IMPORTANT: READ THIS FIRST

The information in this book is not to be used to exceed F.C.C. specifications, in any case, as applied to power, modulation, frequency spectrum, etc. It is illegal to do this to any CLASS D RADIO.

This book is a factual report of gathered information, and as such is intended for use on radios for EXPORT ONLY.

If you are not familiar with electronics, it is better to check for advice with your local electronics or CB center, as to restrictions, etc., concerning your radio.

More information, on other units will be forthcoming in future issues.
This book will not be found at a book store, but can be obtained through your local CB Dealer or Distributor, or direct from Selman Enterprises.

Secret CB ${ }^{\text {² }}$
Volume Twenty-Five
Published July 1986

(c) Copyright 1986, Selman Enterprises, Inc.

All rights reserved. No part of this book shall be reproduced. stored in a retrieval system, or tranamitted by any means, alectronic, mechanical. pholocopying, recording. or Otherwise, without written permission trom the publisher. No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions. Neither is any llability assumed for damages resulting from the use of the information contained herein.

PRINTED IN THE UNITED STATES OF AMERICA

Address any and all inquiries to:

Selman Enterprises, Inc.
P.O. Box 8189

Corpus Christi, Texas 78412
(512) 853-2935

SECRET CB Wishes to gratefully acknowledge the following people for their help and contributions toward getting Volume 25 in print. Their encouragement and contribution of material has been invaluable,

INTRODUCTION

This is the year of CELEBRATIONS! The Statue of Liberty's Centennial Celebration, Texas Sesquicentennial Celebration, Selman Enterprises loth Anniversary Celebration, SECRET CB's 9th Anniversary and 25th Volume Celebration, and FREEDOM.

For those who are not aware - there is a conversion for the TC9109 Chip. Good replacements for the 2 SCl 307 are 2SC2312 and MRF475.

Card-Kit Electronics has come up with an exciting new kit for the New Cobra Plus units, the Cobra LTD units, and Sister units. By 'Sister units' we mean a radio with uniden board which uses a separate VCO circuit and FET's for mixing. It is called the LTD KIT. Selman Enterprises Catalog \#136LTD. Complete information and installation instructions in this volume.

We did not put an index in this volume. Please refer to Volume 24 for the latest index. An updated index will be in Volume 26.

We can be proud we are FREE. Free to express ourselves, free to write, free to read, free to experiment, and much, much more.

GOD BLESS AMERICA!

TABLE OF CONTENTS

PAGE
ACKNOWLEDGEMENTS 1
INTRODUCTION 2
TABLE OF CONTENTS 3
EDITOR's COMMENTS 4
RANGER AR-3300 DATA SHEET 4
RANGER AR-3300 ALIGNMENT PROCEDURE 5-6
RANGER AR-3300 PC BOARD LAYOUT 7
RANGER AR-3300 TECHNICAL BULLETIN'S 8-11
KICKER 500 LINEAR AMPLIFIER SCHEMATIC 12
UHIC-005 VCO CHIP WIDEBANDING MODIFICATION UPDATE 13-14
PALOMAR FC-40 POWER SUPPLY SCHEMATIC 14
PALOMAR FC-40 MAIN PCB SCHEMATIC 15
COBRA 40X 'CARD-KIT A' INSTALLATION INSTRUCTIONS 16
CORRECTION ON KENWOOD 430 IN VOLUME 18, PAGE 25 16
UNIDEN PC-122 - SECRET CB KIT 非146 INSTALLATION INST 17
CORRECTION FOR GE 3-5801A IN VOLUME 16, PAGE 33 17
TRISTAR 240 SCHEMATIC 18
TRISTAR 240 TUNE UP, CRYSTAL BOARD SCH. \& BLOCK DIAGRAM 19
KRACO KCB4007 'CARD KIT A' INSTALLATION INSTRUCTIONS 20
PALOMAR TX-75, TX-100 LINEAR AMPLIFIER SCHEMATIC 20
SCANNER TRICKS 21-26
TECH TIPS 26-27
SQUEAL CURES 27
GALAXY 2100 DE-BEEP AND MISC. INFORMATION 28
PALOMAR 300A LINEAR AMPLIFIER SCHEMATIC 29
THINGS TO KNOW ABOUT AN AMPLIFIER 30
DENTRON - CLIPPERTON MDL. AMP. POWER SUPPLY SCHEMATIC 31
DENTRON - CLIPPERTON MDL. LINEAR AMP. SCHEMATIC 32
DOSY MDL. TR-1000 METER SCHEMATIC 33
PALOMAR DC3O POWER SUPPLY SCHEMATIC 33
VC-100 SCHEMATIC 34-35
NEW PRODUCT RELEASE "LTD KIT" BY CARD-KIT 36-38
"LTD KIT" LOW CHANNEL INSTALLATION INSTRUCTIONS FOR: COBRA 21LTD/GTL, AR/AX-44, PC-66, \& SISTER UNITS.... 39-41
COBRA 25LTD/GTL, AR/AX-711, \& SISTER UNITS 42-44
COBRA 29LTD/GTL \& SISTER UNITS 45-47
BLOCK DIAGRAMS FOR LOW \& UPPER CHANNELS 48-51
"LTD KIT" UPPER CHANNEL INSTALLATION INSTRUCTIONS FOR: COBRA 21LTD/GTL, AR/AX-44, PC-66, \& SISTER UNITS 52-54
COBRA 25LTD/GTL, AR/AX-711, \& SISTER UNITS 55-57
COBRA 29LTD/GTL \& SISTER UNITS 58-60
"LTD KIT" LOW CHANNEL INSTALLATION INSTRUCTIONS FOR: COBRA 21/25 PLUS UNITS AND SISTER UNITS 61-63
"LTD KIT" HIGH CHANNEL INSTALLATION INSTRUCTIONS FOR: COBRA 21/25 PLUS UNITS AND SISTER UNITS 64-66
"LTD KIT" INSTALLATION INSTRUCTIONS FOR COBRA 29 PLUS 66
BLOCK DIAGRAMS FOR PLUS UNITS 67-68

FIMLIMI A company that is wlling to work with SCB in providing informtion. the new RANGKR AR3300 (Specs. below)s vory good units comes with schometio of min PCB. Mcroprocessor schometio/front panel 18 not given out for a very good reason (send back to factory as unit comes with - Ir. Marranty). This is a dofinito "work-with-you-outrit". not one of these "gotohe Sucker" compents.

As most of you know Dynescen Corporation hes now line of oplue" sorios on the markot. Soven (7) Anciont Mary mobiles with up/dows push buttons for ohannel celoction SCB has the dealer proso shoets but no other informtion has been reoelved. (If you got thom. wo noed......)

FLEAR CHANNEL CORPORATION

PREUMIMAAY DATA EMEET

The AR3300 it en MF all mode inenscolver ineorporking ing halcal microproceacer lechnology the itaneoplait operates continuousty from 20.000028 .8089 MHz . The iranecalves oparales on 13aVDC ciliner moold of ben operalion with prope powe mooly

Finguancy aabellon aniared through ellhar the momentary
uniches becaled betow the ine avency deplay or by momalic acanning. The scannee wim sop whenever a slgna appears inat is atrong enough to ooen ithe squilch Fimguancy resolulion in seleciable in $100 \mathrm{~Hz} \quad 1000 \mathrm{Mz}$. $10,000 \mathrm{Mz}$ or $100,000 \mathrm{~Hz}$ aloos

Uo to tive presal frequanclea may
to stoned in the compuate memon

The AR3300 cen De programmed to alll lienecolve fienemm on one Irmuency and recalw on anolher this is eccomplisined by progrent ming the shill comtrols. Any iwo in quencies mithin is operating fre quency range may bu used. The fo quancy despay will autometicall Thow both liequencies.

Coneral

Fresuency hange: 230000200000°
modes:
sopater
Microenona Power Antoma IMP Sas:

AM, FM, LSO, LBA, nd CW 0 Dynemic 000 D rowms 13EV DC 50. Mox W107 x 08Timm 2-30× 794×11

Aecotrer

Oul Comertion sipormerroorme
semanuly
sabectaly

AM IuV 01008 8N MM InV O 1008 BN 880 OSN O 1008 UN man M ORMz Cal Down
 Down
SO 2.2KMi acol Down AF 100. Down AF - ∞ Walls 10\% at to. 805 Mry and 455 KMz

Aucio ormue:
IF Fiequeney

Tranemiter	
858 Oripue:	2\% Warli ne
858. Ceribr supersation:	- Codi
Unwanled SSa Supprasion	-5008
Mamonte Euporeation:	- 8000
AMFM Oulput:	4 Walis
Owalton:	-19xMz
Modulesion Capablily	6\%
Marmonic supareseion:	- 20018
IMD.	- 3008
ALC Muso Lene Contron	2008

压cieabchannel conoomaicion
 RANGER AR-3300

HF Mobile All.Mode Amateur Transceiver

AR-3300 ALIGNMENT PRDCEDURE

SYNTHESIZER

vCD

```
1. Set the radio to 29.9000MHz FM mode
2. Connect DVM to TP-1 and adjust T13 for 3.8 UDC.
3. Set the radio to 28.0000MHz. (Clarifier at mid-point)
4. Connect oscilloscope to TP-2.
    a. Adjust UR3 for 17.305MHz in FM mode.
    b. Adjust VRI for 17.3075MHz in USB mode.
    c. Adjust UR2 for 17.3025MHz in LSE mode.
```

5. Adjust Ti4 for output frequency of 28.0000 MHz .
6. Connect frequency counter to TP-3 (high impedance probe).
-. Adjust $T 16$ for 10.6925 MHz in USB receive mode.
b. Adjust $T 17$ for 10.6975 MHz in LSB receive mode.
c. Adjust T 85 for 10.6943 MHz in CW receive mode.

RECEIVER

IF (10.695MHz)

1. Set radio to AM mode. Apply a 10.695 MHz (AM modulated at 60%) signal from signal generator through a loop antenna to the area of Q2. (Output of signal generator should be about 12 db Sinad) 2. Adjust T4, TS, TB, T9, and T1O for maximum AF output. (NOTE\& any excessive signal generator output will activate AGC and cause a false alignment.)
2. Set the radio to CW mode, Signal generator to o\% modulation. Adjust $T 6$ and $T 7$ for maximum audio output.

NOISE ELANKER

1. Set radio as in IF alignment. Adjust T400 and T401 for maximum audio output.

FM QUADRATURE

```
1. Set the radio to FM mode. Apply a 10.695MHz (FM deviation at
IKHz) signal from signal generator through a loop antenna to the
area of D2. (Output of signal generator should be about 12db
Sinad).
2. Adjust Tl日 for minimum Sinad.
```


AR-3300

HF Mobile All-Mode Amateur Transceiver

ALIGNMENT PRDCEDURE

RECEIVER

FM MODE

1. Set radio to 28.0000MHz FM mode.
2. Adjust T19, T20, T21 and T22 for maximum RF output power.
3. Balance RF output between lowest and highest frequency with L6, L7 and L9.
4. Apply $1,000 \mathrm{~Hz}$ tone to micropbone and adjust UR4 for a maximum deviation of 1.5KHz.

SSB MODE

1. Set the radio to 2B.0000MHz USB mode.
2. Set "MikE GAIN" to minimum and adjust UR9 for minimum RF output.
3. Set "MIKE GAIN" to maximum and apply $1,000 \mathrm{~Hz}$ tone to
microphone. Adjust VR15 for maximum RF power output then back off until power drops slightly (about 2 watts).

AM MODE

1. Set radio to 28.0000 MHz AM mode:
2. Adjust UR16 for 7 watts output power.
3. Apply $1,000 \mathrm{~Hz}$ tone to microphone. Adjust VR17 for 95%
modulation.

RF OUTPUT METER

1. Set radio to 28.OOOOMHz FM mode.
2. Adjust VRIl so that two LED bars are lit with 7 watts output power.

TRANSMITTER

HIGH FREQUENCY

1. Set the radio to 28.0000 MHz on $A M$ mode.
2. Apply 28.0000 MHz (AM modulated at 60%) signal to antenna terminal.
3. Adjust T1, T2, and T3 for maximum AF output. Putput of signal generator should be about l2db Sinadl.

IF NOISE

1. Set the radio to LSB mode and disconnect any input to antenna termínal.
2. Adjust R39 for an AF output of 0.2 VRMS with "AF GAIN" at
maxímum.

5 METER

1. Set the radio to 28.0000 MHz on FM mode.
2. Apply a 28.0000 MHz signal to antenna terminal at 50db.
3. Adjust UR7 so that four LED bars are lit.
4. Set the radio to USB mode.
5. Adjust URB so that four LED bars are lit.

AR. 3300

PCB LAYOUT

12

CIDEAR ChANNEL CORPORATION

AR-3300 TECHNICAL BULLETIN *1

APR 4, 1986

SYMPTOMz First word clipped off.
CAUSEs Modulation amplifier slow turning on (. 25 to .5 sec.)
REMEDY: Change R139 to 4.7 Kohm. Move the cathode of D61 to the base of Q43. Add 220 mfd a $16 \mathrm{~V}+$ side to anode D61, - side to ground. (Diode and cap should be placed on bottom (solder side) of PCB for best results.

NOTES \quad This will completely eliminate this problem. All radios received for service should be modified with this change. This change incorporated at the factory beginning with serialw86020801

see page 9 FOR PARTS LOCATIONS.

AR-3300 TECHNICAL BULLETIN *3
APR. 23, 1986

SYMPTOMS: Warble (frequency shift) on SSB. Squeal (audio oscillation) on AM.

CAUSE: Ground loop and by-pass problems on PCB.
REMEDY: Connect open in ground plane on PCB near audio ICE (see page 2, location A). Connect a .Ol capacitor from the spot where ground plane is connected to chassis.

Tighten screws that hold PCB to chassis.
Add by-pass capacitor (.01) at location B (see page 2 , location B).

Scrape the inside of covers by mounting serews to improve connection to chassis when covers are on.

Install by-pass capacitors (.01) between mounting serews of Q2B, Q29, Q30 and the RF shield around the power amplifier area. Install by-pass capacitor from the RF shield and the ground lug of the S0-239 antenna connector.

NOTES: This will completely eliminate this problem. All radios received for service should be modified with this change.

[^0]

TECHNICAL BULLETIN *3

WH CIEAR CHANNEL

To turn off the noise-blanker cut the trace marked below. A SPST switch can be installed at the cut for a control.

1smear Am. Sohernta

UPDATE: WIDEBANDING MODIFICATION UAIC-005 VCO O:DP
 by J.S.

-This modification does works (Roforence SCB \{24, Pg. 26); but it is dofinitoly a hit or ades proposition" ...Bditor - "I know as messed up two VCo ohips gself \$1\$\$'. I sent the chips to a person who works in this area and one of these wes avcceasfully modified.

Bolow is how it was done. BOTE: The CT-1 diode is available from Solman Entorprises in rory lindtod quantitios.

THTS MODIPICATION RUQUDRES DER RIGHT TOONS AND MUCEO PATHEYGEIII

The UHIC-005 is a thick IIIm I.C. Gold cireuit pathe are silksoreoned on a coramic substrate. These pathe are less than .001" thick. Microniniature oomponents are bonded onto the substrato with conductive opary. Those components can be romoved and changeds IF YOU KNOW WBAT YOO'RE DOIV. Otherwise, you'll ond up with some very expensive junk.

If you want to try thia modification yourself, get the followng tools
aid parts together: 1. A flature to hold the UHIC-005 seourely.
2. A good quality microscope, or a high power jowelar's ayopiece.
3. A set of jowler's files or a Dremel tool with a $1 / 32^{\circ}$ bell and mill.
4. 腑解 ilver content 2-part conductive opoxy. (Ablestick 88-1, or equivalent).
5. UHIC-005 VCO and CT-1 diode.

PROCTDURR
Before starting, remober that if you want to do this modification sucesafully, you MOST EXRPCISES EXTRENR PATIENCE. After you'v done 2 or 3 unfts, it will be easior, but start slow...... A word to the wso.....

1. Place VCO chip in IIxtare (number side down) and loosto veractor diode. Soe SCB Vol. 24, Pg. 26 for all drawings as to location.

VERI VERY CAREFTMLY, use the jovelor's flles to f1le/scrape/remove the opoxy coating from around the diode. Be extromis caroful not to cut into the coramic substrato an it is very easy to sevor a circuit path and render the defice unusesble.

Eromine the diode, and CAREPULII remove as much of the conductive oposy from around the ende of the diode as posaiblo.

Now com the herd partl The diode must be removed by fracturing the oposy bond between the substrate and the diode. I usumlly use a small set of pliers and break it off wh a slight rocking motion. It can also be pried up with an lacto or scribe. Jse whatover mothod foels most oomfortable to you. The diode is expendable, and the bottom line is to get it out of there without causing any other damage. GOOD LDCXI

Once the diode is removed, use the flles or an Kacto to sorape the gold mounting pads clean.

THE CV TEAM

WiDAE: URTC-005 e... (Cont.)

2. Bond and out the leads on the roplacement diode to pit the mountins pads. Dee a tooth piok to apply a 11 drop of oposs to eech pad and put the diode in plaoe (obeorve polarity). Uso tho toothpick to mako cortaln thet the opox makes good contact with the diode leads.

Place the ohip and fixture in a preheated oven (150 degrees F.) for about an how. Let cool and test.

If enit teste geod, cover now diode with a two-part hard opoxy or RTV as anistwe berpier.

Raingtall modified UHIC-005 in PC Board, and enjoy................

PNLOMR PC-40
MAN PCB SCHEMATIC

1. Dnsolder Blue wre from Pin 20 of IC202.
2. Ro-solder Blue wire to torminal P on sultoh, and Bank terminal on opox pak.
3. Add a 4.7 ohm reaistor from P1n 20 of IC202 to termdnel 0 on sultob.
4. Remove C320 from oontacting Pin 4 of IC203.
5. Roplace C320 to Pin 5 of IC203.
6. Install 4ppi from Pin 4 of IC203. to tarnimal I on axitch.
7. Wire from Pin 5 of IC203 to terminal J on sulteh.
8. Wre from tomdinal I of switch to Iollow tormal on opory pak.
9. Wro from tornimal s of onttoh to D.C. ground.
10. Wiro from pin 28 of IC202 to Rod torminal on opoxs pak. SET: DRALING BRION........

Rotrone W / RX oirouitry for fill coverage.....

```
***************************************************************
    CORRECTION ON KENWOOD 430 IN VOLUME 18, PAGE 25:
        DO NOT REMOVE J-10, JUST CLIP WIRES 1 and 2, LEAVE #3
    WIRE AS IS.
```

Dee the parts layout an page 20 of Vol. 24 as a guide if noeded.

1. Isolate Pin 10 by outting foll trace on bottom side of PCB.
2. Solder the Brown wire to Ground - Pin 21.
3. Solder the Rod wire to SVDC. - Pin 11.
4. Solder the Orange wire to Pin 14.
5. Solder the Yollow ware to Pin 10.
6. Solder the Greon wire to the other side of the foll trace that mas 1solated from Pin 10.
7. Ronve C67 (2PF) and save, install the IPF capecitor thet comes in kit.
8. Romove C66 (5PF) and roplace with the $2 P F$ removed at C67 origimally.
9. Change R106 (100 ohn) to a 47 ohm, this is provided in kit.

Alimeont:

1. With owltch in center position, check for regular $1-40$ operation.
2. Siftch in Down position, adjust the tripler (L38) for 27.285 on ch. 1.
3. Sultch in UP position, check for $27.605-28.045 \mathrm{Nis}$. The VCO (LI3) may have to be adjustod silghtir.

NON: The tuning on tripler L38 is very extical, but with a little pationce can be adjusted for rall range.
"Small/Compact Great for the tight installation. 18w on SSB, with TW AM - owing to 22W. So far unit has performod flawloselys" R.S.

Ed. Notes For further modificetion of unit (silde) and oomploto line-up proceedure: see SCB Vol. 24, pages 19-22.

CORRECTION FOR VOLUME 16, PAGE 33 - M58472P PLL CHIP:
\therefore Red-source 4, or Emitter (not Collector) of Q601.
This was a correction that had to be made when modifying a GE 3-5801A. Source also found that Sams had made a mistake in CB144 by reversing Emitter \& Collector. When he hooked red wire to Emitter everything worked good.

This is anothor EPPORT unit.. A DELUXE version, with frequenoy range of $26.515-27.85901$. Study the Dolta Tone circultry Fery carefully and will see that it an be modified to tane both w/RI
 Mdj, RV5-DE Mtr, RVK-AWI. RX-T1, TR, T13. T3, TH, and T5. EX-TR. T9, and THO. Inerease C220 for less noise. Rl06 is the AYC dimable if neoded. This unit hee a $10 W / 3 A$ RF Pinel. C22 wey be doubled up for better rejection.

The prosent oryetele: $21.84413 \mathrm{~s}=27.425-27.855$

$$
\begin{aligned}
& 21.391 \text { Nis }=26.965-27.405 \\
& 20.94 \mathrm{NHE}=26.515-26.955
\end{aligned}
$$

Overall..... is an excellent unit for someone that is looking for an "Ancient Mary" rige.

CRYSTAL BOARD SCHEMATIC

Kraco XCBH007: "Card KAtan" Installetion by T.S.

1. Renov Orange wire fron Pin 20 of ICP131, conneot to tominal Q of suitch.
2. Add 4.7 ohw resistor from Pin 20 to torminal P of awitoh. Add enother wire fron P to Blank torminal on opony pak.
3. Remove oapecitor off Pin 4 of TA7310P I.C..
4. Add 47pl cepacitor from Pin 4 to toratnal I on switoh.
5. Wire from where capacitor was soldered opposito Pin 4 TIT310P to teridnal Jo.
6. Wre from tormelel I to Iollow on opax pak.
7. Wire from Pin 18 ICT131 to Red on opox pak.

Rotune $\mathrm{W} / \mathrm{R}^{2}$ oirouitry...
(NOTH: coils in RF TS section may be replaced with tuneable coils for additional gain in output power.)

PALOMAR TLWTD. TVI00

IINTAR AMPLIFD.R ECBT:MATIC

REGENCY ACT-16K: Prequency Limits Romovil

```
1. Touch (Fun
2. Touch "9"
3. Touch "CL"
4. This removes Prequency limits.
```

Frequency Lisits Re-entered

1. Touch "Man
2. Touch "9"
3. Touch "."
4. Frequency linat back in.

BEARCAT 220: OUT OF BARD SEARCH - All 3 bands......
50-118mis Range

1. Kanuaily seloct Channel 2. Entor "50.000"
2. Solect chamnel 1 in menual mode.
3. Enter " 50.000^{\prime} and press "Limit".
4. Stop to channel 2, and ontor ${ }^{1118.000}$ and press marit".
5. Press "Soarch". The unit will dieplay "Error".
6. Press "Lind $\mathrm{t}^{\text {" }}$ again.
7. Press "Soarch".

Onit will now be searching from $50-118$ inis.
Press "Scan" to resum normal functions.
136-144nge Range

1. Manually seloot Channel 2. Entor ${ }^{\text {m }} 136.000^{\text {m. }}$
2. Select Chamel 1 in manual mode.
3. Enter ${ }^{\text {m }} 136.000^{\text {m and }}$ aness "Limit".
4. Stop to Channel 2 and ontor "144.000" and press "Limit".
5. Press "Search". The unit will display "Error".
6. Press "Linitm again.
7. Press "Search".

Onit will now be searching from 136-144Mise.
Press "Soan" to resume normal functions.
174-420. 50. Rence

1. Manually select Channel 2. Enter "174.000".
2. Soloct Channel 1 in manual mode.
3. Enter m $174,000 \mathrm{~m}$ and press mLimit.
4. Stop to Channel 2 and onter $4420.500^{\prime \prime}$ and press "Limit".
5. Press "Search". The unit will dieplay "Trror".
6. Press "Limit" arain.
7. Press "Search".

Onit will now be searching from 274-420. 5Mis. Press "Scan" to resume nomal functions.

SCANRMR RRICKS.......(Cont.).......
ERARCAT 220: STORING 'ACTIVE' OUT OF BARID PRDQUENCDES.....
Although you can tore and monitor these out of band frequencies, we have been unable to get the unit to include them in $1 t^{\circ}$ s listoning while scanning.
Onoe you've entered the searoh lindts, jou can go to "Soan" and then back to "Manual" and stop to any channel without wiping out yous search data. So before jou start ans serious searching, go to "Scan", thon back to Manual". Manuily stop to the channel you wll want for your new found frequenoy. (he w1ll use Chamel 20 for reforenoe, assum wo have stopped to Channel 20 and the searoh startod.)
Lot's eay the unit has stopped on 140.995 M .
Prese "en to enter the new found frequency into Channel
20. As soon as " E^{ω} is pushed, the unit will resume soarching. This can be done to any channel. Aftor putting a frequency in channol 20, jou cortainly don't want to put another one in on top of $1 t$. So so to "Sean". then MManual" and stop to jour neat solected channel. Press mearch again and ropeat the above process for the new channel when another aotive frequency is found.
Now to liston to those new found frequencies, manily stop unit to the channel you wish to monitor. the unit wll display merror". Prese "iv, it will now be displaying the frequency you saved and will 11ston to the transmissions on that frequency. Iou must repest this process each time jou wish to monitor an out of band frequenoy jou ${ }^{\circ}$ re stored.

ERARCAT 220: DICREASTOD SCAN DELAY.....

If jou own a BC220, jou know the frustration of trying to liston to an exciting conversation. You hear one station transmit/unkey and malmost" 1 second later the scamer takes offl Iou've rissed the answer!
The selective scan delay in the BC220 is an internal fanction of the meroprocessor. What this means is that you can't just change a capacitor and longthen the delay. Now for the solution to this problem.
BOL, there is a drawback - your 'Priority' foature is useless. When it jump back to check the priority ohannel it atays there the length of the delay. The great feature of this modifioation is that it can be used with and whout the selective scan delay foature of the BC220.

For startors, Bearcat's IC2 labeled 'B531' on the scherntic, and SC8780P, BR841 in the parts 11st appears to be nothing wore than an MC3357P. So with this in mind, wo can proceed to our modification.

1. Refor to Mr. B. Loonto RTls and 015. (RT4 1s cominn from pin 13 of IC2. Scan Control.)
grarcat 220: INCREASED SCAN DELAY...(Cont.)...
2. Rofor to FM_{R}. A. This is the circuit we wll be constructing.
3. Refor to Mg. B., and locato R. Conneot the emftter of a 2 N 3904 to the case of T , with transistor package leaning towarde Ql5.
4. Connect 4.7K resistor to C60 side of R74. Hereafter reforred to as "RA".
5. Connect the other end to base of 2×13904 installed in Stop 3.
6. Connect a 2.2x resistor; hereaftor reforred to as "RE": to RA/R74 junction so thet the RB and RA resistors are both now connected to C60 side of R74.
7. Connect other ond of RB resistor to collector of 2×3904.
8. Drill a for hole in rear of unit close to top; but be carerul: as the top must still fit when finished.
9. Mount a SPST owitch in hole, solder two $6^{\circ \prime}$ wres to torminals.
10. Run mres from ant toh through hole in board next to battery holder, then to component side of board.
11. Connect 330Mrd capecitor: negative to RB/2M390heolleotor junction.
12. Connect outside torminal wire from sultch to positive side of capacitor.
13. Connect conter torminal of switch to R74/Q15-base Junction.
14. Molt som wax over the components to hold then in place. 1
15. Re-install covers after chocking all solder joints, otc.

What wo are doing is exdtching the 330Mif capacitor in/out of the scan control circuit.
the don't want to have it in circuit bofore it receives a alrnal because it would take the "Dolay Mimo to stop the scan and by that time we 're at a 'difforent' channel. So what we want to do is switch the capacitor in when we stop the scan. Therofore wo only delay "Scan Start". Whout "RB" in cirouit, there is enough residual ground d through the transistor to partielis put "CA" in cirout. It's onough to offect our "Scan Stop" signal. It has to charge CA before it can stop the scan. This woans we never receive anvthing.
bearcat 220: Increasin scan delay...(Cont.)...

```
Parts List: 2N3904 (1)
    330Mrd/16V axial Rloctrolytic Capacitor (1)
    2.2K 鿭 resistor (1)
    4.74 拄 resistor (1)
    SPST mdniature awitch (1)
```

PIGURE A

Pin 13. I.C. 2

BC-22O SOUELCH SYSTEM

1. Romove 6 screws in bottom cover. 4 are under the rubber foot which way be peeled off to reveal the screws. Place thom on a piece of wax paper: adhesive side down so they can be reused.
2. Soparato the covers.
3. Remove the Rnt cable from the PCB by puiling it out of the connector on the PCB.
4. Onsolder the two speaker wires at the speaker.
5. Remove the 4 sorews-holding the PCB in places at each corner: these are accossible from the top. Romove botton cover Iron PCB,
6. Remove the metal shield covering part of the PCB by unsoldering it at its corners.
7. Locato I.C. $1 A$ and the components shown in Pgure 1.
8. Drill a mounting hole for jour now suitch in a comvenient place on the front panel and nount the switch.
9. Carefuliy connect the compnents together to form the circuit shown in Mgure 2. After they have been soldered in place, use some Elmor'. Contact Coment to hold them in place. Pay attontion to the location of the cover center post. (One of the ecrows go in $1 t$ - and eary to get a now componont in the way of this post preventing the covers from going back in place.)

Once this has boon completed and double chockod, power the unit up and check it out. Notice that abort transmission or a burst of noise does not cause the unit to delay, on of the foatures of this circuit. (Switch closed $=$ delay ON).

After jou have verified operation and are satisfied thet all 18 okay, remove power and reassemble the unit in reverse order of disassembly. ROTE: Look at the end of the FAT ceble. If the contact areas have been scraped off by connector JI. Use s01ssors and cut off the areas that have been soraped off by cutting across the cable. shortoning it by about $1 / 1^{\circ}$.

The 330 mf capacitor gives about 3 seconds of delay. Docrease velue for shoxter delay timp/increase for longer.

PARTS ITST: 2,13904 transistor: 330Mrd eloctrolftic eapacitor:

SCAMMR RRTCKS.......(Cont.).......
FOK_RP 20/60: INCREASED SCAM DETAY...(Cont.)...

 t t t t t

TECH TIP

If you clip the AMC diode you have high transients. This exceeds the working volt (WVDC) of many of the audio circuit capacitors. This continued action will deteriorate the quality of the circuit over a period of time. Could be the problem with sluggish and/or slurred sound or soft \& mushy sound.

Cobre 1420\%1 : Modulation - Romove RR32 and R186, will open it upl
Plio2A: Modulation - Romove the adjust pot VR2/102 and R166/58 (these reforence numbers depend on the PCB). The lattor loosted next to audio ohip heat sink.

Jackson (Export): Modulation - Renove TR26, will give som additional audio, but will not open it up all the mey...
sourar cures
by D.A.
De onf the jor would coppeot a equel is when jou have apower Hke' - here are nom nimple renodios

Sumal fron graker in transmit when adko volus twoned po... Uoe a 127 spst ming. Conncot on and of 0011 to the owtcobed 12 Des at the On-01f entroh. The other and of 0011 goes to elther of the followng.
A. If rolej in norminy open book it to the receive oontrol of the ake plus insido tho redio.
B. If reing is norming olosed book it to the tranendt control of the wke plug inside the radio.
then diceorneot one of the epeaker wrea, hook it to one ide of the anttoh on the rolay. The other aide of the ewitoh 1s wired back to whore the whr wes takon off the epeaker.

SPSCIIL NOTE: Bofore Jou attogpt ans of the above obock to bo ore that 18 the real souree of squenl. by romoting a wro frow speaker.

Samal on rocolvo rhon riko rolon in turned pro.. Samo prooedure ae
above with the following changes for ' A ' and ${ }^{\prime} B$'s Rolay nommely opon, hook it to tranamit control. Rolas nommelf closed, hook to reoelo control. Follow cam proceadure as above in booking up diko avdio input to rolas sultoh. 00jject of this 1s to physioally disconneot the audio wire when not transutteing. mot: Same as above, disconnoot

Prat to be sure that is problem.
(.D. Toter N1so consult SCB Vi. 3. PEs. 26-32.)

1. Remove RED wire from JP9 (front R/H looking down at component side)
2. Remove JP9.
3. Solder RED wire back into hole next to edge of $\mathrm{PCB}(8 \mathrm{~V})$.

IF USING CHANNEL 9 SWITCH CONTINUE WITH NEXT 4 STEPS:
4. Move single BLACK wire to junction w/other 2 BLACKS.
5. Remove WHITE and YELLOW and solder together.
6. Remove GRAY wire at point 10. Move to RED wire that was at JP9 (8V).
7. Remove ORANGE wire completely and solder ORANGE wire where WHITE wire was.

GALAXY 2100

Hopefully we will have a good schematic to print in Volume 26. We do have one at this time but just not clear enough to reprint in this book. Also, complete aligment and other information to be in Volume 26. Until then, you can use the Alignment for Super Star 3900 and Schematic for Excalibur SSB in Volume 22, pages 28-31\& 44 .

by G.L.

1. Excessive Drive: Causes poor audio and downward modulation. Modulation only shows on peak reading wattmeters.

Under Drive: Causes low power output and poor RF keying.
2. Engine must be running for full power operation in mobiles over 100 watts. If used with power supplies in base operation be sure the power supply has enough amperage.
3. Wires must be large enough to carry the required current and must be run directly from the battery plus and minus posts to the amplifier. See table below:

TABLE I
CURRENT DRAWN
5 to 8 AMPS 8 to 12 AMPS. 20 to 40 AMPS. 40 to 60 AMPS. 100 AMPS.

POWER OUTPUT RF WATTS

```
50 to }75\mathrm{ WATTS
100 to 20C watms
200 to 400 WATTS
200 to 400 WATTS (TUBE)
500 WATTS AND UP
```

WIRE REQUIRED
14 to 12 GA .
10 GA.
8 GA.
4 to 6 GA.
2 to 4 GA.

The above table is for runs of less than 10 feet. If over 10 feet use the next larger wire size in the table. If using quick disconnects be sure they are rated to carry the current drawn by the amplifier: refer to the above table.
4. Most foreign and small cars have $30-45$ AMP. battery and charging systems with the engine running and airconditioning on. Most american and full sized cars have 45-65 AMP. battery and charging systems with the engine running and air conditioning on.
5. 400 Watts and larger amplifiers require multiple batteries.
6. The antenna must be rated for the power output of your amplifier. CAUTION: Base loaded antennas are poor power handlers in spite of any manufacturers claims. Fiberglass antennas are best.
7. Run separate power wires for the radio and amplifier to the plus and minus battery posts for best operation.
8. Jumper cables should be RG-58U for short runs (Less than 4 feet). for long runs use more than 7 feet: $11^{\prime \prime} 4^{\prime \prime}$ is perfect for solid insulated coax, 13^{\prime} 11" is perfect for Foam insulated coax.
9. By following the above rules you will get better performance from your amplifier, longer life, and less service headaches.
10. CAUTION:..... HEAT RILLS AMPLIFIERS: DON'T: Clamp mobiles to carpets, DON'T block air flow around heatsinks or into vent holes on tube amplifiers.

> R12-19....100x, 2W
> C52-39....10031N/S00VDC
> C20-31....01M1D/S00V D3-14...... M405

DOSI Mdl. Ein1000

Moter Sahometio

palomar dcjo

POWER SUPPLT SCFIOATIC

Change Rl7 to 100 K for Repeat

FRONT MIC. J. CONN.
VC-100 - Combo Noise Box Scrambler

Mad el A

Change Value of R81
Jess R - Less Time

$$
v c-100
$$

NEW PRODUCT RELEASE

"LTD KIT By CARD KIT"

We are aware of the problems you are having with the "B" Kit. We too find that often after splitting the lst IF between 10.695 Mhz and 9.785 Mhz we could notisatisfactorily boost the receiver on some types of units to maintain the desired receiver gain. So, we set out to correct this problem. We ended up with more than expected.

There has never before been a kit so versatile in usage for the 77 type chips as the LTD KIT. Although it is versatile in usage, at present it is limited to the UNIDEN boards which use a separate VCO circuit and FETs for mixing. Still this covers approximately 70% of all straight AM Units sold in the United States during the past 5 years.

This is how the kit works and the theory behind it. Starting with the VCO or Local Oscillator (L 0) frequency as it exist. The signal will vary from 16.270 Mh z thru 16.710 Mhz as the selector is rotated from channel 1 thru 40 . This signal beats with the incoming RF to give a lst IF of 10.695 Mh for the desired channel frequency. For instance- Channel $26(27.265 \mathrm{Mhz})$ requires a Local Oscillator frequency of 16.570 Mhz . The difference being 10.695 Mhz . This 10.695 Mhz Ist IF is then beat with 10.24 Mhz to give a 2nd IF of 455 Khz .

If we take this 16.570 (LO for ch 26) and beat it with 20.935 Mhz, and take the sum of the two, we will have 37.505 Mhz . If we use this frequency as our LO frequency, it will beat with 26.810 Mhz to give a 10.695 Mhz difference. This makes the selectable frequencies 26.510 thru 26.950 Mhz . These are called LOW HALF CHANNELS.

To transmit these same frequencies, all we have to do is prevent the PLL Chip from shifting up 455 Khz during transmit.

NOTE

If we use the modification in this manner we have an extra bonus.

If we put the switching for the LO frequencies through one switch and the 455 Khz switching through an other we can split the receiver and transmitter. That is, if we disable the PTT signal (455 Khz shifting signal) but, yet keep the 16 Mhz VCO frequency as our LO frequency we will transmit on LOW HALF channels while our receiver is still receiving regular channels. If we reverse this condition and keep the PTT signal operational and use the 37 MHz as our LO frequency, we would transmit on regular channels while receiving LOW HALF channels. If anything approaches PRIVATE CHANNELS within the usable range of a CB, this is itl

USING THE KIT FOR LOW FULL CHANNELS

If we use the same 5 K OFFSET procedure as used with the " A " and "B" KITS, it will put us on full channel frequencies for

'LTD KIT"'
 by CARD KIT continued:

transmit but we will be off on receive. So we must retune the Epoxy Pack. For instance on channel 26 , we will need to change the New LO frequency from 37.505 Mhz to 37.5117 Mhz . Half of this will be accomplished by offsetting of the 10.24 Xtal and the rest by tuning the Epoxy Pack Xtal frequency from 20.935 Mhz to 20.9383 Mhz. As you can see, on the Epoxy Pack we have used a direct frequency Xtal of 20.9366 Mhz . The two frequencies desired are on either side of this frequency and within the stable range of the Xtal.

On FULL LOW Channels we now have (on ch 26) a LO frequency of 37.5117 Mhz . This beats with 26.815 Mhz giving a lst IF of 10.6967 but, remember the 10.24 Mhz has now been changed to 10.2417 . Now 10.2417 beat with 10.6967 produces the desired 2 nd IF of 455 Khz .

After we found a low kit that satisfied our need, we started looking for a HIGH KIT that would be compatible. Just as the "B" KIT was designed to be compatible with the "A" KIT. To our surprise, it turned out that the NEW LTD KIT was its own compatible high kit. That is, if we lock the PLL Chip in its normal transmit position the LO frequency would be 16.725 thru 17.165 Mhz . Which gives us a 10.695 lst IF from frequencies 27.420 thru 27.860 Mhz (ch 41立 thru $85 \frac{3}{2}$).

This same change in the VCO when combined with the 20.935 Mhz would generate frequencies 37.660 thru 38.100 Mhz . If we replace the VCO input to the TA7310P Chip used to generate the transmitter frequency with this 37 Mhz signal, we found that it would select the difference between the 37 Mhz signal and the 10.24 Mhz input just as well as it selected the sum of the 16 Mhz and the 10.24 Mhz inputs. This gives us transmitter frequencies of 27.420 thru 27.860 or HIGH HALF Channels.

USING THE KIT FOR HIGH FULL CHANNELS

Again if we use the already established method for 5 K offset, the receiver would be shifted automatically. The VCO output would be 16.7283 Mhz thru 17.1683 Mhz . This would produce a lst IF again of 10.6967 Mhz . Like before, when beat with 10.2417 Mhz (offset 10.24 Xtal frequency) would give the desired 455 Khz 2nd IF.

Like before the oscillator on the Epoxy Pack would have to be retuned. Using Ch 26 again, the output of the 37 Mhz Amp. would be set to read 37.9667 Mhz .

Since the 5 K offset and the adjustment of the VC on the Epoxy Pack both effect the frequency of the transmitter. Proper adjustment of the 5 K requires that it be measured independantly. This can be accomplished by adjusting the 5 K offset VC while observing the VCO output at TP-3 (the input to the lst IF Mixer FET). While on Ch 26 and switched to HIGH FULL Channels adjust for a reading of 17.0283 Mhz . Then adjust the VC on the Epoxy Pack for a transmitter reading of 27.725 Mhz .

By now you might have observed that on both LOW FULL Channels and on HIGH FULL Channels, the oscillator on the Epoxy Pack is set to the same frequency (20.9383). Also, on LOW HALF Channels
"LTD KIT" by CARD KIT continued:
and HIGH HALF Channels it is set to the same frequency (20.935). If you have observed this then you've probably guessed that this kit can be used as a LOW and HIGH FULL Channel kit, or a LOW and HIGH HALF Channel kit. Now you see the versatility of this kit as mentioned earlier. All that is needed is a four pole-three position switch for LOW \& HIGH HALF Channels or a five pole-three position switch for LOW \& HIGH FULL Channels.

Since this kit is so versatile and the switches to be used depend on the user's own desire, it was decided that switches will not be made a part of the kit. The switches you desire for your application will be made available by SELMAN ENTERPRISES or CARD KIT.

Since the detailed installation instructions are so long and varried, packaging a complete set with each kit sold would make the price too high. Any repeated user of the kit would only be paying for printing that he would be discarding anyway. To cut waste and save on your cost per unit, CARD-KIT through SELMAN ENTERPRISES devised a method of providing these instructions on a one time bases by printing them in this volume of SECRET CB.

Below you will find a Proof of Purchase coupon. Use it and the $\$ 2$ discount coupon from a kit to obtain a $\$ 2$ discount on your next order from SELMAN ENTERPRISES. If a person should purchase a kit and has not yet bought a Volume 25 of SECRET CB, then the kit will instruct him to mail the coupon for a $\$ 2$ discount on a Volume 25. In this case the Proof of Purchase coupon will be voided before the Volume 25 is mailed.

While we are on the subject of making tne kit economically affordable, there is one other thing we did to cut waste and reduce its size. The TA7310P Chip which we used to combine the 20.935 or 20.9383 Mhz signal with the VCO frequency requires a regulated voltage of 4 to 8 VDC. It was not feasible to supply the Epoxy Pack with 13.8VDC and regulate it, especially since we have a regulated already available in the CB used as vdd or timing circuit voltage. When it came to the final amplifier we needed 13.8 VDC . Since most of you will want to use the NB switch for one of the switches and the circuit would therefore be completely disabled, we decided to convert the amplifier section of the NB circuit to accomplish this task. All that is needed is a 37 Mhz tank, which is included as part of the kit. The instructions as outlined in this volume are written around using the NB amplifier as the final amplifier for the NEW LO Frequency. For those who do not wish to use this amplifier a 37 Mhz amplifier can be purchased from SELMAN ENTERPRISES or CARD KIT. These amplifiers will be available after 1 September 1986. Approx. cost of $\$ 5.95$.

A CLOSING NOTE

The "A" \& "B" KITS are still available for those wishing to use them. Of course they are still recommended for the units that are not as tight on their lst IF.
'THE ABOVE \& PREVIOUS TWO PAGES OF INFORMATION IS PROVIDED FOR TECHNICAL INFORMATION ONLY -- ALL RIGHTS RESERVED BY CARD-KIT ELECTRONICS.'

The following switch lay-out is for the color code on the Cobra 21LTD. For other sister units or earlier models, note in pencil the color code that exist on those switches and adapt the reading materlal accordingly.

USING THE TWO EXISTING SWITCHES:

1. Clip the yellow, also the orange wire coming from the transmitter section, just forward of the first zip tie forward of the power plug.
2. In this same area, unsolder the pink and the violet wires.
3. Use the short piece of yellow wire and solder it where you unsoldered the pink wire.
4. Just forward of the audio transformer and directly center from the audio chip, unsolder the blue wire. Solder in it's place the piece of orange wire that runs from the transmitter section.
5. To clear the channel 9 swtich, remove the violet wire from the switch.
6. Unsolder the brown and black wires from their respective PC boards.
7. Solder the violet wire on to the PC board where the black wire was removed.

INSTALLING THE EPOXY PACK:

1. Pull the chassis grounding tab, located just above the PLL chip, straight out.
2. Stand the wire, tape up against the selector.
3. Using sllicone sealant adhere the epoxy pack to the chassis wall just forward of the pulled out tab, with the VC upward.

INSTALL THE FOLLOWING MISSING COMPONENTS:
R-101 - 10K
R-102 - $3.3 K$
C-136 - . Oluf
R-103 - $1 K$
TR-20 - use a 2 SCl 675 or a 2 SC1923
L-19 - install (supplied)

1. Solder a 220 ohm resistor from the leg of $R-105$ to $C-137$ leg nearest $L-19$.
2. Solder in a jumper wire from $W-26$ to $W-27$.
3. Solder a jumper from ground to the rear leg of the secondary of $L-19$.
4. On the PC side of the board, solder a 470 ohm resistor to the remaining secondary leg of L-19 with its other leg run through and solder where the body of R-104 should be. Now pull the violet wire of the CB/ANL/PA switch out of two ties and solder it to this end of the resistor on the component side of the board, or through another hole in that same PC pad.

CONNECT UP THE REST OF THE CB/ANL/PA SWITCH:

1. Pull the yellow wire out of the zip ties. Measure the distance needed to reach the blue terminal on the epoxy pack. Cut the insulation and pull a bare spot. Now solder it to the hook terminal, blue dot, of the epoxy pack.
2. Continue the yellow wire underneath the board (printed side) to the output secondary leg of $L-16$. Cut this same run just before the empty hole on the run.
3. Pull the pink wire out of the zip ties and run it on the component side of the board to this open hole just mentioned.
4. Change the orange wire to the opposite throw of the same pole.
5. Connect the blue wire to pin 1 of the PLL chip and the orange wire to the red dot terminal on the epoxy pack.

CONNECT UP THE CHANNEL 9 SWITCH:

1. Unsolder $R-58$, turn it around and leave the leg unsoldered and lifted.
2. Connect the brown and black wires across these two points.
(OPTIONAL)*
3. Solder the VC (supplied) across the two terminals of the other pole of the switch across from the black and brown wires. Also attach wires to these same terminals.
4. Cut the PC trace between the $10.24 \times \operatorname{tal}$ and $\mathrm{C}-111$. Solder these two wires acrosss the cut.

* If full channels are desired, steps 3 \& 4 must be accomplished. If half channels are desired (which allows for splitting the transmitter and receiver) omit steps 3 \& 4 .
Now your CB/ANL/PA switch is your receiver switch and your channel 9 switch is your transmitter switch.

5. Run a wire from the yellow dot terminal on the epoxy pack to the leg of $C-12$ nearest $R-101$.
6. Run a ground wire from the shield case of $L-5$ to the shield case of the upper tuning tank of the epoxy pack.

ALIGNMENT TX:

1. Connect power to the unit and load properly with a frequency counter attached.
2. Select channel 26.
3. With both switches up in normal position, key the transmitter, the reading should be 27.265 Mhz . If not, adjust VC-1 to obtain this reading.
4. Now switch the transmitter switch down, key the transmitter again. Now the reading should be 26.8100 , or, if you have the option installed, 26.815 Mhz . If you have installed the option and you have not obtained the proper reading adjust the installed VC to obtain it.

ALIGNMENT RX:

1. Connect a scope or freq. meter to the leg of R-6 (a scope is preferred).
2. On receive mode and receiver switch down, this reading should be 37.505 Mhz , or if you have the option 37.5117 Mhz . (The epoxy pack comes preset for the latter.)
3. To obtain the proper frequency adjust the VC on the epoxy pack. Use L-19 to maximize the amplitude of this signal.
The tanks on the epoxy pack should require very little or no adjustment. If the 37 Mhz signal can not be obtained in the approximate same amplitude as the 16 Mhz . Check your work to see that all connections were made properly. NOTE: When making alignments with a small signal applied, you will detect a zero beat. The zero beat you hear comes from the fact that two enternal frequencies, the VCO and 10.24 Mhz , combine within the unit making up the total frequencies you are trying to receive.
4. Make your normal receiver alignment and peaking on normal channels. Make sure that VR-2 is adjusted to zero needle with no signal applied.
5. Now switch to low channels and check receiver sensitivity. If you have a needle on the meter even when no signal is applied or on adjacent channels, reduce the amplitude of the 37 Mhz signal by inserting a resistor at the output leg of L-19, (generally less than 500 ohms.)

THIS COMPLETES INSTRUCTIONS FOR LOW CHANNELS FOR COBRA 2ILTD AND SISTER UNITS.

"LTD KIT" LOW CHANNEL INSTALLATION INSTRUCTIONS FOR COBRA 25LTD/GTL, AR/AX 711, AND SISTER UNITS

The following switch lay-out is for the color code on the Cobra 25LTD. For other sister units or earlier models, note in pencil the color code that exist on those switches and adapt the reading material accordingly.

USE THE CB/ANL/PA and THE NB SWITCHES FOR THIS MDD:

1. Clip the pink, also the orange wire coming from the transmitter section just forward of the first zip tie, just forward of the power plug.
2. In this same area, unsolder the yellow and green wires.
3. Use the short piece of pink wire and solder it where you unsoldered the yellow wire.
4. Just forward of the audio transformer and directly center from the audio chip, unsolder the blue wire. Solder in it's place the piece of orange wire that runs from the transmitter section.
5. To clear the $N B$ switch, clip the red wire attached at $W-27$ about $1 \frac{1}{2}$ inches long. Unsolder the brown wire at $W-26$ and solder the $1 \frac{1}{2}$ inch wire in its place.

INSTALLING THE EPOXY PACK:

1. Pull the chassis grounding tab, located just above the PLL chip, straight out.
2. Stand the wire tape up against the selector.
3. Using silicone sealant, adhere the epoxy pack to the chassis wall just forward of the pulled out tab, with the VC upward.

REMOVE THE FOLLOWING COMPONENTS:

REMOVE: R-104, R-105, R-106, $\mathrm{C}-137$, TR-21, TR-22, $\mathrm{C}-12, \mathrm{C}-15, \mathrm{D}-3$
REMOVE: L-19 and replace with the tank supplied.

1. Solder a 220 ohm resistor from the leg of $\mathrm{R}-105$ to the $\mathrm{C}-137$ leg nearest L-19.
2. Solder a jumper from ground to the rear leg of the secondary of L-19.
3. On the PC side of the board, solder a 470 ohm resistor to the remaining secondary leg of L-19 with its other leg run through and soldered where the body of R-104 was. Now pull the green wire of the CB/AN/PA switch out of its first two ties and solder it to the end of this resistor on the component side of the board, or through another hole in that same PC pad.

CONNECT UP THE REST OF THE CB/ANL/PA SWITCH:

1. Pull the yellow wire out of the zip ties. Measure the distance needed to reach the blue terminal on the epoxy pack. Cut the insulation and pull a bare spot. Now solder it to the hook/blue dot terminal on the epoxy pack.
2. Continue the yellow wire underneath the board (printed side) to the output secondary leg of $L-16$. Cut this same PC run just before the empty hole on the run.
3. Pull the pink wire out of the zip ties and run it on the component side of the board to this open hole just mentioned.
4. Change the orange wire to the opposite throw of the same pole.
5. Connect the blue wire to pin 1 of the PLL chip and the orange wire to the red dot terminal on the epoxy pack.

NOW CONNECT UP THE NB SWITCH:

1. Unsolder R-58, turn it around and leave the leg unsoldered and lifted.
2. Connect the brown and red wires to this resistor and the PC where it would be connected.
(OPTIONAL)*
3. Solder the VC (supplied) across the two terminals of the other pole of the switch, across from the red and brown wires. Also attach wires to these terminals.
4. Cut the PC trace between the $10.24 \times$ tal and $C-111$. Solder these two wires across the cut.

* If full channels are desired, steps 3 \& 4 must be accomplished. If half channels are desired (which allows for splitting the transmitter and receiver) omit steps $3 \& 4$.
Now your CB/ANL/PA switch is your receiver switch and your NB switch is your transmitter switch.

LOW CHANNELS FOR COBRA 25LTD AND SISTER UNITS CONTINUED:

5. Run a wire from the yellow dot terminal on the epoxy pack to the leg of C-12 nearest R-101.
6. Run a ground wire from the shield case of L-5 to the shield case of the upper tuning tank of the epoxy pack.

ALIGNMENT TX:

1. Connect power to the unit and load properly with a freq counter attached.
2. Select channel 26.
3. With both switches in normal position, key the transmitter, the reading should be 27.265 Mhz . If not, adjust $\mathrm{VC}-1$ to obtain this reading.
4. Now switch the transmitter switch down, key the transmitter again. Now the reading should be 26.8100 or if you have the option installed 26.815 Mhz. If you have installed the option and you have not obtained the proper reading, adjust the installed VC to obtain it.

ALIGNMENT RX:

1. Connect a scope or freq. meter to the leg of R-6. A scope is preferred.
2. On receive mode and the receiver switch down, this reading should be 37.505 Mhz or, if you have the option 37.5117 Mhz . The epoxy pack comes preset for the latter.
3. To obtain the proper frequency adjust the VC on the epoxy pack. Use L-19 to maximize the amplitude of this signal. The tanks on the epoxy pack should require very little or no adjustment. If the 37 Mhz signal can not be obtained in the approximate same amplitude as the 16 Mhz , check your work to see that all connections were made properly.
NOTE: When making alignments with a small signal applied, you will detect a zero beat signal. The zero beat you hear comes from the fact that two other signals exist enternally, who's sum is equal to the frequency you are trying to receive. (VCO and 10.24)
4. Make your normal receiver alignment and peaking on normal channels.
5. Now switch to low channels and check receiver sensitivity. If you have a needle on the meter even when no signal is applied or on adjacent channel, reduce the amplitude of the 37 Mhz signal by inserting a resistor at the output leg of L-19, (generally less than 500 ohms.)

THIS COMPLETES INSTRUCTIONS FOR LOW CHANNELS FOR COBRA 25LTD AND SISTER UNITS.

The following switch lay-out is for the color code on the Cobra 29LTD. For other sister units or earlier models, note in pencil the color code that exist on those switches and adapt the reading material accordingly.

CLEAR THESE TWO SWITCHES BY:

1. Clipping the white and pink wires just forward of the first zip tie forward of the power plug.
2. Unsolder the orange wire at PC board, and solder the short pink wire in it's place.
3. Unsolder the red wire of the PA/CB switch from the PC board (just forward of VR-1) and unsolder the yellow wire from the switch and solder in it's place.
4. Remove all wires attached to the $A N L / N B$ switch except the red one at the PC board. Remove the red one at the switch.
5. Move the brown wire of the ANL/NB switch to the other throw terminal.

INSTALL THE EPOXY PACK:

1. Pull the chassis grounding tab, located just above the PLL chip, straight out.
2. Mount the epoxy pack against that chassis wall just forward of the pulled out tab, with the variable cap. up. If CC-1 will not allow the epoxy pack to slide down far enough, chip out a "V" just to the rear of the lower tank on the epoxy pack using small dikes.
3. Using silicone sealant, adhere the epoxy pack to the wall.

REMOVE OR UNSOLDER THE FOLLOWING COMPONENTS:
REMOVE JP-22, $\mathrm{C}-1, \mathrm{D}-24$
REMOVE AND SAVE THESE COMPONENTS TO MODIFY 2ILTD, PC-66, AX-44, ETC.;

$$
R-3, T R-2, R-6, C-7, R-5
$$

REMOVE $C-3$ and resolder where $R-3 \mathrm{leg}$ and $T R-2$ base was.
REMOVE $L-1$ and replace with new tank provided.
R-2 - Unsolder the body end and resolder where D-24 cathode was.

1. Solder the red wire removed from the ANL/NB switch to the spare hole in the PC pad where the leg of R-2 is attached.
2. Cut this same pad between the point just soldered and the secondary of L-1.
3. Run a jumper between the other leg of $L-l^{\prime}$'s secondary and ground.
4. Connect the white wire on the CB/PA switch to this secondary leg just isolated from the PC pad. (Note the center leg of the primary does not have to be isolated since there is no connection enternally.)

CONNECT UP THE REST OF THE CB/PA switch:

1. Pull the pink wire out of the zip ties. Measure the distance needed to reach the blue terminal on the epoxy pack. Cut the insulation and pull a bare spot. Now solder it to the hook terminal-blue dot of the epoxy pack.
2. Continue the pink wire to the point where Jp-22 was removed near L-18 and solder.
3. Pull the orange wire out of the zip ties and run it along the left side of the recelver section to the other point where JP-22 was removed.
4. Connect the red wire to the leg of R-124, just off of pin 11 of the PLL chip component side of board.
5. Connect a new wire to the same pole opposit position from where the yellow wire was removed.
6. Connect this wire to the red dot terminal of the epoxy pack.
7. Run a jumper wire from the yellow dot terminal on the epoxy pack to where $\mathrm{C}-1$ was removed from the long PC run.
8. Run a grounding wire from the case of L-22 to the top tank of the epoxy pk.

CONNECT UP THE ANL/NB SWITCH:

1. Move the brown wire to the other throw position of the same pole.
2. Unsolder and lift the cathode side of $D-15$.
3. Connect the brown and white wire of this switch pole across these points.
(OPTIONAL):*
4. Solder the VC (supplied) across the violet and red wires at the switch terminals of this switch.
5. Cut the PC trace between the $10.24 \times$ tal and the input leg of $L-24$.
6. Solder the violet and red wires across this cut.

* If full channels are desired, steps $4,5 \& 6$ must be accomplished. If half channels are desired (which allows for splitting the transmitter and receiver) omit steps $4,5, \& 6$.
Now your CB/PA switch is your Receiver switch and the ANL/NB switch is your Transmitter switch. With up being normal and down being low.

ALIGNMENT TX:

1. Connect power to unit and load properly with a freq. counter attached.
2. Select channel 26.
3. With both switches up to normal position, key transmitter. The reading should be 27.265 Mhz . If not adjust L-24 to obtain this reading.
4. Now switch the transmitter switch down.
5. Key the transmitter again. Now the reading should be 26.8100 , or if you have installed the VC (option 5 K offst) should read 26.815 Mhz . If you have the option and it does not read proper adjust the VC to obtain it.
ALIGNMENT RX:
6. Connect a scope or freq. meter to the leg of R-17. A scope is preferred.
7. On receive mode this reading should be 37.505 Mhz . Or if you have the option 37.5117 Mhz . The epoxy pack comes preset for the latter.
8. To obtain the proper frea., adjust the VC on the epoxy pack to obtain it. Use L-1 to maximize the amplitude of this signal. The tanks on the epoxy pack should require very little or no tuning. If the 37 Mhz signal can not be obtained in the approximate amplitude as the 16 Mhz , check your work to see that all connections were made properly.
NOTE: When making these receiver alignments the DELTA TUNE should be in it's mid detent position. The zero beat you will hear comes from the fact that the VCO freq. and 10.24 Mhz does make up the total of the same freq. you are trying to receive, which will have a great deal with how and where the previous wires were run.
9. Make your normal receiver alignment and peaking on normal channels.
10. Now switch to low channels and check receiver sensitivity. If you have a needle on the meter even when no signal is being applied or on adjacent channels, reduce the amplitude of the 37 Mhz signal by inserting a resistor at the out-put of L-1 (generally less than 500 ohms.).
THIS COMPLETES INSTRUCTIONS FOR LOW CHANNELS FOR 29LTD AND SISTER UNITS.

"LTD KIT" UPPER CHANNEL INSTALLATION INSTRUCTIONS FOR COBRA 21LTD/GTL, ANDREW J, AR/AX-44, PC -66, AND ANY SISTER UNITS

The following switch layout is for the color code on the Cobra 2lLTD. For other sister units or earlier models, note in pencil the color code that exist on those switches and adapt the reading material accordingly.

USING THE TWO EXISTING SWITCHES:

1. Clip the yellow wire, also the orange wire coming from the transmitter section, just forward of the first Zip tie forward of the power plug.
2. In this same area unsolder the pink and violet wires.
3. Use the short piece of yellow wire and solder it where you unsoldered the pink wire.
4. Just forward of the audio transformer and directly center from the audio chip unsolder the blue wire. Solder in it's place the piece of orange wire that runs from the transmitter section.
5. To clear the channel 9 switch, remove the violet wire from the switch.
6. Unsolder the brown and black wires from their respective PC boards.
7. Solder the violet wire on to the PC board where the black wire was removed.

INSTALLING THE EPOXY PACK:

1. Pull the chassis grounding tab located just above the PLL chip straight out.
2. Stand the wire tape up against the selector.
3. Using silicone sealant adhere the epoxy pack to the chassis wall just forward of the pulled out tab, with the VC upward.

INSTALL THE FOLLOWING MISSING COMPONENTS:
$R-101-10 K$
C-136 -. O1uf
$R-102$ - 3.3K TR-20 - Use a 2 SC 1675 or a 2SC1923
$R-103$ - $1 K$ - 19 - Install (supplied)

UPPER CHANNELS FOR COBRA 2ILTD AND SISTER UNITS CONTINUED:

1. Solder a 220ohm resister from the leg of $\mathrm{R}-105$ to $\mathrm{C}-137 \mathrm{leg}$ nearest $\mathrm{L}-19$.
2. Solder in a jumper wire from W-26 to W-27.
3. Solder a jumper from ground to the rear leg of the secondary of $L-19$.
4. On the PC side of the board, solder a 470 ohm resistor to the remaining secondary leg of L-19 with its other leg run through and soldered where the body of R-104 should be. Now pull the yellow wire of the CB/ANL/PA switch out of two ties and solder it to this end of the resistor on the component side of the PC board, or through another hole in that same PC pad.

CONNECTING UP THE REST OF THE CB/ANL/PA SWITCH:

1. Remove JP-14.
2. Pull the violet wire out of the zip ties. Measure the distance needed to reach the blue dot terminal on the epoxy pack. Cut the insulation and pull a bare spot. Now solder it to the blue hook terninal on the epoxy pack.
3. Continue with the violet wire and solder it to the point where JP-14 was connected to L-16.
4. Pull the pink wire out of the zip ties and solder it to the other point JP-14 was connected.
5. Pull the orange wire out of the zip ties and solder it to the red dot terminal on the epoxy pack.
6. Pull the blue wire out of the zip ties and solder it to pin 1 of the PLL chip on the PC side of the board.

CONNECTING UP THE CHANNEL 9 SWITCH:

1. Unsolder R-58, turn it around and leave the leg unsoldered and lifted.
2. Connect a wire to the unused terminal on the same pole where the brown and black wires are. Solder the other end of it to the other point where R-58 was soldered.
3. Pull the black wire out of the zip ties and solder it to the raised leg of R-58.
4. Pull the brown wire out of the zip ties and solder it to pin 1 of the PL chip, PC side.
NOTE: IF YOU WISH TO HAVE HALF CHANNELS INSTEAD OF FULL CHANNELS, OMIT STEPS 5 \& 6 BELOW.*
5. Solder the VC (supplies) across the two terminals opposite the new wire and the black wire, also attach wires to these teminals.
6.* Cut the PC trace between the 10.24 Mhz Xtal and C-11. Solder these two wires across the cut.

UPPER CHANNELS FOR COBRA 21LTD AND SISTER UNITS CONTINUED:

7. Run a wire from the yellow dot terminal of the epoxy pack to the leg of C-12 nearest R-101.
8. Run a ground wire from the shield (case) of $L-15$ to the shield (case) of the upper tuning tank on the epoxy pack.

ALIGNMENT TX:

1. Connect power to the unit and load properly with a freq. counter attached.
2. Select channel 26.
3. With both switches in normal position (down), key the transmitter. The reading should be 27.265 Mhz . If not, adjust $\mathrm{VC}-1$ to obtain this reading. If you find you must back off too far on VC-1 to obtain this reading, remove C-111 and readjust.
4. Now switch both switches up. Read the frequency of the 10.24 Mhz Xtal at the forward end of R-69. Adjust the VC on the NB switch to obtain a freqvency of 10.2417 Mhz .
5. Using a scope, maximize the signal on the center terminal (pink wire) of the CB/ANL/PA switch by tuning L-19. The tanks on the epoxy pack sould require very little or no adjustment.
6. Now key the transmitter again. The reading should be 27.725 Mhz . If not adjust the VC on the epoxy pack to obtain it.
NOTE: For those wishing half channels, of course, the 10.24 Xtal would remain just that and the reading in step 6 should be adjusted to read 27.720 MHz .

ALIGNMENT RX:

1. Check the receiver and make your normal alignments and peaking on normal channels, (both switches down.)
2. Now check your receiver with both switches up, while applying a 27.725 Mhz signal. The sensitivity should be approximately the same. If not, a little balancing of $L-1$ and $L-2$ should accomplish this.
The zero beat signal you will hear while applying a small signal comes from the fact that two of the signals in use are equal to the frequency you are receiving.

THIS COMPLETES THE INSTALLATION INSTRUCTIONS FOR COBRA 2ILTD AND SISTER UNITS.

The following switch lay-out is for the color code on the COBRA 25LTD. For other sister units or earller models, note in pencil the color code that exist on those switches and adapt the reading material accordingly.

USE THE CB/ANL/PA AND THE NB SWITCHES FOR THIS MOD:

1. Clip the yellow, also the orange wire coming from the transmitter section, just forward of the first zip tie, just forward of the power plug.
2. In this same area, unsolder the pink and green wires.
3. Use the short piece of yellow wire and solder it where you unsoldered the pink wire.
4. Just forward of the audio transformer and directly center from the audio chip, unsolder the blue wire. Solder in it's place the piece of orange wire that runs from the transmitter section.
5. To clear the NB switch, clip the red wire attached at $W-27$ about $1 \frac{1}{2}$ inches long. Unsulder the brown wire at $W-26$ and solder the $l \frac{1}{2}$ inch wire in it's place

INSTALLING THE EPOXY PACK:

1. Pull the chassis grounding tab, located just above the PLL chip, straight out.
2. Stand the wire tape up against the selector.
3. Using silicone sealant, adhere the epoxy pack to the chassis wall just forward of the pulled out tab, with the VC upward.

REMOVE THE FOLLOWING COMPONENTS:
REMOVE: $R-105, R-106, C-137, T R-21, T R-22, C-12, R-104, C-15$ D-3. Remove $L-19$ and replace with the tank supplied.

UPPER CHANNELS FOR COBRA 25LTD AND SISTER UNITS CONTINUED:

1. Solder a 220 ohm resistor from the leg of $\mathrm{R}-105$ to the $\mathrm{C}-137$ leg nearest L-19.
2. Solder a jumper from ground to the rear leg of the secondary of L-19.
3. On the PC side of the board, solder a 470 ohm resistor to the remaining secondary leg of L-19 with it's other leg run through and soldered where the body of R-104 was. Now pull the yellow wire out of the zip ties and solder it to this end of the resistor on the component side of the board, or through another hole in that same PC pad.

CONNECTING UP THE REST OF THE CB/ANL/PA SWITCH:

1. Pull the green wire out of the zip ties. Measure the distance needed to reach the blue dot terminal on the epoxy pack. Cut the insulation and pull a bare spot. Now solder it to the blue hook terminal on the epoxy pack.
2. Remove JP-14, now continue with the green wire and solder it to the point where JP-14 was connected to L-16.
3. Pull the pink wire out of the zip ties and solder it to the other point JP-14 was connected.
4. Pull the orange wire out of the zip ties and solder it to the red dot terminal on the epoxy pack.
5. Pull the blue wire out of the zip ties and solder it to pin 1 of the PLL chip on the PC side of board.

NOW CONNECT UP THE NB SWITCH:

1. Unsolder R-58, turn it around and leave the leg unsoldered and lifted.
2. Connect a wire to the unused terminal on the same pole where the brown and red wires are. Solder the other end of it to the other point R-58 was soldered.
3. Pull the red wire out of the zip ties and solder it to the raised leg of R-58.
4. Pull the brown wire out of the zip ties and solder it to pin 1 of the PLL Chip on PC side.
NOTE: If you wish to have half channels instead of full channels omit steps 5 \& 6 below.*
5.* Solder the VC (supplied) across the two terminals opposite the new wire and the red wire, also attach wires to these terminals.
6.* Cut the PC trace between the 10.24 Mhz Xtal and C-1ll. Solder these two wires across the cut.

UPPER CHANNELS FOR COBRA 25LTD AND SISTER UNITS CONTINUED:

7. Run a wire from the yellow dot terminal of the epoxy pack to the leg of C-12 nearest R-101.
8. Run a ground wire from the shield (case) of $L-5$ to the shield (case) of the upper tuning tank of the epoxy pack.

ALIGNMENT TX:

1. Connect power to the unit and load properly with a freq. counter attached.
2. Select channel 26.
3. With both switches in normal position (down), key the transmitter. The reading should be 27.265 Mhz . If not, adjust $V C-1$ to obtain this reading. If you find you must back off too far on VC-1 to obtain this reading, remove $\mathrm{C}-111$ and re-adjust.
4. Now switch both switches up. Read the frequency of the 10.24 Mhz xtal at the forward end of R-69. Adjust the VC on the NB switch to obtain a frequency of 10.2417 Mhz .
5. Using a scope, maximize the signal on the center terminal (pink wire) of the CB/ANL/PA switch, by tuning L-19. The tanks on the epoxy pack should require very little or no adjustment.
6. Now key the transmitter again. The reading should be 27.725 Mhz . If not adjust the VC on the epoxy pack to obtain it.
NOTE: For those wishing half channels, of course, the $10.24 \times$ tal would remain just that and the reading in step 6 should be adjusted to read 27.720 Mhz .

ALIGNMENT RX:

1. Check the receiver and make your normal alignments and peaking on normal channels. Both switches down.
2. Now check your receiver with both switches up, while applying a 27.725 MHz signal. The sensitivity should be approximately the same. If not, a little balancing of L-1 and L-2 should accomplish this.
The zero beat signal you will hear while applying a small signal comes from the fact that two of the signals in use are equal to the frequency you are receiving.

THIS COMPLETES UPPER CHANNEL INSTRUCTIONS FOR CO8RA 25LTD AND SISTER UNITS.

"LTD KIT" UPPER CHANNEL INSTALLATION INSTRUCTIONS FOR COBRA 29LTD/GTL AND SISTER UNITS

The following switch lay out is for the color code on the COBRA 29LTD. For other sister units or earlier models, note in pencil the color code that exist on those switches and adaot the reading material accordingly.

CLEAR THESE TWO SWITCHES BY:

1. Clipping the white and pink wires just forward of the first zip tie forward of the power plug.
2. Unsolder the orange wire at PC board, and solder the short pink wire in it's place.
3. Unsolder the red wire of the PA/CB switch from the PC board, just forward of VR-1, and unsolder the yellow wire from the switch and solder in it's place.
4. Remove all wires attached to the ANL/NB switch except the red one at the PC board. Remove the red one at the switch.
5. Move the brown wire of the ANL/NB switch to the other throw terminal.

INSTALL THE EPOXY PACK:

1. Pull the chassis grounding tab, located just above the PLL chip, straight out.
2. Mount the epoxy pack against that chassis wall just forward of the pulled out tab, with the variable capacitor up. If CC-1 will not allow the epoxy pack to slide down far enough chip out a "v" just to the rear of the lower tank on the epoxy pack using small dikes.
3. Using silicone sealant, adhere the epoxy pack to the wall.

REMOVE OR UNSOLDER THE FOLLOWING COMPONENTS:

REMOVE: JP-22, $C-1, D-24$
REMOVE: $T R-2, R-6, C-7, R-5$ and save these components to modify 21Ltd, PC-66, AX-44, ETC.
C-3 - Remove and resolder where R-3 leg \& TR-2 base was.
L-1 - Remove and replace with new tank provided.
R-2 - Unsolder the body end and resolder where D-24 cathode was.

1. Solder the red wire removed from the ANL/NB switch to the spare hole in the PC pad where the leg of R-2 is attached.
2. Cut this same pad between the point just soldered and the secondary of $L-1$.
3. Run a jumper between the other leg of $L-1$'s secondary and ground.
4. Connect the pink wire on the CB/PA switch to this secondary leg just isolated from the PC pad. NOTE: The center leg of the primary does not have to be isolated since there is no connection internally.

CONNECT UP THE REST OF THE CB/PA SWITCH:

1. Pull the white wire out of the zip ties. Measure the distance needed to reach the blue terminal on the epoxy pack. Cut the insulation and pull a bare spot. Now solder it to the hook terminal-blue dot of the epoxy pack.
2. Continue the white wire to the point where JP-22 was removed near L-18 and solder.
3. Pull the orange wire out of the zip ties and run it along the left side of the receiver section to the other point where $3 p-22$ was removed.
4. Connect the red wire to the leg of R-124, just off of pin 11 of the PLL chip component side of board.
5. Connect a new wire to the same pole where the yellow wire was removed.
6. Connect this wire to the red dot terminal on the epoxy pack.
7. Run a jumper wire from the yellow dot terminal on the epoxy pack to where C-l was removed from the long PC run.
8. Run a grounding wire from the case of $L-22$ to the top tank (case) of the epoxy pack.

CONNECT UP THE ANL/NB SWITCH:

1. Add a wire to the other throw position of the same pole where the white and brown wires are. Connect to pin 11 of PLL chip.
2. Unsolder and lift the cathode end of $D-15$.
3. Connect the brown wire where the cathode was lifted from.
4. Connect the white wire to the raised leg of $\mathrm{D}-15$.

OPTION: If full channels are desired steps $5,6,7, \& 8$ must be accomplished.
If half channels are desired omit them.
5. Move the violet wire to the opposite throw.
6. Solder the VC (supplied) across the violet and red wires.
7. Cut the PC trace between the $10.24 \mathrm{Mhz} \times$ tal and the input leg of L-24.
8. Solder the violet and red wires across this cut. Now your switches should be down for normal position and up for high channels.

ALIGNMENT TX:

1. Connect power to the unit and load properly with a frequency meter attached.
2. Select channel 26.
3. With both switches down to normal position, key the transmitter. The reading should be 27.265 Mhz . If not adjust $L-24$ to obtain this reading.
4. Now switch both switches up.
5. With a scope and/or counter connected to $\mathbb{T P}-3$, the reading during receive should be 17.025 Mhz . Or with the option 27.0283 Mhz . If you are using the option and the reading is incorrect, adjust the VC you installed to obtain the correct reading.
6. Now read the signal on the orange wire of the CB/PA switch.
7. Adjust $L-1$ to maximize this signal. The tanks on the epoxy pack should require very little or no tuning.
8. This 37 Mhz signal should read 37.960 Mhz or with the option 37.9667 Mhz . If not, adjust the VC on the epoxy pack to obtain the desired reading.
9. As a final check of the transmitter, key the mike and read the output frequency. Should be 27.720 Mhz or with option 27.725 Mhz .

ALIGNMENT RX:

1. Very little tuning should be required. Make a normal alignment and peaking using channel 40.

THIS COMPLETES THE UPPER CHANNEL INSTRUCTIONS FOR COBRA 29 AND OTHER SISTER UNITS.

OPTION: If full channels are desired steps $5,6,7, \& 8$ must be accomplished.
If half channels are desired omit them.
5. Move the violet wire to the opposite throw.
6. Solder the VC (supplied) across the violet and red wires.
7. Cut the PC trace between the $10.24 \mathrm{Mhz} \times$ tal and the input leg of L-24.
8. Solder the violet and red wires across this cut. Now your switches should be down for normal position and up for high channels.

ALIGNMENT TX:

1. Connect power to the unit and load properly with a frequency meter attached.
2. Select channel 26.
3. With both switches down to normal position, key the transmitter. The reading should be 27.265 Mhz . If not adjust $\mathrm{L}-24$ to obtain this reading.
4. Now switch both switches up.
5. With a scope and/or counter connected to $T P-3$, the reading during receive should be 17.025 Mhz . Or with the option 27.0283 Mhz . If you are using the option and the reading is incorrect, adjust the VC you installed to obtain the correct reading.
6. Now read the signal on the orange wire of the CB/PA switch.
7. Adjust $L-1$ to maximize this signal. The tanks on the epoxy pack should require very little or no tuning.
8. This 37 Mhz signal should read 37.960 Mhz or with the option 37.9667 Mhz . If not, adjust the VC on the epoxy pack to obtain the desired reading.
9. As a final check of the transmitter, key the mike and read the output frequency. Should be 27.720 Mhz or with option 27.725 Mhz .

ALIGNMENT RX:

1. Very little tuning should be required. Make a normal alignment and peaking using channel 40.

THIS COMPLETES THE UPPER CHANNEL INSTRUCTIONS FOR COBRA 29 AND OTHER SISTER UNITS.

It is not feasible to use the existing switches on these units. We suggest that for any and all single modifications, that you use two DPDT subminiature switches. Also, since we will be using 8VDC Regulated (maximum allowable voltage) on the Epoxy Pack, we feel that the final 37 Mhz . amplyfier can be eliminated. True, you will not have quite as clear of a signal but since the circuits are all on the same plane, you are less likely to pick up stray signals or have as much mutual inductuance.

MOUNTING SWITCHES AND EPOXY PACK

1. Use the mike clip hole located to the rear of the cover screw on the lower cover as one of the mounting holes for the switches.
2. Mark the top cover equal distance and in line with this hole. Make new hole for the second switch.
3. Mount the Epoxy Pack approximately $1 / 8$ inch to the rear of these switches. Use silicone sealant mount with the VC up.

CONNECTING RECEIVER SWITCH

1. Remove C-102 (10 0pf) and relocate it on the PC side of the board, between pin 1 of the VCO, Mixer Chip and the output leg of L-9.
2. Cut the PC trace just to the rear of where C-102 was removed, (adjacent to pin 3 of the VCO, Mixer).
3. Solder wire K in this hole.
4. Strip the wire bare at the spot where it passes the blue dot terminal of the Epoxy Pack. Solder it to the terminal.
5. Solder wire L to the resistor leg of $R-16$ (TP-2).
6. Solder wire M to the yellow dot terminal on the Epoxy Pack.
7. Solder wire P to the leg of R-69 (82 ohm resistor) located just to the left of TR-14.
8. Connect wire R to the red dot terminal of the Epoxy Pack.

CONNECTING UP THE TRANSMIT SWITCH

1. Raise the cathode leg of $D-15$ off the board. It is located just forward of the PLL Chip with its cathode end forward.
2. Solder wire S on the board where $D-15$ was removed.
3. Solder wire T to the raised cathode leg of $D-15$. *OPTION: If only half channels are desired omit steps 4, 5, and 6 below. If you wish to have full channels these steps must be accomplished.
*4. Solder the VC (supplied) across wires and terminals X and Y.
*5. Remove $C-49$, located just forward of the 10.24 Mhz . Xtal, along side of L-8. (if the legs of $C-49$ are not long enough to stand one leg up while the other leg is soldered in the most forward hole then replace it with another that is).
*6. Solder wires X and Y to the raised leg of $C-49$ and the other in the hole it was removed from.

AN ALTERNATE METHOD

For better trimming of the frequency you may desire to drill a hole in the PC board where the Printed Board circuit number is, and run the two wires through to the PC side. In this case do not lift the leg of C-49 but cut the PC run between the 10.24 Mhz . Xtal and the leg of $\mathrm{C}-49$. Then connect your wires across this cut.
7. Now solder a jumper wire from the case (shield) of L-6 to the top tank case (shield) on the Epoxy Pack.

ALI GNMENT

IRANSMIT

1. Connect power to the unit and load properly with a frequency counter attached.
2. Select channel 26.
3. With both switches up in normal position, key the transmitter. The reading should be 27.265 Mhz . If not, adjust this frequency by changing the size of C-49.
4. Now switch the transmitter switch down, key the transmitter again; now the reading should be 26.810 , or if you have the option installed 26.815 Mhz . If you have installed the option and this reading is incorrect,

LOW CHANNELS FOR COBRA 21/25 PLUS AND SISTER UNITS CONTINUED:

adjust the VC on the switch to obtain this reading.

RECEIVE

1. Connect a scope or frequency counter to the leg of R-16 (a scope is preferred).
2. On receiver mode and with receiver switch dow, you should have a reading of 37.505 Mhz . If you have installed the option 37.5117 Nihz . (the Epoxy Pack comes preset to the latter).
3. To obtain the proper reading adjust the VC on the Epoxy Pack. The tanks on the Epoxy Pack should require very little or no adjustments. If the 37Mhz signal can not be obtained in the desired amplitude, you might need a 37 Mhz . amplifier. They are obtainable from Card-Kit \& Selman Enterprises. (NOTE: When making alignments with a small signal applied, you will detect a zero beat. This zero beat comes from the fact that two internal frequencies, the VCO and 10.24 Mhz . combine to make up the same frequency you are trying to receive.
4. Make your normal alignment and adjustment to the receiver on regular channels.
5. Now switch to low channels and check the receiver sensitivity. If you have a needle (or lighted scale) even when no signal is applied or an indication on all low channels, reduce the amplitude of the 37 Mhz . signal by inserting a resistor in the output line of the Epoxy Pack. (generally less than 500 ohms).
This completes the Installation Instructions for Cobra 21/25 Plus and any Sister Units.

'LTD KIT" HIGH CHANNEL INSTALLATION INSTRUCTIONS FOR COBRA $21 / 25$ PLUS UNITS AND ANY SISTER UNITS

It is not feasible to use the existing switches on these units. We suggest that for any and all single modifications, that you use two DPDT sub-miniature switches. Also, since we will be using 8VDC Regulated (maximum allowable voltage) on the Epoxy Pack, we feel that the final 37Mhz. amplifier can be eliminated. True, you will not have quite as clear of a signal but since the circuits are all on the same plane, you are less likely to pick up stray signals or have as much mutual inductance.

MOUNTING THE SWITCHES AND EPOXY PACK

1. Use the mike clip hole located to the rear of the cover screw on the lower cover as one of the mounting holes for the switches.
2. Mark the top cover equal distance and in line with this hole. Make you a hole there for the second switch.
3. Mount the Epoxy Pack approximately $1 / 8$ inch to the rear of these switches. Use silicone sealant and mount with VC up.

CONNECTING SWITCH \#1

1. Remove C-102 from the PC board and solder it to the common or point L on switch \#1.
2. Solder a wire between $C-102$ and the hole it was removed from nearest pin 1 on the VCO Mixer chip.
3. Solder wire M in the other hole left by removing $C-102$.
4. Strip wire M bare at the spot it passes the blue terminal and solder it to that terminal.
5. Solder wire K to the yellow dot terminal on the Epoxy Pack.
6. Solder wire P to the leg of R-69 (82 ohm ressitor) located just to the left of TR-14.
7. Connect wire 0 to the red dot terminal on the Epoxy Pack.

HIGH CHANNELS FOR COBRA 21/25 PLUS AND SISTER UNITS CONTINUED:

CONNECTING SWITCH \#2

1. Raise the cathode leg of D-15 off the board. It is located just forward of the PLL chip with it's cathode forward.
2. Solder wire U on the board where $D-15$ was removed.
3. Solder wire T onto the raised leg of D-15.
4. Solder wire S to $8 V D C$ or wire P of switch \#1.
*OPTION: If only half channels are desired omit steps 5, 6, and 7 below. If you wish to operate on full channels these steps must be accomplished.
*5. Solder the VC (supplied) across wires and teminals Y\& Z.
*6. Remove C-49, located just forward of the 10.24 Mhz . Xtal along side of L-8. (If the legs of C-49 are not long enough to stand one leg up while the other leg is soldered in the forward most hole then replace it with another that is).
*7. Solder wire Y \& Z to the raised leg of C-49 and the other in the hole it was raised from.

AN ALTERNATE METHOD

For better trimming of the frequency, you may desire to drill a hole in the PC board where the Printed Circuit number is stamped, and run the two wires through to the PC side. In this case do not lift the leg of C-49, but cut the PC run between the 10.24 MHZ Xtal \& leg of $\mathrm{C}-49$. Then connect wires across this cut.
8. Now solder a jumper wire form the case (shield) of L-6 to the top tank case (shield) on the Epoxy Pack.

ALIGNMENT
 TRANSMIT

1. Connect power to the unit and load properly with a frequency counter attached.
2. Select channel 26.
3. With both switches down in nomal position, key the transmitter. The reading should be 27.265 Mhz . If not, adjust the frequency by changing the size of C-49.
4. Now switch both switches up. Key the transmitter again. The reading should be 27.720 Mhz . If not and you are using half channels, adjust the VC on the Epoxy Pack to obtain this reading. However if you are using full channels the VC you installed and the VC on the Epoxy Pack must be adjusted independently.
*5. Read the VCO frequency at TP-2. It should read 17.0283 Mhz . while on receive. If not then adjust the VC on the switch to obtain it.

HIGH CHANNELS FOR COBRA 21/25 PLUS AND SISTER UNITS CONTINUED:

*6. Now key the transmitter and adjust the VC on the Epoxy Pack to obtain a transmitter frequency of 27.725 Mhz .

RECEIVE

The receiver should require very little tuning. Go through a normal receiver alignment and adjustment using normal channel 40.

THIS COMPLETES INSTALLATION INSTRUCTIONS FOR COBRA 21/25 PLUS UNITS AND SISTER UNITS.

"LTD KIT" INSTALLATIONS AND INSTRUCTIONS
 FOR COBRA 29 PLUS AND ANY SISTER UNITS

The installation and alignment instructions for this unit remains about the same as for the Cobra 21 Plus and 25 Plus. EXCEPT:

1. Location and installation of switches and Epoxy Pack.
2. Location of components.
3. The methods of breaking into circuits for switching.

DIFFERENCES

1. We suggest that the second switch be located $1 / 2$ inch and in line front to rear with the first switch.
2. The Epoxy Pack should be located just to the rear of the mounting bolt hole. Put a bolt in to make sure that it clears.
3. On location of components you will find C-49 between FT-1 and L-9.
4. The $8 V D C$ regulated can be better obtained at the long jumper just to the rear of the PLL Chip.
5. If you wish to carry the wires to the PC side of the board for 5 K offset, there is a good place to drill the hole just to the rear and slightly left of FT-1.
6. As for breaking into circuits, for low channels, the 16 Mhz . signal can be better switched if you raise the leg of R-16 along with the paralleling capacitor C-19 (TP-2).
all other things remain about the same.
THIS COMPLETES THE INSTALLATION INSTRUCTIONS FOR COBRA 29 PLUUS AND ANY SISTER UNITS.

www.hardtimez99,com

LOOKING FOR THOSE HARD TO FIND PARTS We have them! In Stock For immediate delivery!

We stock parts for most Imported Transceivers, Noise Toys, Echo Boxes, etc. Engineering size schematics, service materials.

We deal directly with most Asian manufacturers.
We can find your parts!

GALAKY ELELTRINNIES 31849 Pacific Hwy. S. Suite 278
Federal Way, WA 98003
206-839-8413

[^0]: - PAGE 10 FOR PARTS LOCATIONS.

