aligned} & \Sigma \\ & \hline 0 \\ & \hline \end{aligned}$	\sum_{0}^{2}	页	\sum_{0}^{2}	$\begin{aligned} & \bar{y} \\ & 0 \end{aligned}$	\sum_{0}^{2}	$\begin{aligned} & \bar{V} \\ & 0 \end{aligned}$	I	$\frac{9}{8}$	$\frac{0}{2}$	0	0	10	$\stackrel{0}{2}$	10	$\begin{aligned} & 0 \\ & \frac{3}{4} \end{aligned}$	$\frac{0}{2}$	$\frac{9}{8}$	$\left\lvert\, \begin{aligned} & \alpha \\ & \infty \\ & \infty \end{aligned}\right.$	$\begin{aligned} & \& \\ & \infty \\ & \vdash \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & 1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \vdash \end{aligned}\right.$	$\stackrel{\text { ¢ }}{\sim}$
	$\stackrel{10}{\infty}$	$\begin{aligned} & \text { L } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \frac{4}{4} \\ \mathbf{O} \end{array}$	$\frac{u}{4}$	$\stackrel{L}{L}$	$\begin{array}{\|l\|l} 4 \\ \hline \mathbf{L} \end{array}$	－	－	0	$\begin{aligned} & 4 \\ & \mathbf{4} \\ & \hline \mathbf{L} \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \hline \mathbf{L} \end{aligned}\right.$	$\frac{4}{4}$	$\left.\right\|_{4} ^{4}$	＊	＜	＜	$\left\lvert\, \begin{aligned} & 4 \\ & L \\ & \hline \end{aligned}\right.$	$\left.\right\|_{\mathbf{L}} ^{\mathbf{L}}$	0	＊	$\begin{aligned} & 4 \\ & u \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \mathbf{L} \\ & \hline \end{aligned}\right.$	$\frac{1}{2}$	$\begin{aligned} & \text { L } \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \mathbf{L} \\ & \hline \end{aligned}$
	$\stackrel{7}{3}$	$\begin{aligned} & 4 \\ & \stackrel{L}{\circ} \end{aligned}$	$\frac{4}{4}$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \text { L } \end{aligned}\right.$	$\begin{aligned} & 4 \\ & L \\ & \hline \end{aligned}$	a	$\frac{4}{4}$	$\begin{aligned} & \text { L } \\ & \stackrel{L}{\circ} \end{aligned}$	$\begin{aligned} & 4 \\ & \hline 1 \\ & 0 \end{aligned}$	$\frac{4}{4}$	$\frac{4}{4}$	$\begin{array}{\|l} 4 \\ \hline \mathbf{L} \\ \hline \end{array}$		$\frac{L}{L}$	4	$\frac{1}{4}$	$\left\lvert\, \begin{aligned} & L \\ & \hline \mathbf{L} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 4 \\ & \frac{1}{0} \end{aligned}\right.$	＜	0	$\stackrel{L}{L}$	$\left\lvert\, \begin{aligned} & 4 \\ & \hline \mathbf{L} \\ & \hline \mathbf{L} \end{aligned}\right.$	$\frac{1}{4}$	0	$\frac{4}{4}$
	$\stackrel{\infty}{\square}$	$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{4}{0} \end{aligned}$	$\left\lvert\, \begin{aligned} & 4 \\ & \stackrel{4}{0} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \mathbf{L} \end{aligned}\right.$	－	$\frac{L}{4}$	$\begin{aligned} & \text { L } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{array}{\|l} \frac{L}{L} \\ \mathbf{O} \end{array}$	$\begin{aligned} & 1 \\ & 4 \\ & 0 \end{aligned}$	$\stackrel{4}{4}$	$\left\lvert\, \begin{aligned} & 1 \\ & \stackrel{1}{2} \end{aligned}\right.$	＜	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\left\lvert\, \begin{array}{\|l\|} \hline \text { L } \\ \hline \mathbf{O} \end{array}\right.$	Q	＜	$\frac{L}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\left.\right\|_{1} ^{4}$	$\frac{1}{2}$	$\left\lvert\, \begin{aligned} & \text { L } \\ & \stackrel{L}{\circ} \end{aligned}\right.$
	$\stackrel{\sim}{3}$	$\begin{aligned} & \text { L } \\ & \stackrel{1}{0} \end{aligned}$	0	Q	$\stackrel{4}{0}$	$\begin{aligned} & \frac{u}{4} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{4}{4}$	$\begin{aligned} & L \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \mathbf{L} \\ & \mathbf{O} \end{aligned}$	＜	＊	$\frac{L}{4}$	$\frac{4}{4}$	$\left\lvert\, \begin{aligned} & \stackrel{4}{4} \\ & \hline \mathbf{O} \end{aligned}\right.$	$\frac{4}{4}$	Lu	＜	－	$\frac{L}{L}$	$\begin{aligned} & \text { L } \\ & \stackrel{L}{0} \end{aligned}$	$\begin{array}{\|l} \frac{L}{L} \\ \stackrel{L}{0} \end{array}$	－	$\frac{u}{4}$	$\begin{aligned} & \text { L } \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \stackrel{L}{0} \end{aligned}$
	$\bar{\square}$	a \pm $\frac{1}{2}$	a $\frac{0}{2}$	J 0 \pm Σ	J U I	J 0 Σ Σ		$\underset{\sim}{\infty}$	¢	\＃	二	$\begin{aligned} & 7 \\ & \frac{0}{\Sigma} \\ & \hline \end{aligned}$	$\frac{\boldsymbol{7}}{\mathbf{v}}$	$\left\lvert\, \begin{aligned} & 7 \\ & \frac{0}{\Sigma} \end{aligned}\right.$	0	$\left.\right\|_{\infty} ^{\infty}$	$\begin{aligned} & \bar{z} \\ & \mathbf{~} \end{aligned}$	$\frac{7}{2}$	$\left\lvert\, \begin{gathered} \boldsymbol{z} \\ \frac{0}{\Sigma} \end{gathered}\right.$	$\begin{aligned} & 7 \\ & \frac{0}{\Sigma} \end{aligned}$	$\frac{7}{0}$	$\begin{aligned} & 7 \\ & \frac{0}{\Sigma} \end{aligned}$	$\begin{aligned} & 7 \\ & \frac{0}{2} \end{aligned}$	\＃	$\begin{aligned} & 7 \\ & \frac{0}{\Sigma} \end{aligned}$

Figure 19-Schematic of Control Circuits

Figure 20 - Internal View of Consolette

Figure 21 - Underside of Amplifiers, Chassis Mounting Frame Raised

MAINTENANCE

Inspection and Check

The Type $\mathrm{BC}-2 \mathrm{~B}$ Consolette is designed to be serviced easily without moving the unit once installed. The front panel is hinged and swings forward at a sufficient angle to check the rear of the control panel. The louvred back panel is removable to provide access to tubes. The amplifiers and relay strip are mounted on a hinged frame which swings up giving access to the components on the rear of each chassis assembly and the terminal boards and cables dressed across the bottom of the consolette. The amplifiers and the relay strip chassis are individually removable from the frame.

A routine inspection at regular intervals should be set up to check tubes and clean attenuator contacts and sockets.

Tube Check

The condition of the tubes can be checked easily by means of the red pin jacks which are provided on each amplifier chassis. To measure the cathode voltage of a tube, connect the negative lead of a voltmeter to ground and plug the positive test probe into the pin jack associated with the tube to be checked.

Average voltages for each pin jack are listed in the table. A record of the voltage measurements at weekly intervals is valuable in determining the proper time to replace tubes.

As a guide for servicing the amplifier, tube socket voltages are listed in the tables. These voltages are typical, as measured with a voltmeter having a resistance of $20,000-$ ohms-per-volt, and may vary somewhat because of tube and component tolerances.

TEST JACK VOLTAGES

		1	2	3	4	5
Pre-Amplifiers	1 J	3.8	3.5	3.8	3.8	-
Program Amplifier	2 J	2.1	1.5	1.1	17	-
Monitor Amplifier	3 J	2.4	1.6	1.2	36	17.5

SOCKET VOLTAGES

PRE-AMPLIFIER	1	2	3	4	5	6	7	8	9
1V1 and 1V2	269	0	3.5	*	*	166	0	3.8	**
PROGRAM AMP.	I	2	3	4	5	6	7	8	9
$\begin{aligned} & 2 V_{1} \\ & 2 V_{2} \\ & 2 V_{3} \end{aligned}$	$\begin{aligned} & 96 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 1.5 \\ & 1.1 \\ & 310 \end{aligned}$	317	**	$\begin{gathered} 153 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 33 \\ * * \end{gathered}$	$\begin{aligned} & 2.1 \\ & 147 \\ & 17 \end{aligned}$	1.1
MONITOR AMP.	1	2	3	4	5	6	7	8	9
$\begin{aligned} & 3 v_{1} \\ & 3 v_{2} \\ & 3 v_{3} \text { and } 3 v_{4} \end{aligned}$	92 157 0	0	$\begin{aligned} & 1.6 \\ & 1.2 \\ & 314 \end{aligned}$	325	0	$\begin{gathered} 188 \\ 252 \\ 0 \end{gathered}$	-	$\begin{aligned} & 2.4 \\ & 38 \\ & 17.5 \end{aligned}$	**

[^2]
Care of Variable Attenuators

To remove the attenuator cover, press the latch under the cover and remove it by twisting the cover counterclockwise. Apply Davenoil to the contacts and rotate the control knob several times. Wipe the contacts clean using a soft cloth and apply a thin film of Davenoil. Replace attenuator cover. A bottle of Davenoil is packed with the consolette.

Care of Switches, Relays, Tube Sockets

The switches and relay contacts do not require periodic maintenance and should not be tampered with.

Contacts of the tube sockets are cleaned best by pulling tubes in and out of the socket several times.

Replacement Parts

The following parts list is included to provide identification when ordering replacement parts. Order from RCA Replacement Parts Department, Camden, New Jersey, giving the Stock Number and Description of the parts wanted. Replacement parts supplied may be slightly different in form or size from the original parts but will be completely interchangeable with them.

LIST OF PARTS

$S y m b \circ l$ No.	Description	Stock No.
DUAL PREAMPLIFIER MI-11241		
1C1	Capacitor, fixed, molded paper tubular, . 047 mf , $\pm 10 \%, 400 \mathrm{~V}$	73553
1C2	Capacitor, fixed, molded paper tubular, 0.22 mf , $\pm 20 \%, 400 \mathrm{~V}$	73794
1 C 3	$\begin{aligned} & \text { Capacitor, dry electrolytic, } \\ & \text { dual, } 20-20 \mathrm{mf},-10 \% \text {, } \\ & +50 \%, 450 \mathrm{v} \end{aligned}$	34889
1 C 4	Same as 1C1	
1 C 5	Same as 1C2	
1J 1-1/J4	Jack, tip	54409
1R1	Resistor, fixed, composition, 8200 ohms, $\pm 5 \%$, 1 w	512282
1R2	$\begin{aligned} & \text { Resistor, fixed } \begin{array}{c} \text { composition, } \\ 220,000 \text { ohms, } \pm 10 \%, 1 \end{array} \end{aligned}$	54449
183	$\begin{aligned} & \text { Resistor, fixed composition. } \\ & 470.000 \text { ohms, } \underline{t}_{5 \%}, 1 \mathrm{w} \end{aligned}$	72521
$1 \mathrm{R}^{2}$	$\begin{aligned} & \text { Resist or, fixed composition, } \\ & 680,000 \text { ohms, } \pm 10 \%, 1 \mathrm{w} \end{aligned}$	52012
1 R5	```Resistor, fixed, composition. 1000 ohms, \pm5%, 1 w```	71916
1 126	Resistor, fixed, composition, 2700 ohms, $\pm 10 \%$, 1 w	14421
1 R 7	Same as 1R1	
1R8	Same as 1R2	
$1 \mathrm{R9}$	Same as 1R3	
1R10	Same as 1R4	
1R11	Same as 1R5	
1R12	Same as 1R6	
1T1	Transformer, input	58962
1 T 2	Transformer, out put	58963
$1{ }^{1} 3$	Same as 1 T1	
$1 \mathrm{~T}_{4}$	Same as 1T2	

Symbol No.	Description	Stock No.
$\begin{aligned} & 1 \times \vee 1, \\ & 1 \times \vee 2 \\ & x_{2}, \end{aligned}$	```Socket, tube, 9 contact, miniature Grommet, rubber, 17/64 I.D. 11/16 0.0'. plate, capacitor mount ing for 1C3 Snield, tube```	56333 94645 28452 57.533
PROGRAM AMPLIFIER		
2 C 1	Capacitor, fixed, molded paper tubular, 0.22 mf ,土20\%, 400 V	73794
$\begin{aligned} & 2 C 2 A, \\ & 2 C 2 B, \end{aligned}$	$\begin{aligned} & \text { Capacitor, dry elect rolytic, } \\ & \text { dual, } 20-20 \mathrm{mf},-10 \% \text {, } \\ & +50 \%, 450 \mathrm{v} \end{aligned}$	34889
2 C 3	Capacitor, fixed, molded paper tubular, . 001 mf , $\pm 10 \%$, 600 v	73801
2 C 4	Capacitor, fixed, molded paper tubular. 0.1 mf , $\pm 10 \%, 400 \mathrm{~V}$	73551
2 C 5	Capacitor, fixed, molded paper tubular, . 047 mf , $\mathbf{I}_{10 \%} 400 \mathrm{v}$	73553
2 C 6	Same as 2C1	
2 C 7	Same as 2C4	
2C8	Capacitor, fixed, molded paper tubular, .0022 mf , $\pm 10 \%, 600 \mathrm{v}$	73803
$\begin{aligned} & 2 \mathrm{~J} 1- \\ & 2 \mathrm{~J} 4 \end{aligned}$	Jack, tip	54409
2R1	Resistor, fixed, composition, 1200 ohms, $\pm 5 \%$, 1 w	512212
2R2	Resistor, fixed, composition, 56.000 ohms, $\pm 5 \%, 1 \mathrm{w}$	17440
2R3	```Resistor, fixed, composition. 2200 ohms, \pm5%, 1 w```	71991

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Description	$\begin{gathered} \text { Stock } \\ \text { Ho. } \end{gathered}$
2R5	Resistor，fixed，composition， 180,000 ohms，$\pm 5 \%$ ， 1 w	12356
2R6	Resistor，fixed composition， 470,000 ohms， $\pm 10 \%, 1 \mathrm{w}$	72521
2R7	Resistor，fixed，composition， 10,000 ohms，$\pm 10 \%$ ， 1 w	71914
2R8	Resistor，fixed，composition， 1800 ohms， $\pm 5 \%, 1$ w	38875
2R9	Resistor，fixed，composition， $1.5 \mathrm{meg}, \pm 10 \%, 1 \mathrm{w}$	47967
2R 10	Resistor，fixed，composition， 220.000 ohms，$\pm 5 \%$ ， 1 w	54449
2R11	Same as 2R6	
2R12	Resistor，fixed，composition， 390 ohms，士5\％， 2 w	93685
2R13	Resistor，fixed，composition， 6800 ohms，$\pm 5 \%$ ， 1 w	38887
2R14	Resistor，fixed，composition， 10,000 ohms，$\pm 10 \%$ ， 1 w	71914
$2 T_{1}$	Transformer，input	58962
$2 T 2$	Transformer，out put	46098
$\underset{2 \times \vee}{2 \times v} \frac{1}{2}$	Socket，tube， 9 contact， miniature	56333
2XV3	Socket，tube， 8 contact	31319
MONITOR AMPLIFIER		
$\begin{aligned} & 3 C 1 A, \\ & 3 C 1 B \end{aligned}$	$\begin{aligned} & \text { Capacitor, dry electrolyt ic, } \\ & \text { dual, } 20 \mathrm{mf},-10 \%,+50 \%, \\ & 450 \mathrm{v}, 40 \mathrm{mf},-10 \%, \pm 250 \%, \\ & 25 \mathrm{v} \end{aligned}$	94146
3 C 2	Capacitor，fixed，molded paper tubular， 0.22 mf $\pm 10 \%, 400 \mathrm{~V}$	73794
3 C 3	Capacitor，fixed，molded	73551
3 C 4	$\begin{aligned} & \text { paper tubular, } 0.1 \mathrm{mf} \text {, } \\ & \underline{10 \%}^{2} 400 \mathrm{v} \end{aligned}$	
$\begin{aligned} & 3 C 5 A . \\ & 3 C 5 B \end{aligned}$	Same as 3C1A，B	
$\begin{aligned} & 306, \\ & 307 \end{aligned}$	Capacitor，fixed，molded paper tubular，． 0047 mf ， $\pm 10 \%$ ， 400 V	73553
308	Capacitor，fixed，molded paper tubular，． 0047 mf ， $\pm 10 \%$ ， 600 v	73920
3 C 9	```Capacitor, fixed, mica, 100 mmf, 士10%, 500 v```	39628
$\begin{aligned} & 3 \mathrm{~J} 1- \\ & 3 \mathrm{~J} 5 \end{aligned}$	Jack，tip	54409
3R1	Resistor，fixed，composition， 1200 ohms，$\pm 5 \%$ ， 1 w	512212
3R2	Resistor，fixed，composition， 39.000 ohms，$\pm 5 \%$ ， 1 w	71084
3 R 3	Resistor，fixed，composition， 2200 ohms， $\pm 5 \%, 1 \mathrm{w}$	71991
3R4	Resistor，fixed，composition， 10.000 ohms．$\pm 10 \%$ ， 1 w	71914
3 R 5	Resistor，fixed composition， 220,000 ohms， $\pm 10 \%, 1 \mathrm{w}$	54449
3R6	Resistor，fixed，composition， 470.000 ohms， $\pm 10 \%, 1 \mathrm{w}$	72521
3R7	Same as 3R3	

$\begin{array}{\|c\|} \hline \text { Sym bol } \\ \text { No. } \end{array}$	Description	Stock Ho．
3R8	Same as 3R5	
$3 \mathrm{R9}$	Same as 3R6	
3R10	Same as 3R2	
3R11	Resistor，fixed，composition， 1500 ohms， $\pm 5 \%, 1$ w	72762
3 R 12	Same as 3R2	
$\begin{aligned} & 3 R 13, \\ & 3 R 14 \end{aligned}$	Same as 3R6	
$\begin{aligned} & 3 R_{15} \\ & 3 R_{16} \end{aligned}$	Resistor，fixed，composition， 430 ohms，士10\％， 2 w	522143
3R17	Resistor，fixed，composition， 22，000 ohms， $\pm 5 \%, 1 \mathrm{w}$	71989
3R18	Same as 3R4	
$3{ }^{3} 1$	Transformer，input	58962
$3 T 2$	Transformer，output	43679
$3 \times \vee 1$	Socket，tube， 9 contact， miniature	56333
$3 \times v 2$	Socket，tube， 9 contact， miniature	54214
$\begin{aligned} & 3 \times v 3, \\ & 3 \times v 4 \end{aligned}$	Socket，tube， 8 contact	31319
CONSOLETTE PANEL AND TURRET		
4AT1． 4AT 2， 4AT3， 4 AT 4	Attenuator，ladder pad， MIC 1，MIC 2，MIC 3，MIC 4	94135
4 AT5， 4 AT6	Attenuator，ladder pad，with cue switch，TT1 and TT2	94136
$\begin{aligned} & \text { 4AT7, } \\ & 4 \text { AT8 } \end{aligned}$	Same as 4AT1，Net，Remote	
4AT9	Attenuator，potentiometer． MASTER	94137
4 AT 10	Attenuator，potentiometer， carbon， 50,000 ohms，$\pm 10 \%$ ， 2 w，MON GAIN	94138
4AT 11	Attenuator，Vu meter pad	94437
4 AT 12	Attenuator，line out pad	94636
4 AT 13	Attenuator，ine out for Rec．or Ext．Mon．	94637
$\begin{array}{ll} 4 \mathrm{~J} & 1 \\ 4 \mathrm{~J} & 2 \end{array}$	Jack	11780
4M 1	Meter，vu	53064
4R1， 4R2， 4R3， 4R4	Resistor，fixed，composition， 220 ohms， $\pm 5 \%, 1$ w	39049
4R5， 4R6， 4R7，	```Resistor, fixed, composition, 180 ohms, }\pm5%,1 ```	2736
4R9， 4R10， 4R11， 4R12	Same as 4R1	
4R13． 4R14	Resistor，fixed，composition，	30936
4R15	Resistor，fixed，composition， 30 ohms， $\pm 5 \%, 1 \mathrm{w}$	512030
$\begin{aligned} & 4 R 16, \\ & 4 R 17 \end{aligned}$	Same as 4R13	

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Description	Stock No.
4R 18	Same as 4R15	
4R19	Resistor, fixed, composition, 620 ohms, $\pm 5 \%, 1$ w	59488
$\begin{gathered} \text { 4R20 } \\ \text { to } \\ 4 R 35 \end{gathered}$	Resistor, fixed, composition, 510 ohms, $\pm 5 \%$	3632
$\begin{gathered} 4 R 36 \\ \text { to } \\ 4 R 45 \end{gathered}$	Resistor, fixed, composition, 10,000 ohms, $\pm 5 \%, 1 \mathrm{w}$	71914
4 R 46	Same as 4R20	
4 R 47	Same as 4R19	
4R48, 4R49	Same as 4R36	
4R50	Resistor, fixed, composition, 150 ohms, $\pm 5 \%, 1 \mathrm{w}$	30785
$\begin{aligned} & 4 R 51, \\ & 4 R 552 \\ & 4 R 2 \end{aligned}$	Resistor, fixed, composition, 4700 ohms, $\pm 5 \%, 1$ w	71987
4 R 53	Resistor, fixed, composition, 680 ohms, 士 10%, 1 w	19233
4R54	Same as 4R51	
4 R 55	Same as 4R53	
4 R 56	Resistor, variable, wire wound, 50 ohms, $\pm 10 \%, 2 \mathrm{w}$	94438
481	Switch, key, 2 way locking with center off position MIC 4, ANB and CR	94139
$\begin{aligned} & 4 S 2, \\ & 483, \\ & 4 S 4 \end{aligned}$	Switch, key, 2 way locking with center off position	94140
4S5	Switch, key, 2 way locking with center off position, MIC 4	94141
$\begin{aligned} & 4 S 6, \\ & 4 S 7, \\ & 4 S 8, \\ & 4 S 9 \end{aligned}$	Switch, key, 2 way locking with center off position less handle. TT1, TT2, Net, Remote	94142
4S 10	Switch, push, 7 section plus mechanical release for *7. Remote Input and vu Meter	94439
4S11	Switch, rotary SELECTOR	94143
4S12	Switch, push, 8 section, Monitor Input	94440
4513	Switch, key, 2 way locking with center off position. override - REM Cue	94144
4S14	Switch, key, 2 way locking with center off position, Line out	94145

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Description	Stock No.
RELAY STRIP		
$\begin{aligned} & 5 \mathrm{C} 1, \\ & 5 \mathrm{C} 2, \\ & 5 \mathrm{C} 3 \end{aligned}$	Capacitor, fixed, metalized paper tubular, 0.5 mf , $-20 \%,+30 \%, 200 \mathrm{~V}$	55242
$\begin{aligned} & 5 \times 1, \\ & 5 \times 2, \\ & 5 \times 3 \end{aligned}$	Relay, D.C., 600 ohms, coil 20 v min. operating voltage	94147
$\begin{aligned} & \text { 5R1, } \\ & 5 R 2, \\ & 5 R 3 \\ & 5 T 1 \end{aligned}$	```Resistor, fixed, wire wound, 15 ohms, +10%, 5 w Transformer, line```	$\begin{gathered} 94148 \\ M 1-11713 \end{gathered}$
Miscellaneous (Mechanical)		
	Button, black, for 4810 . 4 S 12 Button, red, for $4 \$ 10$ Handle, red, for 459 Handle, blue, for $4 \mathrm{~S} 6,457$. Handle, white, for 458 Knob, black for $4 A T 10,4 S 11$ Knob, black, for 4AT1, 4AT2, 4AT3, 4 AT4, 4 AT9 Knob, blue, for 4 AT5, 4 AT6 Knob, white, for 4 AT7 Knob, red, for 4 AT8 Catch, male section, for cover \& panel Catch, female section, for cover \& panel Ring, retaining, for cover \& panel catches Mounting, cushion, rubber grommet Plate, capacitor mounting for 2C2, 3C1, 3C5 screw, inner frame pivot pin Shield, tube Support, fall, for panel	$\begin{aligned} & 32120 \\ & 32121 \\ & 94441 \\ & 94442 \\ & 94443 \\ & 17268 \\ & 17269 \\ & 94444 \\ & 94445 \\ & 94446 \\ & 94642 \\ & 94641 \\ & 94643 \\ & 94645 \\ & 28452 \\ & 94644 \\ & 57533 \\ & 94647 \end{aligned}$

BROADCAST AUDIO EQUIPMENT

POWER SUPPLY

MI-11313

RADIO CORPORATION OF AMERICA engineering products department camden, n. J.

BROADCAST AUDIO EQUIPMENT

INSTRUCTIONS

POWER SUPPLY
 MI-11313

RADIO CORPORATION OF AMERICA ENGINEERING PRODUCTS DEPARTMENT, CAMDEN, N. J.

TABLE OF CONTENTS

Page
Technical Data. 3
Description 3
Installation. 3
Wall Mounting. 4
Rack Mounting. 4
Adjustment of Fall Supports. 4
Tubes. 5
Power Transformer Connections. 7
Power Transfer Switch MI-11274 7
Connections 8
Operation. 8
Maintenance 8
Hum Adjustment 8
Selenium Rectifier 8
Fuse Replacement 8
Replacement Parts. 8
LIST OF ILLUSTRATIONS
Figure Title Page
1 Power Supply MI-11313 2
2 Power Supply Chassis Mounted in Cabinet 4
3 Dimensional Drawing for Mounting Unit 5
4 Power Supply Chassis Opened. 6
5 Schematic for Power Transfer Switch 7
6 Power Supply Schematic. 10
7 Power Supply Connection Diagram 11-12
ERTATA-IBOLLT50
Page 80 - Change Figure 7 to Figure 6o
Page IIal2 o Adc Figure 7 to titio Power Supply Conncotion Dik.jem

Figure 1 - Power Supply MI-| 1313

TECHNICAL DATA

DESCRIPTION

The MI-11313 Power Supply is designed to supply plate, heater and relay power to the Type BC-2B Consolette, or equipment with similar power requirements. The cabinet, primarily for wall mounting, is provided with ventilating louvres across the top and sides. Knockout holes along the back and bottom of the cabinet are provided for terminating conduits. The power switch and fuses are easily accessible through the aperture in the cabinet door. When the door is swung completely open, the chassis, which is hinged to the cabinet, can be pulled out exposing the components mounted under the chassis and the interconnection terminal board mounted on the bottom of the cabinet.

With the aid of the Rack Mounting Bracket Kit MI-11650 the power supply may be mounted on a $19^{\prime \prime}$ cabinet such as the Type BR-84 Series. The power supply cabinet is provided with holes covered by plug buttons for mounting the brackets.

The Transfer Switching Kit MI-11724 i-s available to switch a spare power supply into the Type BC-2B Consolette should there be a failure in the power supply unit in operation.

INSTALLATION

The power supply is shipped with the chassis hinged in the cabinet. Unpack the equipment carefully and note that two screws are used along the bottom rear of the cabinet
to hold the chassis in place during shipping. These screws should be removed before the cabinet is mounted. Before installing the power supply, determine the location of the consolette or equipment to be powered. Select a wall space or cabinet rack between 2 to 20 feet from the consolette. Determine whether the side or bottom of the cabinet knockout holes are to be used for the conduit. Check the dimensions of the cabinet to allow for clearance for the external cables and for convenience of operation.

Wall Mounting

For wall mounting there are four holes on the back of the cabinet. The top two are visible when the cabinet door is open. These are slotted holes so that the mounting screws may be secured to the wall before installing
the cabinet. Refer to the Figure 3 for the distances between mounting centers of these slotted holes as well as the two lower holes. $1 / 4$ inch screws or bolts should be used.

Rack Mounting

Remove the six plug buttons from the holes on each side of the cabinet. Using the parts supplied with the MI-11650 rack mounting bracket kit, mount the brackets on each side of the cabinet. The power supply cabinet may then be mounted on the rack. A location near the bottom of the rack is preferable.

Adjustment of Fall Supports

When the power supply cabinet is mounted on a rack or flush againsi a surface, adjust the fall supports to limit the angle at which

Figure 2 - Power Supply Chassis Mounted in Cabinet

Figure 3 - Dimensional Drawing for Mounting Power Unit
the chassis may be pulled out. Otherwise the switch and fuses on the front apron of the chassis will be too close to the mounting surface or in the rack installation, too close to the other equipment.

Two holes have been drilled on each side of the chassis. The power supply is shipped with the fall supports secured to the hole allowing a right angle swing from the cabinet. Remove the screws, nuts, and lockwashers
which fasten the supports to the chassis. Using the same hardware, secure the fall support through the holes drilled between the molded resistor strips and the top of the chassis.

Tube

The power supply is shipped without tubes. The RCA 5R4GY, MI-11294, is to be installed after mounting the unit on the wall or rack.

Figure 4 - Power Supply Chassis Opened

Power Transformer Connections

The power transformers 6 T 1 and 6 T 2 are designed for operation at 105,115 , or 125 volts, 50 to 60 cycles, and are connected at the factory for a line voltage of 115 volts. If the line voltage is above 120 volts, disconnect the black and red tracer wires from the $115-$ volt taps, terminals 3 , and connect them to the 125 -volt taps, terminals 4 , of both transformers. If the line voltage is below 110 volts, connect them to the 105 -volt taps terminals 2.

Power Transfer Switch MI-II724

The MI-11724 Power Transfer switch permits transfer of the source of power for the consolette from one power supply to another. In the OFF position, the switch disconnects the power from both supplies. The transfer switch panel is designed to mount on a standard $19^{\prime \prime}$ amplifier rack. This switch is $5-1 / 4$ inches $h i g h$ and $3-1 / 2$ inches deep. Refer to the schematic Figure 6.

The power switches on the power supplies should be left in the $O N$ position. During shutdown periods, power is turned off by setting the transfer switch to the OFF position. To obtain power for the consolette,

Figure 5 - Schematic for Power Transformer Switch

Connections

Like terminal numbers in the power supply are to be connected to like numbers on the consolette power terminal block. Wires for supplying heater current should be twisted pairs, \#18 or larger depending on length. The other wires may be $\# 18$, and those used for the B supply, must be insulated for 500 volts. The $A C$ line connects to terminals 1 and 2. The power supply is connected at the factory to furnish power to the MI-11632 consolette with two dual preamplifiers. If a third preamplifier is installed in the consolette, jumper terminals 5 and 6 on the resistor 6R2. Refer to the wiring diagram, Figure 7. The following chart shows the connections at power block 6TB1:

CONNECTIONS AT POWER BLOCK 6TBI

	Terminal
100-130 v AC, 50-60 cps	1-2
Heater, preamplifier, 6.3 v	3-4
Heater, Program, Mon. Amp. and vu Meter, 6.3 v	5-6
```Relay Supply -, Relay Supply +, 24 V```	7-8
Ground	9
B-	10
Monitor Amplifier, B+, 320 v	11
Program Amplifier, B+, 315 v	12
Preamplifier, B+, 285 V	13
No connection	14-15

## operation

The ON-OFF toggle switch together with the two fuses are mounted on the apron of the power supply chassis which can be reached through the aperture in the cabinet door.

Turn the switch to $O N$ and allow 5 minutes operating time before going on the air.

## MA INTENANCE

## Hum Ad justment

Two screwdriver adjustments on top of the chassis are provided to adjust the hum in the preamplifiers and the monitor and program amplifiers in the consolette or the amplifiers of any unit being supplied power. See the instruction book IB-24748 page 22 for hum adjustment procedures with the Type BC-2B Consolette.

## Selenium Rectifier

The output of the selenium rectifier 6CR1 should be tested periodically. 0ver a period of use the selenium rectifier ages and the output gradually decreases. When the output of terminals 7 and 8 is lower than 22 volts, change the tap on the secondary of transformer 6 T 2 to the higher voltage tap. Remove the green and black wire from terminal 6 of 6 T 2 and connect it to terminal 7 of 6 T 2 .

## Fuse Replacement

When replacing a blown fuse, make sure that the replacement fuse is of the same type and rating, 3 amp and $1 / 4 \mathrm{amp}$, as the ones provided with the equipment.

## Replacement Parts

The following parts list is included to provide identification when ordering replacement parts. Order from RCA Replacement Parts Department, Camden, New Jersey, giving the Stock Number and Description of the parts wanted. Replacement parts supplied may be slightly different in form or size from the original parts but will be completely interchangeable with them.

LIST OF PARTS

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Description	Stock No.
6C1A,	Capacitor, dry electrolytic,	58567
$6 \mathrm{C1B}$,	dual. $40-40 \mathrm{mf},-10 \%$,	
6C2A.	+50\%, 450 V	
6C 2B,		
6 C 3 A ,		
6 C 3 B ,		
$6 \mathrm{C4A}$,		
6С48,		
6C5A,		
6C5B		
6 C 6	Capacitor, dry electrolytic, $2000 \mathrm{mf},-10 \%,+250 \%$, 30 v	94149
6 C 7	Capacitor, fixed, moulded paper tubular, 0.1 mf, $\pm 10 \%, 400 \mathrm{~V}$	73551
6 F 1	Fuse, 3 amp	10907
6 F 2	Fuse, 1/4 amp	72104
6R1A,	Resistor, tapped, wire wound,	94150
6R1B	3 sections; 1 of 130 ohms.	
6R1C	12 watt and 2 of 500 ohms,   2.2 w. overall 1130 ohms,	



$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Description	Stock No.
$6 T_{1}$	Transformer, power, 50/60 cy.   Single Phase, 125-115/105 v Secondary: H.V. 770 V. CT 0.2 A. DC: Rect. Fil. 5 V . 2 amps; Fil. \#1-6.3 v. 3 amps; Fil. *2-6.3 v. 2 amps	94153
6 6 2	Transformer, power, 50/60 cy. Single Phase, $125 / 115 / 105 \mathrm{~V}$. Secondary 25 v. 0.25 A. DC, tapped 23 V . 0.25 A . DC	94154
$\begin{aligned} & 6 \times F 1, \\ & 6 \times F 2 \end{aligned}$	Fuse, holder	48894
6 XV 1	Socket, tube	31319
	Plate, capacitor mounting, for 6C1, 6C2, 6C3, 6C4, 6C5, 6C6	18469



Figure 7 - Power Supply Schematic



[^0]:    The nearest RMA resistance value may be substituted without affecting performance.

[^1]:    *When MI-11241 Preamplifier is installed.
    **Turntable 1 and 2 with external preamplifier.

[^2]:    6.3 v ac measured between contacts indicated by * and **. This point also 26 v positive with respect to ground.

