

J. W. MAILEER COMPANY

MANUFACTURERS DF THE MOST COMPLETE LNE OF

INDUSTRIAL ELECTRONIC, RADIO AND TELEVISION R.F COILS

```
cunalosi keprestyative:
Atlas Rodis corporakide IN.
so wongold Ake
Toronto re, Ontar e, Cimaida
```



```
Roburn Ag+acies, Itc
431-435 Gpenwicn stum:
New York 13, Now Yed
wont 6-2,30
```


ITEM
Adjustable Padding CondensersAdjustable R.F. ChokesAircraft CoilsPAGE23, 254. 9, 14
Aluminum Coil Shields
Antenna Coils 259, 24Audio Filters-10KCBeat Frequency Oscillator TransiormersCapacity Relay CoilCondensers
Converter Output Transiormers
Dials
Erase Coils19
Filament Chokes 6.20
Filter Condensers 21
Frequency Modulation Coils (FM)
Hash Filter Chokes
Horizontal Oscillators \& Controls1520
Index 26, 27, 28, 29
Interme 19
Ion Trap5
Long Wave Coils 9. 24
Loop Antenna7
Mica Padding Condensers23, 25Mica Trimmer Condensers
17
$5,6,15,16,17$Miniature I.F. Transformers9, 23, 24
Multi-Band R.F. Coils181815ITEM

PAGE
Oscillator Coils 8, 9, 13, 14, 15, 19, 23, 24
Peaking Coils 6, 9, 13
Permeability Tuned R.F. Coils $8,9,13,15,16,18,20,24$
Phono Oscillator Coil 13
Phono Scratch Filter 20
Radio Frequency Choke, Ådjustable 4, 9, 14
Radio Frequency Chokes.
6, 10, 11, 21
6, 10, 11, 21
Radio Interference Chokes 7. 20, 21, 22
, 7, 20, 21, 22
Radio Kits
Regenerative I.F. Transiormers 18
4, 5, 6, 13, 14Replacement I.F. Transformers
SSSR 50 KC Transformers19
Sub-Miniature I.F. Transformers 16
Television Accessories 4, 5, 6, 7
Television Coils, Transformers 4, 5, 6, 7
Terminal Plates 25
Tower Lighting Chokes 22
50 KC Transformers 19
100 KC Transformers. 19
Transistor Components 3
Universal Replacement Coils 8
Untuned Coils 14
Variable Condensers 3, 15, 25
Variable Selectivity Transformers 17
VHF Coils 15

HIGH FIDELITY BROADCAST BANI) AM TUNER AND TUNER KIT Miller No. 595 Tuner

The most amazing High Fidelity Broadcast tuner ever offered to music lovers anywhere. Exceptional tonal quality, selectivity, and sensitivity are the outstanding features of this tuner.
Two high-Q ferrite antenna coils, tuned with a two-gang condenser and coupled together with a special mutual coupling coil, produce a broad tuning characteristic with no sideband cutting. Sensitivity is a neat compromise berween being high enough for local stations and low enough to reject spurious signals. The audio response of the runer is not limited by any design factors. It will faithfully reproduce any signal it receives.

Having no tubes or power supply, the tuner is completely free of hum and tube microphonics. Because of its broad band-pass and absence of tube noise or A.C. hum, the 595 is especially recommended as a companion to an F.M. tuner for High Fidelity Binaural reception.
The 595 may also be used as a selective crystal set in rural areas. With sufficient outside antenna and external ground, signals in excess of 600 miles have been received.
The tuner is available in either an ebony black or ivory bakelite cabinet. For custom installations it may he easily removed from the cabinet.
The No. 595 negative mutual coupled Broadcast band-pass tuner has the following features:

1. No power requirements
2. Life time trouble free operation
3. Selectivity (20KC)
4. Nothing to cause distortion
5. Freq. $540 \mathrm{KC}-1700 \mathrm{KC}$
6. No noise
7. Gain control
8. Vernier dial
9. Compact (4"x7" $\times 31 / 2^{\prime \prime}$ deep)
Cat. No. Descriplion NET Price
$\mathbf{5 9 5}$ Complete funer, wired and tested $\quad \$ 19.50$

Ruling (\#307), by the Internal Revenue Service, all tuners and tuner kits are subject to a 10% excise tax effective July 5 , 1956.

Ferrite Antenna Rods

All rods described below have a secondary which is overcoupled for maximum gain stability with a variation in output load. Designed to match an input impedance of approximately 600 ohms.
These rods can be easily removed from their mounting boards if an alternate method of mounting is desired. Care should be exercised when mounting loops to insure that they are not in close proximity to large metal objects. This precaution will greatly increase loop efficiency.
These rods also make excellent antenna coils for conventional vacuum tube receivers. They offer better signal pickup and increased selectivity over ordinary air loops.

Standard Transistor Antenna Rod

Multi-strand litz wire, wound directly on a low loss ferrite core provides a coil with extremely high Q. This insures a high degree of selectivity at the input of the receiver. Because of its high Q and large pickup area, the $\# 2000$ is one of our most popular rods. It has a fixed inductance of 240 uh and covers a band of 540 1650 kc when used with a variable condenser having a range of 15 . 365 mmf .
Dimensions: 3/4"x9".

| Cat. No. | $0 @ 790 \mathrm{KC}$ | Freq. Range | Tuning Cond.
 Max. Capacily | Schematic | List
 Prite |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 450 | $540-1650 \mathrm{KC}$ | 365 mmf. | 54 | $\$ 2.75$ |

Miniature Transistor Antenna Rods

These coils are designed for use in miniature receivers where space does not permit the use of larger rods. Signal pickup is sufficient so that an external antenna is neither necessary nor is it advised. The \#2001 has an inductance of 240 uh and is designed for use with a standard variable condenser having a maximum capacity of 365 mmf . (Miller \#2112). The $=2003$ has an inductance of 700 uh and is for use with a miniature condenser having a maximum capacity of 130 mmf . (Miller $\# 2110$). This is the size used in many of the commercial transistor receivers.
Dimensions: $3 / 4^{\prime \prime} \times 33 / \mathbf{4}^{\prime \prime}$.

Cat. No.	s: $3 / 4^{\prime \prime} \times 33 / /^{\prime \prime}$. 0 @ 790 KC	Freq. Range	Tuning Cond. Max. Capacily	Schemalic	List Price
2001	550	540.1650 KC	365 mmf .	54	\$2.50
2003	500	540-1650 KC	130 mmf .	54	2.50

Ferrite Strip Transistor Antenna Rods

These coils are wound on flat ferrite strips rather than the normal ferrite rods. Due to this unique physical confyuration they are remarkably sensitive for their small size. Signal pickup approximates that of the larger ferrite rods. The $\# 2004$ has an inductance of 240 uh and is to be used with a condenser having a maximum capacity of 365 mmf . (Miller \#2112). The $\# 2005$ has an inductance of 700 uh and is to be used with a miniature variable condenser having a maximum capacity of 130 mmf . (Miller \#2110)

Dimensions: $1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times 33 / 4{ }^{\prime \prime}$.			Tuning Cond. Max. Capacity	Schematic	List Price
Cal. No.	0 @ 190 KC	Freq. Range			
2004	500	540-1650 KC	365 mmf .	54	\$2.50
$\underline{2005}$	450	540-1650 KC	130 mmf .	54	2.50

Sub-Miniature

Transistor Antenna Rods

Adjustable antenna coils with high Q ferrite cores. Inductance range of part ± 2002 is 40.300 uh ; part $\# 2007$ is $150-$ 1000 uh . The inductance ranges shown allow for the use of variable capacitors outside our recommended values.

Dimensions: $1 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$.		Tuning Cond.		Lisł	
Cal. No.	$0 @ 790$ KC	Freq. Range	Max. Capacily	Schematic	Price
2002	250	$540-1650 \mathrm{KC}$	$250-450 \mathrm{mmf}$.	7	$\$ 1.50$
2007	220	$540-1650 \mathrm{KC}$	$100-250 \mathrm{mmf}$.	7	2.00

Sub-Miniature

Transistor I.F. Transformers

To our knowledge the smallest I.F. transformers in existence. Cup core construction permits the use of extremely small shields without adversely affecting transformer operation. A high impedance, tapped primary winding coupled to a low impedance secondary provides optimum energy transfer between stages. Dimensions: $3 / \mathbf{m}^{\prime \prime}$ sq. $\times 5 / \mathbf{a}^{\prime \prime}$ high.

Cal. No.	Freq.	Impedance	Use	Schematic	Price
$9-\mathrm{Cl}$	455 KC	$25 \mathrm{~K}-600$ Ohms	Input	72	$\$ 3.75$
$9-\mathrm{C} 2$	455 KC	$25 \mathrm{~K}-1000$ Ohms	Output	72	$\$ 3.75$

Miniature Transistor I.F. Transformers

Miniature 1.F. transformers having tuned primary and untuned secondary windings. The primary winding is tapped for use in circuits which require a tap. In circuits which do not use a tap it is disregarded. Proper impedance match between primary and secondary insures optimum performance.

Dimensions: $1 / 2^{\prime \prime} \mathrm{sq} \times \times 3 / 4^{\prime \prime}$ high.					List
Caf. No.	Freq.	Impedance	Use	Schematic	Prite
2031	455 KC	10 K - 600 Ohms	Input	72	\$3.00
2032	455 KC	10K-1000 Ohms	Output	72	3.00
2041	455 KC	25 K - 600 Ohms	Input	72	3.00
2042	455 KC	$25 \mathrm{~K}-1000$ Ohms	Output	72	3.00
2051	455 KC	100K-1000 Ohms	Input	72	3.00

Shielded

Sub- Viniature Transistor Oscillator

A deluxe shielded oscillator coil designed for use in a converter circuit employing only one transistor for both the oscillator and mixer. Being identical in size to our 9.C1 and 9-C2 1.F. transformers, the 2021 makes an excellent companion for those components. Designed for use with a condenser having a maximum capacity of approximately 78 mmf . (Miller $\$ 2110$).
Dimensions: $3 / 8^{\prime \prime} s q . \times 5 / 8^{\prime \prime}$ high.

Cat. No.	Tuning Cond. Max. Capacity	I.F. Freq.	Use	Schematic	List Price
2021	78	455 KC	Osc.	72	$\$ 2.75$

Unshiclded

Miniature Transistor Oscillators

The 2020 oscillator coil (Revised 5-lug) is designed for use in a converter oscillator circuit where only a single transistor is required. The 2023 oscillator coil ($6-\operatorname{lug}$) is for use where a separate transistor is used for the oscillator and another transistor for the mixer. A suitable padder must be used with the 365 mmf . variable. The 2022 is similar to the $\# 2020$ except it is for use with a cut section variable (Miller \#2110).
Dimensions: $3 / 8^{\prime \prime} \times 1^{\prime \prime}$ high.

Cat. No.	Tuning Cond. Max. Capacity	I.F. Freq.		Use	Schemalic	List Price
$\mathbf{2 0 2 0}$	365 mmf.	455 KC		Osc.	71	$\$ 2.25$
2022	78.100 mmf.	455 KC	Osc.	71	$\mathbf{2 . 2 5}$	
$\mathbf{2 0 2 3}$	365 mmf.	455 KC	Osc.	70	$\mathbf{2 . 2 5}$	

Variable Condensers

A miniature 2 -gang variable condenser. The antenna section has a range of $10-130 \mathrm{mmf}$. The oscillator section has a range of $10-78 \mathrm{mmf}$. Trimmer capacitors are self-contained and have a range of approximately 12 mmf . Tapped mounting holes provided on front of condenser. Counter clockwise rotation. Shaft is $1 / 4^{\prime \prime}$ dia. x 3/4" long.
Catalog \#2112 is a standard size 2 -gang condenser having a range of 10.365 mmf . for both sections. Shaft is $1 / 4^{\prime \prime}$ dia. $x 11 / 8^{\prime \prime}$ long.

Cat. No.	Sections	Dimensions	List
2110	2	$15 / 16^{\prime \prime} \times 13 / 8^{\prime \prime} \times 115 / 6^{\prime \prime}$	Price
2112	2	$23 / 16^{\prime \prime} \times 13 / 16^{\prime \prime} \times 15 / 8^{\prime \prime}$	$\$ 3.00$

Horizontal Oscillator \& Sync. Control Coils

Permeability tuned units for use in horizontal sweep oscillator and automatic frequency control circuits. Contained in aluminum shields with all connections made to terminals located at the top. Mounting is by $\# 6.32$ spade bolts on $1 \overline{\%} / 10^{\prime \prime}$ centers.
No. 6194 consists of two coupled windings: one, tapped for use in a horizontal oscillator circuit; the other, center-tapped and balanced for a sine-wave phase discriminator arrangement which combines the horizontal synchronizing pulses with oscillations from the horizontal oscillator to provide control of the horizontal scanning frequency (Synchrolock).
No. 6182 contains a tapped oscillator coil for use in a horizontal blocking oscillator. In a typical control circuit, a combination voltage from the synchronizing pulse and from the horizontal oscillator is ap plied to the grid of a control tube. When, due to incorrect frequency of phase, the combination does not produce the required pulse width, the oscillator tube is biased automatically to reestablish synchronization (Synchroguide).
No. 6183 contains a tapped oscillator coil for use in a horizontal blocking oscillator and pulse-width control system, similar to that employing No. 6182 Coil. In addition, there is another winding which, when connected to an external fixed capacitor of .01 mfd , may be adjusted to obtain sine-wave stabilization of the blocking oscillator frequency (Sync. Freq. and Phase).
6183 may be reversed in shield for top or bottom mounting.
6183-A. Same as 6183 except coils are reversed on form in order to tune Horizontal Osc. from top or through outside of chassis.
Dimensions: $17 / 6^{\prime \prime}$ by $17 /{ }^{\prime \prime}$ by $21 / 2^{\prime \prime}$ high.

			List
Caf. No.	Ltem	Schematic	Price
6194	Horiz. Osc. and A.F.C. Discriminator	40	$\$ 2.75$
6182	Horiz. Osc. and Sync. Control Coil	44	2.25
6183	Horiz. Osc. and Sync. Stabilizer Coil	43	2.75
$6183-A$	6183 with horiz. osc. coil position reversed	43	2.75

Adjustable Width Controls

The following series of variable inductors will find a definite place on every service job where it is required to install a new horizontal output transformer. By using the wide inductance range width coils the service technician has the flexibility of choice of taps on the horizontal output transtormer, and thus obtain the proper match to secure best operating characteristics. These inductors will also find application wherever a wide inductance range is required in circuits other than T.V. application. They are widely used by experimenters in low frequency oscillator circuits and as adjustable R.F. chokes.
The coils will mount in either a $5 / 6^{\prime \prime}$ or $1 / 16^{\prime \prime}$ hole with adapter supplied.

Cat. No.	Inductance Range Millihenries	Schematic	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
6313	.5-5	5	\$1.50
6314	2.5-17	5	1.75
6315	4-30	5	1.80
6316	4-30 (2.8-6.5 AGC)	18	2.25
6317	3.2-9 (.17-1.31 AGC)	18	2.25
6318	. 3.3	5	1.50
6319	15-60	5	2.25
6320	.3-3 Tapped	7	1.50
6321	1-5 Tapped	7	1.50
6322	1.5-10	5	1.75
6323	.5-5 Tapped	7	1.50
6324	60-130 Tapped	7	2.25
6325	4.2-30 (.78-1.37 AGC)	23	2.25
6326	2.5-19 Parallel (.18-1.7 Series)	23	3.05
6327	4-30 Parallel (.255-2.4 Series)	23	3.05
6328	9-24 (.19-1.1 AGC)	23	2.25
6329	2.2-10 Tapped	7	1.75
6330	45-215	5	2.60
6331	4-30 Parallel (.080-.7 Series)	23	3.05
6195	.185-1	5	1.25
6196	.054-.245	5	1.10
6196-A	.054-. 5 Tapped	7	1.25
6197	.55-2.3 Tapped	7	1.25
6198	.17-.61	5	1.10
6199-A	1.3-4.1 Tapped	7	1.30
6199-B	.5-1.7	5	1.25

Tapped Horizontal Oscillator Coils \& Sync. Stabilizer (Ringing Coil)

These unshielded coils are intended for use in the horizontal oscillator section of a T.V. receiver.
No. 6210 has an inductance range of 16-42 millihenries and is intended for use as a stabilizer in multivibrator circuits. An external capacitor of .0039 mfd . is required. Dimensions: $3 / 4^{\prime \prime}$ by $2^{\prime \prime}$
No. 6211 is a tapped inductor having an inductance range of $16-42$ millihenries. An external capacitor of .0039 mfd . is required. Dimensions: $3 / 4^{\prime \prime}$ by $2^{\prime \prime}$
No. 6324 is a tapped inductor having an inductance range of 60.130 millihenries. An external capacitor of .001 mfd . is required. Dimensions: 1" by $2^{\prime \prime}$
The above numbers $(6210,6211,6324)$ mount into a $7 / 1 i^{20}$ chassis hole. No. 6212 is a tapped inductor having an inductance range of 12.35 millihenries. When used in combination with part No. 6314 they form the unshielded version of part No. 6183 (Horizontal Oscillator \& Sync. Stabilizer). Mounting is by means of a clip fitting a $\pi / 16^{\prime \prime}$ chassis hole.

Dimens Cat. No.	b 2" Item	Schemalic	List Price
6210	Sync. Stabilizer Coil	5	\$2.25
6211	Sync. Stabilizer Coil Tapped	7	2.25
6212	Horizontal Osc. Coil Tapped	7	2.25
6324	Horizontal Osc. Coil Tapped	7	2.25

TV Antenna Coupling Transformers

One Miller Antenna Coupling Transformer used to match antenna to line and another to match low-loss line to standard 300 -ohm receiver input, may boost signal level as much as four times! The resulting TV picture may be improved to the same degree as if the transmitter had doubled its power! Insertion losses of transformers are very low. Designed to couple 250 or 300 -ohm antenna arrays to 72 -ohm twinlead, 52 -ohm low-loss coaxial cable or 450 -ohm open line. At the receiver, a second transformer will match low-loss line to 300 -ohm standard receiver input. Transformers are housed in impregnated, weather-tight aluminum shields and may be used outdoors.

Dimensions: $3 / 4^{\prime \prime}$ by $3 / 4^{\prime \prime}$ by $13 / 8^{\prime \prime}$ high. Impedance Ratio	Schemalic	List Cal. No.	Price
6161	$52 / 300$ or $300 / 52$ ohms	38	$\$ 2.75$
6162	$72 / 300$ or $300 / 72$ ohms	38	2.75
6201	$450 / 300$ or $300 / 450$ ohms	38	2.75

Antenna Matching Coils (Balun)

When two of these coils are connected in parallel at one end and in series at the other end, a 75 ohm to 300 ohm impedance matching transformer is obtained. This impedance match holds over the entire television range from channel 2 to 13 thus including the F.M. chanrels.
The Miller $\# 6202$ and $\# 6104$ coils can be used to replace the following: RCA \#73591, Philco \#32-4432-1, -2, -3, \#76.7071, and Mororola \#S. 13.
Part $\$ 6202$ is wound on a threaded ceramic form to withstand severe temperature changes.
Part \#6104 is a smaller, inexpensive balun which finds its primary use as a replacement coil in TV receivers. Wound on low loss styrene.
Part \#6200 is used extensively by Radio Amateurs operating on the 50,144 , and 220 MC bands. Wound on low loss styrene. Two mounting brackets are supplied with each coil.
Miller 6103 antenna matching transformer is intended as a replacement item for many Sarkes Tarzian Tuners, as a direct replacement for GE part No. RLA-041. Although physically different than those found in many tuners, this assembly will function as a suitable substitute in many sets where a similar antenna matching coil is used. List Cat. No. Descriplion Schemalic - Price

6103	Ant. Matching Coil $1 / 4^{\prime \prime} \times 11 / 2^{\prime \prime \prime}$ long	39	$\$ 1.25$
6104	Ant. Matching Coil $K_{0^{\prime \prime}} \times 13 /^{\prime \prime}$ long	37	1.00

62003 Ant. Matching Coil $3 / /^{\prime \prime} \times 21 / /^{\prime \prime}$ long $\quad 37 ~ 37 ~ 2.00$
6202 Ant. Matching Coil $56_{6}{ }^{\prime \prime} \times 13 / 4^{\prime \prime}$ long $\quad 37 \quad 2.00$

Universal Adjustable Ion Trap

In an effort to help the TV serviceman with his stock problem, we are now in a position to reduce his inventory by adding this universal lon trap to our present TV line. Due to its adjustable feature, which allows the magnetic field to be varied berween 32-55 gausses, this trap will, in most instances, replace the older style ion traps having a specific magnetic field.

Packaged in an altractive display carton of $\mathbf{2 4}$ pieces.

Cat. No.	Descriplion	List Price
6295	Adjustable Ion Trap	$\$ 1.25$

Converter and Picture Channel I.F. Transformers

These three transformers may be used to couple plate of mixer to first video i.f. stage and as interstage coupling in two of the following stages of the picture i.f. channel Windings are iron core tuned, and without external capacitor are designed to resonate with tube and wiring capacity to the frequencies $21.8,25.3$ and 22.3 mc . All three transformers have slug-tuned traps for response curve shaping and sound or adjacent channel rejection. Converter transformer has tap on trap for sound take-off to sound i.f. channel at 21.25 mc . Transformer tuning core adjusted from bottom; trap tuning accomplished by stud accessible at top of shield. Dimensions: $7 / 8^{\prime \prime}$ by $7 / 8^{\prime \prime}$ by $21 / 4^{\prime \prime}$ high.

Cal. No.	I.F. Frequency	Trap	Schematic	Prise
6185	21.8 MC Converter I.F. Trans.	21.25 MC	42	$\$ 2.75$
6186	25.3 MC 1st Pix I.F. Trans.	27.25 MC	115	2.75
6187	22.3 MC 2nd Pix I.F. Trans.	19.75 MC	115	2.10

Picture Channel I.F. Inductors

Unshielded, permeability-tuned inductors which resonate with tube and wiring capacity to the frequencies indicated below. When used with the shielded picture i.f. transformers shown above, they make possible a well designed stagger-tuned video i.f. amplifier of full 6 mc bandwidth. Proper response wave shape thus insured for all possible definition and clarity of the television picture. Coils are wound on bakelite forms with mounting clip to fit into $7 / 16^{\prime \prime}$ hole in chassis. Dimensions: $1 / 2^{\prime \prime}$ max. o.d. by $11 / 2^{\prime \prime}$ long.

	Dimanions: ${ }^{\text {/2 max. }}$	1/2			List
Cat. No.	Descriplion	Freque		Schemalic	Price
6188	3rd Pix I.F. Trans.	25.2	MC	5	\$1.25
6189	Video Detector I.F. Trans.	23.4	MC	5	1.25
6193	Cathode Sound Trap	21.25	MC	24	2.00
6171	Tunable Choke	$21-25$	MC	5	1.25
6171-A	Tunable Choke	25-29	MC	5	1.25

24 Mc Unshielded Picture I.F. Transformers

First and Second I.F. transformers employ single tuned circuits and trap windings. The Third I.F. employs a single tuned circuit and cathode trap, and the Video detector transformer employs only a single winding. Mounting clip to fit $5 / 16^{\prime \prime}$ hole in chassis.
Maximum Dimensions: $3 / 4^{\prime \prime}$ O.D. $\times 21 / 2^{\prime \prime}$ long.

Cat. No.	I.F. Frequency	Trap	Schemalic	List Price
6245	25.5 MC First I.F.	27.25 MC	25	\$2.50
6246	22 MC Second I.F.	21.2 MC	25	2.50
6247	21.25 MC Cathode Trap		24	2.50
6248	24.5 MC Video Det. I.F.		5	1.50

Bifilar Wound T.V. I.F. Transformers

These permeability tuned inductors resonate with average wiring capacity to the frequency indicated. The unshielded coils mount in a 5/16" hole.

aximum Dimensions: 3/4" O.D. $\times 21 / 2^{\prime \prime}$ long.					$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
Cal. No.		I.F. Frequency	Irap	Schematic	
6249	21.25	MC Bifilar		23	\$1.50
6250	25.29 M	MC Bifilar		23	1.50
6251	21.25	MC Bifilar Shielded		22	2.25
6252	25.29 N	MC Bifilar Shielded		22	2.25
6253	21.30	MC Bifilar	20.23 MC	21	2.75
6254	22-32	MC Bifilar	24-29 MC	21	2.75

21.25 Mc Television Sound I.F. Transformers

These permeability tuned transformers are intended for use in T.V. receivers where a separate sound amplifier is employed.
The 6190 and 6191 feature high gain along with adequate bandwidth
The 6192 discriminator is of the Foster Seeley type. Two stages of amplification and one limiter stage should precede it.
The 6170 is for use in the unbalanced type of discriminator circuit. (Same as RCA-75212.)
The 6184 ratio detector requires at least a one or two stage amplifier preceding it to insure proper operation.
Dimensions: $(6190,6191,6170) 7 / 8^{\prime \prime}$ sq. $\times 21 / 4^{\prime \prime}$ high. Mounting centers $1^{\prime \prime}$. Dimensions: ($6184 \& 6192$) $11 / 8^{\prime \prime}$ sq. $\times 21 / 2^{\prime \prime}$ high. Mounting centers $11 / 6^{\prime \prime}$. Dimensions: (6261 and 6262) $3 / 4^{\prime \prime}$ sq. $\times 2^{\prime \prime}$ high. Clip mounting.

	liem	Frequency	Schemalic	List Price
6190	1st Sound I.F. Trans.	21.25 MC	35	$\$ 2.40$
6191	2nd Sound I.F. Trans.	21.25 MC	35	2.40
6192	Sound Discriminator Trans.	21.25 MC	20	3.00
6170	Sound Discriminator Trans.	21.25 MC	41	3.30
6184	Sound Ratio Detector Trans.	21.25 MC	19	3.30
6261	Sound Discriminator Trans.	21.25 MC	20	3.40
6262	Sound Ratio Detector Trans.	21.25 MC	19	3.40

4.5 Mc Intercarrier Sound

I.F. Components

Single and double tuned circuits for inter-carrier television receivers. The discriminator is of the Foster Seeley type and requires one or two limiter stages preceding it, while the ratio detector will provide good operation with one or two stages of amplification only.
Dimensions: (1466-1467-1468) $11 / \mathrm{g}^{\prime \prime} \mathrm{sq} . \times 21 / \mathrm{s}^{\prime \prime}$ high. Mounting centers $11 / 16^{\prime \prime}$. Mounting (1469-1470) $\mathrm{K}_{6}{ }^{\prime \prime}$ chassis hole. ($1470-\mathrm{A} 3 / 4^{\prime \prime}$ sq. $\times 2^{\prime \prime}$ high.)

Cat. No.	Item		Frequency	Schematic	Lisi Price
1466	Input or Interstage I.F. Trans.	4.5 MC	35	$\$ 2.60$	
1467	Sound Discriminator Trans.	4.5 MC	63	3.00	
1468	Sound Ratio Detector Trans.	4.5 MC	19	3.30	
1469	Sound Pick Off Coil	4.5 MC	66	1.25	
1470	Sound Trap Unshielded	4.5 MC	67	1.25	
$1470-\mathrm{A}$	Sound Trap Shielded	4.5 MC	65	1.65	
1480	Quadrature Coil	4.5 MC	28	1.25	
1481	Quadrature Coil Shielded	4.5 MC	65	1.65	

4.5 Mc Ratio Detector (Standard Size)

For use in the demodulating stage of the sound I.F strip of intercarrier T.V. receivers. Due to the ability of the ratio detector to discriminate against amplitude variations, no limiter stages are required. The use of permeability tuning and fixed capacitors make possible a unit that is stable in operation. This coil has the same electrical characteristics as our part no. 1468.
For replacement use where a coil in a larger shield is required. \#6/32 spade bolts on $15 / 10^{\prime \prime}$ centers.

4.5 Mc Miniature I.F. Trans.

Shell core permeability tuned transformers with built-in silver-mica capacitors. Tuning from top and bottom of aluminum shield. Supplied with a snap spring mounting clip which may be installed through suitable holes in the chassis.
Dimensions: $3 / 4^{\prime \prime}$ square by $2^{\prime \prime}$ high.

			Lisi
Cal. No.	Ilem	Schematic	Price
6203	4.5 MC Input or Interstage	35	$\$ 2.85$
6204	4.5 MC Discriminator	20	3.40
6205	4.5 MC Ratio Detector	19	3.40
$6206-P C$	4.5 Mc Ratio Det. (GE-RTD-026)	19	4.50
$6207-P C$	$4.5-\mathrm{Mc}$ Ratio Det. (GE-RTD-025)	19	3.75
$6208-P C$	4.5 Mc Ratio Det. (GE-RTD-020)	19	4.50

40 Mc TV Picture I.F. Transformers

These new transformers are for use in TV receivers having the picture I.F. carrier frequency at 45.75 MC with the sound carrier I.F. at 41.25 MC and the sound intercarrier I.F. at 4.5 MC. The pieture I.F. covers a band of 41.75-45.75 MC. With proper circuit capacitances, adjustable windings are tunable within this frequency range. Converter transformer has an iron core tuned primary winding and a 75 -ohm output winding. Ist pix I.F. grid transformer has a 75 -ohm input winding as well as iron core tuned secondary and trap windings. 1st pix I.F. plate and 2 nd pix I.F. grid transformers have each two permeability tuned windings, one of which constitutes a trap. Currently used in R.C.A. models.
Dimensions: $7 / 8^{\prime \prime} \times 7 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$ high.

Cat. No.	Descriplion	Trap	Schematic	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
6215	Converter I.F. Trons.		31	\$2.50
6216	Ist Pix I.F. Grid Trons.	39.25 MC	32	3.00
6217	Ist Pix I.F. Plote Trons.	41.25 MC	33	3.00
6218	2nd Pix I.F. Grid Trons.	47.25 MC	34	2.75

Unshielded Picture I.F.s

Unshielded permeability tuned I.F. transformer for use in subsequent stages. This transformer is single tuned and has bifilar wound tightly coupled primary and secondary windings. With suitable tube and wiring capacity it-can be peaked to any frequency within the range 41.75-45.75 MC. Wound on bakelike form with mounting clip to fit into $\bar{\pi} / 16$ " hole in chassis. Currently used in R.C.A. models. Dimensions: $1 / 2^{\prime \prime}$ O.D. $\times 11 / 4^{\prime \prime}$ long.

Cat. No.	Description	Freq. Range	Schematic	Price
6219	3rd, 4th ond 5th Pix I.F.	$41.75-45.75 \mathrm{MC}$	23	$\$ 1.25$

Video Peaking Coils, Filament Choke

Intended for replacement service, Filament Choke No. 6175 isolates filaments to reduce stray coupling. Low resistance for minimum voltage drop. Video peaking coils designed to assure proper bandwidth and wave shape. Coils without shunt resistor wound on moulded plastic forms; shunt resistor types wound directly over resistor forms. Solid wire leads for easy connection and wiring. Approximate dimensions: No. 6175 Filament Choke- $/ 32^{\prime \prime}$ dia. by $7 / 8^{\prime \prime}$ long; Video Peaking Coils$3 / 16^{\prime \prime}$ dia. by $3 / 8^{\prime \prime}$ long.

Cat. No.	Use	Inductance -uhy	Shunl Resistor	Color Code	Schematic	List Price
6175	Filoment Choke	0.8	None	Oronge	1	$\$.50$
6152	Peoking Coil	20	None		1	.50
6176	Peoking Coil	36	None	Block	1	.50
6110	Peoking Coil	60	None		1	.50
6172	Peoking Coil	73	None		1	.60
6177	Peoking Coil	93	None	Red	1	.60
6112	Peoking Coil	100	None		1	.60
6178	Peoking Coil	120	$22 K$	Blue	8	.60
6153	Peoking Coil	120	None		1	.60
6120	Peoking Coil	155	None		1	.60
6179	Peoking Coil	180	$39 K$	White	8	.60
6180	Peoking Coil	180	None	Yellow	1	.60
6154	Peoking Coil	200	None		1	.60
6173	Peoking Coil	250	$22 K$		8	.60
6181	Peoking Coil	250	None	Green	1	.60
6130	Peoking Coil	275	None		1	.60
6155	Peoking Coil	300	None		1	.60
6132	Peoking Coil	330	None		1	.60
6134	Peoking Coil	375	None		1	.60
6136	Peoking Coil	420	None		1	.60
6138	Peoking Coil	470	None		1	.60
6174	Peoking Coil	500	None		1	.60
6144	Peoking Coil	550	None		1	.60
6146	Peoking Coil	600	None		1	.60
6148	Peoking Coil	700	None		1	.60
6156	Peoking Coil	800	None		1	.60
6157	Peoking Coil	950	None		1	.60

In cose a resistor coil form is specified for replocement purposes, use o shunt resistor of the required volue across peaking choke.

44 Mc Miniature TV Picture Transformers
 Permeability Tuned

For use in Intercarrier receivers of later design which employ this higher intermediate sound and picture I.F. frequency. Due to their small physical size these coils can be used where space is at a premium.
The converter transformer feeds energy through a 75 ohm link line to a winding of the same impedance on the First Picture I.F. Transformer. Both the Second and Third I.F. Transformers employ a bifilar winding tuned to the desired signal, and a trap winding which is adjusted to attenuate the undesired signals. The Fourth I.F. Transformer has a bifilar wound Primary and Secondary which feeds into the detector. Supplied with snap spring mounting clip which may be installed through suitable holes in the chassis. Also furnished is an adaptor plate for use over a standard tube socket hole.

Dimensions: $3 / 4^{\prime \prime} \mathrm{sq} \times \times 2^{\prime \prime}$ high					Lisi
Cat. No.	Description	*	Trap	Schemalic	Price
6230	Converter I.F.			27	\$2.50
6231	44 MC First I.F.			27	2.50
6232	42.5 MC Second I.F.		41.25 MC	26	2.10
6233	45.5 MC Third I.F.		47.25 MC	26	2.50
6234	44 MC Fourth I.F.			22	1.85

Unshielded 44 Mc TV Picture Transformers

This series of unshielded 40 Mc . video transformers and inductors can be used as replacement components in almost every known type of circuitry found in today's television receivers. Part No. 6220 has a 75 ohm link winding to couple energy from the converter to the grid winding of the first video stage. Part Nos. 622I, 6222, and 6223 incorporate bifilar wound primary and secondary windings, and high " Q " inductively coupled trap windings. Part No. 6224 consists of a bifilar wound primary and secondary winding, while part Nos. 6225 and 6226 are high " Q " single windings that can be used as either traps or capacity coupled I.F. inductors. All coils in this series are permeability tuned, and will resonate with average wiring and tube capacitance to the frequencies indicated.

Maximum Dimensions: 3/4" O.D. $\times 21 / 2^{\prime \prime}$ long. Mounting hole $5 / 10^{\prime \prime}$.				List Price
Cal. No.	I.F. Frequency	Irap	Schematic	
6220	40.46 Mc .		30	\$1.25
6221	40.46 Mc .	41.25 Mc.	21	2.50
6222	42-48 Mc.	47.25 Mc.	21	2.50
6223	40.46 Mc .	39.25 Mc.	21	2.50
6224	39-46 Mc.		23	1.40
6225	39-49 Mc.		29	1.55
6226		40-46 Mc.	28	1.40

R.F. Transformer for HV Power Supply

These R.F. power supply transformers for use with television receivers and cathode ray oscilloscopes make it possible to construct an inexpensive source of high voltage DC. Two types are available, the \#4525 for voltage to 5000 DC and the \#4526 for voltages to $10,000 \mathrm{DC}$ (or $30,000 \mathrm{DC}$ in a voltage rectifier tripler circuit). Type 1B3-GT tubes are used as rectifiers and the R.F. oscillator circuit uses one or more type 6 V 6 or 6 Y 6 tubes connected in parallel. The high frequency AC source permits use of simple and inexpensive resistive capacitive filters with low ripple content in the output.

Cat. No.	Ilem	Schematic	Price
4525	H.V. R.F. Trons. (to 5 KV)	52	$\$ 8.25$
Dimensions:	$11 / 4^{\prime \prime}$ diameter $\times 33 / 4^{\prime \prime}$ high.	(Not Illustrated)	
$\mathbf{4 5 2 6}$	H.V. R.F. Trans. (to 30 KV)	52	$\$ 13.75$
Dimensions:	$21 / 4^{\prime \prime}$ diameter $\times 6^{\prime \prime}$ high.		(Illustrated)

TV High-Pass Filter

This TV High-Pass Filter will eliminate or greatly reduce annoying interference which may be picked up by the intermediate-frequency amplifier section of your television receiver. Improves picture clarity by rejecting interference from short wave stations, amateur transmitters, X-Ray and diathermy equipment, industrial r.f. heating units, electric appliances, etc. Clear, steady pictures insured with a minimum of noise streaks, sound bars or herringbone. Filter is designed to attenuate all signals from zero frequency to 40 megacycles. All television channels passed with minimum loss. N_{1} tuning required. Installed easily in antenna lead-in receiver. In aluminum shield with convenient "L"-type bracket for mounting.
Dimensions: $1 / 16^{\prime \prime}$ by $17 / 8^{\prime \prime}$ by $31 / 2^{\prime \prime}$ high.

Cal. No.		by $1 / 8$	Use		Schematic	Lis! Price
6167	TV	High-Pass	Filter-72-ohm	line	46	\$5.50
6168	TV	High-Pass	Filter-300-ohm	line	47	5.50

TV and Appliance Filter

Similar in construction to the Cat. No. 7818. the Cat. No. 7815 is designed for use with larger household appliances and commutatortype motors as well as com-munications-type receivers and recording equipment. Useful for elimination of TV interference in radio receivers when inserted in television receiver line cord. The $\# 7815$ filter uses larger capacitors and heavier capacity inductors to handle load requirements up to 550 watts. It is assembled in a gray Hammertone finished case.
Dimensions: $21 / 4^{\prime \prime}$ square $\times 4^{\prime \prime}$ long.

Cat. No.	Volts	Walts	Schematic	Lisi 7815
	115	550	11	$\$ 9.25$

AC-DC Radio Filter

 those for A.C. circuits, for greatest effectiveness. The Cat. No. 7813 Filter plugs-in between the power outlet and the radio receiver.
Dimensions: $21 / 4^{\prime \prime}$ square $\times 5^{\prime \prime}$ long.

cat. No.	Volis	Walis	Schematic	List Price
7813	115	220	11	\$9.75

Electric Shaver Filter

This filter contains an in-ductive-capacitive circuit consisting of two duo-lateral wound chokes and a non-inductive condenser, giving complete freedom from radio interference. Most electric shavers act as miniature radio transmitters and feed interference energy into the house wiring and it is then picked up by the radio receiver. The Miller Electric Shaver filter, connected berween the electric shaver and the convenience outlet, effectively absorbs this interference energy and prevents it from being picked up by the radio receiver. No ground connection is needed for the filter and the danger of accidental shock is avoided through the use of shock-proof, unbreakable moulded rubber construction.
Dimensions: $11 / 8^{\prime \prime}$ diameter $\times 3^{\prime \prime}$ long.

Dimensions:	$1 / 8^{\prime 2}$	diameter $\times 3^{\prime \prime}$	long.		Lisi
Cat. No.	Volls	Walts	Finish	Schematic	Price
7817	115	50	Black	14	$\$ 3.50$
$7817-1$	115	50	Ivory	14	3.50

TV and FM Wave Traps

These new high-Q series-resonant wave traps may completely eliminate interference and undesirable images in television and FM receivers. When tuned to the frequency of interfering signal, they are very effective in reducing sound bars and herringbone patterns, or streaks and tearing in the television picture. Superimposed pictures from two different stations also may be prevented. For FM receiver use, cross-talk from interfering station is greatly diminished. Use of one of these traps generally will reduce interference caused by a near-by transmitter to a degree which will permit satisfactory reception from a weaker station.
Dimensions: $13 / \mathbf{a}^{\prime \prime}$ by $178^{\prime \prime}$ by $31 / 2^{\prime \prime}$ high.

Cat. No.	Frequency Range	Schematic	$\begin{gathered} \text { Lisi } \\ \text { Price } \end{gathered}$
6163	150.250 MC	45	\$4.40
6164	75.150 MC	45	4.40
6165	40. 80 MC	45	4.40
6166	20. 40 MC	45	4.40

All-Wave Interference Filter

Capacity Type Line Filter

The Miller Capacity Line filter is an all
 purpose filter for the elimination of radio interference caused by the operation of household appliances such as electric razors. heating pads, hair dryers, food mixers, vacuum cleaners and practically all common household devices and fractional horsepower motors. This filter will provide adequate filtering in less severe cases of interference and in instances where the cost of Miller Inductive-Capacitive type filters is not warranted. A bakelite receptacle at one end and one foot long cord with plug at the other end makes installation simple. Dimensions: $11 / \mathrm{e}^{\prime \prime}$ diameter $\times 25 / \mathbf{g}^{\prime \prime}$ long.

Un-Cased Interference Filters

These filters utilize two duo-lateral wound chokes and a dual .2 mfd . non-inductive wound, oil impregnated condenser. The filters are assembled on. $1^{\prime \prime}$ diameter bakelite tubes and are provided with soldertype terminals and brass mounting brackets. While designed primarily for use with traffic signals, its usefulness is by no means limited to this application. These filters may be used for built-in application with any type of radio interference producing electronic device whose voltage and current requirements are within the rating limits of the filters.
Dimensions: \#7880-21/a" diameter x $5^{\prime \prime}$ long; 90 uh; 125 ohms; dual .2 mfd. condenser.
\#7881-31/4" diameter $\times 5^{\prime \prime}$ long; 125 uh; 065 ohms; dual .2 mfd. condenser.

| | mfd. condenser. | | Lisf |
| :--- | :---: | :---: | :---: | :---: |

Sub-Miniature Adjustable R.F. Coils
The following permeability tuned coils wound on silicone impregnated ceramic forms will find many applications where space restrictions rule out the use of the larger size coils in the 4400 and 4500 series. These coils mount by means of a bushing which requires a $11 / 64^{\prime \prime}$ hole.

Cat. No.	Microhenries	Price
4300	Form only	$\$ 1.50$
4301	$0.17-0.27$	2.00
4302	$0.27-0.41$	2.00
4303	$0.40-0.65$	2.10
4304	$0.64-0.95$	2.20
4305	$0.94-1.55$	2.25
4306	$1.5-2.57$	2.30
4307	$2.5-4.40$	2.40
4308	$4.3-7.15$	2.40
4309	$7.1-12.5$	2.50
4310	$12.4-20.3$	2.50
4311	$20.1-32.8$	2.50
4312	$32.5-51.5$	2.50
4313	$51 .-102$.	2.60
4314	$101 .-180$.	2.60
4315	$178 .-300$.	2.60

\#4300 comes complete with hardware and core
\#4300 Bulk packed per 100
List Price $\$ 115.00$

Miniature Adjustable R.F. Coils

政

A new series of small adjustable coils designed for the most exacting requirements. Wound on silicone impregnated high grade ceramic forms. Tuning is by means of a powdered iron core. These coils require little space and are for mounting in a $3 / 1 / 1{ }^{\prime \prime}$ diameter hole.
Dimensions (form): $1 / 4^{\prime \prime}$ diameter $\times 7 / 8^{\prime \prime}$ long. Schematic No. 5.
List

Economy Adjustable R.F. Chokes

Through the use of a recently developed Nylon molding process we are able to offer an inexpensive line of adjustable chokes. These items feature a wide inductance range which has been achieved through the use of a threaded ferrite core. They can be adjusted from either the top or bottom. This lends a degree of flexibility to your design. Mounting is achieved by means of a metal clip in a $5 / 16^{\prime \prime}$ round hole or a special keyed hole. Instructions supplied with each coil.
Dimensions: $3 / 8^{\prime \prime} \times 13 / 8^{\prime \prime}$ long.

Cal. No.	Microhenries	Schemalic	List Price
4200	Form only		$\$.75$
4202	$1-2.5$	5	1.25
4203	$2-5.5$	5	1.25
4204	$5-12$	5	1.25
4205	$10-25$	5	1.25
4206	$20-55$	5	1.50
4207	$50-140$	5	1.50
4208	$120-330$	5	1.50
4209	$310-860$	5	1.50

Standard Adjustable R.F. Coils

This series of variable inductors offers a higher Q coil with a slightly larger inductance range than can be obtained in either of the two smaller series. The same high grade silicone-impregnated ceramic forms are used in their construction to insure a product of high quality. These coils mount by means of a bushing that requires a $1 / 4$ " diameter mounting hole. Hardware consisting of nut, lock washer, and spring clip is supplied.
Dimensions (form): 3/8" diameter $\times 11 / 16^{\prime \prime}$ long. Schematic No. 5. List

Cat. No.	Microhenries	Price
4400	Form only	$\$ 1.65$
4403	$0.9-1.6$	2.20
4404	$1.5-1.2 .2$	2.25
4405	$3.1-6.8$	2.30
4406	$6.7-15$	2.40
4407	$14.8-31$	2.50
4408	$30-69$	2.55
4409	$68-130$	2.65
4410	$126-250$	2.65
4411	$245-475$	2.70
4412	$450-800$	2.70
4413	$750-1400$	2.75
4414	$1300-2100$	2.75

\#4400 comes complete with hardware and core.
\#4400 Bulk packed per $100 \quad$ Lisi Price $\$ 140.00$

High Q Unshielded R.F. Coils

A complete line of Unshielded Permeability
 tuned coils for replacement use or as the front end components in new receiver design. Through the use of the adjustable iron core this series of coils can be made to track with many types of variable condensers to obtain any desired frequency range; the ranges shown are for use with a 365 mmfd . tuning condenser. Oscillator coils are of either the standard plate feedback type or cathode tapped type, and are designed so that it is possible to achieve three point tracking when the proper padding and trimmer capacity values are used. Values of padding condenser are for use with a 455 Kc l.F. amplifier. Mounting is by means of a single $1 / 4$ " hole. These \# 5495 series coils can be shielded in our \#S-32 shields ($11 / \mathrm{g}^{\prime \prime}$ sq.) with very little loss in Q .
Dimensions (form): 3/8" $\times \mathbf{2}^{\prime \prime}$.

Cal. No.	Long Wave Coils Use Range		Schematic	List Price
X-5495-A	Antenna Stage	$140-420 \mathrm{KC}$	51	\$2.10
X-5495-RF	RF Stage	$140-420 \mathrm{KC}$	51	2.10
X-5495-C	Std. Osc. 455 KC	Pad 00012 Mfd .	48	2.10
X-5496-C	Tapped Osc. 455 KC	Pad . 00012 Mfd .	7	2.10
Cat. No.	Hroalcast Use	Band Coils Range	Schematic	List
A-5495-A	Antenna Stage	540-1700 KC	51	\$2.10
A-5495-RF	RF Stage	540-1700 KC	51	2.10
A.5495-C	Std. Osc. 455 KC	Pad 0004 Mfd .	48	2.10
A-5496-C	Tapped Osc. 455 KC	Pad . 0004 Mfd .	7	2.1

B-5496-C Topped Osc. 45SKC Pad.002 MA.

Ceramic Core R.F. Chokes

Miller ceramic core radio frequency chokes are the result of careful research and design, and present advantages found in no other comparable chokes. These chokes have extremely low distributed capacity. Dimensions: (form) $1 / 4^{\prime \prime}$ diamater by $1 / \mathbf{2}^{\prime \prime}$ long.
All chokes are impregnated with a moisture- and fungus-resistant varnish. Inductance tolerance: $\pm 5 \%$. Schematic No. 1.

Single Layer Wound Chokes

The following R.F. chokes are solenoid wound. They have a distributed capacity of 0.7 mmf and may be used in ultra-high-frequency receivers and low-power transmitters.

Cal. No.	uh.	Ohms	ma	Lisi Price
$\mathbf{4 5 2 8 - 1}$	1	.03	300	$\$.70$
4528	2.5	.09	300	.70
4529	5	.25	300	.70
$4529-10$	10	.95	300	.70

Progressive Wound Chokes

These chokes, with a distributed capacity of 1 mmf., fill the gap between layer and pi-wound coils. The distributed capacity is lower than that obtainable in sectional wound coils.

Cat. No.	uh.	Ohms	ma	Lisi Price
$\mathbf{4 5 1 5}$	25	1.6	300	$\$.80$
$\mathbf{4 5 1 7}$	50	2.1	300	.80
4519	100	3	300	.80

Multiple Pi Wound Chokes
These multiple duo-lateral chokes have a low distributed capacity of $1.2-1.3 \mathrm{mmf}$. The current carrying capacity is comparatively high for this type of choke.

Stud Mounted Low-Capacity R.F. Chokes
Single stud mounted resistor-type r.f. chokes for use in transmitters and receivers. Pi-wound for very low distributed capacity. Constructed on moulded bakelite forms and equipped with Miller "Sta-On" terminal clips which wil not work loose. Co-axial \#6.32 thread mounting stud.
Dimensions: 5/8" o.d. by $11 / 4^{\prime \prime}$ high (plus $7 / 6^{\prime \prime}$ stud)

Cat. No.	mh.	Ohms	ma	Schematic	List Price
4527	1.0	14.	200	1	$\$ 1.10$
4530	2.5	23.	200	1	1.20

Dimensions: (form) $1 / 2^{\prime \prime}$ diameter by $21 / 2^{\prime \prime}$ long.

Cal. No.	mh.	Ohms	ma	List Price
4542	50	222	100	\$2.50
4543	75	290	100	2.75
4544	100	350	100	3.00
Dimensions: (form) 1/2' diameter by $31 / 2^{\prime \prime}$ ' long.				
4545	150	480	75	4.40
4546	200	530	75	4.95
4547	250	690	75	5.50

R.F. Chokes with Axial Leads

These chokes are covering an inductance range from . 1 microhenry to 10 millihenries or 5 decades with 8 coils per decade. Inductance values are increasing in steps of appr. 50%. Either single layer or 3 -pi universal winding is used to insure low distributed capacity. Chokes are wound on low-loss molded phenolic or powdered iron core forms and are impregnated with a moisture- and fungus-resistant varnish. The type of powdered iron used allows the chokes to operate at all frequencies up into the ultra-high frequency region.
Dimensions: Phenolic form $1 / 6^{\prime \prime \prime}$ diameter $\times 3 / 4^{\prime \prime}$ long.
Iron core form $7 / 3^{\prime \prime}$ diameter $\times 7 / 8^{\prime \prime}$ long.
Leads are $11 / 2^{\prime \prime}$ long. Inductance tolerance: plus or minus 5%.

Cat. No.	uh.	Ohms	ma	Schematic	List Price
4580	0.1	. 01	300	1	\$. 55
4582	0.15	. 012	300	1	. 55
4584	0.22	. 017	300	1	. 55
4586	0.33	. 019	300	1	. 55
4588	0.47	. 022	300	1	. 55
4590	0.68	. 03	300	1	. 55
4592	0.75	. 033	300	1	. 55
4594	0.82	. 035	300	1	. 55
4602	1	. 05	300	1	. 55
4604	1.5	. 08	300	1	. 55
4606	2.4	. 16	300	1	. 55
4608	3.9	. 5	300	1	. 55
4609	5.5	. 69	300	1	. 60
4610	6.2	. 75	300	1	. 60
4611	8.2	1.12	300	1	. 60
4612	10	1.5	200	1	. 60

Iron Core Form Single Layer Windings

Cat. No.	uh.	Ohms	ma	Schematic	List Price
4622	10	. 06	300	3	\$.65
4624	15	. 12	300	3	. 65
4626	24	. 28	300	3	. 70
4628	39	. 65	300	3	. 70
4629	55	. 92	300	3	. 75
4630	62	1.0	300	3	. 75
4631	82	1.6	300	3	. 75
4632	100	2.0	200	3	. 75
$=-2$		Phenolic Form 3-Section Windings			
Cat. No.	mh.	Ohms	ma	Schematic	List Price
4642	0.1	4.1	125	1	\$ 75
4644	0.15	5	125	1	. 75
4646	0.24	6.6	125	1	. 75
4648	0.39	8.7	125	1	. 80
4649	0.55	10.	125	1	. 80
4650	0.62	11	125	1	. 80
4651	0.75	13	125		. 80
4652	1.0	15	125	,	. 80

Iron Core Form 3-Section Windings

Caf. No.	mh.	Ohms	ma	Schemalic	Lisi Price
4662	1	7	125	3	$\$.85$
4664	1.5	9	125	3	.90
4666	2.4	12	125	3	1.00
4668	3.9	17	125	3	1.10
4669	5.5	22	125	3	1.25
4670	6.2	33	100	3	1.25
4671	8.2	45	100	3	1.50
4672	10	47	50	3	1.75

Ferrite Core R.F. Chokes

A new series of R.F. Chokes taking advantage of the high permeability of ferrite cores. These chokes combine high inductance and low D.C. resistance with a small physical size.
Dimensions of core: $1 / 4^{\prime \prime}$ diameter $\times 7 / 8^{\prime \prime}$ long. $11 / 2^{\prime \prime}$ long axial leads.

Cal. No.	$m h$.	Ohms	ma	Schematic	List Price
6302	2.5	8.3	200	3	$\$ 1.00$
6304	5	13.5	200	3	1.25
6306	10	28	125	3	1.50
6308	25	70	75	3	1.75
6310	50	110	75	3	2.00

Unshielded Air Core Chokes

Miller duo-lateral wound, single section radio frequency chokes are ideally suited to all receiver and circuit applications where a moderately priced type of choke is indicated. All of these chokes are wound with silk covered enamelled copper wire on impregnated ceramic dowels. A bakelite terminal plate, $11 / g^{\prime \prime}$ in diameter, is fastened to the dowel with a tubular brass eyelet, providing for single-hole mounting with a \#6-32 machine screw. Terminal lugs are eyeletred to the bakelite plate. The choke windings are thoroughly impregnated to prevent moisture absorption. Inductance values are maintained to an accuracy of five per cent.
Dimensions: $11 / 8^{\prime \prime}$ diameter by $5 / \mathbf{e}^{\prime \prime}$ high. Schematic No. 1.

Cat. No.	mh.	Ohms	List Price	
610	.25	8	125	$\$.60$
615	.5	12	125	.60
620	.75	16	125	.65
622	1.0	18	125	.65
630	1.5	21	125	.65
640	2.5	29	125	.75
650	5.0	44	125	.75
660	7.5	55	125	.80
670	10	67	125	.85
680	12.5	77	125	.85
690	15	85	125	.90
691	20	100	125	1.00
692	30	130	100	1.05
693	60	200	100	1.20
694	80	220	100	1.45

Center Tapped Types					
Cal. Mo.	mh.	Ohms	ma	Schematic	Lisl Price
670-T	10	67	125	6	\$1.05
691-T	20	100	125	6	1.20
693-T	60	200	100	6	1.40

Shielded Air Core Chokes

Miller Series 700 radio frequency chokes are similar in construction to the Series 600 and are assembled in aluminum shiclds. They are particularly useful for use in stage-isolating circuits, where coupling between chokes would be detrimental. The round shields are finished in satin okite and inductance tolerances are maintained to within five per cent. Two \#6-32 spade bolts provide for simple mounting. Schematic No. 2.
Dimensions: $11 / 4^{\prime \prime}$ diameter by $11 / 8^{\prime \prime}$ high. (Catalog No. 758 is $15 / 6^{\prime \prime}$ dia.)

| Cat. No. | mh. | Ohmls | ma | List Price |
| :--- | ---: | :---: | ---: | ---: | ---: |
| 751 | .5 | 11 | 125 | $\$ 1.00$ |
| 752 | 1.0 | 17 | 125 | 1.00 |
| 753 | 2.5 | 28 | 125 | 1.10 |
| 754 | 5.0 | 45 | 125 | 1.10 |
| 755 | 7.5 | 58 | 125 | 1.10 |
| 756 | 10 | 72 | 125 | 1.20 |
| 757 | 25 | 130 | 125 | 1.35 |
| 758 | 50 | 190 | 100 | 1.70 |

Medium Power Transmitter Chokes

A series of medium power transmitter chokes designed particularly for the constructor of amateur and commercial equipment using tubes having current requirements greater than 125 to 200 MA and less than 750 to 1000 MA , these new chokes are conservatively rated at 400 MA . Multiple-section, duo-lateral wound on Alsimag ceramic forms and provided with rigid brass terminal clips. Mounting brackets are of the "snap-in" type and may be removed to permit end mounting by means of the tapped holes in the ends of ceramic forms. Holes are tapped $\# 6-32$. Low distributed capacity and accurate inductance values are features of these chokes.

Cat. No.	mh .	Ohms	ma	Sehematic	Lisl Price
4550	2.0	6.5	400	1	\$2.50
4551	4.0	10.0	400	1	2.75

Unshielded Iron Core Chokes
Series 900 iron core radio-frequency chokes are of the single section duo-lateral wound type. The core is $3 / /^{\prime \prime}$ in diameter by $1 / 2^{\prime \prime}$ long and affords maximum inductance with minimum resistance. These iron core chokes are especially adaptable to all electronic devices requiring a small radio frequency choke having low distributed capacity. Solder terminal lugs are provided on the bakelite rerminal plate, and single-hole mounting is provided by a brass eyelet through the center of the core. All chokes are thoroughly impregnated and inductances are accurate to within five per cent.
Dimensions: $11 / 8^{\prime \prime}$ diameter by $5 / 8^{\prime \prime}$ high. Schematic No. 3.

Cal. No.	mh.	Ohms	ma	Lisl Price
951	.5	7	125	$\$ 1.00$
952	1.0	11	125	1.10
953	2.5	19	125	1.15
954	5.0	29	125	1.30
955	7.5	37	125	1.40
956	10	47	125	1.45
957	25	83	100	1.75
958	50	130	100	1.95
959	75	170	100	2.20
960	100	200	100	2.50
961	150	260	100	2.75

Shielded Iron Core Chokes				
	Series 800 shielded iron core chokes are similar in construction to the type 900 unshielded chokes. The shielded chokes are enclosed in round aluminum shields provided with two \#6-32 spade bolts for easy assembly to the chassis. Shields have a satin finish. Inductances are accurate to within five per cent. Dimensions: $11 / 4^{\prime \prime}$ dia. by $11 / \mathrm{a}^{\prime \prime}$ high. Schematic No. 4.			
Cat. No.	mh.	Ohms	ma	List Price
851	. 5	8	125	\$1.40
852	1.0	11	125	1.50
853	2.5	20	125	1.55
854	5.0	31	125	1.70
855	7.5	42	125	1.75
856	10	47	125	1.80
857	25	93	125	2.15
Dimensions: $1 \frac{5}{8 \prime \prime}$ diameter by $11 / 8{ }^{\prime \prime}$ high.				
858	50	160	100	2.30
859	75	190	100	2.60
860	100	320	100	2.85
861	150	480	100	3.15

Dimensions: (form) $1 / 2^{\prime \prime}$ diameter by $31 / 2^{\prime \prime}$ long.

Cal. No.	mh.	Ohms	ma	Schematic	List Price
4534	1.0	2.5	1000	1	$\$ 2.20$
4535	1.5	3.6	1000	1	2.50
4533	2.5	4.5	750	1	2.75
4536	4.0	5.5	750	1	3.05
2881	7.0	7.2	750	1	4.95

Encapsulated Radio Frequency Chokes

Air Core Printed Circuit R.F. Chokes

The following R.F. Chokes have been designed to offer a wide range of inductance values for use in printed circuit applications. Our standard stock of these coils is impregnated with a high grade coil varnish to prevent
moisture absorption. On special orders we can supply these items treated with fungus resistant material, or encapsulated in epoxy resin to meet MIL-C-15305-A.
Coil length: $7 \mathrm{a}^{\prime \prime}$ on all items. Diameter as tabuiated.

Part No.	$\begin{aligned} & \text { Induclance } \\ & \pm 5 \% \text { @ } 1000 \text { CPS } \\ & \hline \end{aligned}$	$\begin{gathered} \text { DC Resistance } \\ \pm 10 \% \end{gathered}$	Self Resonanl Frequency		uency	Diameter	Current	Schematic	List Price
970	1.0 mh .	17.2 ohms	1970 kc.	57 @	250 kc .	. 700	125 ma .	1	\$. 65
971	1.2 mh .	19.8 ohms	1830 kc .	59 @	250 kc .	. 720	125 ma .	1	. 65
972	1.5 mh .	21.8 ohms	1725 kc .	62 @	250 kc .	. 740	125 ma .	1	. 65
973	1.3 mh .	24.7 ohms	1550 kc .	63 @	250 kc .	. 750	125 ma .	1	. 70
974	2.2 mh .	27.4 ohms	1430 kc .	64 @	250 kc .	. 770	125 ma .	1	. 75
975	2.7 mh .	31.2 ohms	1330 kc .	65 @	250 kc .	. 800	125 ma .	1	. 75
976	3.3 mh .	34.8 ohms	1230 kc .	66@	250 kc .	. 820	125 ma .	1	. 75
977	3.9 mh .	38.9 ohms	1125 kc.	65 @	250 kc .	. 850	125 ma .	1	. 75
978	4.7 mh .	43.2 ohms	1060 kc .	66 @	250 kc .	. 875	125 ma .	1	. 75
979	5.6 mh.	48.0 ohms	950 kc .	64 @	250 kc .	. 910	125 ma .	1	. 75
980	6.8 mh .	53.6 ohms	895 kc .	64@	250 kc .	. 950	125 ma .	1	. 80
981	8.2 mh .	60.8 ohms	650 kc .	48@	250 kc .	. 850	100 ma .	1	. 80
982	10.0 mh.	68.0 ohms	600 kc .	54 @	79 kc .	. 880	100 ma .	1	. 85
983	12.0 mh.	77.0 ohms	530 kc .	58 @	79 kc.	. 910	100 ma .	1	. 85
984	15.0 mh.	87.7 ohms	498 kc .	61 @	79 kc.	. 950	100 ma .	1	. 90
985	18.0 mh.	97.9 ohms	463 kc .	64 @	79 kc.	. 985	100 ma .	1	. 90
986	22.0 mh.	108.0 ohms	400 kc .	64@	79 kc.	. 985	75 ma .	1	1.00
987	27.0 mh.	121.0 ohms	367 kc .	64 @	79 kc.	1.045	75 ma .	1	1.00
988	33.0 mh.	209 ohms	360 kc .	55 @	79 kc .	1.000	75 ma .	1	1.10
989	39.0 mh.	231 ohms	330 kc .	55 @	79 kc .	1.050	75 ma .	1	1.10
990	47.0 mh.	263 ohms	238 kc .	50 @	79 kc.	. 910	50 ma .	1	1.15
991	56.0 mh .	292 ohms	221 kc.	49 @	79 kc .	. 950	50 ma .	1	1.20
992	68.0 mh.	326 ohms	200 kc .	42 @	79 kc.	1.000	50 ma .	1	1.30
993	82.0 mh.	368 ohms	181 kc.	39 @	79 kc.	1.025	50 ma .	1	1.40
994	100.0 mh.	394 ohms	172 kc .	37 @	79 kc .	1.075	50 ma .	1	1.50

Prices Subject to Change or Withdrawal Without Notice

High-Q Ferrite Antenna Coil

This new highly efficient broadcast band antenna coil is ideal for use in small receivers where no external antenna is desired and the dimensions of a loop antenna do not allow for suf ficient signal pickup. The following features contribute to the extraordinary performance:
High permeability, low-loss ferrite tuning core, combined with multistrand Litz wire, giving a very high-Q coil (approx. 250).
Universal progressive winding for low distributed capacity and low losses at high frequencies.
Polyethylene insulated antenna wire; $18^{\circ \prime}$ of this wire is supplied with the coil.
The inductance may be accurately adjusted with a screw driver for use with any variable capacitor having a maximum capacity between 350 and 450 mmf . The mounting clip fits into a $5 / 16^{\prime \prime}$ diameter hole. The antenna wire should be attached by means of tape or cement to the inside of the plastic or wood cabinet.
The Cat. No. 6300 Coil may directly replace a loop without the necessity of removing the loop from the set. Supplied with mounting bracket.
Dimensions: $3 / \mathbf{4}^{\prime \prime}$ diometer $\times 21 / 4^{\prime \prime}$ long.
Packaged in an attroctive disploy corton of 24 pieces.

Cat. No.	Use	Frequency Range	Schematic	Price
$\mathbf{6 3 0 0}$	Antenna Stage	$540-1700 \mathrm{KC}$	5	$\$ 1.25$

Ferrite Rod Loop Antenna

The electrical characteristics of this newly developed type Ferrite Rod Loop Antenna make possible a general replacement loop that offers outstanding performance. Reception of distant stations will be improved to the extent that no antenna or ground will be required, and on local stations much better reception will be insured. The Loop Rod Antenna has an adjustable inductance which makes it possible to peak the antenna stage by merely sliding the coil along the ferrite rod; this also enables it to be used with a variety of tuning condensers.
Loop tunes the B.C. Bond with $\mathbf{3 0 0}$ to $\mathbf{4 0 0} \mathrm{mmf}$. Vorioble condenser.

Cat. No.	Dimensions	Schemalic	List
$705-\mathrm{A}$	$31 / 4^{\prime \prime} \times 912^{\prime \prime}$	48	Price

Universal Replacement Coils

To meet the needs of the serviceman and experimenter, we have developed a series of small iron core variable inductance coils for the broadcast band. These coils are well suited for general replacement use in receivers where manufacturers coils are no longer available. The inductance may be adjusted for use with any variable condenser having a maximum capacity between 250 and 450 mmf . The oscillator coil may be adjusted to track with all intermediate frequency amplifiers between 100 and 550 KC in any type of oscillator circuit. It has a tapped secondary and a primary.

Unshieliled

Dimensions: $7 / \mathrm{a}^{\prime \prime}$ diometer $\times 2$ " high. "L" mig. bracket.

Cal. No.	Use	Frequency Range	Schemalic	List
$\mathbf{7 2 - A}$	Antenna	$500-1800$ KC	102	$\mathbf{\$ 2 . 3 0}$
72-RF	R.F. Stage	$500-1800 \mathrm{KC}$	102	2.30
72-OSC	Oscillator	(see text above)	71	$\mathbf{2 . 3 0}$

Shielded

Miniature Adjustable R.F. Coils

Their small physical size and the fact that they can be adjusted to the inductance required, make these coils ideally suited for replacement in broadcast band receivers. Antenna and R.F. coils have high impedance primaries and high-Q Litz wire wound secondaries for use with any variable condenser having a maximum capacity between 250 and 450 mmf .
The 70 Oscillator coil hos o primory ond o topped secondary, while the 69 Oscillotor hos a copacity coupled winding. These coils ore for use in alt common podded and unpodded oscillator circuits. They moy be adjusted to track with I.F. omplifiers between 100 ond 550 Kc .
Dimensions: $1 / 2^{\prime \prime}$ diometer $\times 11 / 2^{\prime \prime}$ long (Nos. 70-A ond 70-RF).
$1 / 2^{\prime \prime}$ diometer $\times 11 / 0^{\prime \prime}$ long (No. 69-OSC. and No. 70-OSC)

Cat. No.	Use	Frequency Range	Schematic	Price
$70-A$	Antenna	$540-1600 \mathrm{KC}$	48	$\$ 1.50$
$70-$ RF	R.F. Stage	$540-1600 \mathrm{KC}$	48	1.50
$70-$ OSC	Oscillator	$540-1600 \mathrm{KC}$	71	1.50
$69-$ OSC	Oscillator	$540-1600 \mathrm{KC}$	96	1.50
		(I.F. $100-550 \mathrm{KC}$)		

Universal Arljustable Oscillator Coil

It will be difficult to find a broadcast band receiver where this oscillator coil will not properly operate. It has a primary with 2 taps thus allowing 6 different feed-back com binations, including cathode coupling. It may be adjusted for any intermediate frequency within the range of 100-550 KC ; it will track with variable condensers having a maximum value between 250 and 450 mmf in padded circuits and between 100 and 200 mmf in unpadded circuits. Mounting clip fits into a $5 / 16^{\prime \prime}$ diameter hole.

Dimensions: $5 / 8^{\prime \prime}$ by $11 / 2^{\prime \prime}$ high.				
Cat. No.	Use	Frequency Range	Schemalie	Price
71-O5C	Oscillator	R.F. 500-1800 KC	93	\$2.00
		(I.F. 100-550 KC)		

Loop Antenna

The Miller No. 703A Loop Antenna utilizes the patented "Air Loop"* construction which provides high Q and mechanical rigidity. The loop conductors are embossed into the surface of the masonite backing plate which, in many cases, may be used as a back cover of midget radio receivers. The Q of the loop is 150 at 790 KC and is substantially uniform throughout the standard broadcast band. The loop as supplied has a secondary inductance of 253 microhenries. The inductance may be reduced as necessary by removing turns from the inside or grid terminal and instructions are packed with each loop.
May be used in older sets to replace antenna coil for local reception without antenna or ground connections.
Dimensions: $81 / 8^{\prime \prime}$ wide $\times 53 / 8^{\prime \prime}$ high $\times 1 / 8^{\prime \prime}$ thick.

| Cat. No. | Use | Frequency Range | Schematic | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $703 A$ | Loop Antenna | $540-1700 \mathrm{KC}$ | 76 | $\$ 2.75$ |

Miniature Adjustable R.F. Chokes

1. These new duo-lateral wound chokes have a threaded ferrite iron core confined entirely within a nylon coil form. They have two terminals and are intended to be selfsupported by connecting wires. They are especially suitable as peaking coils in video amplifiers for accurate adjustment of the frequency response.
Dimensions: $3 / 8^{\prime \prime}$ diometer $\times 13 / 8^{\prime \prime}$ long. Range is greater thon specified.

| Cal. No. | Microhenries | Schematic No. 5. |
| :--- | :---: | ---: | | List |
| :--- |
| Price |

Miniature High-Q R.F. Coils (Permeability-Tuned)

Using cup core construction, we offer a shielded Antenna and R.F. coil in a $3 / 4 / 4$ sq. shield with Q values resulting in material gain ahead of the mixer stage. An adjustable tuning core allows the inductance to be varied over sufficient range for use with the more popular variable capacitors. Satisfactory results may be obtained by using these coils with tuning capacitors having a maximum capacity of 365 to 480 mmfd . The R.F. coils are impedance coupled, while the Antenna and Oscillator coils have tapped windings. Dimensions of shield: $3 / 4^{\prime \prime}$ sq. $\times 13 / \mathbf{s}^{\prime \prime}$ high.

| Cat. No. | Use | Freq. Range | Schematic | List Price |
| :--- | :--- | :---: | :---: | ---: | ---: |
| A-123-A | Antenna Stage | $535-1700 \mathrm{kc}$ | 44 | $\mathbf{\$ 2 . 2 5}$ |
| A-123-RF | R.F. Stage | $535-1700 \mathrm{kc}$ | 91 | $\mathbf{2 . 2 5}$ |
| A-123-C | Osc. Stage | $455 \mathrm{kc}-.0004 \mathrm{Pad}$ | 44 | $\mathbf{2 . 0 0}$ |

Miniature R.F. Coils

This series of Miller iron core coils are expressly designed for use with miniature tubes in ultra compact receivers. All coils are assembled in aluminum shields with sturdy solder terminals located in the base plate. The R.F. coils are impedance coupled and the antenna and oscillator coils have tapped secondaries. Supplied with snap-spring mounting clips for fastening to the chassis. For use with 365 MMFD tuning condensers, Miller types 2112 and 2113. Oscillator coils for use with 455 KC I.F., except A-121-H operating with 262 KC I.F.

Dimensions: $3 / 4{ }^{\prime \prime}$ square by $\mathbf{2}^{\prime \prime}$ high.				
Cat. No.	Use	Range	Schematic	List Price
$x-121-A$	Antenna Stage	140-425 KC	106	\$2.20
X-121-RF	R.F. Stage	$140-425 \mathrm{KC}$	107	2.20
$X-121-C$	Oscillator Stage	120 MMFD Series Pad	106	2.20
A-121-A	Antenna Stage	540-1700 KC	106	1.85
A-121-RF	R.F. Stage	540-1700 KC	107	1.85
A-121-C	Osc. Stage (455 KC)	400 MMFD Series Pad	106	1.85
A-121-H	Osc. Stage (262 KC)	600 MMFD Series Pad	106	1.85
B-121-A	Antenna Stage	2.1-6.3 MC	106	1.85
B-121-RF	R.F. Stage	2.1-6.3 MC	107	1.85
B-121-C	Oscillator Stage	1600 MMFD Series Pad	106	1.85

Sub-Miniature I.F. Transformers

We are now able to supply a 455 kc intermediate frequency transformer which has all the desirable features of the conventional size I.F. and is smaller than a MINIATURE tube. Through the use of a Ferrite shell core material these SubMiniature I.F. Transformers offer the gain and bandwidth characteristics previously obtained in only larger I.F. assemblies.
It is now possible to construct personalized receivers smaller than ever before.
For AC-DC or Battery Radios
Dimensions: $1 / 2^{\prime \prime}$ square by $11 / 2^{\prime \prime}$ high.

| Cat. No. | Item | Schematic | List Price |
| :--- | :--- | :--- | :---: | ---: |
| $10-\mathrm{Cl}$ | 455 kc Inpuł Transformer | 35 | $\$ 2.60$ |
| $10-\mathrm{C2}$ | 455 kc Output Transformer | 35 | 2.60 |

Phono-Oscillator Coil

The Miller Phono-Oscillator coil is used in the construction of radio operated phonograph players. The coils are permeability tuned and are assembled in an aluminum shield. The frequency range as provided by the adjustable iron core is from 540 to 700 KC . The windings are of the sectional duo-lateral type. The oscillator grid leak and grid coupling condenser are included in the coil assembly. A typical circuit diagram is supplied with each coil.
Dimensions: $17 / 16^{\prime \prime}$ square $\times 21 / 2^{\prime \prime}$ high.

Cal. No.	Use	Range	Schematic	List Price
$\mathbf{5 2 2}$	Phono-Oscillator	$540-700 \mathrm{KC}$	92	$\$ 3.30$

High Gain T.R.F. Coils

For receiver circuits where a larger coil may be used in order to obtain higher " Q " and gain, also achieving selectivity in T.R.F. circuits comparable with that of smaller superhets. Coils are for use with a 365 mmfd. variable condenser.

Dimensions: $1^{3 / 8 / \prime}$ diameter by $2^{\prime \prime}$ high

Cal. No.	Use	Range	Schematic	List Price
42-A	Antenna Stage	$540-1600 \mathrm{KC}$	49	$\$ 1.40$
$42-R F$	R.F. Stage	$540-1600 \mathrm{KC}$	49	1.40

Economy T.R.F. Coils

These broadcast band coils were commonly used in early tuned-radio-frequency receivers and are now useful for experimental and low-cost radios or replacement service. Unshielded, inexpensive coils but having very good efficiency. Secondary winding is a single-layer solenoid and the primary is of the low impedance type wound on an adjustable sleeve slipped over the secondary winding. Both coils wound on bakelite tubing. Convenient "L"-type bracket mounting. For use with a standard 0.000365 mfd variable tuning condenser.
Dimensions: $11 / 8^{\prime \prime}$ diometer by $2^{\prime \prime}$ high.

| Cat. No. | Use | Range | Schematic | List Price |
| :--- | :--- | :--- | :---: | ---: | ---: |
| 20-A | Antenna Stage | $540-1750 \mathrm{KC}$ | 76 | $\$.95$ |
| $20-$ RF | R.F. Stage | $540-1750 \mathrm{KC}$ | 76 | .95 |

Universal Wound Coils

Single section, duo-lateral wound, Litz wire secondary. High impedance primaries. Wound on impregnated ceramic dowels and provided with a bakelite terminal plate. For use with a .000365 mfd . variable condenser. ABP type combines antenna and
band-pass coils on a single form $21 / \mathrm{k}^{\prime \prime}$ long.

Cat. No.	Use	Range	Schematic	Lisl Price
$5480-A$	Antenna Stage	$540-1600 \mathrm{KC}$	49	$\$ 1.25$
$\mathbf{5 4 8 0 - R F}$	R.F. Stage	$540-1600 \mathrm{KC}$	49	1.50
$\mathbf{5 4 8 0 - A B P}$	Ant.-Band-pass Stage	$540-1600 \mathrm{KC}$	50	1.75

Midget Oscillator Coils

Similat in construction to the 5480 series coils, these oscillators may be used with any of the pentagrid converter tubes. They are available for all of the popular intermediate frequencies and may be used with any of the Miller antenna and R.F. coils, as well as for general replacement service. They are for use with a .000365 variable condenser to cover the broadcast band from 540 to 1600 KC . For use unshiclded.
Dimensions: 1" diameter by 1" high.

Cal. No.	I.F. Frequency	Series Pad	Schematic	List Price
$5480-\mathrm{K}$	175 KC	.001 mfd	37	$\$ 1.25$
$5480-\mathrm{H}$	262 KC	.0006 mfd	37	1.25
$5480-\mathrm{C}$	455 KC	.0004 mfd.	37	1.25

Tapped Oscillator Coils

Similar to the $\# 5480$ series oscillator coils except that no primary is used and the secondary is tapped for cathode return. For use with type 6SA7 and similar mixer tubes, and when separate oscillator and mixer tubes are used.

Cat. No.	I.F. Frequency	Series Pad	Schemalic	List Price
$5481-\mathrm{K}$	175 KC	.001 mfd.	53	$\$ 1.25$
$5481-\mathrm{H}$	262 KC	.0006 mfd.	53	1.25
$5481-\mathrm{C}$	455 KC	.0004 mfd.	53	1.25

Progressive Wound Coils

These coils are used in quality receivers where precision construction and supreme performance are indicated. Secondaries are Litz wire wound. High impedance primaries with capacity coupling, wound on bakelite tubing and for use with a standard .000365 mfd . variable condenser.
Dimensions: $7 / \mathbf{s}^{\prime \prime}$ diameter (form) by $23 / 4^{\prime \prime}$ high.

Cal. No.	Use Unshielded	Range	Schematic	Lisl Price
$241-A$	Antenna Stage	$540-1750 \mathrm{KC}$	104	$\$ 1.50$
$241-B P$	Band-Pass Stage	$540-1750 \mathrm{KC}$	1	1.25
$241-R F$	R.F. Stage	540.1750 KC	104	1.50

Dimensions: $17 / 8^{\prime \prime}$ diameter $\times 3^{\prime \prime}$ high.

Cal. No.	Use Shielded	Range	Schemalic	List Price
242-A	Antenna Stage	$540-1750 \mathrm{KC}$	105	$\$ 2.00$
242-BP	Band-Pass Stage	540.1750 KC	2	1.75
242-RF	R.F. Stage	540.1750 KC	105	$\mathbf{2 . 0 0}$

De-Luxe Oscillator Coils

A solenoid oscillator coil series, for use with the 241 and 242 types of broadcast band coils, commonly used with the converter types of tubes, such as 6BE6, 6SA7, 6K8, etc. Similar in construction and dimensions to the Progressive Wound coils. The indicated intermediate frequencies listed are nominal, and deviations of a few kc are permissible. Where space permits, these coils may be used for general replacement service (for use with receivers having a 540). 1750 KC range with . 000365 mfd . variable)
Dimensions: $7 / \mathbf{B}^{\prime \prime}$ diameter (form) by $\mathbf{2 3} / \mathbf{e n}^{\prime \prime}$ high.

| Cal. No. | I.F. Freq. | Unshielded Series Pad | Schematic | List Price |
| :--- | :--- | :--- | :--- | :---: | ---: |
| $276-\mathrm{K}$ | $\cdot 175 \mathrm{KC}$ | .001 mfd | 37 | $\$ 1.50$ |
| $276-\mathrm{H}$ | 262 KC | .0000 mfd | 37 | 1.50 |
| $276-\mathrm{C}$ | 455 KC | .0004 mfd | 37 | 1.50 |

Dimensions: $17 / \mathrm{g}^{\prime \prime}$ diameter $\times 3^{\prime \prime \prime}$ high.

Cal. No.	I.F. Freq.	Shielded	Series Pad	Schematic	List Price
$277-\mathrm{K}$	175 KC	.001 mfd	38	$\$ 1.75$	
$277-\mathrm{H}$	262 KC	.0006 mfd	38	1.75	
$277-\mathrm{C}$	455 KC	.0004 mfd	38	1.75	

Cat. Ho.	Tapped Oscillator Coils				
	I.F. Freq.	Unshielded	Series Pad	Schematic	List Price
278-H	262 KC		. 0006 mfd	53	\$1.25
278-C	455 KC		. 0004 mfd	53	1.25
Cat. No.	I.F. Freq.	Shieided	Series Pad	Schematic	List Price
279-H	262 KC		. 0006 mfd	38	\$1.75
279-C	455 KC		. 0004 mfd	38	1.75

Adjustable R.F. Chokes

Small R.F. Chokes having inductance values not normally produced by other manufacturers. For the experimenter, a series of adjustable iron-core chokes with an average inductance ratio of approximately $11 / 2$ to 1 .

Dimensions: $11 / 8^{\prime \prime}$ diameter by $11 / 4^{\prime \prime}$ long.

Caf. No.	mh.	Ohms	ma	Schemalic	List Price
6158	$.05-.1$	1.5	200	5	$\$ 1.40$
6159	$.1-.2$	2.1	200	5	1.40
6160	$.2-.4$	3.3	200	5	1.40
1050	$.4-.75$	11	125	5	1.40
1051	$.7-1.05$	13	125	5	1.40
1052	$1.0-1.5$	16	125	5	1.40
1053	$1.5-2.25$	20	125	5	1.40
1054	$2 .-3$.	24	125	5	1.40
1055	$3 .-4.5$	31	125	5	1.65
1056	$4.5-7.0$	39	125	5	1.65
1057	$7.0-10.5$	53	125	5	1.65
1058	$10 .-15$.	68	125	5	1.65
1059	$15 .-22.5$	87	125	5	1.95
1060	$20 .-30$.	105	100	5	1.95
1061	$30 .-45$.	138	100	5	1.95

Untuned Antenna and R.F. Coils

These untuned antenna and radio frequency coils are broadly self-tesonant throughout the standard broadcast band from 540 to 1700 KC . They are used mostly in AM High-Fidelity Tuners. They may be used for increasing the sensitivity of small receivers by merely adding the coil and a radio frequency amplifier tube. The coils are shielded in aluminum cans and are provided with the $\# 6-32$ spade bolts for assembly to the chassis.
Dimensions: $15 / \mathbf{a}^{\prime \prime}$ diameter $\times \mathbf{2 1 / 2 ^ { \prime \prime }}$ high.

| | Cat. No. | Use | Range | Schematic |
| :--- | :--- | :--- | :---: | ---: | List Price

Negative Mutual Coupling Coils

These negative mutual coils are used primarily in AM High Fidelity tuners or receivers and are offered to the experimenter and constructor for use in all types of band-pass coupled circuits, such as monitors and aircheck receivers. The coils are bi-filar wound on bakelite forms and assembled in aluminum shields. They may be used with Miller broadcast band radio frequency coils, such as type 242. Coils have mounting brackets separate from the spade bolts used for mounting the shield. May be used unshielded in some circuits. Dimensions: $17 / \mathbf{g}^{\prime \prime}$ diameter $\times 2^{\prime \prime \prime}$ high (shielded).

Cal. No.	Use	Schematic	List Price
EL-56	Negative Mulual Coil, Shielded	62	$\$ 1.35$
EL-55	Negative Mutual Coil, Unshielded	61	1.10

Standard Bank Wound Coils

High gain secondaries and high impedance primaries combine to produce an all-around coil for the constructor and serviceman. Have excellent characteristics and exceptional performance. For use with a standard .000365 mfd , variaable condenser. Coils are wound on impregnated Kraft tubing. Available both shielded and unshielded. Coils are thoroughly impregnated in low loss tropicalized Q -Max lacquer, insuring satisfactory operation in humid climates.
Dimensions: $5 / \mathrm{s}^{\prime \prime}$ diameter (form) by $21 / \mathrm{s}^{\prime \prime}$ high.

| Cal. No. | Use \quad Unshielded | Range | Schemalic | Lisl Price |
| :--- | :--- | :--- | :---: | :---: | ---: |
| 43-A | Antenna Stage | 540.1700 KC | 49 | $\$ 1.25$ |
| 43-RF | R.F. Stage | $540-1700 \mathrm{KC}$ | 49 | 1.25 |
| 43-BP | Band-Pass Stage | $540-1700 \mathrm{KC}$ | 1 | 1.25 |

Dimensions: $13 / 8^{\prime \prime}$ square $\times 2^{1 / 2^{\prime \prime}}$ high.

Cal. No.	Use	Shielded		Range	Schemalic
List	Price				
$44-A$	Antenna Stage	540.1700 KC	103	$\$ 1.50$	
$44-R F$	R.F. Stage	540.1700 KC	103	1.50	
$44-\mathrm{BP}$	Band-Pass Stage	540.1700 KC	2	1.50	

Oscillator Coils

The oscillator coils for the 43 and 44 coils are solenoid wound and are similar in construction. Two types are listed-one type for the pentagrid converter tubes and one for the type 6SA7 tubes or for other cathode feed-back oscillator circuits.
Dimensions: 5/8" diameter (form) by $\mathbf{2 1 / 8 " ~ h i g h . ~}$

Cat. No.	I.F. Freq. Unshielded	Series Pad	Schemalic	Lisl Price
43-H	262 KC	. 0006 mfd	76	\$1.20
43-C	455 KC	. 0004 mfd	76	1.20
Tapped oscillator coils (for 65A7 and similar tubes) Cat. No. I.F. Freq. Unshielded Series Pad Schemalit Lisl Price				
45-H	262 KC	. 0006 mfd	53	\$1.20
45-C	455 KC	. 0004 mfd	53	1.20
Dimensions: $13 /$ o'd $^{\prime \prime}$ square $\times 21 / 2^{\prime \prime}$ high. Cat. No. I.F. Freq. Shielded Series Pad Schemalic List Price				
44-C	455 KC	. 0004 mfd	38	\$1.45
Tapped oscillator coils (for 6SA7 and similar tubes) Cat. No. I.F. Freq. Shielded Series Pad Schematic List Price				
41-C	455 KC	. 0004 mfd	58	\$1.45

High Fidelity FM Tuner

A carefully designed high quality tuner featuring excellent performance and distinctive styling at a moderate price. Many features of the Miller 560 FM tuner are found only in more expensive units. The circuit consists of a grounded grid R.F. amplifier, two I.F. stages, one limiter stage, and a FosterSeely discriminator. This arrangement assures good sensitivity and a high signal to noise ratio. Automatic frequency control eliminates annoying frequency drift. A neon tuning indicator permits accurate center frequency tuning. The 560 is self-powered, and has a built-in antenna for local reception. Completely shielded, this tuner meets FCC radiation specifications. It is also UL approved for safety. Two output jacks are provided. One output is controlled by the volume control on the front panel while the other is uncontrolled and is for use when it is desired to operate all controls from a central location.
Dimensions: $10^{\prime \prime}$ wide $\times 41 / 4^{\prime \prime}$ high $\times 71 / 2^{\prime \prime}$ deep. Shipping weight: 9 lbs . Cal. No.

Ifem
Audiophile Net Price
560 FM Tuner $\$ 59.95$

FM Variable Condenser

This 3 -gang tuning condenser is rigidly constructed with widely spaced plates to avoid microphonics. To insure highest frequency stability, it is recommended to remove mica compression trimmer plates on all three or at least on the oscillator section, and to use ceramic trimmers of suitable value. ($3-12 \mathrm{mmf}$.) Tuning condensers are supplied with a $1 / 4$ " shaft. Our FM Signal Frequency Coils are designed for use with them (frequency range 88-108 MC).

FM I.F. Transformer (10.7 Mc)

These permeability tuned 10.7 MC intermediate frequency transformers are assembled in aluminum shield $11 / 8^{\prime \prime}$ square by $21 / 2^{\prime \prime}$ high. Adjustment is from top and bottom of the shield. High "Q" zero drift condensers are used throughout. All connections are made to solder lugs at the base of the transformer. Mounting is by two \# 6-32 spade bolts on $11 / 1 /{ }^{\prime \prime}$ " centers.

Cat. No.	Item	Schematic	List Price
$\mathbf{1 4 5 1}$	10.7 MC Interstage Transformer	35	$\$ 2.50$
$\mathbf{1 4 5 2}$	10.7 MC Discriminator Transformer	63	3.40
$\mathbf{1 4 5 3}$	10.7 MC	Ratio Detector Transformer	19

Mounting Clip

Mounting clip \#180 is a special device which is inserted through slots in the equipment chassis and locks in the side of the K-TRAN transformer providing a rigid support.

Adapter Plate

Adapter plate \#181 is used when the equipment chassis is not punched with the proper mounting holes for the K-TRAN transformers. The adapter plate mounts over a standard octal tube socket hole. Mounting clip \#180 is then inserted through slots in the adapter plate.

J-TRAN Alignment Tool

The J-TRAN alignment tool is for use with transformers using cores with hex openings. The tool has a hex head on each end. One of the ends is undercut to permit aligning top and bottom windings of a transformer without going to other side of chassis. Hex portion of tool is $.100^{\prime \prime}$ wide. See price index for bulk prices.

Cat. No.	Item	List Price
180	Mounting Clip	$\$.10$
181	Adapter Plate	.20
182	J.TRAN Alignment Tool	.50

FM-AM Composite I.F. Transformer, 10.7 Mc \& 455 kc

Two permeability tuned I. F. Transformers mounted in the same shield can, one operating at 10.7 MC and the other at 455 KC . All connections are brought out independently. This transformer can be used in the input, intermediate and output stages of the I. F. amplifier by providing jumper connections. In a conventional AM-FM receiver, two of these transformers, followed by Cat. No. 1453 ratio detector, may be used. Mounting: Two \# 6.32 spade bolts on $1 \% 1_{6}^{\prime \prime}$ centers.
Dimensions: $13 / \mathbf{R}^{\prime \prime}$ by $13 \mathrm{~m}^{\prime \prime}$ by $21 / 2^{\prime \prime}$ high.

Cal. No.	Ifem	Schemalic	Lisf Price	
$\mathbf{1 4 6 2}$	$10.7 \mathrm{MC} / 455 \mathrm{KC}$	I. F. Transformer	64	$\$ 4.75$

FM Signal Frequency Coils

R.F. coils for the $88-108 \mathrm{mc}$ FM band redesigned for higher \mathbf{Q} values to give improved selectivity and higher gain. Made of hard-drawn copper wire wound in a self-supporting rigid form. Enclosed in aluminum shields to minimize stray coupling. All connections are made to solder lugs at the base of the shield. Two \#6.32 spade bolts are used for mounting to the chassis. Use with No. 1461 variable condenser.
Dimensions: $11 / 3^{\prime \prime}$ by $11 / 8^{\prime \prime}$ by $236^{\prime \prime}$ high.

Cat. No.	Ilem	Schematic	Lisi Price
1454	$88-108$ MC Antenna Coil	60	$\$ 2.35$
1455	$88-108$ MC R.F. Coil	59	2.35
1456	$88-108$ MC Oscillator Coil (10.7 MC I.F.)	58	2.35

FM Adjustable R.F. Coils

Signal frequency coils for the 88 to 108 megacycle band are permeability tuned by means of a high frequency powdered iron core. The tuning feature makes it possible to compensate for differences in lead lengths and for capacity variations of the variable capacitor (Cat. No. 1461 recommended). These coils are designed for mounting under the chassis, but could also be mounted above the chassis or on a separate bracket. Mounting clip fits into $7 / 16^{\prime \prime}$ diameter hole.

Cat. No.	Item	Schemalic	List Price
1447	$88-108$ MC Antenna Coil	48	$\$ 1.65$
1448	$88-108$ MC R.F. Coil	7	1.65
1449	$88-108$ MC Osc. Coil (10.7 MC I.F.)	7	1.65

VHF High-Q R.F. Coils for Amateur or Mobile Service

A new series of high-Q r.f. coils designed for use in the very-high-frequency bands by amateurs, taxicab call systems, police networks, general mobile service, etc. The unique construction of these VHF coils permits extremely close inductance control with better-thanaverage Q-values and excellent stability which is so necessary for thobile work. The secondary circuit is formed by a tongue punched from the side of the copper shield. Tongue and interior of shield are heavily silver plated for best conductivity to maintain a high Q-factor. Extremely wide tuning range. Can be used with conventional tubes from about 110 to approximately 235 mc . Upper frequency limit controlled principally by capacity of wiring and tubes with which coils are used. In best operating range, unloaded Q-values in neighborhood of 200 . (Shield of copper and silver plated.)
Dimensions: $11^{\prime \prime}$ by $11 / 0^{\prime \prime}$ by $23 / 6^{\prime \prime}$ high.

Cat. No.	Item	Schemalic	List Price
$\mathbf{1 4 4 4}$	$110-235 \mathrm{MC}$ Antenna Coil	60	$\$ 5.50$
1445	$110-235 \mathrm{MC}$ R.F. Coil	60	5.50
1446	$110-235 \mathrm{MC}$ Oscillator Coil	60	5.50

Sub-Miniature I.F. Transformers

We are now able to supply a 455 kc intermediate frequency transformer which has all the desirable features of the conventional size I.F. and is smaller than a MINIATURE tube. Through the use of a Ferrite shell core material these SubMiniature I.F. Transformers offer the gain and bandwidth characteristics previously obtained in only larger I.F. assemblies.
It is now possible to construct personalized receivers smaller than ever before.
For AC-DC or Battery Radios.
Dimensions: $1 / 2^{\prime \prime}$ square by $11 / 2^{\prime \prime}$ high.

Cat. No.	Item	Schematic	Lisl Price
$10-\mathrm{Cl}$	455 kc Input Transformer	35	$\$ 2.60$
$10-\mathrm{C} 2$	455 kc Output Transformer	35	2.60

Permeability Tuned Transformers

Miller permeability tuned intermediate frequency trans-
formers are recommended for all applications where a high degree of frequency stability and operation under humid conditions will be encountered. Zero-drift silvermica condensers are used. The two iron core adjusting screws are accessible from the side of the aluminum shield and are provided with screw-driver slots. Transformers are of the tuned-plate, tuned-grid type and have excellent gain and selectivity characteristics. An internal spring clip locks against the adjusting screw threads and prevents vibration from affecting the adjustment.
Dimensions: $13 / 8^{\prime \prime}$ squore $\times 31 / 4^{\prime \prime}$ high. $\pm 6 / 32$ spode bolt mounting.

Cal. No.	Frequency	KC Ronge	Use	Schema	ist Price
912-M1	132	127-137	Input	35	\$4.50
912-M2	132	127-137	Interstage	35	4.50
912-M3	132	127.137	Full-Wave	56	4.50
912-M4	132	127-137	Half-Wave	35	4.50
912-K1	175	165.185	Input	35	4.50
912-K2	175	165.185	Interstage	35	4.50
912-K3	175	165-185	Full-Wave	56	4.50
912-K4	175	165.185	Half-Wave	35	4.50
912-HI	262	250-275	Input	35	4.00
912-H2	262	250-275	Interstage	35	4.00
912-H3	262	250-275	Full-Wave	56	4.00
912-H4	262	250-275	Half-Wave	35	4.00
$912 . \mathrm{Cl}$	455	450-475	Input	35	4.00
912-C2	455	450-475	Interstage	35	4.00
912-C3	455	450-475	Full-Wave	56	4.00
912-C4	455	450-475	Half-Wave	35	4.00
912-W1	1500	1400-1600	Input	35	4.00
912-W2	1500	1400-1600	Inferstage	35	4.00
912-W3	1500	1400-1600	Full-Wave	56	4.00
912-W4	1500	1400.1600	Half-Wave	35	4.00

Midget Perm. Tuned Transformers

These Miller permeability tuned intermediate frequency transformers are similar in construction to our standard series 912 , except that they are assembled in aluminum shields measuring only $11 / 8^{\prime \prime}$ square by $2^{\prime \prime}$ high. All of the desirable features of permeability tuning have been retained in this compact transformer and it is particularly recommended for use in battery portable receiver and for small aircraft receivers. Tuning adjustment is from the side of the shield.
Dimensions: $11 / 8^{\prime \prime}$ square $\times 2^{\prime \prime \prime}$ high. \#6/32 spade bolt mounting.

Cal. No.	Frequency	KC Range	Use	Schematic List Price	
1312-M1	132	$127-137$	Input	35	$\$ 4.00$
1312-M2	132	$127-137$	Interstage	35	4.00
1312-M3	132	$127-137$	Full-Wave	56	4.00
1312-M4	132	$127-137$	Half Wave	35	4.00
$1312-C 1$	455	$450-475$	Input	35	3.50
$1312-C 2$	455	$450-475$	Interstage	35	3.50
1312-C3	455	$450-475$	Full-Wave	56	3.50
1312-C4	455	$450-475$	Half-Wave	35	3.50
$1312-W 1$	1500	$1400-1600$	Input	35	3.50
1312-W2	1500	$1400-1600$	Interstage	35	3.50
1312-W3	1500	$1400-1600$	Full-Wave	56	3.50
1312-W4	1500	$1400-1600$	Half-Wave	35	3.50

Miniature I.F. Transformers

Designed for experimental use and for general replacement in "personal" radio receivers, this series of shell core permeability tuned transformers are becoming increasingly popular. Tuning from top and bottom of the shield. Transformers are available for all standard I.F. frequencies. Supplied with a mounting clip which may be installed through suitable holes in chassis.
*(With diode filter copocitors)
Dimensions: $3 / 4^{\prime \prime}$ by $3 / 4^{\prime \prime}$ by $2^{\prime \prime}$ high.

Miniature Printed Circuit I.F. Trans.

This series of miniature I.F. transformers have been specifically designed for printed circuit applications. They may be used in new equipment design, or as replacement transformers in receivers presently on the market.
Same as our regular miniature I.F. transformers shown above, except for terminals and mounting. Supplied in all standard I.F. frequencies.
*(Wish diode filter copocitors)
Dimensions: $3 / 4^{\prime \prime} \mathrm{sq}$. $\times 2^{\prime \prime}$ high. Schemotics some os above.

Cal. No.	Item		List Price
13-PH1	262 KC Input I.F. Trans.		\$2.60
$13-\mathrm{PH} 2$	262 KC Output I.F. Trans.		2.60
13-PH6	262 KC Output I.F. Trans.*		2.75
13-PC1	455 KC Input I.F. Trans.		2.50
13-PC2	455 KC Output I.F. Trans.		2.50
13-PC6	455 KC Output I.F. Trans.*		2.65
13-PC7	455 KC Input I.F. Trans.	Baftery Radios	2.50
13-PC8	455 KC Output I.F. Trans.	Battery Radios	2.50
13-PC9	455 KC Input I.F. Trans.	AC-DC Radios	2.50
13-PC 10	455 KC Output I.F. Trans	AC-DC Radios	2.50
6203-PC	4.5 MC Input or Interstage Tran		2.85
6204-PC	4.5 MC Discriminator Trans.		3.40
6205-PC	4.5 MC Ratio Detector Trans.		3.40
6206-PC	4.5 Mc Ratio Det. (GE-RTD-026)		4.50
6207-PC	4.5 Mc Ratio Det. (GE-RTD-025)		3.75
6208-PC	4.5 Mc Ratio Det. (GE-RTD-020)		4.50
1463-PC	10.7 MC Input or Interstage Tra		2.85
1464-PC	10.7 MC Discriminator Trans.		3.40
1465-PC	10.7 MC Ratio Detector Trans.		3.40
6230-PC	TV 44 MC Converter I.F. Trans.		2.75
6231-PC	TV 44 MC First I.F. Trans.		2.75
6232-PC	TV 42.5 MC Second I.F. Trans.	Trap 41.25 MC	2.40
6233-PC	TV 45.5 MC Third I.F. Trans.	Trap 47.25 MC	2.75
6234-PC	TV 44 MC Fourth I.F. Trans.		2.25

Air Core Transformers

These air core transformers have for many years been the standard for general replacement and experimental use. They have moderate gain and excellent stability and are suitable for use in either single or two-stage amplifiers. In most cases the input stage is adjusted to optimum coupling and the interstage units are adjusted to slightly greater than optimum. The ceramic compression trimmers used on these transformers have been stabilized by a heatcycling process which reduces temperature capacity drift to a minimum. The full-wave and half-wave types are overcoupled. All transformers are supplied with color coded leads.
Dimensions: $13 / \mathrm{m}^{\prime \prime}$ square $\times 25 / \mathrm{e}^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Cat. No.	Frequency	KC Range	Use	Schematic	List Price
512-M1	132	127.137	Input	36	\$2.85
512-M2	132	127-137	Interstage	36	2.85
512-M3	132	127.137	Full-Wave	82	2.85
512-M4	132	127-137	Half-Wave	36	2.85
512-K1	175	165-185	Input	36	2.85
512-K2	175	165-185	Inferstage	36	2.85
512-K3	175	165-185	Full-Wave	82	2.85
512-K4	175	165-185	Half.Wave	36	2.85
512-H1	262	250-275	Input	36	2.75
512-H2	262	250.275	Interstage	36	2.75
512-H3	262	250.275	Full-Wave	82	2.75
$512-\mathrm{H}_{4}$	262	250-275	Half-Wave	36	2.75
512-Cl	455	450.475	Input	36	2.60
512-C2	455	450.475	Interstage	36	2.60
$512 . \mathrm{Cl}_{3}$	455	450.475	Full-Wave	82	2.60
512-C4	455	450.475	Half-Wave	36	2.60
512-Q1	525	500.550	Input	36	2.60
512-Q2	525	500.550	Interstage	36	2.60
512-03	525	500.550	Full-Wave	82	2.60
512-Q4	525	500.550	Half-Wave	36	2.60
512-W1	1500	1400.1600	Input	36	2.60
512-W2	1500	1400-1600	Interstage	36	2.60
512-W3	1500	1400-1600	Full-Wave	82	2.60
512-W4	1500	1400.1600	Half-Wave	36	2.60
512-X1	3000	2900.3100	Input	36	2.60
512-X2	3000	2900-3100	Interstage	36	2.60
512-X3	3000	2900-3100	Full-Wave	82	2.60
512-X4	3000	2900-3100	Half-Wave	36	2.60
512-Y1	5000	4800-5200	Input	36	2.60
512-Y2	5000	4800-5200	Interstage	36	2.60
512-Y3	5000	4800-5200	Full-Wave	82	2.60
512-Y4	5000	4800-5200	Half-Wave	36	2.60

Variable Selectivity Transformers

Miller Variable Selectivity intermediate frequency transformers have been designed to meet the demand for a unit having both selectivity and broad frequency response. This is accomplished by a simple electrical circuit, devised by Miller Engineers, which has the effect of changing the coupling, although no mechanical coupling adjustments are made. A simple single pole, double throw switch is all that is required for a single stage of amplification. The two positions of the switch provide for sharp and broad tuning. In the broad position, the band width is approximately twice that of the sharp position for the particular type of transformer being used.

Perm. Tuned I.F. and Discriminator Transformers

These new transformers are tunable from top and bottom of the aluminum shield. They can be used in either AM or narrow-band FM receivers.
Discriminator transformers, for frequency modulation reception, are of the Foster-Seeley type. Output transformers are for use in the amplifier stage preceding AM detection. Input or interstage transformers are for either AM or FM (Our best.)
For use in communications receivers designed for AM or Narrox Band FM. These transformers feature high gain along with a high degree of frequency stability.
Dimensions: $13 / \mathrm{g}^{\prime \prime}$ sq. $\times 21 / 2^{\prime \prime}$ high. \#6-32 spade bolt mounting.

Cat. No.	Frequency	Use	Schematic	List Price
$913-C 1$	455	Input \&	Interstage	35
913-C4	455	Output	33.00	
913-CD	455	Discriminator	20	3.00
$913-W 1$	1500	Input \& Interstage	35	3.30
913-W4	1500	Output	3.00	
913-WD	1500	Discriminator	20	3.00

1500 KC I.F. Transformers

These miniature permeability-tuned i.f. transformers are useful for amateur or commercial double-conversion communication receivers. Convenient also for experimental use or other applications requiring a small-size transformer for operation in the $1500-\mathrm{kc}$ range. In spite of their small dimensions, only the highest quality parts and workmanship have been used in their construction. Tuning slugs are adjustable from top and bottom of the aluminum shield. All connections are made to solder lugs projecting from the bottom of the transformers. Convenient $\$ 4.40$ spade bolt mounting.
Dimensions: $3 / 4^{\prime \prime}$ by $3 / 4^{\prime \prime}$ by $2^{\prime \prime}$ high.

Cat. No.	Description	Range	Schemalic	Lisl Price
12-W1	Input or interstage	$\mathbf{1 4 0 0 . 1 6 0 0 ~ K C}$	35	$\$ \mathbf{2 . 5 0}$
12-W2	Half-wave output	$1400-1600 \mathrm{KC}$	35	$\mathbf{2 . 5 0}$

Iron Core Transformers

These Miller intermediate frequency transformers are constructed using a core of high quality powdered iron material designed for use at radio frequencies. Use of this material gives the transformer better gain and selectivity than that obtainable in similarly constructed air core types. A single stage of Miller Iron core transformers will often have the same gain and selectivity as that of a conventional two stage amplifier using air core transformers.
Dimensions: $13 / 8^{\prime \prime}$ square $\times 31 / 4^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Cat. No.	Frequency	KC Range	Usi	Schemalic	List Price
612-M1	132	127-137	Input	83	\$3.50
612-M2	132	127-137	Interstage	83	3.50
612 -M3	132	127-137	Full-Wave	84	3.50
612-M4	132	127.137	Half-Wave	83	3.50
612-K1	175	165-185	Input	83	3.50
612-K2	175	165-185	Interstage	83	3.50
612-K3	175	165-185	Full-Wave	84	3.50
612-K4	175	165.185	Half-Wave	83	3.50
612-H1	262	250.275	Input	83	3.00
612-H2	262	250-275	Interstage	83	3.00
612-H3	262	250-275	Full-Wave	84	3.00
612-H4	262	250-275	Half-Wave	83	3.00
612-C1	455	450-475	Input	83	3.00
612-C2	455	450.475	Interstage	83	3.00
612-C3	455	450.475	Full-Wave	84	3.00
612-C4	455	450-475	Half-Wave	83	3.00
612-Q1	525	500-550	Input	83	3.00
612-Q2	525	500-550	Interstage	83	3.00
612-Q3	525	500.550	Full-Wave	84	3.00
612-94	525	500.550	Half-Wave	83	3.00
612-W1	1500	1400.1600	Input	83	3.00
612-W2	1500	1400.1600	Interstage	83	3.00
612-W3	1500	1400-1600	Full-Wave	84	3.00
612-W4	1500	1400.1600	Half-Wave	83	3.00

Midget I.F. Transformers

These mica compression tuned intermediate frequency transformers are well suited for use in small receivers of all types. They measure only $11 / x^{\prime \prime}$ square and $2^{\prime \prime}$ high. In spite of their small size, only the highest quality of parts and workmanship has been used in the construction of these transformers. Tuned-plate, tuned-grid construction provides excellent gain and selectivity.
Dimensions: $11 / 8^{\prime \prime}$ square $\times 2^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Air Core Midget Transformers

Cat. No.	Frequency	KC Range	Use	Schematic	List Price
112-kı	175	165-185	Input	36	\$2.75
112-K2	175	165-185	Interstage	36	2.75
112-K3	175	165-185	Full-Wave	82	2.75
112-K4	175	165-185	Half-Wave	36	2.75
112.H1	262	250-275	Input	36	2.60
$112 . \mathrm{H2}$	262	250-275	Interstage	36	2.60
112.H3	262	250-275	Full-Wave	82	2.60
$112 . \mathrm{H} 4$	262	250-275	Half-Wave	36	2.60
112.H6	262	250-275	Output Stage \& Filter	88	2.80
112.C1	455	450-475	Input	36	2.50
112.C2	455	450-475	Interstage	36	2.50
112-C3	455	450-475	Full-Wave	82	2.50
112-C4	455	450-475	Half-Wave	36	2.50
112.W1	1500	1400-1600	Input	36	2.50
112-W2	1500	1400-1600	Interstage	36	2.50
112.W3	1500	1400-1600	Full-Wave	82	2.50
112-W4	1500	1400-1600	Half-Wave	36	2.50

Iron Core Midget Transformers

Cat. No.	Frequency	KC Range	Use	Schematic	List Price
012-M1	132	127-137	Input	83	\$3.00
012-M2	132	127-137	Interstage	83	3.00
012-M3	132	127-137	Full-Wave	84	3.00
012-M4	132	127.137	Half-Wave	83	3.00
012-K1	175	165-185	Inpur	83	2.85
012-K2	175	165-185	Interstage	83	2.85
012-K3	175	165-185	Full-Wave	84	2.85
012-K4	175	165-185	Half-Wave	83	2.85
012-H1	262	250-275	Inpur	83	2.75
012-H2	262	250-275	Interstage	83	2.75
012-H3	262	250-275	Full-Wave	84	2.75
012-H4	262	250-275	Half-Wave	83	2.75
012-C1	455	$450-475$	Input	83	2.75
012-C2	455	450-475	Interstage	83	2.75
$012-\mathrm{C} 3$	455	$450-475$	Full-Wave	84	2.75
$012 . C 4$	455	450-475	Half-Wave	83	2.75
012.W1	1500	1400-1600	Input	83	2.75
012-W2	1500	1400-1600	Interstage	83	2.75
$012 . \mathrm{W}^{3}$	1500	1400-1600	Full-Wave	84	2.75
012-W4	1500	1400-1600	Half-Wave	83	2.75

Converter Output Transformers

These transformers are commonly used with UHF converters and remote control tuners for broadcast band receivers. The transformer consists of a tuned plate winding to be connected in the plate circuit of the converter mixer tube, and a low impedance output winding which is generally connected to the antennaground terminals of the receiver. Miller stabilized mica compression trimmer permits tuning to desired frequency. Transformer is assembled in a satin finished aluminum shield.
Dimensions: $13 / 8^{\prime \prime}$ square $\times 25 / 8^{\prime \prime}$ high. Spade bolt mounting.

Cal. No.	Frequency	Use	Schematic	List Price
$5512-$ QT	525	Converter	100	$\$ 2.60$
$512-$ WT	1500	Converter	100	2.60
$512-\mathrm{XT}$	3000	Converter	100	2.60
$512-$ YT	5000	Converter	100	2.60

Universal I.F. Transformers

This series of transformers is finding wide application for general replacement purposes in auto receivers and many types of household and portable receivers. They combine high gain and excellent stability with compact physical size. Color coded leads are supplied. The ceramic compression trimmers used on these transformers have been stabilized by a heat-cycling process which reduces temperature capacity drift to a minimum. 312-C6 and $312-\mathrm{H} 6$ have built-in printed circuit diode load and a.v.c. filter.
Dimensions: $11 / 4^{\prime \prime}$ square $\times 21 / 2^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Cat. No.	Frequency	KC Range	Use	Schematic	List Price
$312-\mathrm{HI}$	262	250-275	Input Stage	36	\$2.40
312-H2	262	250-275	Interstage	36	2.40
$312-\mathrm{H}_{4}$	262	250-275	Output Stage	36	2.40
312 -H6	262	250-275	Output Stage \& Filter	89	2.90
312-C1	455	440-470	Input Stage	36	2.40
312-C2	455	440-470	Interstage	36	2.40
$312-\mathrm{C4}$	455	440-475	Output Stage	36	2.40
312-C6	455	440-470	Output Stage \& Filter	89	2.90
Replacement Iron Core Transformers					
Dimensions: $11 / 4^{\prime \prime}$ square $\times 21 / 2^{\prime \prime}$ high. \#6/32 spade bolt mounting ${ }^{\text {\% }}$					
Cat. No.	Frequency	KC Range	Use	Schematic	List Price
412-H1	262	250-275	Input Stage	83	\$2.60
412-H2	262	250-275	Interstage	83	2.60
$412-\mathrm{H} 4$	262	250-275	Output Stage	- 83	2.60
412-Cl	455	440-470	Input Stage	83	2.60
412-C2	455	440-470	Interstage	83	2.60
$412-\mathrm{C} 4$	455	440-470	Output Stage	83	2.60

Cartwheel I.F. Tramsformers

A compact double tuned, unshielded intermediate frequency transformer which will find wide application as a replacement for many receiver types using odd shaped transformers which may not be readily available. Particularly useful in compact and midget $A C-D C$ receivers. Since the windings are mounted in a horizontal axis, considerable space is saved. Overall dimensions only $13 / 8^{\prime \prime}$ square by $11 / 2^{\prime \prime}$ high. Single \#6/32 machine screw mounting.

| Cal. No. | Frequency | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 2 1 2 - C}$ | 455 | KC Range | Use | Schematic | List Price |
| | $425-500$ | All Stages | 55 | $\$ 2.25$ | |

Regenerative I.F. Transformers

Miller Regenerative I. F. transformers are of the tapped cathode type and are used in electron coupled feedback circuits. Most commonly used to improve the gain and selectivity of amatcur and experimental receivers and for CW receivers. The transformers are of the mica compression tuned type and are available in either air core or iron core type. Both primary and secondary windings are tuned and the trimmer condensers are stabilized to maintain frequency adjustment. The aluminum shields are satin finished and are provided with $\# 6 / 32$ spade bolts for mounting to the chassis.
Dimensions: $13 / \mathrm{m}^{\prime \prime}$ square $\times 31 / 4^{\prime \prime}$ high.
Cat. Ho. Frequency Use Schematic Lisl Price

512-RC	455	Regenerative I.F.	108	\$2.60
512-RW	1500	Regenerative I.F.	108	2.60
512-RX	3000	Regenerative I.F.	108	2.60
Type 612 Iron Core Mica Timed				
612-RC 612-RW	$\begin{array}{r} 455 \\ 1500 \end{array}$	Regenerative I.F. Regenerative I.F.	$\begin{aligned} & 109 \\ & 109 \end{aligned}$	$\begin{array}{r} \$ 3.00 \\ 3.00 \end{array}$

50 KC Transformers
For the McLaughlin SSSR Adapter
The J. W. Miller Company was privileged to work with Mr. J. L. A. McLaughlin throughout the design of the 50 KC transformers for use with the McLaughlin SSSR (Selectable Single Sideband Reception) adapter described in the April, 1948, issue of "QST" magazine. The SSSR adapter may be used with any receiver having an intermediate frequency of 450 to 465 KC . Complete operating data and theory of operation will be found in Mr. McLaughlin's article.
Dimensions: $13 / 8^{\prime \prime}$ by $17 / 8^{\prime \prime}$ by $31 / 4^{\prime \prime}$ (except \#4527).

Cat. No.	Description	Range	Schemalic	Lisl Price
1898-A	2000 cycle wide	48-52 KC	35	\$8.50
1898-AX	1500 cycle wide	48-52 KC	35	8.50
1898-BFO	Beat Osc. trans.	48-52 KC	57	5.75
3423	50 KC Low Pass Filter	-	73	11.50
4527	1.0 MH Converter Choke	1	1.00

Wire Recorder Oscillator
 Bias or Erase Coils

These permeability-tuned coils are intended for replacement service or use as components in original design of wire recording equipment. They are useful also in experimental applications requiring high-quality tuned transformers in the $60-100$ ks range. Windings are of good quality with better than average Q-values. Silver-mica capacitors are included to realize excellent frequency stability. Two windings are used in the assembly: one. a tapped coil for wiring in conventional oscillator circuits; the second, to function as a tuned pick-up winding which can be coupled directly to the erase head. As an alternative application these coils may be included in an oscillator circuit to generate supersonic bias voltage for extra high-fidelity wire recording. By omitting connection to winding tap, coils also may be considered as tuned interstage transformers in special applications such as carrier-current communication or telemetering systems. Their wide tuning range is particularly convenient for such purposes. Coils are contained in aluminum shield with tuning cores of both windings adjustable from the side. Spade bolts of \#6-32 thread for easy mounring. Color coded leads are provided at bottom of shield.
Dimensions: $13 / 8^{\prime \prime} \times 17 / 8^{\prime \prime}$ by $31 / 4^{\prime \prime}$ high.

Cat. No.	Description	Range	Schematic	Lisl Price
$1886-\mathrm{M}$	100 KC Osc. Erase Coil	$95-105 \mathrm{KC}$	56	$\$ 6.75$
$1887-\mathrm{A}$	60 KC Osc. Erase Coil	$58-62 \mathrm{KC}$	56	6.75

Beat Frequency Oscillators

Miller Beat Frequency Oscillator transformers are of the tapped winding type for use in cathode-coupled (elec-tron-coupled) circuits. They are a necessity for the reception of CW signals on amateur and commercial receivers. They are also used for "beat note" tuning of weak stations. Frequency adjustment is made by means of a knob accessible at the top of the shieldor a separate low capacity air dielectric condenser may be used for front-of-panel control.

Mica Tuned Air Core Types

112 Type Dimersions: $11 / \mathrm{s}^{\prime \prime}$ square $\times 21 / \mathrm{s}^{\prime \prime}$ high.					List
Cat. No.	Frequency	KC Range	Use	Schemalic	Price
112-K5	175	165.185	B.F.O.	86	\$2.70
112-H5	262	250-275	B.F.O.	86	2.60
112-C5	455	440-475	B.F.O.	86	2.50
112-W5	1500	1400-1600	B.F.O.	86	2.50

512 Type Dimensions: $13 / \mathrm{s}^{\prime \prime}$ square $\times 25 / \mathrm{s}^{\prime \prime}$ high.					List
Cal. No.	Frequency	KC Range	Use	Schematic	Price
512-C5	455	450-475	B.F.O.	86	\$2.80
512-Q5	525	500-550	B.F.O.	86	2.80
512-W5	1500	1400-1600	B.F.O.	86	2.80
512-X5	3000	2900-3100	B.F.O.	86	2.80
512-Y5	5000	4900-5100	B.F.O.	86	2.80

Permeability Tuned 50 KC Coils

Stagger-tuned hand pass

During recent years, the trend towards lower frequencies in the I.F. amplifier stages of receivers to obtain a greater degree of selectivity has resulted in the use of single high "Q" coils coupled together by means of a small capacitor, rather than the conventional mutual inductance coupled circuits. The following types of coils are manufactured to meet the requirements of new receiver design where the best possible selectivity characteristics are desired. Constructional articles appearing in December, 1950 and March, 1953 issues of QST, and recent editions of the ARRL handbook offer complete circuit applications. Part No. 1884 uses "Cup Core" construction, which makes possible a coil having a "Q" of 100 or better, while also reducing the short circuited turn effect of the shield. Part No. 1885 uses regular construction, and is intended for applications where a " Q " of 60 is satisfactory. The inductance value at 50 KC for both coils is 25 MH when the iron core is adjusted to obrain resonance. These coils are individually tested. and inductance variations are held to $\pm 5 C_{c}^{\circ}$, and Q values to $\pm 10^{\circ}$ ' to assure the user of a high quality component. (Cat. \#1885 illustrated)
Dimensions: $13 / 8^{\prime \prime}$ square $\times 21 / 2^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Cal. Mo.	Description	Range	Schematic	List Price
1883	50 KC BFO	48-52 KC	68	\$2.75
1884	25 MH Q 100	48-52 KC	69	5.50
1885	25 MHQ 60	48-52 KC	69	2.75

Our $=1883 \mathrm{BFO}$ coil is of construction similar to the $=1885$, completing this series of special 50 KC I.F. coils.

100 K(: Iligh-() 'Transformers

Special iron-core $100-\mathrm{kc}$ i.f. transformers similar in construction to so-kc but including very high Q windings to give exceptionally sharp selectivity tuning characteristic. Useful for amateur or commercial double-conversion communication receivers and circuits requiring stable, high-quality i.f. transformers of unusually narrow frequenc; response. Designed for relatively high gain combined with excellent stability. Silver mica capacitors insure a ininimum of temperature frequency drift. Primary and sec. ondary tuning from side of aluminum shield. Color coded leads are supplied.
Dimensions: $13 / \mathbf{a}^{\prime \prime}$ by $17 / \mathbf{a}^{\prime \prime}$ by $31 / 4^{\prime \prime}$ high.

Cat. No.	Description	Range	Scnematic	Price
1890-P1	Input or interstage	90.110 KC	35	\$8.50
1890-P4	Half-wave output	90-110 KC	35	8.50

Beat Frequency Oscillators
 Mica Tuned Air Core Type

012 Type Dimensionss $11 / \mathrm{s}^{\prime \prime}$ square $\times 21 / \mathrm{g}^{\prime \prime}$ high.					List
Cal. No.	Frequency	KC Range	Use	Schematic	Price
012-M5	132	125-140	B.F.O.	85	\$2.90
$012-\mathrm{K} 5$	175	165-185	B.F.O.	85	2.90
012-H5	262	250-275	B.F.O.	85	2.70
012-C5	455	440-475	B.F.O.	85	2.70

Dimensions: $13 / \mathrm{s}^{\prime \prime}$ square $\times 31 / 4^{\prime \prime}$ high.			Use	Schematic	List Price
Cal. No.	Frequency	KC Range			
612-M5	132	127-137	B.F.O.	85	\$3.50
612-K5	175	165-185	B.F.O.	85	3.50
612-H5	262	250-275	B.F.O.	85	2.90
612-C5	455	450-475	B.F.O.	85	2.90
612-Q5	525	500-550	B.F.O.	85	2.90
612-W5	1500	1400-1600	B.F.O.	85	2.90

Permeability Tuned

912 Type Dimensions: $13 / 8^{\prime \prime}$ square $\times 21 / 4^{\prime \prime}$ high.					List
Cat. No.	Frequency	KC Range	Use	Schematic	Price
912-H5	262	250-275	B.F.O.	57	\$2.90
912-C5	455	440-475	B.F.O.	57	2.90
912-W5	1500	1400-1600	B.F.O.	57	2.90

Heavy Duty Hash Chokes

Through the use of a molded powdered iron form we are able to offer a series of relatively high inductance, high current hash filter chokes in a minimum of size. The chokes are designed to prevent ignition and generator interference noise pick-up from battery wiring systems and from vibrator and motor-generator plate supply systems. Although used primarily as a hash filter the chokes are also satisfactory as parasitic suppressor chokes and find use in a number of other applications where high current carrying capacity is required. The standard stock item is supplied impregnated with a moisture resistant varnish. On special order we will supply the chokes fungus-proofed or encapsulated in Epoxy Resin to meet MIL-C. 15305-A.
Dimensions: $9 / 6^{\prime \prime}$ diameter $\times 11 / 4^{\prime \prime}$ long.

Dimens Cat. No.	$\begin{gathered} 166^{\prime \prime} \mathrm{di} \\ \text { Uh. } \end{gathered}$	$\begin{aligned} & 11 / 4^{\prime \prime} \\ & \text { Ohms } \end{aligned}$	Amperes	Schematic	List Price
5218	3.35	. 008	13	3	\$1.25
5219	4.9	. 013	8	3	1.25
5220	8.8	. 017	5	3	1.25

10 KC Filters

This filter is used to eliminate the 10 KC heterodyne 'whistle' present in wide range broadcast receivers. It may be used in detector load circuit of a diode or an infinite impedance detector. The attenuation at 10000 cycles is approximately 30 db . The filter has a high inductance iron core winding shunted by a variable condenser operating at about 285 mmfd . The tuning range is from 7500 to 12000 cycles.
Dimensions $13 / 8^{\prime \prime}$ square $\times 21 / 4^{\prime \prime}$ high.

Cat. No. Use	Schematic	List Price	
El-58	10 KC Filter	94	$\$ 6.60$

De Inue 10 KC Filter

The Miller De Luxe 10 KC filter uses cup-type powdered iron cores in a band elimination circuit and will provide attenuation of approximately 40 db . Cut-off frequency f_{1} is 9000 cycles and cutoff frequency \mathfrak{f}_{2} is 11,000 cycles. The load resistance R is 10,000 ohms. This filter should be used in the plate circuit of a triode first audio stage. The Cat. No. EL-60 filter has sharper cut-oh characteristics than our No. EL-58. Recommended to users of any High Fidelity Tuner.
Dimensions: $13 / 8^{\prime \prime}$ sq. $\times 21 / 2^{\prime \prime}$ high.

Cat. No.	Use	Schematic	List Price
EL-60	10 KC Filter	95	$\$ 9.75$

Phono Scratch Filter

Cat. No.	liem	Frequency	Schemalic	List Price
El-59	Scratch Filter	$2000-3000$ Cycles	94	$\$ 8.25$

Teletype Radio Interference Filter

A compact skeleton type filter using both inductance and capacity for mavimum effectiveness in suppressing the interference generated by the small brush-type universal motors used on teletype printers. The filter is constructed for fastening directly to the motor terminals and is easily installed. The two duo-lateral chokes are wound on bakelite tubing and the dual condenser is fastened inside of the tube. A ground terminal is provided for connection to the motor frame. May be used on AC or DC circuits up to 220 volts and at a maximum current of .5 ampere.
Dimensions: $13 / 8^{\prime \prime}$ diameter $\times 3^{\prime \prime}$ high.

Cat. No.	Volts	Amperes	Schematic	List Price
7812	220	5	10	$\$ 5.00$

Filament Chokes

Designed to prevent ignition and generator interference noise pick-up from battery wiring systems and from vibrator and motor-generator plate supply systems. Choke consists of a single-layer solenoid with wire leads and encased in a round Kraft tube with sealed ends. To avoid excessive voltage drop, several chokes are often used-one choke in each of the following circuits-filament, vibrator or motor-generator and filament of rectifier tube (if used).
Dimensions: $3 / 4^{\prime \prime}$ diameter by $11 / \mathbf{e}^{\prime \prime}$ long.

Cat. No.	Uh.	Ohms	Amperes	Schemalic	Lisi Price
5221	4	.02	6	1	$\$.90$

Plate Supply Chokes

A companion choke to the \#5221 filament choke for use in the power supply of battery and generator or vibrator " B " supply packs for portable or mobile radio and electronic equipment. Will prevent interference and r.f. "hash" present in the power source from interfering with normal operation of the equipment. Unit is a duo-lateral wound coil enclosed in a sealed Kraft container and provided with convenient axial wire leads. Insulated enclosure permits mounting in out-of-the-way corners of the chassis.
Dimensions: $3 / 4^{\prime \prime}$ diameter by $1^{\prime \prime}$ long.

Cat. No.	Mh.	Ohms	MA	Schemalic	Lisi Price
$\mathbf{5 2 2 2}$	2.5	28	200	1	$\$ 1.25$

Rectifier Hash Filter Chokes

		Duo-lateral wound chokes for use in series with the plate leads of mercury vapor rectifiers to pre vent r.f. hash feed-back. The chokes are wound on Alsimag forms and have solder type lugs for con nection. Two hole mounting brackets prevent the choke from turning. The terminal lugs are eyeleted to a canvas base bakelite strip and provide a spacing of $11 / 2^{\prime \prime}$ berween connections. The insulation to ground will withstand in excess of 10,000 volts.			
Dimensions: $\mathbf{2}^{\prime \prime}$ diameter $\times 23 / 8^{\prime \prime}$ high.					
Cat. No.	Mh.	Ohms	MA	Schematic	Lisi Price
7867	4.50	4.5	500	1	\$2.75
7868	2.75	2.3	1000	1	5

Twin Rectifier Filter Chokes

These chokes are similar to those listed above except that two duo-lateral wound coils are assembled on a single ceramic form with a bakelite terminal plate. They are for use with full wave mercury vapor rectifier tubes or with separate tubes having a maximum plate current of less than 300 MA . A two-hole mounting clip is provided. Insulation is adequate for peak voltages up to 2500 . The entire assembly is thoroughly impregnated in tropicalized Q-Max lacquer.
Dimensions: $11 / 4^{\prime \prime}$ diameter $\times 13 / 4^{\prime \prime}$ high. Mounting centers: $1^{\prime \prime}$.

Cat. No.	Mh.	Ohms	MA	Schematic	List Price
$\mathbf{7 8 6 5}$	3.25 (per coil)	15.	300	9	$\$ 2.50$

Cash Register Filter

The radio interference produced by most cash registers and business machines, such as comptometers and billing machines, is, in many cases, quite severe and the general purpose type of filter does not always give adequate protection. The Miller Cash Register Filter has been expressly designed to meet the requirements of this type of equipment and will provide positive elimination of radio interference feed-back into the power supply line. The filter is of the two-section type and consists of four duo-lateral wound chokes and four .5 mfd . condensers.
Dimensions: $31 / 4^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime \prime}$ long.

Caf. No.	Volts	Amperes	Schematic	List Price
7814	230	5	17	$\$ 16.50$

Medium Duty Duo-Lateral Line Filter Chokes

Miller Duo-Lateral wound chokes combine small physical size with low distributed capacity-an essential requirement for radio interference filter chokes-and are characteristics found in no other type of radio interference filter choke. These chokes are particularly recommended to manufacturers of farm lighting plants, sign flashers, signal systems, oil burners, diathermy equipment and all types of intermittent switching systems. Miller Duo-Lateral wound filter chokes are specially designed for technicians and electricians who find it desirable to construct their own filters as a part of the equipment being manufactured. When used with amateur and commercial transmitters, filters constructed with Miller Duo-Lateral wound chokes will prevent feed-back into the power line, thus eliminating carrier radiation within the electrical wiring system. Miller Duo-Lateral wound chokes are wound on ceramic forms with suitable brass terminals.

Cat. No.	Amperes	Ohms	Mh.	Dimensions	Schematic	List Price
7826	5	.28	.570	$21 / 2^{\prime \prime} \times 4^{\prime \prime}$	1	$\$ 4.85$
7827	10	.15	.370	$212^{\prime \prime} \times 4^{\prime \prime}$	1	5.45
7828	20	.085	.200	$212^{\prime \prime} \times 4^{\prime \prime}$	1	6.00
7829	30	.05	.135	$212^{\prime \prime} \times 4^{\prime \prime}$	1	6.60

Dual Line Filter Chokes

Miller Dual Duo-Lateral Line Filter Chokes are wound with two coils on one form, giving the advantage of small physical size in cases where space requirements are stringent and two single coils would occupy too much area. Identical in specifications, except for dimensions, to our single type Duo-Lateral chokes. They are wound on white ceramic forms $2^{\prime \prime}$ in diameter by $41 / 2^{\prime \prime}$ long.

Cat. No.	Amperes	Ohms	Mh.	Dimensions	Schematic	List Price
D. 7826	5	.28	.570	$412^{\prime \prime} \times 4^{\prime \prime}$	9	$\$ 7.25$
D. 7827	10	.15	.370	$412^{\prime \prime} \times 4^{\prime \prime}$	9	8.50
D.7828	20	.085	.200	$412^{\prime \prime} \times 4^{\prime \prime}$	9	9.70
D-7829	30	.05	.135	$4 \frac{1}{2^{\prime \prime}} \times 4^{\prime \prime}$	9	10.80

Light Duty Duo-Lateral Line Filter Chokes

For use in the same applications as our Heavy or Medium Duty Line Filter Chokes where the load is of a lighter nature. Chokes are wound on bakelite forms.

Single Line Filter Chokes

For filtering individual and branch circuits.
Dimensions: $17 / 8^{\prime \prime} \times 1^{3 / 4^{\prime \prime}}$.

Cat. No.	Amperes	Ohms	Mh.	Schematic	Lisl Price
7825	2	.7	.000	1	$\$ 2.00$
$7825-3$	3	.25	.250	1	2.00
$7825-5$	5	.1	.100	1	2.00
$7825-8$	8	.05	.050	1	2.00

Dual Line Filter Chokes
For filtering both sides of single phase circuits.
Dimensions: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}$.

Cal. No.	Amperes	Ohms	Mh.	Schematic	Lisi Price
D-7825	2	.7	.600	9	$\$ 4.00$
D-7825-3	3	.25	.250	9	4.00
D-7825-5	5	.1	.100	9	4.00
D-7825-8	8	.05	.050	9	4.00

Miller Heavy Duty Line Filter Chokes are wound on electrical porcelain forms measuring 4" in diameter by $8^{\prime \prime}$ long. All windings are of the duolateral type and use double cotton covered stranded cable expressly made for this purpose. Copper terminal lugs and brass bolts are used on all cur-rent-carrying parts. Four sturdy steel mounting brackets are provided with each choke. Windings are thoroughly impregnated with glyptal varnish and baked. In addition to their use for radio interference filter applications, these chokes find wide application in power circuits and high voltage rectifier circuits to reduce the peak value of transient surges and thus protect valuable equipment and switch gear. (Available from Los Angeles stock only.) (D-7830 is a dual type-two chokes on one form. Illustrated.)

Cat. No.	Amperes	Ohms	Mh.	Dimensions		Schemallc
7830	50	.036	.250	$8^{\prime \prime} \times 10^{\prime \prime}$	1	$\$ 45.00$
D.7830	50	.036	.250	$8^{\prime \prime} \times 10^{\prime \prime}$	9	75.00
7831	75	.023	.215	$8^{\prime \prime} \times 10^{\prime \prime}$	1	55.00
7832	100	.010	.175	$8^{\prime \prime} \times 121 / 2^{\prime \prime}$	1	60.00

High Tension Filter Chokes

Through extensive rescarch, Miller has developed what is believed to be the only satisfactory filter choke for the elimination of radio interference generated by high-tension (secondary circuit) neon sign animators and tubing. Chokes are sectional wound on $1 / 2^{\prime \prime}$ diameter by $21 / 6^{\prime \prime}$ long ceramic forms and are enclosed in a weatherproof bakelite shell. All windings are impregnated against moisture absorption and all hardware is cadmium plated. The \#7875 choke is insulated for 15,000 volts and for continuous operation at currents up to 100 milliamperes. The filter chokes are easily installed in existing installations and they are fully guaranteed. Many cities and communities have radio interference ordinances and these chokes are an indispensable part of every neon sign installation. Each installation requires one choke per circuit, plus one for the common circuit of the transformer and one for the common circuit of the animator. A complete circuit diagram is supplied with each choke
Dimensions: $13 / 8^{\prime \prime}$ diameter $\times 31 / 4^{\prime \prime}$ high.

Cat. No.	Volts	Amperes	Schematic	List Price
$\mathbf{7 8 7 5}$	15,000	.1	1	$\$ 3.00$

Radio Interference Filter Condensers

Highest quality paper dielectric condensers especany developed for radio interference filter use. While rated at 220 volts AC-DC, these condensers are designed to withstand transient surges up to 1000 volts. Extremely low reactance to a!l interference frequencies is obtained by non-inductive construction. The condensers are vacuum impregnated and sealed with wax. Assembly in oval cardboard tubes having rock wax end seals prevents any possibility of moisture absorption. They will give a life-time of trouble-free service and we give an unqualified guarantee against breakdown when used with interference filters on circuits having a maximum RMS voltage not exceeding 220. Available in single and double types as listed below.

(at. No.	Capacity	Volis	Dimensions	List Price
7803	dual 2. mfd.	220 AC	$21 / 4^{\prime \prime} \times 11 / 2^{\prime \prime} \times 21 /{ }^{\prime \prime}$	\$4.95
7804	single 2. mfd.	220 AC	$17 / 8^{\prime \prime} \times 1 / 10 \times 21 /{ }^{\prime \prime}$	

Miller industrial filters are designed for all types of radio interference producing devices and are highly effective at broadcast and short wave frequencies. The unique filter circuit, consisting of two duo-lateral wound chokes and two single layer solenoid chokes combined with two 2. mfd. non-inductive wound paper dielectric condensers. For AC or DC to 220 volts. Full-load voltage drop is approximately 2 volts.
Dimensions: $93 / 4^{\prime \prime} \times 61 / 2^{\prime \prime} \times 5^{\prime \prime}$ high. Weight: Approx. 14 lbs .

Cat. No.	Volis	Amps.	Schematic	List Price
7841	220	5	12	$\$ 60.00$
7842	220	10	12	62.50
7843	220	20	12	65.00
7844	220	30	12	67.50
7845	220	40	12	70.00

Tower Lighting Chokes

Duo-lateral wound chokes designed for use in the tower lighting circuits of broadcast and commercial transmitter antenna towers. These chokes offer high impedance to radio frequency and have extremely low distributed capacity. Low power-frequency reactance and DC resistance insure minimum lighting power loss. The chokes are wound on ceramic forms and the windings are of the two-pi sectional type and are protected by a baked glyptal varnish. One choke should be used in series with each line of the tower lighting circuit. A suitable weatherproof cabinet should be used to house the chokes and is preferably mounted at the base of the tower.
By-pass condensers from line-to-ground are NOT used with these chokes.
Dimensions: $4^{\prime \prime}$ diameter $\times 41 / 2^{\prime \prime}$ long.

Cat. No.	Amps.	Ohms	Mh.	Schematic List Price	
7870	5	.56	1.20	1	$\$ 7.25$
7871	10	.30	.75	1	8.50
7872	20	.17	.45	1	9.70

Fluorescent Lighting Filter Chokes

The interference energy which is fed back into the $A C$ lines may often affect the operation of radio and television receivers within a radius of several hundred feet. This interference energy may be absorbed by the use of suitable filter chokes and condensers. Miller liluorescent filter chokes effectively block line interference feed-back and may be simply installed in the lighting fixture. The chokes are assembled in aluminum shields $11 / 4^{\prime \prime}$ in diameter by I $1 / 2^{\prime \prime}$ long, provided with a single hole mounting bracket, and flexible approved wire leads. Installation instructions supplied with each choke. Normally, two chokes should be used per fixture, each choke having a rating equal to the total wattage of all lamps in the fixture.

Cat. No.	Volts	Watls	Schematic	List Price
7876	220	20	1	$\$ 1.90$
7877	220	40	1	1.90
7878	220	80	1	1.90
7879	220	160	1	1.90

Replacement I.F. Trap

The 817-H 1.F. trap is a direct replacement for Bendix (Sylvania) part No. 118-0009. It is used in Ford Auto Radio Model 1CF743 (1A-18805-B). For schematic diagram and typical application refer to Photofact Folder No. 133-7.
Dimensions: $13 / 16^{\prime \prime}$ sq. $\times 11 / 4^{\prime \prime}$ high.

Cal. No.	Use	List Price
$817-\mathrm{H}$	265 KC I.f. Trap	$\$ 5.00$

Miller Uni-Filters

Universal type filters adaptable to any filter application through the simple process of making the necessary internal connections. They are designed for preventing feedback into the power lines from interference producing devices such as-farm lighting plants, electric refrigerators, diathermy and electrocautery devices, oil burner ignition systems, sign flashers, rotary converters, vibrator type converters, portable gas-electric plants and electric motors. Two capacitor blocks, each consisting of dual condensers, are included with each Uni-Filter. The condensers are rated at 220 volts AC or DC. Complete data and circuir diagram supplied with each filter.

Dimensions: $8^{\prime \prime}$ long $\times 61 / 4^{\prime \prime}$ wide $\times 43 / 4^{\prime \prime}$ high.

Cal. No.	Amperes	Ohms	Induclance	Schematic	List Price
7819	5	.28	.570 mh	16	$\$ 43.00$
7820	10	.15	.370 mh	16	45.50
7821	20	.085	.200 mh	16	48.00
7822	30	.05	.135 mh	16	50.50

Loop Antenna Wave Traps

A series of wave traps designed especially for use with all receivers using broadcast band tuned circuit loops. These traps are similar in construction to our \# $\# 11$ series but are connected as a series resonant circuit. They are to be connected between the grid terminal of the loop antenna and the ground or grid return circuit of the receiver. When tuned to resonance these traps offer extremely low impedance to the interferring signal.
Dimensions: $13 / 8^{\prime \prime}$ square by $13 / 4^{\prime \prime}$ high.

Cat. No.	Band	KC Range	Schematic	Lisi Price
$816-X 1$	I.F. \& Commercial	$250-500$	81	$\$ 1.85$
$816-X 2$	I.F. $\&$ Commercial	$125-250$	81	1.85
$816-B C 1$	Broadcast	$900-1800$	81	1.85
$816-\mathrm{BC2}$	Broadeast	$500-900$	81	1.85
$816-\mathrm{A}$	Amateur	$1500-2500$	81	1.85
$816-\mathrm{B}$	Amateur	$2000-4500$	81	1.85

Shielded Wave Traps

Miller 812 Series Wave Traps reaches a new high of performance in the elimination of interference from CW and amateur phone stations and from commercial transmitters. A completely shielded high "Q" parallel resonant circuit. The units are easily installed, simply connect them in series with the antenna. In order to eliminate interference from more than one station connect several of these units in series. The traps will not interfere with the operation of the receiver at frequencies other than that to which the traps are tuned.
Dimensions: $17 / 16^{\prime \prime}$ square $\times 21 / 2^{\prime \prime}$ high.

Cat. No.	Band	KC Range	Schematic	Lisl Price
812-X1	I.F. \& Commercial	425-525	80	\$2.25
812-X2	I.F. \& Commercial	225-325	80	2.25
812-X3	I.F. \& Commercial	150-225	80	2.25
812-BC1	Broadcast	1200-1600	80	2.25
812-BC2	Broadeast	800-1200	80	2.25
812-BC3	Broadcast	500-800	80	2.25
812-A	Amateur	1500-2500	80	2.25
812-B	Amateur	2000-4500	80	2.25
$812 . \mathrm{C}$	Amateur	5000-8500	80	2.25
812-D	Amateur	12000-18000	80	2.25
812-E	Amateur	25000-35000	80	2.25

Select-Ur-Band Coils

These coils are designed to meet the exacting demands of the experimenter and custom recciver builder. Ideal for simple receivers using a mixer stage only or one or more radio frequency stages. Also suitable for use in T.R.F. receivers at the lower frequencies. Flexible in application, the coils may be assembled to meet individual requirements as to frequency range. In superheterodyne receivers, the oscillator coils are for use with an intermediate frequency of 455 KC (except where otherwise indicated). Coils for each band and stage are separate units and any pair of coils of the same stage may be assembled in the same shield. Primaries are of the high impedance type (except X-band coils) and provide uniform gain when used with pentode type r.f. tubes. With these coils it is possible to layout an all wave receiver and first complete it with only one or two
 bands, and later adding other bands as desired. The coils may be used to modernize old reccivers by installing an all-wave or skip-band tuner and using the intermediate amplifier and the audio and power system of the old receiver. The coils are wound on high grate bakelite tuh)ing " ${ }^{8}$ " ${ }^{\prime \prime}$ diameter by $13 / 4^{\prime \prime}$ long. Mounting brackets are provided at both ends of the form and one end has a fibre centering ring. The frequency range specified is obtained with a standard .0001365 mfd variable condenser.

> Coils Are for Use Shielded

Single band coils require a type S-727 shield. Where two coils are stacked together, a type L-727 shield is used.
I)imensions of Shields

Cat. No. S-727 shield $21 / 16^{\prime \prime}$ dia. x $21 / 2^{\prime \prime}$ high.
Cat. No. L-727 shield $21 / 6^{\prime \prime}$ dia. x $4^{\prime \prime}$ high.
Shields are not included in the price of the coils.

Cat. No.	X-lBand Coils Fred.	Range 1 Series Pad	-12. 5 K Schematic	List Prite
X-727-A	Antenna Stage		76	\$2.10
X-727-RF	F.F. Stage		76	2.10
X-727-C	Osc. Stage-455 KC	. 00012 mfd .	76	2.10
X-727-M	Osc. Stage-132 KC	. 0004 mfd .	76	2.10
A-Ranal Coils Freq. Ramge .33.)-1.500 KC.				
A-727-A	Antenna Stage		76	\$1.70
A-727-RF	F.F. Stage		76	1.70
A-727-C	Osc. Stage-455 KC	. 0004 mfd .	76	1.70
13-13and (ioils Frov. Range 1.⿹勹0.1.)00 KC.				
B.727-A	Antenna Stage		76	\$1.70
B-727-RF	R.F. Stage		76	1.70
8-727-C	Osc. Stage-455 KC	. 001 mfd.	76	1.70
C.IBand Coils Freq. Kange 3.75-11 MC.				
C-727-A	Antenna Stage		76	\$1.70
C-727-RF	R.F. Stage		76	1.70
C-727-C	Osc. Stage-455 KC	. 003 mfd .	76	1.70
C-727-W	Osc. Stage-1500 KC	.001 mfd .	76	1.70
D-727-A	Antenna Stage		76	\$1.70
D-727-RF	R.F. Stage		76	1.70
D-727-C	Osc. Stage-455 KC	. 01 mfd .	76	1.70
D-727-W	Osc. Stage-1500 KC	.0018 mfd .	76	1.70
E-Hand Cioils Freq. Range 12.5-36 M6:				
E-727-A	Antenna Stage		76	\$1.70
E-727-RF	R.F. Stage		76	1.70
E-727-C	Osc. Stage-455 KC	none	76	1.70
E-727-W	Osc. Stage-1500 KC	. 003 mfd .	76	1.70
It is recommended that Adjustable Pad, Cat. No. 160-A, be used in parallel with a fixed condenser to make up pad cavacity for E-727-W.				

Cat. No.	S-Band Coils Freq. Use	Range 5 Series Pad	19 MC Schematic	List Price
5-727-A	Antenna Stage		76	\$1.70
S-727-RF	R.F. Stage		76	1.7
S-727-C	Osc. Stage-455 KC	. 003 mfd .	76	1.7

Cathode Tapped Oscillator Coils

Tapped single winding coils of the 727 type for use in circuits utilizing the type 6SA7 and similar electron coupled mixer circuits.

Cat. No.	I.F. Frequency	Series Pad	Schematic	List Price	
X-726-M	132 KC	.0004 mfd	53	$\$ 2.10$	
X-726-C	455 KC	.00012 mfd	53	2.10	
A-726-C	455 KC	.0004 mfd	53	1.70	
B-726-C	455 KC	.001	mfd	53	1.70
C-726-C	455 KCC	.003	mfd.	53	1.70
D.76-C	455 KC	.01	mfd.	53	1.70
E-726-C	455 KC	None mfd	53	1.70	
S-726-C	455 KC	.003	mfd.	53	1.70

If $i f$ is desired to build a receiver using one RF stage and covering Bands X. A and B, the following Niller parts should be orderedFor Band X: one each, X-727-A, X-727-RF and X-727-C and one . 00012 mfd. series pad.
For Band A: one each, A-727-A, A-727-RF and A-727-C and one . 0004 mfd. series pad.
For Band B: one each, B-727-A, B-727-RF and B-727-C and one . 001 mfd. series pad.
Three Cat. No. L-727 and three No. S. 727 coil shields are required. Band switch, tuning condenser, dials, etc., are listed elsewhere in the catalog.

Two Band Coils

These high grade two band coils are compactly and efficiently designed to provide a type of coil well suited for marine receivers and for general experimental and custom set builders. Broadcast band windings are duo-lateral wound and short-wave windings are solenoid wound. High frequency trimmer condensers for each band are a part of the coil assembly and are adjustable from the top of the shield. Satin finished aluminum shields measure $13 / 8^{\prime \prime}$ scuare by $3^{\prime \prime}$ high. To be used with a standard .000365 mfd . tuning comenser and a 455 KCl . 1F. amplifier.
Dimensions: $13 / 8^{\prime \prime}$ square $\times 3^{\prime \prime \prime}$ high.

Cat. No.	Use	Freq. Range	Schematic	List Price
3996-A	Antenna Stage	540-4500 KC	74	\$4.00
3996-RF	R.F. Stage	540.4500 KC	74	4.00
3996-C	Standard Oscillator	$455 \mathrm{KC} \mathrm{I.F}$.	74	4.00
3998-C	Tapped Oscillator	455 KC I.F.	75	4.00
Oscillator Series Pads-. 0004 and .001 mfd .				
3997-A	Antenna Stage	540-1500/5.5-18. MC	74	\$4.00
3997-RF	R.F. Stage	540-1500/5.5-18. MC	74	4.00
3997-C	Standard Oscillator	455 KC I.F.	74	4.00
3999-C	Tapped Oscillator	455 KC I.F.	75	4.00

Adjustable Oscillator Padders

These adjustable oscillator padder condensers are of the finest quality mica-compression type with ceramic body. Capacity adjustable from both top and bottom of condenser. Single hole mounting by means of a $1 / 4^{\prime \prime}$ threaded stud, supplied with nut. Plares may be removed for lower capacity ranges, or shunt mica condensers may be used for higher capacity.
Used as adjustable oscillator padding condenser in super-het receivers to insure proper three-point tracking. They also find application as the horizontal drive control in television receivers.
Dimensions: $7 / 8^{\prime \prime} \times 1^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick.

Cat. No.	Capacity Range	List Price
$160-\mathrm{A}$	$360-1000 \mathrm{mmfd}$.	$\$.90$
$160-\mathrm{B}$	$50-400 \mathrm{mmfd}$.	.75
$160-\mathrm{C}$	$200-600 \mathrm{mmfd}$.	.85
$160-\mathrm{D}$	$10-160 \mathrm{mmfd}$.	.65
$160-E$	$25-280 \mathrm{mmfd}$.	.70

Three Band Aircraft Coils

Miller three band Aircraft coils are wound on high. grade bakelite forms with proper wire size and coil winding type for each band. The coils have built-in high frequency trimmers for each band. These coils are adaptable to all types of receivers, fixed or mobile, to cover the Department of Commerce weather and beacon band, the standard broadcast band, and the airline communications frequency. Antenna primaries are of the low impedance rype for best results with a short antenna. All windings are thoroughly impregnated and baked to prevent moisture absorption. Two oscillator coils are for use with a 455 KC intermediate frequency.
BAND X-140-425 KC, BAND A-540-1600 KC, BAND C-2500-7000 KC. Dimensions: $2^{\prime \prime}$ square $\times 41 / 4^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Cal. Mo.	Use	Schematic	Lisi Price
628-A	Antenna Stage	99	\$6.25
628-RF	R.F. Stage	99	6.25
$628-\mathrm{C}$	Osc. Stage (455 KC)	98	6.25
Tapped oscillator coils (for 6SA7 and similar tubes) $629-\mathrm{C} \quad$ Osc Stage (455 KC) 97			
Oscillat	s-.00012, .0004, .0016		

Three Band All Wave Coils

Three band all-wave coils similar in conitruction to our Series 528 and for use with a 455 KC intermediate frequency amplifier. High frequency trimners are provided for :ach band and are acessible for adjustment hrough holes in the side of the shield. All windings are thorough. ly impregnated for protection under all climatic conditions.
BAND A-540-1700 KC, BAND B-1700-5500 KC, BAND C-5.5-18 MC. Dimensions: $2^{\prime \prime}$ square $\times 41 / 4^{\prime \prime}$ high. \#6/32 spade bolt mounting.

Cat. No.	Use	Schematic	Lisi Price
626-A	Antenna Stage	99	\$6.25
626-RF	R.F. Stage	99	6.25
626-C	Osc. Stage (455 KC)	98	6.25
Tapped oscillator coils (for 6SA7 and similar tubes)			
625-C	Osc. Stage (455 KC)	97	6.25
Oscillator Series Pads-.0004, .0016, . 005 mfd .			

Three Band Short Wave Coils

A series of compact unshielded three band coils for use by experimenters in constructing custom-built short wave receivers to satisfy individual requirements. When used with a 365 mmfd . variable condenser, the frequency range is as follows:
B - 1500 to $4500 \mathrm{KC} ; \mathrm{C}-4500$ to $10000 \mathrm{KC} ; \mathrm{D}-10000$ to 25000 KC . Series Pads - Band B . $0016 \mathrm{mfd} . ;$ Band C .003 mfd .; Band D .01 mfd . Dimensions: $1^{\prime \prime}$ diameter $\times 4^{\prime \prime}$ lang.

Cat. No.	Use	Schemalic	List Prite
$511-$ SW-A	Antenna Stage	114	$\$ 3.25$
511-SW-RF	R.F. Stage	114	3.25
$511-$ SW-C	Standard Osc. (455 KC I.F.)	113	3.25
$510-$ SW-C	Tapped Osc. (455 KC I.F.)	112	3.25

Midget R.F. Coils (Shielded) Permeability Tumed

A compact series of radio frequency and oscillator coils well suited to the needs of the constructor of aircraft, marine and midget broadcast receivers. The coils are of the iron core type and are enclosed in satin finished aluminum shields. Standard antenna coil primaries are of the low impedance close coupled type for use on short vertical or horizontal aerials. R.F. coil primaries are of the high impedance type for maximum energy transfer when used with pentode amplifier tubes. Frequency ranges given are when used with a standard .000365 mfd . variable tuning condenser. Adjustable iron core permits accurate alignment.
Dimensions: $11 / \mathbf{s}^{\prime \prime}$ square $\times 21 / 8^{\prime \prime}$ high. \#6-32 spade bolt mounting.

Cal. No.	Long Wave Use	Band Coils Range	(Aircra Schematic	Lisi Price
X-320-A	Antenna Stage	140.425 KC	77	\$3.00
X-320-RF	R.F. Stage	140.425 KC	90	3.00
Cal. No.	Standar I.F. Frequency	Oscillator Series Pad	Coils Schematic	Lisi Price
X-320-M	132 KC	. 0004 mfd .	77	\$2.50
X-320-C	455 KC	. 00012 mfd .	77	2.50
	Cathode Tapped Oscillator Coils			
Cat. No.	I.F. Frequenty	Series Pad	Schematic	List Price
X-321-M	132 KC	. 0004 mfd .	44	\$2.50
X-321-C	455 KC	.00012 mfd .	44	2.50
Iroadcast Band Coils				
Cai. No.	Use	Range	Schematic	List Price
A-320-A	Antenna Stage	540-1700 KC	77	\$2.20
A-320-RF	R.F. Stage	540-1700 KC	90	2.20
Standard Oscillator Coils				
Cai. No.	I.F. Frequency	Series Pad	Schematic	List Price
A-320-M	132 KC	. 0016 mfd.	77	\$2.20
A-320-C	455 KC	.0004 mfd .	77	2.20

Cat. No.	I.F. Frequency	Series Pad	Schemalic	List Price
A-321-M	132 KC	. 0016 mfd .	44	\$2.20
A-321-C	455 KC	. 0004 mfd .	44	2.20

Cat. No.	Short Wave Coils (Marine \& Aircraft)			
	Use	Range	Schemalic	List Price
B-320-A	Antenna Stage	2100.6300 KC	77	\$2.20
B-320-RF	R.F. Stage	2100-6300 KC	77	2.20
Standarl Oscillator Coils				
Cal. No.	I.F. Frequency	Series Pad	Schemalic	Lisl Price
B-320-M	132 KC	. 006 mfd .	77	\$2.20
B-320-C	455 KC	. 0016 mfd .	77	2.20

Cathode Tapped Oscillator Coils

Cat. No.	I.F. Frequency	Series Pad	Schematic	Lisl Price
B-321-M	132 KC	.006 mfd	44	$\mathbf{\$ 2 . 2 0}$
B-321-C	455 KC	.0016 mfd.	44	2.20
	Short Wave	IBroadeast Coils		
Cal. No.	Use	Range	Schematic	List Price
C-320-A	Antenna Stage	$6.18 . \mathrm{MC}$	77	$\mathbf{\$ 2 . 2 0}$
C-320-RF	R.F. Stage	$\mathbf{6 . - 1 8 . \mathrm { MC }}$	77	$\mathbf{2 . 2 0}$

Standard Oscillator Coils

Cat. No.	I.F. Frequency	Series Pad	Schemalic	List Price
$\mathrm{C}-320-\mathrm{C}$	455 KC	.005 mfd.	77	$\$ 2.20$

Cathode Tapped Oscillator Coils				
Cat. No.	I.F. Frequency	Series Pad	Schematic	List Price
C-321-C	455 KC	.005 mfd.	44	$\$ 2.20$

Oscillator coils for the series C. 320 coils are available only for use with a 455 KC intermediate frequency amplifier.

Midget Variable Condensers

These midget variable condensers have the same precision construction as our standard series and will find ready application in the construction of portable and compact receivers of all types. Split outer plates on the rotors permit accurate alignment. High frequency trimmers are provided on the short side of the condenser. Mounting is provided by tapped holes in the frame of the condenser. Maximum rotor swing is $1^{\prime \prime}$. Counterclock rotation for capacity increase. Shaft is $1 / 4$ ". Capacity range- 10 to $\mathbf{3 6 5} \mathbf{~ m m f}$.

Cat. No.	Sections	Dimensions	List Price
2111	1	$11 / 6^{\prime \prime} \times 11 / 6^{\prime \prime} \times 156^{\prime \prime}$	\$2.75
2112	2	$23_{16}{ }^{\prime \prime} \times 1{ }^{13 / 16^{\prime \prime}} \times 15 /{ }^{\prime \prime}$	3.50
2113	3	$33 / 1{ }^{\prime \prime} \times 113 / 1{ }^{\prime \prime} \times 15 / 8{ }^{\prime \prime}$	5.00

De-Luxe Variable Condensers

These variable tuning condensers are the finest standard type obtainable. Rigid construction and adequate plate spacing insures permanence of calibration and freedom from microphonic tendencies. All sections are maintained to within 1.5 mmfd . of each other at any percentage rotation for perfect tracking. Each section is provided with a high frequency adjustment condenser. Latest design and construction features are embraced in the design of these condensers. All condensers are counter-clockwise rotation from shaft end for capacity increase. Use with our No. 152 Dials.
Capacity range-11 to 365 mmfd . $3 / \mathrm{s}^{\prime \prime}$ shaft dia.

Cat. No.	Sections	Dimensions	Mounting	List Price
$\mathbf{2 1 0 4}$	4	$61 / 4^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$	Tapped Brackets	$\$ 16.00$

All Miller coil shields are of the finest quality drawn aluminum and have a satin finish which will not show finger marks and does not tarnish. Two \# 6.32 thread ed spade bolts are riveted to the shield for easy attachment to the chassis.

Cat. No.	Dimensions	Mounling Center	List Price
5-21	21/6" ${ }^{\prime \prime}$ diameter $\times 31 / 2^{\prime \prime}$	$2^{\prime \prime}$	\$. 70
5-31	$15 /{ }^{\prime \prime}$ diameter $\times 3^{\prime \prime}$	1116"	. 70
5-32	11/8" square $\times 21 / \mathrm{s}^{\prime \prime}$	1116"	. 70
5-41	17/8" diameter $\times 3^{\prime \prime}$	$11316{ }^{11}$. 70
5-51	$13 / 8^{\prime \prime}$ square $\times 31 / 4^{\prime \prime}$	15161	. 70
S-74	$11 / 4^{\prime \prime}$ diameter $\times 2^{\prime \prime}$	1516"	. 70
L-110	$2^{\prime \prime}$ square $\times 41 / 4^{\prime \prime}$	15/16 ${ }^{11}$	1.00
S-727	$21 / 16^{\prime \prime}$ diameter $\times 21 / 2^{\prime \prime}$	2"	. 70
1-727	21/16" diameter $\times 4^{\prime \prime}$	$2^{\prime \prime}$	1.00

H.F. Trimmer Condensers

Ideal for trimming the high frequency end of multi-band circuits, these trimmers are available in single to quadruple section types. Ceramic insulation and mica plate spacer insures low-loss operation. The dimen: sions per section are $5 / 8^{\prime \prime}$ wide by $3 / 4$ " long. Terminals are plated for easy soldering.

Cat. No.	Range (mmfd.)	No. of Sections	List Price
MA-1	$3-40$	1	$\$.35$
MA-2	$3-40$	2	.60
MA-3	$3-40$	3	.90
MA-4	$3-40$	4	1.20

Bakelite Terminal Plates

These terminal plates, provided with securely riveted solder type terminal lugs, are particularly adaptable to the assembly of groups
of resistors and by-pass condensers. They will facilitate wiring of the chassis and provide rigid mounting of parts which cannot be properly assembled by point-to-point wiring. Lugs are on $1 / 16$ " thick bakelite sheet stock and the terminal spacing is $7 / 1 \mathrm{i}^{\prime \prime}$.

Cat. No.	Dimensions	Lugs per Side	List Price
420	$1^{\prime \prime} \times 3^{\prime \prime}$	6	$\$.50$
430	$13 / /^{\prime \prime} \times 21 / 2^{\prime \prime}$	5	.60
440	$1^{\prime \prime} \times 53 /^{\prime \prime}$	14	.70
450	$13 /^{\prime \prime} \times 33 /^{\prime \prime}$	8	.85
460	$13 / /^{\prime \prime} \times 51 / /^{\prime \prime}$	11	1.00
470	$13 / 4^{\prime \prime} \times 83 / 8^{\prime \prime}$	19	1.40

Special types available on order. Please supply sketch and indicate quantity desired.

Adjustable Padding Condensers

These adjustable oscillator padder condensers are of the finest quality mica-compression type with ceramic body. Capacity adjustable from both rop and bottom of condenser. Single hole mounting by means of a $1 / 4$ " threaded stud, supplied with nut. Plates may be removed for lower capacity ranges, or shunt mica condensers may be used for higher capacity.
Used as adjustable oscillator padding condenser in super-het receivers to insure proper three-point tracking. They also find application as the horizontal drive control in television receivers.

Cat. No.	Capacily Range	List Price
$160-A$	$360-1000 \mathrm{mmfd}$	$\$.90$
$160-\mathrm{B}$	$50-400$	mmfd.

Oscillator Padding Condensers

 3\% Accurate Molded Mica Type

For your convenience, we carry a complete stock of the more commonly used capacities of mica tracking condensers for use in oscillator circuits. The condensers are of the familiar molded bakelite mica dielectric type with wire leads. Capacities are guaranteed to be within the specified tolerance. Condensers having wider tolerance ratings should not be used in oscillator circuits as series padding condensers.

Cal. No.	Capacily	Accuracy	List Price
160	.00012 mfd.	3%	$\$.40$
161	.0004 mfd.	3%	.45
162	.0005 mfd.	3%	.45
163	.0006 mfd.	3%	.45
164	.001	mfd.	3%
165	.0016 mfd	3%	.55
166	.003	mfd	3%
168	.005	mfd	
167	.01	mfd	

tat. No.
Capacity Relay Coil
Use

Capacity Relay Coil

This coil may be used for almost all types of capacity operated electronic devices such as alarm systems, show windows, counter displays, novelties, etc. The coil is a centertapped oscillator winding with an adjustable grid coupling condenser and an r.f choke, all assembled on a bakelite form. A typical wiring diagram is supplied.
Dimensions: $7 / 8^{\prime \prime}$ diameter (form) $\times 21 / 4^{\prime \prime}$ high.
Schematic
Lisl Price

Cat. No.	Item	List Price	Page	Cat. No.	Item	List Price	Pag
MA-1	1 section 3-40 mmfd trimmer	. 35	25	EL-58	10 KC audio filter.	6.60	20
MA-2	2 section $3-40 \mathrm{mmfd}$ trimmer	. 60	25	EL-59	Phono scratch filter.	8.25	20
MA-3	3 section $3-40 \mathrm{mmid}$ trimmer.	. 90	25	EL-60	10 KC audio filter....	9.75	20
MA-4	4 section $3-40 \mathrm{mmfd}$ trimmer	1.20	25	69-0SC	Broadeast band oscillator coil.	1.50	12
$9-\mathrm{Cl}$	455 KC Transistor I.F. input trans.	3.75	3	70-A	Broadcast band antenna coil	1.50	12
$9-\mathrm{C} 2$	455 KC Transistor I.F. output trans.	3.75	3	70-RF	Broadcast band R.F. coil	1.50	12
10.C1	455 KC Sub-Min. I.F. input trans.	2.60	13. 16	$70 . \mathrm{OSC}$	Broadeast band oscillator coil.	1.50	12
10-C2	455 KC Sub-Min. I.F. output trans... ...	2.60	13. 16	$71 . \mathrm{OSC}$	Universal broadcast ose. coil	2.00	12
12-Cl	455 KC Miniature I.F. input trans.	2.30	16	72-A	Universal antenna replacement coil.	2.30	12
12-C2	455 KC Miniature I.F. output trans.	2.30	16	72-RF	Universal R.F. replacement coil	2.30	12
12-C6	455 KC Min. I.F. with diode filter	2.45	16	72-OSC	Universal osc. replacement coil.	2.30	12
12-C7	455 KC Min. input I. F. battery radios	2.30	16	73-A	Universal antenna replacement coil.	2.85	12
12-C8	455 KC Min . output l.F. battery radios	2.30	16	73-RF	Universal R.F. replacement coil	2.85	12
$12 . \mathrm{Cg}$	455 KC Min. input I.F. AC-DC radios.	2.30	16	73-OSC	Universal osc. replacement coil..	2.85	12
12.C10	455 KC Min output I.F. AC-DC radios	2.30	16	S-74	Aluminum coil shield	. 70	5
12-H1	262 KC Miniature input I.F. trans.	2.60	16	L-110	Aluminum coil shield	1.00	25
12-H2	262 KC Miniature output I.F. trans.	2.60	16	$112-\mathrm{Cl}$	455 KC Midget input I.F. trans.	2.50	18
12-H6	262 KC Min. I.F. with diode filter	2.75	16	112.C2	455 KC Midget interstage I.F. trans.	2.50	18
12-W1	1500 KC Min. I.F. input trans.	2.60	16	$112 . \mathrm{C} 3$	455 KC Midget full wave output I.F...	2.50	18
12-W2	1500 KC Min. I.F. output trans.	2.60	16	112.C4	455 KC Midget half wave output I.F.	2.50	18
*13-PCl	455 KC Input I.F. trans. .	2.50	16	112-C5	455 KC Midget beat frequency osc.	2.50	19
*13-PC2	455 KC Output I.F. trans.	2.50	16	$112-\mathrm{Hl}$	262 KC Midget input I.F. trans.	2.60	18
*13-PC6	455 KC Output I.F. trans., diode filter	2.65	16	112-H2	262 KC Midget interstage l.F. trans..	2.60	18
*13-PC7	455 KC Input I.F. trans. battery	2.50	16	112-H3	262 KC Midget full wave output I.F.	2.60	18
*13-PC8	455 KC Output I.F. trans. battery ..	2.50	16	112-H4	262 KC Midget half wave output I.F.	2.60	18
*13-PC9	455 KC Input I.F. trans. AC-DC	2.50	16	112-H5	262 KC Midget beat frequency osc.	2.60	19
*13-PC10	455 KC Output I.F. trans. AC-DC	2.50	16	112-H6	262 KC Midget l.F. with diode filter.	2.80	8
*13-PH1	262 KC Input I.F. trans.	2.60	16	112-K1	175 KC Midget input I.F. trans..........	2.75	18
*13-PH2	262 KC Output I.F. trans.	2.60	16	112-K2	175 KC Midget interstage I.F. trans....	2.75	18
*13-PH6	262 KC Output I.F. trans., diode filter.	2.75	16	112-K3	175 KC Midget full wave output I.F.	2.75	18
13-Wl	1500 KC Min. I.F. input trans.	2.50	16	112-K4	175 KC Midget halt wave output I.F.	2.75	18
13-W2	1500 KC Min. I.F. output trans.	2.50	16	112-K5	175 KC Midget beat frequency osc.	2.70	19
$012-\mathrm{Cl}$	455 KC Midget input I.F. trans.	2.75	18	112-W1	1500 KC Midget input I.F. trans.	2.50	18
$012 . \mathrm{C} 2$	455 KC Midget interstage I.F. trans.	2.75	18	112.W2	1500 KC Midget interstage I.F. trans.	2.50	18
$012 . \mathrm{C} 3$	455 KC Midget full wave output I.F.	2.75	18	112.W3	1500 KC Midget full wave output I.F.	2.50	18
012-C4	455 KC Midget half wave output I.F.	2.75	18	112-W4	1500 KC Midget half wave output I.F.	2.50	18
$012 . \mathrm{C5}$	455 KC Midget beat frequency osc.	2.70	19	112-W5	1500 KC Midget beat frequenzy osc.	2.50	19
$012-\mathrm{Hl}$	262 KC Midget input I.F. trans.	2.75	18	X-121-A	Long Wave Ant. Coil ..	2.20	13
012-H2	262 KC Midget interstage I.F. trans.	2.75	18	X -121-RF	Long Wave R.F. Coil ...	2.20	13
$012-\mathrm{H3}$	262 KC Midget full wave output I.F.	2.75	18	X-121-C	Long Wave Osc. Coil.	2.20	13
012-H4	262 KC Midget hall wave output I.F.	2.75	18	A-121-A	Broadcast Ant. Coil ...	1.85	13
012-H5	262 KC Midget beat frequency osc.	2.70	19	A-121-RF	Broadcast R.F. Coil.	1.85	13
$012-\mathrm{Kl}$	175 KC Midget input I.F. trans.	2.85	18	A-121-C	455 KC I.F. broadcast band osc. coil	1.85	13
012-K2	175 KC Midget interstage I.F. trans.	2.85	18	A-121-H	262 KC I.F. broadeast band osc. coil	1.85	13
012-K3	175 KC Midget full wave output I.F.	2.85	18	B-121-A	Short Wave Ant. Coil....	1.85	3
012-K4	175 KC Midget hall wave output I.F.	2.85	18	B-121-RF	Short Wave R.F. Coil	1.85	13
012-K5	175 KC Midget beat frequency osc.	2.90	19	B-121-C	Short Wave Osc. Coil.	1.85	13
012-M1	132 KC Midget input I.F. trans.	3.00	18	A-123-A	High Q Broadcast antenna coil	2.25	13
012-M2	132 KC Midget interstage I.F. trans.	3.00	18	A-123-RF	High Q Broadcast R.F. coil	2.25	13
012-M3	132 KC Midget full wave output I.F.	3.00	18	A-123-C	Oscillator 455 KC I.F. ${ }^{\text {a }}$.	2.00	13
012-M4	132 KC Midget half wave output I.F.	3.00	18	160-A	$360-1000 \mathrm{mmid}$ adjustable padder	. 90	23. 25
012-M5	132 KC Midget beat frequency osc.	2.90	19	160-B	50-400 mmid adjustable padder	. 75	23. 25
$012 . \mathrm{Wl}$	1500 KC Midget input I.F. trans.	2.75	18	160-C	200-600 mmid adjustable padder	. 85	23, 25
012-W2	1500 KC Midget interstage I.F. trans.	2.75	18	160-D	10.160 mmid adjustable padder	. 65	23, 25
012-W3	1500 KC Midget full wave output I.F.	2.75	18	160-E	25-280 mmid adjustable padder.	. 70	23, 25
012-W4	1500 KC Midaet half wave output I.F.	2.75	18	160	$120 \mathrm{mmid} 3 \%$ oscillator padder .	. 40	23 25
20.A	Broadcast band antenna coil	. 95	13	161	$400 \mathrm{mmid} 3 \%$ oscillator padder	. 45	5
$20-\mathrm{RF}$	Broadcast band R.F. coil	. 95	13	162	$500 \mathrm{mmid} 3 \%$ oscillator padder.	. 45	25
S-21	Aluminum coil shield	. 70	25	163	$600 \mathrm{mmfd} 3 \%$ oscillator padder	. 45	5
S.31	Aluminum coil shield	. 70	25	164	. 001 mid 3\% oscillator padder.... 55	25
S-32	Aluminum coil shield	. 70	25	165	. $0016 \mathrm{mid} 3 \%$ oscillator padder	. 65	25
S-41	Aluminum coil shield	. 70	25	166	. $003 \mathrm{mfd} 3 \%$ oscillator padder..	. 80	25
41-C	455 KC I.F. broadcast band osc. coil	1.45	14	167	. $01 \mathrm{mld} 5 \%$ oscillator padder	1.75	25
42-A	Broadcast band antenna coil	1.40	13	168	. 005 mid 3\% oscillator padder	1.10	25
42-RF	Broadcast band R.F. coil	1.40	13	180	Mounting clip 10	15
43-A	Broadcast band antenna coil	1.25	14	180	Mounting clip-Bulk Pack per 100	5.00	15
43-RF	Broadcast band R.F. coil	1.25	14	181	Adapter plate 20	15
43-BP	Broadcast band pass coil	1.25	14	181	Adapter plate-Bulk Pack per 100	10.00	15
43-H	262 KC I.F broadeast band ose. coil	1.20	14	182	J-TRAN tool	. 50	15
43-C	455 KC l.F broadcast band ose. coil	1.20	14	182	I-TRAN tool-Bulk Pack per 100	40.00	15
44-A	Broadcast band antenna coil	1.50	14	241-A	Broadcast antenna coil	1.50	14
44-RF	Broadcast band R.F. coil	1.50	14	241-RF	Broadcast R.F. coil	1.50	14
44-BP	Broadcast band pass coil	1.50	14	241-BP	Broadcast band pass coil	1.25	14
44-C	455 KC I.F. broadeast band ose. coil	1.45	14	242-A	Broadcast band antenna coil	2.00	14
45-H	262 KC I F. broadeast band ose. coil	1.20	14	242-RF	Broadcast R.F. coil	2.00	14
45-C	455 KC I.F. broadcast band osc. coil	1.20	14	242-BP	Broadeast band pass coil	1.75	4
S-51	Aluminum coil shield	. 70	25	276-K	175 KC I.F. broadcast band osc. coil..	1.50	14
EL-55	Neg. mutual coupling coil-unshielded	1.10	14	276-H	262 KC I.F. broadeast band osc. coil ..	1.50	14
EL-56	Negative mutual coupling coil	1.35	14	276-C	455 KC I.F. broadcast band osc. coil..	1.50	14
Printed	it I.F. transformers						

Cat. No.	Item	List Price	Page	Cat. No.	Item	List Price	Page
277-K	175 KC I.F. broadcast band osc. coil.	1.75	14	512-W3	1500 KC tull wave output I.F. trans.	2.60	17
277-H	262 KC I.F. broadcast band osc. coil	1.75	14	512-W4	1500 KC hall wave output I.F. trans......	2.60	17
277-C	455 KC I.F. broadcast band osc. coil......	1.75	14	512.W5	1500 KC Beat frequency osc.	2.80	17
278-H	262 KC I.F. broadcast band osc. coil.	1.25	14	512-X1	3000 KC Air core input I.F. trans.	2.60	17
278-C	455 KC I.F. broadcast band osc. coil.....	1.25	14	512-X2	3000 KC interstage I.F. transformer......	2.60	17
279-H	262 KC I.F. broadcast band osc. coil	1.75	14	512-X3	3000 KC full wave output I.F. trans.	2.60	17
279-C	455 KC I.F. broadcast band osc. coil.....	1.75	14	512-X4	3000 KC half wave output I.F. trans.....	2.60	17
$312-\mathrm{Cl}$	455 KC Universal input I.F. trans............	- 2.40	18	512-X5	3000 KC Beat frequency osc.	2.80	19
312-C2	455 KC Univ. interstage I.F. trans.......	2.40	18	512-Y1	5000 KC Air core input I.F. trans.	2.60	17
312-C4	455 KC Universal output I.F. trans........	2.40	18	512-Y2	5000 KC interstage I.F. transformer.	2.60	17
312-C6	455 KC Univ. I.F. with diode filter	2.90	18	512-Y3	5000 KC full wave output I.F. trans.	2.60	17
312-H1	262 KC Universal input I.F. trans.	2.40	18	512-Y4	5000 KC hall wave output I.F. trans.	2.60	17
312-H2	262 KC Univ. interstage I.F. trans.	2.40	18	512-Y5	5000 KC Beat frequency osc.	2.80	19
312-H4	262 KC Universal output I.F. trans.	2.40	18	F-512-Cl	455 KC Variable selectivity trans.	2.85	17
312-H6	262 KC Univ. I.F. with diode filter	2.90	18	F-512-C2	455 KC Variable selectivity trans.	2.85	17
X-320-A	Long wave antenna coil	3.00	24	512-RC	455 KC regenerative I.F. trans.	2.60	18
X-320-RF	Long Wave R.F. coil	3.00	24	512-RW	1500 KC regenerative I.F. trans.	2.60	18
X-320-M	132 KC I.F. osc. coil	2.50	24	512-RX	3000 KC regenerative I.F. trans.	2.60	18
X-320-C	455 KC I.F. osc. coil	2.50	24	512-QT	525 KC converter I.F. transiormer	2.60	18
A-320-A	Broadcast antenna coil	2.20	24	512-WT	1500 KC converter I.F. transtormer	2.60	18
A.320-RF	Broadcast R.F. coil	2.20	24	512-XT	3000 KC converter I.F. transformer	2.60	18
A-320-M	$132 \mathrm{KC} \mathrm{I.F.osc}$.	2.20	24	S12-YT	5000 KC converter I.F. transformer	2.60	18
A-320-C	$455 \mathrm{KC} \mathrm{I.F}. \mathrm{osc}$.	2.20	24	522	Phono-oscillator coil	3.30	13
B-320-A	Short wave antenna coil	2.20	24	560	FM Tuner . . AUDIOPHILE Net Price	59.95	15
B-320-RF	Short wave R.F. coil	2.20	24	565	Hi-Fi AM band pass tuner kit	24.50	2
B-320-M	132 KC I.F. osc. coil	2.20	24	565-8	2 gang variable cond. (vernier drive)	4.60	2
B-320-C	455 KC I.F. osc. coil	2.20	24	565-11	Audio cable assembly complete	1.75	2
C-320-A	Short wave antenna coil	2.20	24	565-12	BC band mutual coupling coil	1.35	2
C-320-RF	Short wave R.F. coil	2.20	24	565-18	200 mmld by-pass condenser	. 50	2
C-320-C	455 KC I.F. osc. coil	2.20	24	565-20	100000 ohm load resistor	. 15	2
C-321-C	455 KC I.F. tapped osc. coil	2.20	24	565-22	R.F. coupling condenser 10 mmid	. 30	2
X-321-M	132 KC I.F. tapped osc. coil	2.50	24	565-24	Large center dial	1.40	2
X-321.C	455 KC I.F. tapped osc. coil	250	24	565-26	Vernier drive dial knob	. 70	2
A.321-M	132 KC I.F. tapped osc. coil	2.20	24	565-28	Volume control knob	. 65	2
A-321-C	455 KC I.F. tapped osc. coil	2.20	24	565-30	Ferrite ant or R F. coils ($30-\mathrm{A} \& 30-\mathrm{B}$)	2.40	2
B-321-M	132 KC I.F. tapped osc. coil	2.20	24	565-34	Tuner front panel	2.75	2
B-321-C	455 KC I.F. tapped osc. coil	2.20	24	565-36	Ferrite R.F. choke 5 MH (6304)	1.65	2
412-Cl	455 KC Universal input I.F. trans.	2.60	18	565-38	Ant. coupling coil 250 uh (6181)	. 60	2
412-C2	455 KC Universal interstage I.F. trans..	2.60	18	565-40	. $05-100 \mathrm{~V}$ by-pass condenser	. 50	2
412-C4	455 KC Universal output I.F. trans.	2.60	18	565-42	1-100V by-pass condenser	. 55	2
412-H1	262 KC Universal input I.F. trans.	2.60	18	565-44	Volume control 1 meg.	1.00	2
412-H2	262 KC Univ. interstage I.F. trans.	2.60	18	565-50	Bakelite tuner cabinet (black)	3.50	2
412-H4	262 KC Universal output I.F. trans.. .-	2.60	18	565-51	Bakelite tuner cabinet (ivory)	3.50	2
420	12 lug terminal plate	. 50	25	565-52	G-100 crystal diode detector	. 75	2
430	10 lug terminal plate	. 55	25	565-56	Ant. coupling condenser 15 mmfd .	. 30	2
440	28 lug terminal plate	. 70	25	565-64	Mounting and wiring plate	1.40	2
450	16 lug terminal plate	. 85	25	565-66	Ant wire lead assembly	1.00	2
460	22 lug terminal plate	1.00	25	565-68	Hardware kit complete	1.00	2
470	38 lug terminal plate	1.40	25	595	Germanium Diode BC Tuner	32.50	2
472-UA	Untuned antenna coil	2.25	14	610	25 MHRF choke	. 60	9
472-UT	Untuned R.F. coil	2.75	14	$612-\mathrm{Cl}$	455 KC iron core input I.F. trans.	3.00	17
510-SW-C	3-band tapped osc. coil	3.25	24	612-C2	455 KC interstage I.F. transformer	3.00	17
511-SW-A	3-band antenna coil	3.25	24	612-C3	455 KC full wave output I.F. trans.	3.00	17
511-SW-RF	3-band R.F. coil	3.25	24	612-C4	455 KC halt wave output I.F. trans	3.00	17
511-SW-C	?-band oscillator coil	3.25	24	612-C5	455 KC Beat frequency osc.	2.90	19
512-C1	455 KC Air core input I.F. trans.	2.60	17	612-H1	262 KC iron core input IF. trans.	3.00	17
512-C2	455 KC interstage I.F. transformer	2.60	17	612-H2	262 KC interstage I.F. transformer	3.00	17
512-C3	455 KC full wave output I.F. trans.	2.60	17	612-H3	262 KC full wave output I.F. trans.	3.00	17
512-C4	455 KC half wave output I.F. trans..	2.60	17	612-H4	262 KC half wave output I.F. trans.	3.00	17
512-C5	455 KC Beat frequency osc.	2.80	17	612-H5	262 KC Beat irequency osc.	2.90	19
512-H1	262 KC Air core input I.F. trans.	2.75	17	612-K1	175 KC iron core input I.F. trans.	3.50	17
512-H2	262 KC interstage I.F. transformer........	2.75	17	612-K2	175 KC interstage I.F. translormer	3.50	17
512-H3	262 KC full wave output I.F. trans.	2.75	17	612-K3	175 KC full wave output !.F. trans.	3.50	17
512-H4	262 KC half wave output I.F. trans.	2.75	17	612-K4	175 KC half wave output I.F. trans.	3.50	17
512-K1	175 KC Air core input I.F. trans.	2.85	17	612-K5	175 KC Beat frequency osc.	3.50	19
512-K2	175 KC interstage I.F. transformer .-	2.85	17	612-M1	132 KC iron core input I.F. trans.	3.50	17
512-K3	175 KC full wave output I.F. trans.	2.85	17	612-M2	132 KC interstage I.F. transformer	3.50	17
512-K4	175 KC half wave output I.F. trans.	2.85	17	612-M3	132 KC full wave output I.F. trans.	3.50	17
512-M1	132 KC Air core input I.F. trans. ...	2.85	17	612-M4	132 KC hall wave output I.F. trans.	3.50	17
512-M2	132 KC interstage I.F. transformer	2.85	17	612-M5	132 KC Beat frequency osc.	3.50	19
512-M3	132 KC full wave output I.F. trans.	2.85	17	612-Q1	525 KC iron core input I.F. trans.	3.00	17
512-M4	132 KC hall wave output I.F. trans.	2.85	17	612.Q2	525 KC interstage I.F. transformer	3.00	17
512-Q1	525 KC Air core input I.F. trans.	2.60	17	$612 . \mathrm{Q}^{3}$	525 KC full wave output I.F. trans.	3.00	17
512-Q2	525 KC interstage I.F. transformer	2.60	17	612.Q4	525 KC half wave output I.F. trans.	3.00	17
512-Q3	525 KC full wave output I.F. trans. .	2.60	17	612-Q5	525 KC Beat frequency osc.	2.90	19
512-Q4	525 KC half wave output I.F. trans. ..	260	17	612-W 1	1500 KC iron core input I.F. trans.	3.00	17
512-Q5	525 KC Beat frequency osc.......	2.80	17	612-W2	1500 KC interstage I.F. transformer	3.00	17
512-W1	1500 KC Air core input I.F. trans.	2.60	17	612-W3	1500 KC full wave output I.F. trans. ..	3.00	17
512-W2	1500 KC interstage I.F. transformer 2.60	17	612.W4	1500 KC half wave output I.F. trans.	3.00	17

Cat. No.	Item	List Price	Page	Cat. No.	Item	List Price	Page
612-W5	1500 KC Beat trequency osc	2.90	19	812-BCl	1200-1600 KC wave trap	2.25	22
F-612-C1	455 KC variable selectivity trans..	3.50	17	812-BC2	800-1200 KC wave trap	2.25	22
F-612-C2	455 KC variable selectivity trans..	3.50	17	812-BC3	$500-800 \mathrm{KC}$ wave trap	2.25	22
612-RC	455 KC regenerative I.F. trans.	3.00	18	812-A	1500-2500 KC wave trap	2.25	22
612 -RW	1500 KC regenerative I.F. trans.	3.00	18	812-B	2000-4500 KC wave trap	2.25	22
615	. 5 M M R.F. choke .-.	. 60	10	$812 . \mathrm{C}$	$5000-8500 \mathrm{KC}$ wave trap	2.25	22
620	75 MH R.F. choke	. 65	10	812-D	12000-18000 KC wave trap	2.25	22
622	1 MH R.F. choke	. 65	10	812-E	25000-35000 KC wave trap	2.25	22
625-C	3 -band osc. coil	6.25	24	816-X1	250-500 KC wave trap.	1.85	22
626-A	3-band antenna coil	6.25	24	816 -X2	125-250 KC wave trap	1.85	22
${ }^{626-R F}$	3-band R.F. coil	6.25	24	$816-\mathrm{BCl}$	$900-1800 \mathrm{KC}$ wave trap	1.85	22
$626-\mathrm{C}$	3-band oscillator coil	6.25	24	816-BC2	500-900 KC wave trap	1.85	22
628-A	3-band antenna coil	6.25	24	816-A	1500-2500 KC wave trap	1.85	22
$628-\mathrm{RF}$	3-band R.F. coil	6.25	24	816 - ${ }^{\text {8 }}$	2000-4500 KC wave trap	1.85	22
628-C	3 -band ose. coil-	6.25	24	817-H	Replacement I.F. Trap	5.00	22
629-C	3-band osc. coil	6.25	24	851	. 5 MH R.F. choke	1.40	10
630	1.5 MH R.F. choke	. 65	10	852	1.0 MH R.F. choke	1.50	10
640	2.5 MH R.F. choke	. 75	10	853	2.5 MH R.F. choke	1.55	10
650	5.0 MH R.F. choke	. 75	10	854	5.0 MH R.F. choke	1.70	10
660	7.5 MH R.F. choke	. 80	10	855	7.5 MH R.F. choke	1.75	10
670	10. MH R.F. choke	. 85	10	856	10. MH R.F. choke	1.80	10
$670-\mathrm{T}$	10. MH R.F. choke center tapped	1.05	10	857	25. MH R.F. choke	2.15	10
680	12.5 MH R.F. choke	. 85	10	858	50. MH R.F. choke	2.30	10
690	15. MH R.F. choke	. 90	10	859	75. MH R.F. choke	2.60	10
691.	20. MH R.F. choke -	1.00	10	860	100. MH R.F. choke	2.85	10
$691 . \mathrm{T}$	20. MH R.F. choke center tapped	1.20	10	861	150. MH R.F. choke	3.15	10
692 693	30. MH R.F. choke	1.05	10	912-C1	455 KC Perm. tuned input I.F. trans.	4.00	16
$\begin{aligned} & 693 \\ & 693-\mathrm{T} \end{aligned}$	60. MH R.F. choke	1.20	10	$912-\mathrm{C} 2$	455 interstage I.F. transformer	4.00	16
694	80. MH R.F. choke center tapped	1.40	10	912.	455 KC full wave output I.F. trans.	4.00	16
695	Capacity relay osc. coil	3.00	25	${ }_{\text {912-C5 }}$	455 KC half wave output I.F. trans.	4.00	16
703-A	Broadcast band loop antenna	2.75	12	$912-\mathrm{Hi}$	455 KC Beat irequency osc .	2.90 4.00	19
705-A	Ferrite Rod Loop	2.75	12	912-H2	262 KC interstage I. F , transformer	4.00	16
X.726-M	132 KC I.F. tapped osc. coil	2.10	23	912-H3	262 KC full wave output I.F. trans.	4.00	16
X-726-C	455 KC I.F. tapped osc. coil	2.10	23	912-H4	262 KC half wave output I.F. trans.	4.00	16
A-726-C	455 KC I.F. tapped osc. coil	1.70	23	912 -H5	262 KC Beat frequency osc.	2.80	16
B-726-C	455 KC I.F. tapped osc. coil	1.70	23	912 -K1	175 KC Perm. tuned input I.F. trans.	4.50	16
C-726-C	455 KC I.F. tapped osc. coil	1.70	23	912-K2	175 KC interstage I.F. transformer	4.50	16
D.726-C	455 KC I.F. tapped osc. coil	1.70	23	912-K3	175 KC full wave output I.F. trans.	4.50	16
E.726-C	455 KC I.F. tapped osc. coil	1.70	23	912-K4	175 KC half wave output I.F. trans.	4.50	16
S-726-C	455 KC I.F. tapped osc. coil	1.70 1.70	23	$912-\mathrm{Ml}$	132 KC Perm. tuned input I.F. trans.	4.50	16
D.727-W	1500 KC osc. coil	1.70 1.70	23 23	912-M2	132 KC interstage I.F. transformer...	4.50	16
E-727-W	1500 KC osc. coil	1.70	23	912-M3	132 KC full wave output I.F. trans.	4.50	16
X-727-A	Long wave antenna coil	2.10	23	912-M4	132 KC half wave output I.F. trans.	4.50	16
X-727-RF	Long wave R.F. coil	2.10	23	912-W2	1500 KC Perm. tuned input I.F. trans.	4.00	16
X-727-C	455 KC I.F. osc. coil	2.10	23	912-W3	1500 KC interstage I.F. transiormer	4.00 4.00	16
X-727-M	$132 \mathrm{KC} \mathrm{I.F}. \mathrm{osc}$.	2.10	23	$912 . W^{4}$	1500 KC full wave output I.F. trans.	4.00 4.00	16
A-727.A	Broadcast band antenna coil	1.70	23	912-W5	1500 KC half wave output I.F. trans.	4.00 2.90	16 19
A-727-RF	Broadcast band R.F. coil	1.70	23	$913-\mathrm{Cl}$	1505 KC I.F. input transformer	3.00	17
A-727-C	455 KC I.F. ose. coil	1.70	23	913 - 4	455 KC I.F. output transformer	3.00	17
B-727-A	SW band antenna coil	1.70	23	913-CD	455 KC discriminator transformer	3.30	
B.727-RF	SW band R.F. coil	1.70	23	913-W1		3.00	17
B-727-C	455 KC I.F. ose. coil	1.70	23	913.W4	1500 KC I.F. output transformer	3.00 3.00	17
C-727-A	SW band antenna coil	1.70	23	913-WD	1500 KC discriminator transformer	3.30	17
C.727-RF	SW band R.F. coil	1.70	23	951	. 5 MH R.F. choke	1.00	
C-727.C	$455 \mathrm{KC} \mathrm{I.F}$.	1.70	23		1.0 MH R.F. choke	1.10	10 10
D-727-A	SW band antenna coil	1.70	23	${ }_{953} 9$	1.0 MH R.F. choke	1.10 1.15	10
D-727-RF	SW band R.F. coil	1.70	23	954	5.0 MH R.F. choke	1.30	10
D-727.C	455 KC I.F. osc. coil	1.70	23	955	7.5 MH R.F. choke	1.40	10
E-727-A	SW band artenna coil	1.70	23	956	10. MH R.F. choke	1.45	10
E-727-RF	SW band R.F. coil	1.70	23	957	25. MH R.F. choke	1.75	10
E-727-C	455 KC I.F. osc. coil	1.70	23	958	50. MH R.F. choke	1.95	10
S-727-A S-727-RF	SW band antenna coil	1.70	23	959	75. MH R.F. choke	2.20	10
S-727-RF	SW band R.F. coil 455 KC I.F. osc. coil	1.70 1.70	23 23	960	100. MH R.F. choke	2.50	10
S.727	Aluminum coil shield	1.70 1.00	23 25	961	150. MH R.F. choke	2.75	10
S-727	Aluminum coil shield	. 70	25	970	1.0 mh . Printed Circuit RF Choke	. 65	11
751	. 5 MH R.F. choke.	1.00	10	971 972	1.2 mh . Printed Circuit RF Choke	. 65	11
752	1.0 MH R.F. choke	1.00	10	${ }_{973}$	1.5 mh. Printed Circuit RF Choke	. 65	11
753	2.5 MH R.F. choke	1.10	10	974	2.2 mh . Printed Circuit RF Choke	. 75	11
754	5.0 MH R.F. choke	1.10	10	975	2.7 mh . Printed Circuit RF Choke	. 75	11
755	7.5 MH R.F. choke.	1.10	10	976	3.3 mh . Printed Circuit RF Choke	. 75	11
756	10.0 MH R.F. choke	1.20	10	977	3.9 mh . Printed Circuit RF Choke	. 75	11
757	25.0 MH R.F. choke	1.35	10	978	4.7 mh . Printed Circuit RF Choke.	. 75	11
758	50.0 MH R.F. choke	1.70	10	979	5.6 mh . Printed Circuit RF Choke	. 75	11
$812-\mathrm{Xl}$	425-525 KC wave trap	2.25	22	980	6.8 mh . Printed Circuit RF Choke	. 80	11
812-X2	225-325 KC wave trap	2.25	22	981	8.2 mh . Printed Circuit RF Choke	. 80	11
812-X3	150-225 KC wave trap	2.25	22	982	10.0 mh. Printed Circuit RF Choke	. 85	11

Cat. No.	Item	List Price	Page	Cat. No.	Item I	List Price	Page
983	12.0 mh. Printed Circuit RF Choke	. 85	11	2000	Standard transistor antenna rod	2.75	3
984	15.0 mh. Printed Circuit RF Choke	. 90	11	2001	Miniature transistor antenna rod.	2.50	3
985	18.0 mh. Printed Circuit RF Choke	. 90	11	2002	Sub-miniature transistor antenna rod	1.50	3
986	22.0 mh. Printed Circuit RF Choke	1.00	11	2003	Miniature transistor antenna rod	2.50	3
987	27.0 mh. Printed Circuit RF Choke	1.00	11	2004	Flat strip transistor antenna rod.	2.50	3
988	33.0 mh. Printed Circuit RF Choke	1.10	11	2005	Flat strip transistor antenna rod	2.50	3
989	39.0 mh. Printed Circuit RF Choke	1.10	11	2007	Sub-miniature transistor rod	2.00	3
990	47.0 mh. Printed Circuit RF Choke	1.15	11	2020	Unshielded transistor osc. coil	2.25 2.75	3
991	56.0 mh. Printed Circuit RF Choke	1.20	11	2021	Sub-miniature transistor osc. coil	2.75 2.25	3 3
992	68.0 mh . Printed Circuit RF Choke	1.30	11	2022	Unshielded transistor osc. coil Unshielded transistor osc. coil	2.25 2.25	3
993	82.0 mh. Printed Circuit RF Choke	1.40	11	2023	Unshielded transistor osc. Coil	2.25 3.00	3 3
994	100.0 mh . Printed Circuit RF Choke	1.50 1.40	11	2031	455 KC transistor input I.F. trans...	3.00 3.00	3
1050	.4-75 MH adj. R.F. choke	1.40	14	2032	455 KC transistor output I.F. trans.	3.00 3.00	3
1051	. $7-1.05 \mathrm{MH}$ adj. R.F. choke	1.40	14	2041	455 KC transistor input I.F. trans...	3.00 3.00	3
1052	1.0-1.5 MH adj. R.F. choke	1.40	14	2042	455 KC transistor output I.F. trans.	3.00 3.00	3
1053	1.5-2.25 MH adj. R.F. choke	1.40	14	2051	455 KC transistor input I.F. trans.	16.00	25
1054	2.0-3.0 MH adj. R.F. choke	1.40	14	2104 2110	4-gang variable condenser 2-gang miniature variable condenser	16.00 3.00	25 3
1055	3.0-4.5 MH adj. R.F. choke	1.65	14	2110	2-gang miniature variable condenser	3.00 2.75	25
1056	4.5-7.0 MH adj. R.F. choke	1.65	14	2111 2112	Single section variable condenser 2 -gang variable condenser.	2.75 3.50	25
1057	7.0-10.5 MH adj. R.F. choke	1.65	14	2113	2-gang variable condenser	5.00	25
1058	10-15 MH adj. R.F. choke	1.65	14	2705	3-gang variable condenser Phono plug to phone tip adapter	S.00 2.00	2
1059	15-22.5 MH adj. R.F. choke	1.95	14	2881	7 MH R.F. choke	4.95	10
1060	20-30 MH adj. R.F. choke	1.95	14	3423	50 KC Low pass filter	11.50	18
1061	30-45 MH adj. R.F. choke	1.95	14	3996-A	2-band antenna coil	4.00	23
1212-C	455 KC 'cart-wheel' I.F. transformer	2.25	18	3996-RF	2-band R.F. coil	4.00	23
$1312-\mathrm{Cl}$	455 KC Perm. tuned input I.F. trans.	3.50	16	3996-C	2-band osc. coil, $455 \mathrm{KC} \mathrm{I.F}$.	4.00	23
1312-C2	455 KC interstage I.F. transiormer	3.50	16	3997-A	2-band antenna coil	4.00	23
1312-C3	455 KC full wave output I.F. trans.	3.50	16	3997-RF	2-band R.F. coil	4.00	23
1312-C4	455 KC half wave output I.F. trans.	3.50	16	3997-C	2 -band osc. coil, 455 KC I.F.	4.00	23
1312-M1	132 KC Perm. tuned input I.F. trans.	4.00	16	3998-C	2-band osc. coil, 455 KC I.F.	4.00	23
1312-M2	132 KC interstage I.F. transformer	4.00	16	3999-C	2-band osc. coil, 455 KC I.F.	4.00	23
1312-M3	132 KC full wave output I.F. trans.	4.00	16	4200	Nylon coil forms Bulk pack per 100	60.00	8
1312-M4	132 KC half wave output I.F. trans.	4.00	16	4200	Economy adjustable R.F. coil form	. 75	8
1312-W1	1500 KC Perm. tuned input I.F. trans.	3.50	16	4202	1-2.5 uhy economy adj. R.F. coil	1.25	8
1312.W2	1500 KC interstage I.F. transformer	3.50	16	4203	2-5.5 uhy economy adj. R.F. coil	1.25	8
1312-W3	1500 KC full wave output I.F. trans.	3.50	16	4204	5-12 uhy economy adj. R.F. coil	1.25	8
1312-W4	1500 KC half wave output I.F. trans.	3.50	16	4205	10-25 why economy adj. R.F. coil	1.25	8
1444	110-235 MC antenna coil	5.50	15	4206	20-55 uhy economy adj. R.F. coil	1.50	8
1445	110-235 MC R.F. coil	5.50	15	4207	50-140 uhy economy adj. R.F. coil	1.50	8
1446	110-235 MC oscillator coil	5.50	15	4208	120-330 uhy economy adj. R.F. coil	1.50	8
1447	88-108 MC antenna coil	1.65	15	4209	$310-860$ uhy economy adj. R.F. coil	1.50	8
1448	88-108 MC R.F. coil	1.65	15	4300	Ceramic coil form Bulk pack per 100	115.00	8
1449	88-108 MC osc. coil (10.7 MC I.F.)	1.65	15	4300	Ceramic coil form	1.50	8
1451	10.7 MC FM I.F. transformer	2.50	15	4301	0.17-0.27 uhy adjustable R.F. coil	2.00	8
1452	10.7 MC FM discriminator transformer	3.40	15	4302	0.27-0.41 uhy adjustable R.F. coil	2.00	8
1453	10.7 MC FM ratio detector trans.	3.40	15	4303	0.40-0.65 uhy adjustable R.F. coil	2.10	8
1454	88-108 MC antenna coil	2.35	15	4304	0.64-0.95 uhy adjustable R.F. coil	2.20	8
1455	88-108 MC R.F. coil	2.35	15	4305	0.94-1.55 uhy adjustable R.F. coil	2.25	8
1456	88-108 MC osc. coil (10.7 MC I.F.)	2.35	15	4306	1.50-2.57 uhy adjustable R.F. coil	2.30	8
1461	$3-\mathrm{gang}$ variable cond. $3-16 \mathrm{mmfd}$.	5.00	15	4307	2.50-4.40 uhy adjustable R.F. coil	2.40	8
1462	10.7 MC/455 KC I.F. transformer	4.75	15	4308	4.30-7.15 uhy adjustable R.F. coil.	2.40	8
1463	10.7 MC input transformer.	2.85	15. 16	4309	7.10-12.50 uhy adjustable R.F. coil	2.50	8
* 1463 -PC	10.7 MC Input or Interstage trans.	2.85	16	4310	12.40-20.30 uhy adjustable R.F. coil	2.50	8
1464	10.7 MC discriminator trans.	3.40	15, 16	4311	20.10-32.80 uhy adjustable R.F. coil	2.50	8
*1464-PC	10.7 MC Discriminator trans..	3.40	16	4312	32.50-51.50 uhy adjustable R.F. coil	2.50	8
1464.WB	10.7 MC Wide band disc. trans.	3.40	16	4313	51-102 uhy adjustable R.F. coil	2.60	8
1465	10.7 MC Ratio detector transformer	3.40	15. 16	4314	101-180 uhy adjustable R.F. coil	2.60	8
*1465-PC	10.7 MC Ratio Detector trans.	3.40	15	4315	178-300 uhy adjustable R.F. coil	2.60	8
1465.WB	10.7 MC Wide band ratio det. trans.	3.40	16	4400	Ceramic coil form Bulk pack per 100	140.00	8
1466	4.5 MC Sound I.F. transformer	2.60	5	4400	Ceramic coil form	1.65	8
1467	4.5 MC Sound discriminator trans...	3.00	5	4403	0.9-1.6 uhy adjustable R.F. coil	2.20	8
1468	4.5 MC Ratio detector transformer	3.30	5	4404	1.5-3.2 uhy adjustable R.F. coil	2.25	8
1469	4.5 MC Sound pick-off coil ...	1.25	5	4405	3.1-6.8 uhy adjustable R.F. coil	2.30	8
1470	4.5 MC Sound trap	1.25	5	4406	6.7-15 uhy adjustable R.F. coil	2.40	8
1470-A	4.5 MC Sound trap shielded	1.65	5	4407	14.8-31 uhy adjustable R.F. coil.-	2.50	8
1480	4.5 MC quadrature coil ..	1.25	5	4408	30-69 uhy adjustable R.F. coil	2.55	8
1481	4.5 MC quadrature coil	1.65	5	4409	68-130 uhy adjustable R.F. coil	2.65	8
1498	4.5 MC Sound Ratio Det. Trans.	3.30	5	4410	126-250 uhy adjustable R.F. coil	2.65	8
1883	50 KC BFO coil	2.75	19	4411	245-275 uhy adjustable R.F. coil	2.70	8
1884	50 KC I.F. coil Q 100	5.50	19	4412	450-800 uhy adjustable R.F. coil	2.70	8
1885	50 KC I.F. coil Q 60	2.75	19	4413	750-1400 uhy adjustable R.F. coil	2.75	8
1886-M	100 KC Oscillator erase coil	6.75	19	4414	1300-2100 uhy adjustable R.F. coil	2.75	8
1887-A	60 KC Oscillator erase coil	6.75	19	4500	Ceramic coil form Bulk pack per 100	115.00	8
1890-P1	100 KC High-Q I.F. transformer	8.50	19	4500	Adjustable ceramic coil form	1.50	8
1890-P4	100 KC High-Q I.F. transformer	8.50	19	4501	.4-.8 uhy adjustable R.F. coil	2.00	8
1898-A	48-52 KC SSSR Trans....	8.50	19	4502	1-1.6 uhy adjustable R.F. coil	2.00	8
1898-AX	48-52 KC SSSR Trans.	8.50	19	4503	1.6-2.8 uhy adjustable R.F. coil	2.10	8
1898-BFO	48-52 KC SSSR Trans.	5.75	19	4504	2.8-5 uhy adjustable R.F. coil	2.20	8
*Printed	cuit I.F. Transformers.			4505	5-9 uhy adjustable R.F. coil	2.30	8

Cat. No.	Item	List Price	Page	Cat. No.	Item	List Price	Page
4506	9-16 uhy adjustable R.F. coil	2.40	8	4622-E	10.0 uh. encapsulated R.F. choke		
4507	16-24 uhy adjustable R.F. coil	2.50	8	4624	15 uhy core R.F. choke	1.75 .65	1
4508	24-35 uhy adjustable R.F. coil	2.50	8	4624-E	15.0 uh. encapsulated R.F. choke	1.75	11
4509	35-60 uhy adjustable R.F. coil ...	2.50	8	4626	24 uhy iron core R.F. choke	1.70	1
4511	60-120 uhy adjustable R.F. coil	2.50	8	4626-E	24.0 uh. encapsulated R.F. choke	1.80	11
${ }_{4512}$	110-200 uhy adjustable R.F. coil.	2.60	8	4628	39 uhy iron core R.F. choke 70	9
4513	190-330 uhy adjustable R.F. coil	2.60	8	${ }_{4629}^{4628}$	39.0 uh. encapsulated R.F. choke	1.80	11
${ }_{4514}{ }^{451}$	320-500 uhy adjustable R.F. coil	2.60 2.75	8	${ }_{4629}^{4629}$	55 uhy iron core R.F. choke	. 75	1
4515	25 uhy R.F. choke . .	2.75 .80	9	${ }_{4630}$	65. uh. encapsulated R.F. choke	1.80 .75	11
4517	50 uhy R.F. choke	. 80	9	4630-E	62.0 uh. encapsulated R.F. choke	1.80	11
4519	100 uhy R.F. choke	. 80		4631	82 uhy iron core R.F. choke	1.80 .75	11
4525	HV R.F. power supply coil 5 KV	8.25	6	4631-E	820 uh. encapsulated R.F. choke	1.80	11
4526	HV R.F. power supply coil 10 KV .	13.75	6	4632	100 uhy iron core R.F. choke. .-	. 75	1
4527	1.0 MH R.F. choke	1.10	9	4632-E	100.0 uh. encapsulated R.F. choke	1.80	11
4528	2.5 uhy R.F. choke	. 70	9	4642	11 MH R.F. choke	. 75	9
4528-1	1 uhy R.F. choke	. 70	9	4642 -	. 10 mh . encapsulated R.F. choke	2.00	11
${ }_{4529}{ }^{45} 10$	5 uhy R.F. choke	. 70	9	4644	15 MH R.F. choke	. 75	
${ }^{4539-10}$	10 uhy R.F. choke 2.5 MH R.F. choke	$\begin{array}{r}.70 \\ \hline 1.20\end{array}$	9 9	${ }_{4646}^{4645}$. 15 mh . encapsulated R.F. choke	2.00	1
4531	2.5 MH R.F. choke	1.20 .90	9	${ }_{4646-E}$	24 mh . encapsulated R.F. choke	. 75	I
4531-0	. 25 MH R.F. choke	. 90	9	4648	39 MH R.F. choke	. 80	9
4531-1	1.0 MH R.F. choke	. 90	9	4648-E	39 mh . encapsulated R.F. choke	2.10	11
4532	1.5 MH R.F. choke	1.00	9	4649	. 55 MH R.F. choke	. 8.80	9
4533	2.5 MH R.F. choke	2.75	10	4649-E	55 mh . encapsulated R.F. choke	2.10	11
4534	1.0 MH R.F. choke	2.20	10	4650	62 MH R.F. choke	. 80	9
4535	1.5 MH R.F. choke	2.50	10	$4650-\mathrm{E}$. 62 mh . encapsulated R.F. choke.	2.10	11
4536	4.0 MH R.F. choke	3.05	10	4651	75 MH R.F. choke	. 80	9
4537	2.5 MH R.F. choke Bulk Pack per 100	80.00	9	4651-E	75 mh . encapsulated R.F. choke	2.10	11
4537	2.5 MH R.F. choke	1.00	9	4652	1 MH R.F. choke 80	9
4538	5.0 MH R.F. choke	1.25	9	4652 -	1.0 mh . encapsulated R.F. choke	2.10	11
4539	7.5 MH R.F. choke	1.40	9	4662	1 MH iron core R.F. choke .-	. 85	9
4540	10. MH R.F. choke	1.65	9	$4662-\mathrm{E}$	1.0 mh . encapsulated R.F. choke	2.15	
4541	25. MH R.F. choke	1.95	9	4664	1.5 MH iron core R.F. choke	. 90	9
4542	50. MH R.F. choke	2.50	9	4664-E	1.5 mh . encapsulated R.F. choke	2.20	11
4543	75. MH R.F. choke	2.75	9	4666	2.4 MH iron core R.F. choke	1.00	9
4544	100. MH R.F. choke	3.00	9	4666-E	2.4 mh . encapsulated R.F. choke	2.30	11
4545	150. MH R.F. choke	4.40	9	4668	3.9 MH iron core R.F. choke	1.10	9
4546	200. MH R.F. choke	4.95	9	4668-E	3.9 mh . encapsulated R.F. choke	2.40	11
4547	250. MH R.F. choke	5.50	O	4669	5.5 MH iron core R.F. choke	1.25	
4550	2.0 MH R.F. choke	2.50	10	4669-E	5.5 mh . encapsulated R.F. choke	2.55	11
4551	4.0 MH R.F. choke	2.75	10	4670	6.2 MH iron core R.F. choke	1.25	9
4562	35-70 uhy adjustable R.F. choke..	. 85	12	$4670-\mathrm{E}$	6.2 mh . encapsulated R.F. choke	2.55	11
4563	60-120 uhy adjustable R.F. choke.....	. 95	12	4671	8.2 MH iron core R.F. choke	1.50	9
4564	110-200 uhy adjustable R.F. choke	1.05	12	$4671-\mathrm{E}$	8.2 mh . encapsulated R.F. choke	2.80	11
4565	190-300 uhy adjustable R.F. choke.	1.15	12	4672	10 MH iron core R.F. choke	1.75	9
4566	320-500 uhy adjustable R.F. choke	1.25	12	4672-E	10.0 mh. encapsulated R.F. choke	3.10	11
4580	1 uhy R.F. choke	. 55	9	5218	Hash Filter Choke	1.25	20
4580-E	. 1 uh. encapsulated R.F. choke	1.65	11	5219	Hash Filter Choke	1.25	20
4582	. 15 uhy R.F. choke	. 55	9	5220	Hash Filter Choke	1.25	20
4582 -	. 15 uh. encapsulated R.F. choke	1.65	11	5221	Auto radio filament choke	. 90	20
4584	. 22 uhy R.F. choke	. 55	9	5222	Auto radio plate choke	1.25	20
4584-E	. 22 uh. encapsulated R.F. choke	1.65	11	5480-A	Broadcast band antenna coil	1.25	13
4586	. 33 uhy R.F. choke	. 55	9	5480-RF	Broadcast band R.F. coil	1.50	13
4586-E	33 uh. encapsulated R.F. choke	1.65	11	$5480-\mathrm{C}$	Broadcast band osc. coil, 455 KC I.F.	1.25	13
4588	47 uhy R.F. choke 55	9	5480-ABP	Antenna-band-pass coil	1.75	13
$4588-\mathrm{E}$. 47 uh. encapsulated R.F. choke	1.65	11	$5480-\mathrm{H}$	Broadcast band osc. coil, 262 KC I.F.	1.25	13
4590	. 68 uhy R.F. choke	. 55		$5480-\mathrm{K}$	Broadcast band osc. coil, 175 KC I.F.	1.25	13
$4590-\mathrm{E}$. 68 uh. encapsulated R.F. choke	1.65	11	5481-H	Broadcast band osc. coil, 262 KC I.F.	1.25	13
4592	.75 uhy R.F. choke	. 55	9	5481-K	Broadcast band osc. coil, 175 KC I.F.	1.25	13
4592-E	75 uh. encapsulated R.F. choke	1.65	11	5481.C	Broadcast band osc. coil, 455 KC I.F.	1.25	13
4594	. 82 uhy R.F. choke	. 55	9	A-5495-A	Broadcast antenna coil	2.10	8
4594-E	82 uh. encapsulated R.F. choke	1.65	11	A-5495-RF	Broadcast R.F. coil....	2.10	8
4602	1 uhy R.F. choke.	. 55	9	A-5495-C	455 KC I.F. osc. coil	2.10	8
4602-E	1.0 uh. encapsulated R.F. choke	1.65	11	A-5496-C	455 KC I.F. tapped osc. coil	2.10	8
4604	1.5 uhy R.F. choke	. 55		B-5495-A	Short wave antenna coil	2.10	8
4604-E	1.5 uh. encapsulated R.F. choke	1.65	11	B-5495-RF	Short wave R.F. coil.	2.10	8
4606	2.4 uhy R.F. choke 55	9	B-5495-C	455 KC I.F. osc. coil.	2.10	8
4606-E	2.4 uh. encapsulated R.F. choke	1.65	11	B-5496-C	455 KC I.F. tapped osc. coil	2.10	8
4608	3.9 uhy R.F. choke	. 55	9	C-5495-A	Short wave antenna coil.....	2.10	8
4608-E	3.9 uh. encapsulated R.F. choke	1.65	11	C-5495-RF	Short wave R.F. coil	2.10	8
4609	5.5 uhy R.F. choke	. 60	9	C-5495-C	455 KC I.F. osc. coil.	2.10	8
4609-E	5.5 uh. encapsulated R.F. choke	1.70	11	C-5496-C	455 KC I.F. tapped osc. coil.	2.10	8
4610	6.2 uhy R.F. choke	. 60	9	D-5495-A	High frequency antenna coil..	2.10	8
$4610-\mathrm{E}$	6.2 uh. encapsulated R.F. choke	1.70	11	D-5495-RF	High frequency R.F. coil	2.10	8
4611	8.2 uhy R.F. choke	. 60	9	D-5495-C	455 KC I.F. osc. coil.	2.10	8
$4611-\mathrm{E}$	8.2 uh. encapsulated R.F. choke	1.70	11	D-5496-C	455 KC I.F. tapped osc. coil.	2.10	8
612	10 uhy iron core R.F. choke	. 60	9	X-5495-A	Long wave antenna coil..	2.10	8
4612-E	10.0 uh. encapsulated R.F. choke	1.70	11	X-5495-RF	Long wave R.F. coil.........	2.10	8
4622	10 uhy R.F. choke	. 65	9	X-5495-C	455 KC I.F. osc. coil.	2.10	8

Cat. No.	Item	List Price	Page	Cat. No.	Item	List Price	Page
X-5496-C	455 KC I.F. tapped osc. coil	2.10	8	6212	Horizontal osc. coil tapped	2.25	4
6103	TV antenna matching trans. (Balun)	1.25	4	6215	40 MC TV converter I.F. trans.	2.50	6
6104	TV Antenna matching coil (Balun)	1.00	4	6216	40 MC TV lst pix I.F. grid trans...	3.00	6
6110	Video peaking coil 60 uhy 50	6	6217	40 MC TV 1st pix I.F. plate trans.	3.00	6
6112	Video peaking coil 100 uhy	. 60	6	6218	40 MC TV 2nd pix I.F. grid trans. ..	2.75	6
6120	Video peaking coil 155 uhy	. 60	6	6219	40 MC TV 3rd or 4th pix I.F. trans.	1.25	6
6130	Video peaking coil 275 uhy	. 60	6	6220	40-46 MC Mixer with 75 ohm link	1.25	6
6132	V Video peaking coil 330 uhy	. 60	6	6221	40-46 MC Bifilar wound I.F. with trap .. -	- 2.50	6
6134	Video peaking coil 375 uhy	. 60	6	6222	42-48 MC Bifilar wound I.F. with trap.	2.50	6
6136	Video peaking coil 420 uhy	. 60	6	6223	40-46 MC Bifilar wound I.F. with trap	2.50	6
6138	Video peaking coil 470 uhy	. 60	6	6224	39-46 MC Bifilar wound I.F.	1.40	6
6144	Video peaking coil 550 uhy	. 60	6	6225	39-49 MC Single winding I.F.	1.55	6
6146	Video peaking coil 600 uhy	. 60	6	6226	40-46 MC High Q trap	$\begin{aligned} & 1.40 \\ & 2.50 \end{aligned}$	6. ${ }^{6}$
6148	Video peaking coil 700 uhy	. 60	6	${ }_{*}^{6230} 6230-\mathrm{PC}$	44 MC converter. I.F. ${ }^{\text {a }}$.	$\begin{aligned} & 2.50 \\ & 2.75 \end{aligned}$	6. 16
6152	Video peaking coil 20 uhy	. 50	6	*6230-PC	44 MC TV Converter I.F. trans.	$\begin{aligned} & 2.75 \\ & 2.50 \end{aligned}$	6. 16
6153	Video peaking coil 120 uhy	. 60	6	${ }_{\text {* } 6231} 623$-PC	44 MC First I.F. ${ }^{44} \mathrm{MC}$ TV First I.F. trans.	2.75	6. 16
6154	Video peaking coil 200 uhy	. 60	6	${ }_{6232} 6231-\mathrm{PC}$	42.5 MC Second I.F.	2.15 2.10	6. 16
6155 6156	Video peaking coil 300 uhy Video peaking coil 800 uhy	. 60	6	${ }_{\text {* } 6232}{ }^{\text {23-PC }}$	42.5 MC TV Second I.F. trans. with trap	2.40	16
6157	Video peaking coil 950 uhy	. 60	6	6233	45.5 MC Third I.F. with trap	2.50	6. 16
6158	Adjustable R.F. choke, $50-100$ uhy	. 40	14	*6233-PC	45.5 MC TV Third I.F. trans. with trap	2.75	16
6159	Adjustable R.F. choke, 100-200 uhy	40	14	6234	44 MC Fourth I.F. with trap	1.85	6. 16
6160	Adjustable R.F. choke، 200-400 uhy.	1.40	14	*6234-PC	44 MC TV Fourth I.F. trans.	2.25	16
6161	TV Antenna coupling transformer	2.75	4	6245	25.5 MC First I.F. with trap	2.50	5
6162	TV Antenna coupling transformer	2.75	4	6246	22 MC Second I.F. with trap	2.50	5
6163	Wave traps 150-250 MC	4.40 4.40	7	6247	24.5 Video Det I.	1.50	5
6164	Wave traps $75-150 \mathrm{MC}$	4.40	7	6248 6249	21.25 MC Bifilar wound I.F.	1.50	
6165	Wave traps Wave traps 40-80 20-40	4.40	7	6250	25-29 MC Bifilar wound I.F.	1.50	
6166 6167	Wave traps 20-40 MC	5.50	7	6251	21-25 MC Bifilar I.F. shielded	2.25	5
6168	Television high-pass filter	5.50	7	6252	25-29 MC Bifilar I.F. shielded	2.25	
6170	21.25 MC sound discriminator trans.	3.30	5	6253	21-25 MC Bifilar I.F.	2.75	
6171	21-25 MC tunable choke	1.25	5	6254	25-29 MC Bifilar I.F.	2.75	
6171-A	25-29 MC tunable choke	25	5	6261	21.25 MC Sound discriminator trans.	3.40	
6172	Video peaking coil, 73 uhy	. 60	6	6262	21.25 MC Sound ratio detector trans.	3.40	
6173	Video peaking coil, 250 uhy, 22K	. 60	6	6295	Adjustable ion trap	1.25	
6174	Video peaking coil, 500 uhy	. 60	6	6302	${ }_{2}{ }^{\text {Broadcast antenna }}$ M ferrite core R.F. choke	1.00	9
6175	TV filament choke, 0.8 uhy	. 50	6	${ }_{6302-E}$		2.40	11
6176	Video peaking coil, 36 uhy	. 60	6	6304	5 MH ferrite core R.F. choke	1.25	9
6177	Video peaking coil, 93 uhy	. 60	6	${ }_{6304-E}$	5.0 mh . encapsulated RF. choke	2.65	
6178	Video peaking coil, 120 uhy, 22 K	. 60	6	6306	10 MH ferrite core R.F. choke .-.	1.50	
6179	Video peaking coil, 180 uhy, 39 K	. 60	6	6306 - E	10.0 mh . encapsulated R.F. choke	2.90	
6180	Video peaking coil, 180 uhy	. 60	6	6308	25 MH ferrite core R.F. choke	1.75	9
6181	Video peaking coil, 250 uhy	. 60		6308 -E	25.0 mh . encapsulated R.F. choke	3.15	11
6182	Horizontal osc. \& sync. control	2.25	4	6310	50 MH ferrite core R.F. choke	2.00	9
6183	Horizontal osc. \& sync. stabil.	2.75	4	6310-E	500 mh . encapsulated R.F. choke	3.40	11
6183-A	Reversed horiz. osc. \& sync. stabil...			6313	. $50-5.0 \mathrm{MH}$ adj. ferrite core inductor	1.50	
6184	21.25 MC ratio detector transformer	3.30	5	6314	2.5-17 MH adj. ferrite core inductor	1.75	
6185	21.8 MC converter I.F. transformer	2.75	5	6315	4.0-30 MH adj. ferrite core inductor	1.80	
6186	25.3 MC lst pix I.F. transformer	2.75	5	6316	4.0-30 MH with AGC winding	2.25	
6187	22.3 MC 2nd pix I.F. translormer.	2.10	5	6317	3.2-9.0 MH with AGC winding	2.25	
6188	25.2 MC 3rd pix I.F. transformer-.....	1.25	5	6318	.3-3 MH adj. ferrite core inductor	1.50	
6189	23.4 MC video detector I.F. trans.	- 1.25	5	6319	15-60 MH adj. ferrite core inductor	2.25	
6190	21.25 MC 1st sound I.F. transformer....	2.40	5	6320	.3-3 MH tapped	1.50	
6191	21.25 MC 2nd sound I.F. transformer.	2.40		6321	1.0-5.0 MH tapped	1.50	
6192	21.25 MC sound discriminator trans....	3.00	5	6322	1.5-10 MH adj. ferrite core inductor	1.75	
6193	Cathode sound trap, 21.25 MC	2.00	5	6323	.50-5.0 MH tapped ...	1.50	
6194	Horizontal osc. \& A.F.C. disc.	2.75	4	6324	60.130 MH tapped	2.25	4
6195	.185-1 MH adj. iron core inductor....	1.25	4	6325	4.2-30 MH with AGC winding	2.25	
6196	. $054-245 \mathrm{MH}$ adj. iron core inductor.	1.10	4	6326	$2.5-19 \mathrm{MH}$ with series winding	3.05	4
6196-A	.054-.50 MH tapped	1.25	4	6327	4-30 MH with series winding	3.05	4
6197	.55-2.3 MH tapped	1.25	4	6328	9-24 MH with AGC winding	2.25	4
6198	.170-61 MH adj. iron core inductor	1.10	4	6329	2.2-10 MH tapped	1.75	4
6199-A	1.3-4.1 MH tapped	1.30	4	6330	45-215 MH adj. ferrite core inductor	2.60	4
6199-B	. $50-1.7 \mathrm{MH}$ adj. iron core inductor	1.25	4	6331	4-30 MH with series winding	3.05	4
6200	TV Antenna matching coil (Balun)	2.00	4	7803	2. +2 mfd 220 VAC filter condenser	4.95	21
6201	TV Antenna coupling transformer	2.75	4	7804	2. mid 220 VAC filter condenser	- 2.75	21
6202	TV Antenna matching coil (Balun)	2.00	4	7812	Teletype interference filter.....	5.00	20
6203	4.5 MC Miniature I.F. transformer.	2.85	5, 16	7813	AC-DC interference filter.. 9.75	7
*6203-PC	4.5 MC Input or Interstage trans....... 2.85	16	7814	Cash register interference filter	16.50	20
6204	4.5 MC Min. discriminator trans. -.. 3.40	5,16	7815	Appliance interference filter 9.25	7
*6204-PC	4.5 MC Discriminator trans..	3.40	16	7816	Capacity interference filter.	2.50	7
6205	4.5 MC Min. ratio detector trans.	3.40	5, 16	7817	Electric shaver filter	3.00	7
*6205-PC	4.5 MC Ratio Detector trans.	3.40	16	7817-1	Electric shaver filter	3.00	7
6206-PC	4.5 MC Ratio Det. trans. (GE-RTD-026).	4.50	16	7818	All-wave interference filter	- 9.25	7
6207-PC	4.5 MC Ratio Det. trans. (GE-RTD-025)	3.75	16	7819	5-ampere uni-filter........... 43.00	22
6208-PC	4.5 MC Ratio Det. trans. (GE-RTD-020)..	4.50	16	7820	10-ampere uni-filter 45.50	22
6210	Sync. stabilizer (ringing) coil		4	7821	20-ampere uni-filter	48.00	22
6211	Sync. stabilizer coil tapped...	2.25	4	*Printed	cuit I.F. transformers		

Cat. No.	Item		List Price	Page	Cat. No.	Item	List Price	Page
7822	30-ampere uni-filter.		50.50	22	7832	100-ampere filter choke	60.00	21
7825	2-ampere filter choke		2.00	21	7841	5-ampere industrial filter	60.00	22
D.7825	Dual 2-ampere filter choke..		4.00	21	7842	10-ampere industrial filter	62.50	22
7825-3	3 -ampere filter choke.		2.00	21	7843	20-ampere industrial filter..	65.00	22
D-7825-3	Dual 3-ampere filter choke		4.00	21	7844	$30-\mathrm{mpere}$ industrial filter..	67.50	22
7825-5	5 -ampere filter choke		2.00	21	7845	40-ampere industrial filter.	70.00	22
D-7825-5	Dual 5-ampere filter choke		4.00	21	7865	250 MA rectifier filter choke	2.50	20
7825-8	8 -ampere filter choke.		2.00	21	7867	500 MA rectifier filter choke.	2.75	20
D.7825-8	Dual 8 -ampere filter choke.		4.00	21	7868			
7826 D-7826	5-ampere filter choke Dual 5 -ampere filter choke		4.85 7.25	21	7870	1000 MA rectifier filter choke	3.25	22
7827	10-ampere filter choke		5.45	21	7871	10-ampere tower lighting choke......	8.50	22
D-7827	Dual 10-ampere filter choke.		8.50	21	7872	20-ampere tower lighting choke.......	9.70	22
7828	20-ampere filter choke..........		6.00	21	7875	High tension neon filter choke........	3.00	21
D.7828	Dual 20 -ampere filter choke.	.-... ...	9.70	21	7876	20 watt fluorescent filter choke.......	1.90	22
7829	30-ampere filter choke...........	6.60	21	7877	40 watt fluorescent filter choke.	1.90	22
D. 7829	Dual 30-ampere filter choke...		10.80	21	7878	80 watt fluorescent filter choke	1.90	22
7830	50-ampere filter choke..........		45.00	21	7879	160 watt fluorescent filter choke.	1.90	22
D.7830	Dual 50-ampere filter choke.....	75.00	21	7880	5 -ampere traffic signal filter.	6.50	7
7831	75-ampere filter choke....		55.00	21	7881	10-ampere traffic signal filter...........	7.50	7

The more than 1000 items shown in this catalog are backed up by our thirty-five years' experience in the radio and television business. All Miller products are guaranteed to perform to your satisfaction. Buy with confidence from your radio and TV parts distributor.

Merit to Miller Equivalent Coil \& Parts Catalog Numbers

MERIT	MILLER	MERIT	MILIER	MERIT	MILLER								
TV-100	6186	TV-150	6193	TV-231	4526	BC-344	13-PHI	BC-387	70-0sc	BC-505	660	BC-548	861
TV-101	6187	TV-151	1470	FM-250	1452	BC-345	$13-\mathrm{PH} 2$	BC-388	70-RF	BC-506	670	BC-549	4537
TV-102	6188	TV-152	6225	FM-251	1451	BC-346	13-PH6	BC-390	A-121-A	BC-507	680	BC-550	4537
TV-103	6189	TV-153	6225	FM-252	1453	BC-348	10-C1	BC-391	A-121-RF	BC-508	690	BC-560	4592
TV-104	6190	TV-154	1470-A	FM-253	1464	BC-349	10-C2	BC-392	A-121-C	BC-509	691	BC-561	4602
TV-105	6191	TV-160	6194	FM-254	1463	BC-350	12-H1	BC-394	71-OSC	BC-5 10	692	BC-562	4604
TV-106	6192	TV-161	6182	FM-255	1465	BC-351	12-H2	BC-395	5480-K	BC-511	693	BC-563	4606
TV-107	6185	TV-162	6183	FM-280	1474	BC-352	12-C1	BC-396	5480-H	BC-512	694	BC-566	4612
TV-108	1466	TV-163	6210	FM-281	1475	BC-353	12-C2	BC-397	5480-C	BC-515	751	(100)	(Bulk)
TV-109	1467	TV-166	6314	FM-282	1476	BC-354	12-H6	BC-398	5481-K	BC-516	752	5W-600	512-W1
TV-110	1468	TV-167	6194	BC-300	512-K1	BC-355	12-C6	BC-399	5481-H	BC-517	753	SW-601	512-W2
TV-111	6184	TV-170	6161	BC-301	512-K2	BC-356	$13-\mathrm{PCl}$	BC-400	5481-C	BC-518	754	SW-602	12-W1
TV-112	6171	TV-171	6162	BC-302	512-K3	BC-357	13-PC2	BC-410	42-A	BC-519	755	SW-603	12-W2
TV-113	6203	TV-172	6104	BC-303	512-K4	BC-358	10-C1	BC-411	42-RF	BC-520	756	SW-604	012-W1
TV-114	6204	TV-173	6103	BC-304	512-H1	BC-359	10-62	BC-412	43-A	BC-521	757	SW-605	012-W2
TV-115	6205	TV-180	6176	BC-305	512-H2	BC-360	112-K1	BC-413	43-RF	BC-522	758	SW-606	012-W3
TV-116	6249	TV-181	6177	BC-306	512-H3	BC-361	112-K2	BC-414	43-BP	BC-525	951	SW-607	012-W4
TV-117	6170	TV-182	6178	BC-307	512-H4	BC-362	112-K3	BC-415	44-A	BC-526	952	SW-620	B-121-A
TV-118	6171-A	TV-183	6179	BC-308	512-C1	BC-363	112-K4	BC-416	44-RF	BC-527	953	sW-621	B-121-RF
TV-119	1470	TV-184	6180	BC-309	512-C2	BC-364	112-H1	BC-417	44-BP	BC-528	954	sw-622	B-121-C
TV-124	1481	TV-185	6181	BC-310	512-C3	BC-365	112-H2	BC-430	512-K5	BC-529	955	sw-630	4528
TV-125	6230	TV-186	6172	BC-311	512-C4	BC-366	112-H3	BC-431	512-H5	BC-530	956	SW-631	4529
TV-126	6231	TV-187	6173	BC-312	512-W1	BC-367	112-H4	BC-432	512-C5	BC-531	957	MWC-1	6316
TV-127	6232	TV-188	6174	BC-313	512-W2	BC-368	112-C1	BC-433	512-Q5	BC-532	958	MWC-2	6318
TV-128	6234	TV-189	6175	BC-314	512-W3	BC-369	112-C2	BC-434	512-W5	BC-533	959	MWC-3	6319
TV-129	6233	TV-192	6152	BC-315	512-W4	BC-370	112-C3	BC-450	7815	BC. 534	960	MWC-4	6320
TV-130	6224	TV-193	6110	BC-330	612-K1	BC-371	112-C4	BC-451	7876	BC.535	961	MWC-5	6321
TV-131	6225	TV-194	6112	BC-331	612-K2	BC-372	112-H6	BC-452	7877	BC-537	5221	MWC-6	6322
TV-131	6226	TV-195	6153	BC-332	612-K3	BC-375	1212.C	BC-453	7878	BC-538	851	MWC-7	6196
TV-132	6221	TV-196	6120	BC-333	612-K4	BC-376	312-C6	BC-454	7879	BC-539	852	MWC-8	6198
TV-133	6223	TV-197	6154	BC-334	612-H1	BC-377	1462	BC-455	7818	BC-540	853	MWC-11	6314
TV-134	6222	TV-210	6167	BC-335	612-H2	BC-380	72-A	BC-460	522	BC-541	854	MWC-12	6315
TV-136	6245	TV-211	${ }^{6168}$	BC-336	612-H3	BC-381	72-OSC	BC-462	1462	BC-542	855	MWC-13	6324
TV-137	6246	TV-220	6163	BC-337	612-H4	BC-382	72-RF	BC-500	610	BC-543	856	MWC-14	6195
TV-138	6248	TV-221	6164	BC-338	612-C1	BC-383	73-A	BC-501	620	BC-544	857	MWC-15	6196-A
TV-141	6253	TV. 222	6165	BC-339	612-C2	BC-384	73-05C	BC-502	630	BC-545	858	MWC-16	6197
TV-142	6254	TV-223	6166	BC-340	612-C3	BC-385	73-RF	BC-503	640	BC-546	859	MWC-17	6199-A
TV-144	6261	TV-230	4525	BC-341	612-C4	BC-386	70-A	BC-504	650	BC-547	860	MWC-18	6199-B
TV-145	6262												

Automatic Mfg. Corp. (K.Tran.) to Miller Equivalent Coil Catalog Numbers

AUTOMATIC	MILLER										
BS-814M	$9 . \mathrm{Cl}$	ER-640J	1465-WB	1655-11	12-C1	2607-5	1465	4807-2	1463-PC	4944-6	6233-PC
B5-815M	9-C2	EXO-5526	2051	1655-14	12-H1	2622-1	6262	4845-2	6203-PC	4944-7	6234-PC
B5-993L	2031	ED-302226J	1464-WB	1744-4	6230	2622-3	6261	4855-6	13-PCI	5807-1	1464-PC
BS-994L	2032	NS-996M	2021	1744-4	6231	2645-1	6204	4855-14	$13-\mathrm{PHI}$	5807-5	1465-PC
B5-3201-34L	2041	1155-1	10-CI	1744-5	6232	2645-3	6205	4944-4	6230-PC	5845-1	6204-PC
CR302231F	6206-PC.	1500-1	13-W1	1744-6	6233	3021-65L	2042	4944-4	6231-PC	6855-4B	13-PH6
CR302232	6207-PC	1607-2	1463	1744-7	6234	3655-48	12-H6	4944-5	6232-PC	6855-11B	13-PC6
CR302233	6208-PC	1645-2	6203	2607-1	1464	3655-11B	12-66				

MEISSNER	MILI.ER	MEISSNER	MILLER								
14-1004	242-A	14-4034	5480-C	16-5782	612-C2	17-1034	1470	17-6753	512-C5	19-4251	6181
14-1005	242-RF	14-4242	5482-K	16-5784	612-C4	(unshielded)		17-7400	F612-C1	19-4400	6136
14-1010	241-A	14-4243	5482-C	16-6131	612-C2	17-1035	6170	17-7412	F612-C2	**19-4412	6136
14-1011	241-RF	14-6140	703-A	16-6133	512-C2	17-1043	6184	17-9373	522	19-4500	6174
14-1015	628-A	14-6417	1447	16-6600	590-K	17-1045	6262	19-1000	4602	19-4840	6156
14-1016	628-RF	14-6418	1448	16-6601	590-C	17-1047	6261	19-1001	4604	19-4950	6157
14-1017	628-C	14-6419	1449	16-6602	590-KT	17-1062	6171 -A	19-1002	4606	19-5100	6157
14-1022	43-A	14-6590	5480-H	16-6603	590-CT	17-1063	6171	19-1003	4608	19-5102	4670
14-1023	43-RF	14-6592	5480-J	16-6649	112-KI	17-1064	6171-A	19-1004	4610	19-5580	751
14-1026	72-A	14-6850	357	16-6650	112-K2	17-1066	6249	19-1005	4612	19-5581	752
14-1027	72-RF	14-6852	356	16-6651	112-K4	17-1071	1466	19-1006	4624	19-5582	753
14-1028	72-OSC	14-6854	355	16-6652	312-H1	17-3400	1470	19-1007	4590	19-6022	4515
14-1033	5481-C	14-6856	354	16-6653	312-H2	17-3401	1469	19-1020	6171	19-6832	951
14-1040	71-OSC	14-6865	365	16-6654	312-H4	17-3402	1470	19-1021	6171	19-6833	952
14-1041	B-5495-A	14-7000	6300	16-6658	312-Cl	17-3412	1470	19-1023	6171-A	19-6834	953
14-1042	B-5495-RF	14-7001	2002	16-6659	312-C2	17-3484	145\%	19-1575	6210	19-6837	954
14-1043	B-5495-C	14-7413	73-A	16-6660	312-C4	17-3486	913-CD	19-1576	6319	19.6840	956
14-1044	C-5495-A	14-7476	3997-A	16-6661	1212-C	17-3487	1453	19-1577	6324	19.6849	961
14-1045	C-5495-RF	14-7478	3997-RF	16-6662	412-C2	17-3488	1453	19-1900	756	19-6854	853
14-1046	C-5495-C	14-7480	3997-C	16-6663	412-C4	17-3489	6203-PC	19-1920	4563	19-6860	856
14-1053	71-OSC	14-7558	73-RF	16-6665	1451	17-3490	6204-PC	19-1921	4564	19-6880	6158
14-1055	A-5496-C	14-7560	73-OSC	16-6666	112-C1	17-3491	1464-PC	19-1922	4565	19-6881	6159
14-1056	A-5495-A	14-8418	352	16-6667	112-C4	17-3492	1465-PC	19-1923	4566	19-6882	6160
14-1057	A-5495-RF	14-9003	2000	16-6668	12-C7	17-3493	1468	19-1986	610	19-6883	1050
14-1058	A-5495-C	14-9004	2023	16-6669	12-C8	17-3494	1464	19-1987	615	19-6884	1051
14-1060	71-OSC	14-9005	2005	16-6670	312-C6	17.3495	6203	19-1988	620	19-6885	1052
14-1061	B-5495-A	14-9006	2021	16-6675	1462	17-3496	6204	19-1989	622	19-6886	1053
14-1062	B-5495-RF	14-9010	2022	16-6678	12-C9	17-3497	6205	19-1990	630	19.6887	1054
14-1063	B-5496-C	14-9013	2003	16-6678	12-C10	17-3498	1465	19-1991	691	19-6888	1055
14-1064	C-5495-A	14-9014	2022	16-6679	312-H6	17-3499	6205-PC	19-1994	640	19-6889	1056
14-1065	C-5495-RF	14-9015	2007	16-6752	12-H2	17-4500	6221	19-2330	692	19-6890	1057
14-1066	C-5496-C	14-9016	2020	16-6754	12-H6	17-4501	6223	19-2400	4666	19-6891	1058
14-1067	626-A	14-9017	2001	16-6756	12-H2	17-4502	6222	19-2709	694	19-6892	1059
14-1068	626-RF	14-9019	2004	16-6756	13-PH1	17-4503	6221	19-3001	6175	19-6893	1060
14-1069	626-C	15-1003	6168	16-6758	12-C	17-4504	6233	19-3018	4533	19-6894	1061
14-1070	3999-C	15-1072	6167	16-6760	1312-W1	17-4505	6215	19-3019	4533	19-7047	4517
14-1071	70-A	15-1073	6161	16-6761	1312-W4	17-4507	6187	19-3036	6176	19-7100	4519
14-1072	70-RF	15-1074	6162	16-6766	12-C6	17-4508	6251	19-3075	6172	19-8770	670
14-1073	69-OSC	15-1082	6104	16-6770	12-C6	17-4509	6218	19-3093	6177	20-1004	1470
14-1074	70-OSC	15-2866	$816-\times 1$	16-6780	13-PC1	17-4512	6186	19-3100	6112	20-1005	1480
14-1075	70-A	15-2888	817-H	16-6800	10-C1	17-4514	None	19-3125	6178	20-1006	6171
14-1076	70-RF	15-7515	7815	16-6801	10-C2	17-4518	6216	19-3160	6120	20-1007	1480
14-1077	70-Osc	15-7520	EL-60	16-8091	612-W2	17-4519	6217	19-3180	6179	20-1021	6193
*14-1407	X-5495-A	15-8479	812-BC3	16-8099	612-W4	17-4520	6218	19-3204	4525	20-1024	6196
* 14-1408	X-5495-RF	15-8480	812-BC2	16-9002	2041	17-4521	6234	19-3210	4526	20-1025	6315
*14-1409	X-5496-C	15-8481	812-BC1	16-9003	2031	17-4522	6220	19-3247	693	20-1026	6315
*14-1410	A-5495-A	16-3445	1466	16-9004	2032	17-4523	6224	19-3250	6181	20-1027	6313
*14-1411	A-5495-RF	16-3471	1451	16-9014	2042	17-4524	6224	19-3300	6155	20-1028	6316
*14-1412	A-5496-C	16-3472	1451	17-1001	6186	17-4531	6216	19-3500	6174	20-1029	6314
*14-1413	B-5495-A	16-3487	1463	17-1002	6187	17-4532	6217	19-3660	6148	20-1031	6198
*14-1414	B-5495-RF	16-3490	1463-PC	17-1003	6188	17-4533	6218	19-4036	6176	20-1032	6320
* 14 -1415	B-5496-C	16-3731	512-K3	17-1004	6189	17-4534	6220	19-4060	6110	20-1033	6321
*14-1416	C-5495-A	16-3736	512-C3	17-1005	6245	17-4535	6221	19-4073	6172	20-1034	6319
*14-1417	C.5495-RF	16-5700	512-K1	17-1006	6246	17-4536	6222	19-4093	6177	20-1035	6316
*14-1418	C-5496-C	16-5702	512-K4	17-1011	6190	17-5000	6234	19-4120	6153	20-1049	6225
*14-1419	D-5495-A	16-5704	512-H2	17-1012	6191	17-5001	6231	19-4121	6153	20-1400	6194
* 14 -1420	D-5495-RF	16-5706	512-H4	17-1013	6192	17-5002	6232	19-4122	6178	20-1401	6182
*14-1421	D-5496-C	16-5712	512-C1	17-1020	6185	17-5003	6233	19-4125	6178	20-1402	6183
14-2436	44-A	16-5714	512-C4	17-1021	1466	17-5004	6234	19-4160	6120	21-9003	2110
14-2437	44-RF	16-5728	612-K2	17-1023	1467	17-5010	6230-PC	19-4180	6179	21-9005	2112
14-2860	3997 -A	16-5730	612-K4	17-1026	1470-A	17.5011	6231-PC	19-4200	6154	21-9006	2111
14-2862	3999-C	16-5740	612-C2	17-1031	1481	17-5012	6232-PC	19-4201	6154	22-7000	160-D
14-3732	5480-K	16-5742	$612-C 4$	17-1033	1468	17-5013	6233-PC	19-4215	5221	22-7001	160-B
- PParallel	5 8.2K Resis					17-5014	6234-PC	19-4250	6173	22-7008	160-. ${ }^{\text {a }}$

*These coils are electrical equivalents but ours are supplied unshielded. May be shielded by using our \#5-32 shield. While some of the Miller items listed here are not in the \#59 Catalog, they are in stock for immediate delivery.

Thordarson to Miller Equivalent Coil Catalog Numbers

THORDARSON	MILLER	THORDARSON	MILLER	THORDARSON	MILLER	THORDAISSON	MILLER	THORDARSON	MILLER	THORDARSON	MILLER
HS-1	6194	HS-6	6324	WC-13	6325	WC-18	6314	WC-23	6313	WC-28	6329
HS-2	6182	HS-9	6183-A	WC-14	6315	WC-19	6319	WC-24	6327	WC-29	6331
HS-3	6183	WC-10	6196	WC-15	6198	WC-20	6316	WC-25	6313	WC-30	6330
HS-4	6315	WC-11	6196	WC-16	6197	WC-21	6326	WC-26	6328	WC. 31	6324
HS-5	6319	WC-12	6313	WC-17	6199-A	WC-22	6322	WC-27	6317		

A Miller Technician's TV Coil Cross Reference Guide is available upon request.
Miller Coils are listed in Howard Sams Photofacts and Radio's Master Catalogue.
J. W. MILLER COMPANY

Manufacturers of
The most complete line of Industrial Electronic, Radio, and Television R.F. Coils

		cume			12

73					
			82		
				Due to lack of space frequency coupling th anterna and R.F. coil coils incorporoting h are so equipped.	have not shown high on our 2 and 3 band chemotics, although all impedance primaries

Abstract

 conteg with the mat organitetion to is oble to give personal coftemphito yout Fip of Mi er Products in honesty and bumess miegaiy asure you of fats and courteav zreaty Ahtays fial lreate akeany problems ooncernime whier Frodués divento your Distributal $\$ 7$ oufYepresennaive, voui Radin Parte Distrib? Urormaintins theypolicies of the Mribr Company, Ou wallatinys teceive prompt qudbeficiedtervice by demith with yom Disribulos

1~W W MIILER COMDAN Y

> weapris agenciest the atuas greanch Mret New Yorke $13,+1,2 Y^{2}$

> W0.1. $8=2730$
pactory
ric Soud Mele orsinguts aseaty 465 NoCd 32429

FixNo tex

CWNDIAN GETHEL पI MIME
W-FWarehoase Stock
Aher wis cen rnate ud
30 chingeld lye
revince 20 onduro comnta

