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This paper deals with the analysis of data from the omnidirectional
high-energy proton detector on the Telstar® 1 satellite. The main accom-
plishment is the development of relatively simple (empirical) mathematical
models which give a statistically accurate representation of the measured
spatial distribution of intensity of protons with energies between 60 and
130 11I eV.

These models depend upon the fitting of 8 (or 9 or 10) coefficients based
on samples containing approximately 1000 of the nearly 80,000 experi-
mental observations. The nature of the model for the average omnidirec-
tional counting rate permits its closed form transformation to the equivalent
equatorial pitch angle distribution.

Sufficiently accurate fits were achieved so that the residuals" (equal to
observed minus fitted) could be productively examined for possible depend-
ence on variables other than the two magnetic coordinates used in the
fitting. One consequence of this was the detection of instrumental suscep-
tibility to temperature and bias voltage changes, which led to an objective
partitioning of the data.

The present paper has several evolutionary aspects: In particular, a
series of one-dimensional fits was employed as a base for developing a
two-dimensional model; a preliminary analysis of all the data was used
to guide the rejection of outliers; a first two-dimensional fit to all the data
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led to a data -independent basis for partitioning the data; the mode of
selection of a sample of data, to which the two-dimensional model was
fitted, changed as deeper insight into the importance of this issue developed;
and, after a very satisfactory fit to the data was attained, the model was
improved by specialization and reparameterization so as to overcome some
statistical defects and to achieve greater physical meaning.

The data cover the time period between July 190 and February 1963,
and the spatial region bounded by 1.09 R. 5 R 51.95 R. and 0 5 X < 58°.

Flux maps having a relative accuracy of about two percent are derived
from the fit and presented. The temporal behavior of the intensity is ex-
amined and some changes are noted. The maximum value of the omni-
directional flux of protons with energies between 50 and 130 MeV is found
to be [5.7_1::] X 103 protons/cm' sec at L = 1.46 on the magnetic
equator, in good agreement with other experiments. Relative- flux values
and energy spectra are consistent with the generally accepted picture of
the proton distribution.
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I. INTRODUCTION

This paper deals with the analysis of data from the omnidirectional
high-energy proton detector on the Telstar® 1 satellite. The main ac-
complishment is the development of a relatively simple (empirical)
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mathematical model which gives a statistically accurate representation
of the measured spatial distribution of protons with energies between
50 and 130 MeV.

The Telstar® 1 satellite was launched into a 45° -inclined orbit with
an apogee of 5600 km and a perigee of 950 km on day 191 (July 10),
1962. The period of precession of the apsis was 180 days. The satellite
was instrumented to measure fluxes of energetic particles; in particu-
lar, counting rates of protons with energies above 50 MeV were re-
corded. Two thousand hours of telemetry was received during the ac-
tive life of the satellite, which terminated on day 52 (February 21),
1963. The satellite and associated systems have been described in de-
tail.' The particle -detection instruments have been documented2 and
some of the experimental results have been presented.3,415

The above -mentioned presentations of information concerning the
earth's radiation belts have been principally graphical in format, ow-
ing to the complexity of the belts and the limited understanding of the
details of the processes affecting them.

An accurate analytical representation of the data would enable con-
venient interpolation, extrapolation, and transformation. Thence it
would be practical to make extensive comparisons with the results of

other experiments and with various theoretical predictions and to sum-
marize, analytically, such features as the equatorial omnidirectional
counting rate and the approximate size of the equatorial loss cone. In
addition, an empirical mathematical model would facilitate the study
of temporal fluctuations in various regions of space. Of course, a good
analytical representation, even though empirical, may also stimulate
deeper physical insight and theories.

The present study was directed toward the development of a math-
ematical function which would, when fitted to the data, provide a con-
venient, concise and precise summary description. The mathematical
model(s), which are herein presented, were empirically evolved, using
the knowledge that the intensity distribution of these protons is, in
the main, not rapidly variable in time. Even more specifically, the
assumption has been that fluctuations in observed counting rates at a
fixed point in space relative to the earth are independent random vari-
ables. Further, the main effort of the analysis has been to try to relate
the observed counting rates to a two-dimensional magnetic coordinate
system derived from three-dimensional spatial coordinates by mapping
the known earth's magnetic field onto the field of a magnetic dipole.°

The mathematical models which are used depend upon fitting of be-
tween 8 and 10 coefficients based on samples containing approximately
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1000 of the nearly 80,000 experimental observations. The nature of
these models for the average omnidirectional counting rate permit
their closed -form transformation to the equivalent equatorial pitch
angle distribution.

The fitted models were sufficiently accurate so that the residuals
(equal to observed minus fitted) of all the data could be productively
examined for possible dependence on variables other than the two mag-
netic coordinates used in the fitting. One consequence of this was the
detection of instrumental susceptibility to temperature and bias volt-
age change, which led to an objective partitioning of the data.

This article summarizes some of the productive aspects of the anal-
ysis of this body of data. A very large amount of "preliminary" work
is not reviewed. Though not an historical description of the work, the
present paper does have several evolutionary aspects. In particular, a
series of one-dimensional fits were employed as a base for developing
two-dimensional models; a preliminary analysis of all the data was
used to guide the rejection of outliers; a first two-dimensional fit to
all the data led to a data -independent basis for partitioning the data;
the mode of selection of a sample of data, to which the two-dimen-
sional model was fitted, changed as deeper insight into the importance
of this issue developed; and, after a very satisfactory fit to the data
was attained, the model was improved by specialization and reparam-
eterization so as to overcome some statistical defects and to achieve
greater physical meaning.

Readers with specific interests may wish to consult the Table of
Contents, the summary (Section XIV) and the following overview for
guidance.

Section II introduces the input data which have been analyzed. Co-
ordinates and notation are tabulated, the distribution of the data is
displayed, and the general quality and stability of the data are dis-
cussed. It is shown informally that the measurements may be usefully
organized in the dipole magnetic coordinate system used.

In Section III, various alternative coordinate systems and scales are
considered. The bases for choice of the x,L coordinate system for the
independent variables and the square -root -of -counting -rate scale for
the dependent variable are given.

Section IV brings together the ideas underlying the formulation and
evolution of the models, and gives mathematical definitions and details.
Some properties of the models which make them suitable smoothing
functions for this body of data are indicated.

One-dimensional fits to the data in each of several L -slices (an



1306 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

L -slice is a particular grouping of the data) are displayed on several
scales and discussed in Section V. It is shown that L -slice fits suffer
from fundamental deficiencies, in addition to being inconvenient to

work with. The results of the L -slice fits are used to lead to a two-

dimensional model.
Section VI contains the treatment of the preliminary fit of a two-

dimensional model. This fit is of good quality and provides residuals
which are used to help identify and eliminate extraneous sources of

variability in the data and to serve as a basis for more refined sample

selection.
The treatment of the two-dimensional fit to the data after it has

been partitioned to reduce instrumental effects appears in Section VII.
The method of sample selection is important, and some algorithms and

their influence on the resultant fits are considered in Section 7.1. The
advantages of selecting a sample on the basis of a preliminary fit are
discussed. The fit itself is described and evaluated in the remainder of

the section.
A more detailed statistical critique of the fit discussed in Section

VII is contained in Section VIII; in particular, some remaining phys-
ical and statistical defects are pinpointed.

Section IX deals with a modified version of the model, which elimi-
nates the remaining defects, and gives the results of fitting the most
satisfactorily parameterized model of the proton distribution.

Residuals are used to study temporal effects in Section X. An in-
crease in intensity near L = 2 is noted during October, 1962. An upper
limit of 0.003 gauss is found for the diurnal variation of the earth's
magnetic field near L = 1.5. A possible shift in the location of the
atmospheric cutoff is examined.

The behavior of the radiation belt near the top of the atmosphere is
the subject of Section XI. Although the data do not allow the position
of the low -altitude cutoff to be accurately determined, the qualitative
behavior precludes a simple atmospheric cutoff mechanism.

Section XII is devoted to a comparison of the Te/stare 1 results,
presented as flux maps, with those obtained on Injuns 1 and 3, Ex-
plorers 4 and 15, and other satellites. Absolute flux values agree to
within a factor of 2 in most cases, which is as well as can be expected.
Very good agreement exists concerning the behavior of the intensity
in the equatorial plane, on L -shells, and near the top of the atmos-
phere. Experimental results regarding the equatorial pitch angle (see
Fig. 1) distribution are found to agree well with each other, but differ



PROTON DATA FROM TELSTAR 1 1307

appreciably from the published results of theoretical calculations.
Section XIII gives brief consideration to possible directions in which

this work might be extended: improving the fit to the Te/star® 1 high-
energy protons still further; approaching model development differ-
ently; employing the data more fully; and encompassing other more
complex bodies of data.

Section XIV contains a brief summary of the results and Section XV
contains acknowledgments.

Appendix A provides a detailed description of the particle detector
and its calibration.

Appendix B gives some statistical background and details of the
analysis, and Appendix C discusses statistical measures of the good-
ness of fit of the model over all the partitioned data.

MAGNETIC
NORTH

EARTH

L = 2.5

3,9
Ft,: 2 ------

1.5 2.0

= 0.0266 GAUSS

COS a 0 = 0.5

ao = 60°

0

3.0 3.5 Re

Bo = 0.01995 GAUSS

Fig. 1-Magnetic coordinates of the point P. The spiral is the orbit of a
Particle trapped on the magnetic line of force L = 2.5 and mirroring at B =
0.0266 gauss. The equatorial pitch angle, ao, is the angle between the velocity
vector and the magnetic field vector at the equator.
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II. THE DATA

The data which are studied in this paper were obtained with a
detector on the Telstar® 1 satellite which measured protons with energies
greater than 50 MeV. The sensitive detecting element is a semiconductor
diode developed specifically for satellite experiments.' The effective
geometric factor, g, of the detector depends upon proton energy, but
over the region energy between 50 and 130 MeV the average geometric
factor, #, is relatively insensitive to the energy spectrum and an ap-
proximate value of 0.143 cm' steradian has been selected. These con-
siderations are discussed in detail in Appendix A. The response of the
detector is also dependent upon both temperature and electrical bias
because of changes in the effective thickness of the active region of the
detector. These effects are discussed in Section 6.8.

The primary input to our data reduction process consisted of : the
telemetry record of the number of counts measured by the detector
in an 11 -second counting interval once every minute; the time at which
the data were recorded (inserted by the recording station); and the
ephemeris of the satellite position obtained from tracking data. These
are supplemented by the satellite spin -axis orientation obtained from the
mirror flash data' and by telemetered measurements of the satellite
sldn temperature near the detector and of the detector bias voltage.

During data reduction, the square root of the counting rate was
computed for each recorded particle -counting interval and associated
with the following information : date and time, geographic position,
position in the earth's magnetic field, orientation of the detector relative
to the magnetic field, bias voltage, and skin temperature.

The model developed in the present paper is based on the use of
a two-dimensional magnetic coordinate system, in which the earth's
magnetic field is mapped onto an axially symmetric dipole field using
the adiabatic invariants of particle motion.' Any of a number of equiv-
alent pairs of magnetic coordinates, including the B,L; R,X and x,L
sets° may be used to locate position in this dipole field. Briefly: The
magnetic shell parameter, L, specifies a particular line of force (about
which the trapped particle spirals) by the radial distance to the line
in the equatorial plane of the dipole measured in units of one earth
radius (see Fig. 1) ; position along the line of force is specified by either
the magnetic induction (field strength), B, or by x, where x= (1 -B0/B)1
is a convenient variable in the equations of the dynamics of charged
particle motion. (Bo is the magnetic induction at the equator on the
line of force in question.) Magnetic dipole polar coordinates /? and X,
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1.0 1.5

R
2.0

Fig. 2 - The spatial distribution of data for L < 3 in R, X coordinates. Every
twentieth point from the L -ordered data is plotted.

where R is the radial distance in earth radii and X is the latitude angle,
offer a sufficiently close analog to geographic coordinates to be con-
venient in many circumstances. The choice among these sets is dis-
cussed in Section III, as are the reasons for choosing the square root
of the counting rate as the scale for the dependent variable.

The coordinates and variables, together with other symbols used
in this analysis, are listed in Table I under the following headings:
Radiation Intensity, Position and Orientation, Instrument and Energy
Spectrum, Mathematical Model, Statistics, and Other. Summary in-
formation concerning units, constants, derivations, and sources is
included.

The satellite was confined to the volume of space {1.09 R. 5
R 5 1.95 R. ,* 0 < A 5 58°}. For {L > 3, R < 1.95 R.}, the average
counting rate is very nearly zero, and these data were not examined
further. About 5 percent of the 50-130 MeV proton data for L 5 3
were associated with noise bursts which affected adjacent telemetry
channels; these data were discarded. The study described below is
based on the remaining 77,649 observations.

The spatial distribution of the data is indicated in Fig. 2 which is

* R. = earth radius.
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a plot in R,A coordinates of the position of every twentieth point from
the L -ordered data. Although data were not acquired continuously
during the 226 days that the satellite was active, there are no time

gaps in the data longer than two days in duration.
Fig. 3 is a plot of bands of constant counting rate made by plotting

the R,A. coordinates at which certain specified numbers of counts were
recorded during 11 -second counting intervals. The data in Fig. 3 cover
the entire seven -month life of the satellite. The narrowness of the con-
tour bands demonstrates that the data are exceptionally well-behaved
in both time and space, and that one may reasonably hope to describe
radiation intensity in terms of R,A. coordinates or their equivalent.

Among the various sources of error in the data are: noise present
in the received telemetry signal or introduced during the recording and
processing of the telemetry; errors in the time as recorded by the
ground station; errors in the satellite ephemeris; differences between
the real magnetic field of the earth and the values of B and L calcu-
lated from the coefficients in the computer program INVAR (see Table
I) ; and instrumental effects. In addition, one expects statistical fluc-
tuations in the measured counting rate at a fixed position. The im-
portance of these. sources of error is discussed later.

CB

X=45°

300

MAGNETIC INVARIANT EQUATOR

15°

r

1.0 1.5 e
R

Fig. 3 - Bands of constant numbers of counts in 11 seconds in R, a space :
Band a, 4; Band b, 32; Band c, 127-129; Band d, 254-258; Band 3, 508-516 counts.
All the data from the seven -month period are displayed.

d 2.0
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III. CHOICE OF THE PRINCIPAL VARIABLES AND THEIR SCALES

The current state of knowledge of the earth's radiation belts sug-
gests that the spatial distribution of high-energy protons may reason-
ably be organized on the basis of a two-dimensional magnetic coordi-
nate system, except perhaps at very low altitudes near the South
American magnetic anomaly, where longitude also becomes important.
Telstar® 1 data plotted in Fig. 3 indicates that the observed counting-
rate data does indeed depend principally on the magnetic coordinates,
R and A. The coordinates R,A are defined in terms of the mathemat-
ically equivalent pair B,L.9 A third equivalent set consists of L to-
gether with the coordinate x, suggested by Roberts,1° defined in Table I.

We have primarily employed the x,L set in this study because of
the following considerations: In the adiabatic theory, the mirror points
of particles do not migrate between magnetic shells." Within any shell,
the coordinate x is approximately linear in A. for A < 30°, and thus the
near -equatorial data is not "crowded" into a small interval of the
coordinate, as is the case for B. Moreover, we have been able to de-
velop simple functional representations of the data in terms of x and L.

The flux of particles is the variable of greatest physical interest for
comparing the results of different experiments, calculating physical
effects of the radiation (such as radiation damage to devices in pro-
posed orbits) , deriving an energy spectrum from experimental meas-
urements, examining the implications of various source and loss mech-
anisms, etc. However, the flux is not measured directly and requires
for its calculation knowledge of the energy spectrum of the particles
and of the energy dependence of the geometric factor of the detector.
Even in the present circumstances where the conversion is (under the
assumptions of Appendix A) quite insensitive to these, we prefer to
carry out the bulk of the data analysis in terms mathematically equiv-
alent to the directly observed counting rates.

From among the possible representations of the counting rate in-
formation (including counting rate, log counting rate, and square root
of counting rate) the square root of the observed counting rate, Y, has
been selected as the dependent variable. On the hypothesis that the
number of counts in a given 11 -second counting interval at any given
position in space is a random variable with a Poisson distribution, it
can be shown that the variance of Y is approximately constant, inde-
pendent of its average value (see Appendix B.2). The least squares
criterion has been used in all the estimating procedures; that is, coeffi-
cient estimates have been selected so that the sum of squares of dif-
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ferences between observed and fitted values is minimized. The choice
of the square root scale, Y, as the scale on which to represent the
counting rate data makes troublesome differential weighting of the
data in the least squares fitting unnecessary. Similarly, plots of Y
versus various variables are convenient since the scatter in Y is ap-
proximately independent of the value of Y. In fact, the square root
transformation will make the variance of the observation approxi-
mately independent of its average value whenever the variance is pro-
portional to the mean. Thus, the procedure is more robust than the
assumption of a Poisson distribution, for which the variance equals
the mean. Further discussion and detail is given in Appendices B.2
and C.

The results were restored to counting rate and the flux was calculated
using the best estimate of the average geometric factor, g, (see Appendix
A) to facilitate the discussion of the physical significance of the meas-
urements.

IV. THE EVOLUTION OF THE MODELS

4.1 General Approach

This section provides a summary overview of the evolution of the
models, the details and accomplishments of which are elaborated in
the following sections and appendices.

The approach to model development in this study has been largely
empirical. Theoretical physics considerations are currently too com-
plex and speculative to do more than serve as a general guide and
stimulus. We have proceeded on the presumption that an adequate
model for the spatial distribution of the high-energy protons can be
based on the mapping of the earth's magnetic field onto a two-dimen-
sional axially symmetric dipole field, expressed, for example, in the
coordinates x and L. This is supported by the plots of Fig: 3, the suc-
cessful polynomial fits on L -lines of Mcllwain,18 Valerio," and Fil-
lius,2° and by the results of the present study.

The ultimate justification of the mathematical models developed
herein is that, when appropriate estimates of coefficients are inserted,
good fits to the data are obtained. Various other mathematical, phys-
ical, and statistical considerations also provided guidance and evalua-
tion.

The evolution involved successive interactions with the data and
iteration on models. Roughly, the main stages included: grouping the
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data into L -slices; inferring a mathematical function having adjustable
coefficients which would fit a selected series of L -slices ; developing a
mathematical function to describe the dependence of the L -slice coeffi-
cients on L; thence fitting the two-dimensional model so -defined to a
sample of the data; using this fit to screen outliers, to detect instru-
mental effects and, after partitioning the data, to select a representa-
tive sample of partitioned data for further fitting; after obtaining a
very good fit to the partitioned data, some remaining physical and
statistical defects of the model were overcome by a reparametrization
and specialization. Further generalizations of the model were also
tested.

4.2 The L -slice Model

As a developmental operational procedure (encouraged by the L-shell
orientation of the adiabatic theory") the data were grouped into a
series of narrow bands according to L values (e.g., 1.849 5 L S 1.851)
and plotted versus x. Retrospectively, there is every reason to believe
that an initial approach based on grouping the data into x -slices would
also have led to an effective analysis (see Section 13.2). Various func-
tional forms, having adjustable coefficients dependent on L, were tested
for adequacy of fit to the L -slices.

Initially, we employed the functional form

YL(x) = {AG(x; (x S x,),

(x > x,),

where A, x, and S are fitted coefficients for each L -slice, and

G(x; x,, S) =
(1 - 4-1[1 (1218+1

x,
(x S xe),

(1)

(2)

0 (x > xc).

For this body of data from the region (./? 5 1.95 R. , 1.15 5 L S 3.0),
we have found this yL(x) function provides an adequately flexible model
on L -slices, for appropriately fitted values of the coefficients A, xe,
and S. In this representation for given fixed L, the quantity A2 may be
interpreted as the average equatorial omnidirectional counting rate,
since x = 0 on the equator, x, represents a "cutoff" value for x, i.e.,
the cosine of the equatorial pitch angle corresponding to the "loss cone",
and S has the effect of a shape factor in the y,x dependence.

The analysis using this yL(x) model is described in Section V.
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4.3 Dependence on L

The yr,(x) model was fitted to a series of L -slices, obtaining fitted
values of A, xc and S. These were each plotted against the nominal
(mid -range) L value for the slice and a reasonably smooth variation
with L obtained.

Thence we inferred the following functional dependence of the L-
slice coefficient estimates on L:

S = S(L) = so s, L,

x, = x,(L) = \11 - (1)3[4 - 3 11-1,

Rc = R,(L) = L0 + - Lo) - L0)2 r3(1, - L0)3, (5)

(3)

a, (L - Lo)

A = A'(L) =(12 (L - a3r
0

(L L0),

(L < L0),

(4)

(6)

where so, si, r1, r2, r3, a1, a2, a3, ,, and Lo are fitted coefficients.
Equation (4) simply expresses the mathematical relationship be-

tween R (or Rc) and x (or xc) in the magnetic dipole field (see Table
I). The coefficient Lo, which occurs in A' (L) and xo(L), may be inter-
preted as the lower bound of the L shells on which protons with ener-
gies above 50 MeV were measurable. The quantity Rc(L) is such that
Rc(L) - 1 is the equivalent dipole altitude at which the counting rate
falls to zero.

4.4 A Two -Dimensional Model-Model I

The conjunction of (1) to (6) defines a two-dimensional model, re-
ferred to henceforth as Model I,

y'(x, L) = A'(L)G'(x, x,(L), S(L)), (7)

where G' is essentially the function G of (2) , with xo and S explicitly
dependent on L.

Though empirical considerations mainly guided the choice of these
functions, some physical and mathematical properties influenced the
choice. In the present case, in which the geometric factor of the de-
tector is considered to be independent of the energy spectrum (see
Appendix A), [y (x, L) ] 2 transforms in closed form to the equatorial
pitch angle distribution, givingl°
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j(l,0, L)
47r

[A(L)]2{1 - kto

Xr(L)

S (L)

27rx,(43(1-, 1 + 2S(L))

where j(tLo, L) is the predicted equatorial unidirectional flux (protons/
cm2 sec ster) at equatorial pitch angle ao = arc cos tto, and is the
beta function,

I3(p, q) = f uP-1(1 - u)a-' du.
0

(8)

(9)

In addition y'(x, L) has good boundary behavior. The derivative at
the magnetic equator, ay'(0, L)/ax, is 0, which provides continuity.
When i < S(L) < then ay' (x,, L)/ax --> - oo and a [y'(x L) ] 2/
ax = 0. The estimated values of S do satisfy this constraint in the
present case. The desirable consequences of this behavior of the de-
rivatives will be discussed in Section V. The function y'(x, L) gives
smooth interpolation over regions sparse in data, and does not have
any of the wild fluctuations often associated with polynomial fits.

The analysis of the data using Model I is described in Section VI.

4.5 Summary Uses of Model I.
The unspecified coefficients of Model I were estimated by nonlinear

least squares fitting to a sample of about 1000 observations from the
complete body of data. Thence this fit of Model I (the CB fit) was
evaluated relative to all the data and to auxiliary variables, such as
time, which were not included in the model. Outliers were thereby de-
tected and screened. An instrumental effect was uncovered (see Section
6.8), and this led to an objective partitioning of the data, yielding a
subset (HTB data) for further analysis. The CB fit of Model I was
also used to specify a representative data sampling procedure for fur-
ther fitting to the HTB data.

Though Model I produces a very good fit to the HTB data (see Sec-
tion VII), it has certain physical and statistical defects. Specifically,
though the quantities A and xc in the L -slice model have a direct phys-
ical interpretation, most of the coefficients in y'(x, L) do not. Addi-
tionally, the estimates of the coefficients in A'(L) turn out to have
exceedingly high statistical correlations and the model y'(x, L), as a
function of the coefficients, exhibits marked nonlinearities even in a
close neighborhood of the least squares estimates (see Section 8.5).

Therefore, after clarifying the character of the data and obtaining
a good fit, attention was given to additional improvements of the
model.
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4.6 A Modified Model-Model II
The statistical difficulties of Model I were entirely overcome by em-

ploying a specialized version of A' (L), defined below. Furthermore,
this specialized model, Model II, retains all the desirable properties
of Model I while providing both aesthetic improvement and greater
physical interpretability.

Model II is defined by

y"(x, L) = A"(L) G"(x, x,(L), S(L)), (10)

where G" is as in (2), but with S(L) = so, and

A (L - Lo)

A"(L) = -

(77 - 2)
(L, Lo)

2 [(La L - 2L0)/2)"
n (Li, - Lori

0 (L < Lo),
where Ap,L0,L, and are the coefficients to be estimated.

A"(L) is a special case of A' (L) and relates to it by the following
transformations:

Lo - Lo

(L a: L0),
(11)

77 = 77

a3 = 2E0 - L (12)

a2 - 2)(L, - L0) n

= Apn(L, - LO)°'
Indeed, Model II is essentially defined by the following nonlinear con-
straint imposed on Model I:

a2 = 2"(n - 2)(L0 - a3)". (13)

The coefficients of A"(L) in Model II have the following physical
interpretations:

Lo (as before) is the smallest value of L such that high-energy
protons are measurable by the instrument;

A, is the square root of the maximum counting rate of high-energy
protons in the radiation belt;

L is the value of the magnetic shell parameter (on the equator,
x = 0) at the highest radiation intensity;

77 may be interpreted as a shape factor for the equatorial (counting
rate)* function, A"(L).
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The model A" (L) has the form of a product, with the maximum
value, A,, being multiplied by a factor which decreases as L departs
from L, in either direction. Note that the factor multiplying A, is
dimensionless.

The other fitted coefficients of Model II are so, which is a shape fac-
tor for the dependence of (counting rate) on x at constant L, and rl, r2
and r3 which, with Lo, define the cutoff function xc(L).

The analysis of the HTB data using Model II and comparisons of
Models II and I are considered in Section IX.

4.7 Generalizations
The previously defined models may be regarded as special cases of

Model III defined by

y"(x, L) = (L)  G" (x,(x , x,(L), 211(L), P(L), Q(L)), (14)

where A"'(L) = A' (L) , defined in (6),

))/(1 - x2)0 (L)
M(L) P(L)

0 > xe),

x, (L) is as defined in (4), and M (P), P(L) and Q(L) involve coef-
ficients or functions to be fitted.

The function G' is a special case of G"', in which 111 (L) = 2 and
Q (L) = I. This permits a closed form transformation to an equatorial
pitch angle distribution. The function G" additionally constrains P (L)
= so, independent of L.

The more general G"' in Model III can be used on L slices to de-
termine L -slice estimates of M, P, Q, as well as A and sc, and these
in turn inspected to infer functional dependence on L. Clearly, this
more general form must lead to at least as good a fit as Models I or
II. Work has been done with Model 11121 but no important improve-
ment over Model II was obtained for this body of data.

Neither of the fitted models y' (x, L) nor y" (x, L) is applicable far
outside the spatial and energy regions that include the data analyzed
here. For example, Models I and II do not fit well to the 26-33 MeV
protons measured by the Telstar® 1 satellite, nor are they suitable for
fitting many of the electron distributions. Preliminary investigations
indicate that these remarks may not apply to G"', whose additional
coefficients allow more rapid changes in curvature as a function of x.

G"'
(x 6 x.),

(15)
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We have already shown for Telstal4 2 data' that A (L) can be ex-
tended to include description of the plateau of high-energy protons
reported by McIlwain15,22 near the equator at R 2.2 R5, beyond the
orbital extremes of the Telstare 1 satellite. The extension was made by
adding a term to A'(L), (6), to give Ai" defined by

1A" = A'(L) + exp (L - L1)2[ (16)
a5 J '

where a4, a5, and L1 are coefficients describing the equatorial distribu-
tion of the "excess" protons that give rise to the plateau. In the less
stable parts of the radiation belts the early work on empirical time
dependence presented by Gabbe and Browns clearly requires extension.

V. FITS ON THE L -SLICES

The model of (1) and (2) was fitted to the data, on the scale of Y,
in 92 individual L -slices, using a nonlinear, multidimensional, least
squares, computer program (see Appendix B) to estimate the coeffi-
cients and produce various statistical measures. The procedure of fit-
ting to L -slice data enabled one to test functional forms of yL(x) and
then to evolve functional forms for the dependencies of the coefficients
of the L -slice models on L.

Proceeding in this manner, however, has a number of possible pit-
falls. In particular, the estimates of coefficients within an L -slice may
be highly correlated, and the reliability of the actual values of the
estimated coefficients also depends on the pattern of data points in
the particular L -slice, e.g., whether or not there are points near x,
Hence, the estimated values for any particular coefficient may not ex-
hibit a smooth dependence on L.

The form of the L -slices whose middle values of L, called L,, are
1.35, 1.801, 2.2015, and 1.79, respectively, are displayed in Figs. 4 to 7.
The thin solid lines in the figures are the fits to the L -slice data (mean-
ing of the dashed and thick solid lines will be taken up later). The
numerical values of the coefficients of the fits, and the widths of the
slices are given in Table II. Figs. 4 and 5 are examples of the high
quality of fit which is typically obtained for L -slices having L, < 2.

In Figs. 4 (a) and 5(a), square root of counting rate is plotted
against x. One sees that the fit to the data points (the thin solid line)
is quite adequate. The cutoffs, x are well-defined, the scatter in Y is
approximately independent of y and the data are well -distributed in x.
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Fig. 4-Data from the L -slice centered at L., = 1.35 and the results of three
fits shown on four scales.
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Fig. 5 - Data from the L -slice centered at L. = 1.801 and the results of three
fits shown on four scales. The partitioning in (a) is discussed in Section 7.1.
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TABLE II -COEFFICIENTS AND STATISTICS OF THE L -SLICE FITS.

L. 1.35 1.801 2.2015 1.79

LMIN 1.346 1.800 2.200 1.7895
Liccx 1.354 1.802 2.203 1.7905
AL 0.008 0.002 0.003 0.001
A 6.757 4.109 1.70 4.324
o(A) 0.053 0.031 0.12 0.043
Z.
cr(X.)

0.6795
0.0027

0.8998
0.0044

0.954
0.011

0.923
0.015

S 0.324 0.390 0.58 0.478

14S)umber of pts
0.018

140
0.024

129
0.10

144
0.060

65
MSE 0.1125 0.0497 0.0282 0.0478

Correlation coefficients

A with rc, 0.281 0.309 0.724 0.408
A with S 0.605 0.561 0.940 0.548
x. with S 0.774 0.820 0.890 0.944

As the cutoff is sharp on the scale of y, it is convenient to have a
function which has an infinite derivative at xc. Otherwise the exact
x at which y 0 may have relatively little effect on the mean square
error of the fit. This would lead to an ill-defined value for xc, even
though the data allows one to evaluate the position of the cutoff quite
precisely for L values smaller than

In Figs. 4(b) and 5(b), the counting rate, y2, is plotted against x.
The thin solid lines represent the same fits as those in Figs. 4(a) and
5(a). One finds that the position of the cutoff is no longer well-defined
on the plot. Instead the counting rate fades away as x increases. Hav-
ing the derivative of y2 equal zero at the cutoff (as noted in the pre-
vious section) is suitable in this situation. The scatter in Y2 now
changes with y2, and is greater for large values of y2 (small values
of x). This nonuniform scatter makes it more difficult to judge the ap-
propriateness of fit. If one wished to minimize the squared deviations
between observed and fitted in terms of y2 (or log y2) the values of

Y2 (or log Y2) would have to be weighted inversely as their estimated
approximate variance, with a loss of intuitive appreciation of the qual-
ity of fit from a scatter plot and a substantial inconvenience in carry-
ing out the fitting procedure.

In Figs. 4(c) and 5(c) the ordinate is log y2. This choice of coordi-
nate restores the ability to discriminate in the vicinity of the cutoff at
the cost of a large loss of sensitivity in regions where the counting rate
is higher.

Finally, Figs. 4(d) and 5(d) display the same data in the coordinate
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system log y2, log (B/Bo). This choice of abscissa expands the high -x
region enormously, but contracts the low -x region to the point where
it is impossible to see the details of the particle distribution in the
vicinity of the equator (x = 0). This contraction would be even more
severe if the abscissa were B or B/Bo.

In the region defined by A < 45°, which covers the high energy pro-
ton data, the coordinate x provides adequate detail (see Ref. 10 for
further discussion). If, however, the data had extended to A > 45° an-
other choice. of magnetic coordinate would have been desirable for
x > 0.95, because all A. > 45° are crowded into x values between 0.95
and 1.

The standard errors and correlations of the coefficients of the
four L -slices under discussion, together with mean square. error (MSE) *
of fits, are listed in Table II. The standard error is in general a
relatively small fraction of the estimate and the MSE is substantially
greater at small values of Lm than at larger ones. This is further ana-
lyzed in Section VI.

At L = 2.2 the satellite gets no closer to the magnetic dipole equator
than A = 20°. This fact, which is associated with the problem of cor-
relation of coefficient estimates within L -slices, is displayed more em-
phatically by choosing x as a coordinate, as in Figs. 6(a), (b), and (c),
than by choosing log (B/Bo) as in Fig. 6 (d). In addition, in Fig. 6(d)
the expansion of the abscissa in the region of the cutoff makes it diffi-
cult to judge the physical appropriateness of the value of xo which re-
sults from the least squares procedure. The same difficulty is encoun-
tered to a lesser degree with Fig. 6 (b). However, in Figs. 6(a) and
6(c) one judges the x -intercept of the thin solid line to be too large,
and Fig. 6(a) has the additional advantage of allowing one to make
a better judgment of the quality of the fit at lower values of x. As might
be surmised from the high values of the correlations for L, = 2.2 in
Table II, the value of x, can be adjusted to a substantial extent with-
out much change in the mean square error. These high correlations,
which typically occur for L,,1 > 2, reduce confidence in the individual
estimates of the coefficients for given L -slices. This difficulty also re-
duces the stability of the estimates of the coefficients as Lm is changed,
and precludes basing the values of so(L) and S(L), for L > 2, on the
fits to the L -slices.

A similar difficulty may be introduced when L < 2 by sampling
fluctuations as illustrated in Fig. 7. In this case, there is a scarcity of

* Some statistical terms are defined in Table I.
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Fig. 6-Data from the L -slice centered at L, = 2.202 and the results of three
fits shown on four scales.
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Fig. 7-Data from the L -slice centered at L. = 1.790 and the results of three
fits shown on four scales.
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data near and beyond the cutoff, unlike the slice with L, = 1.801

illustrated in Fig. 5. The paucity of data near the cutoff in the L-slice

centered on L, = 1.79 both correlates and distorts the values of xc
and S. In this particular case, the width of the L -slice can be increased
to avoid this difficulty, but, in general, increasing the width of the
slice to include enough data may introduce a serious L-dependence
within the slice. As a result, xo may be determined by points near one
extreme of L within the slice, A by points at the other extreme and S
by some combination. This problem is especially severe below L = 1.3
where data begin to become sparse.

The plotted points in Figs. 8 to 10 summarize the dependencies of
the estimates of the L -slice coefficients A, so, and S, respectively, on
L for all 92 slices. More than one value of the coefficients is plotted
for some values of L, because on occasion the width of the L -slice was

A

L- SLICE ESTIMATES
--- FROM CB COEFFICIENTS

FROM HTB COEFFICIENTS

0
1.0 1.4 1.8 2.2 2.6 3.0

Fig. 8 - Three estimates of A as a function of L.
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Fig. 9 - Three estimates of xc as a function of L.

2.4

varied without changing L. . Although there are local fluctuations in
the estimates that arise from the way a narrow L -slice samples the
data, the estimates exhibit a smooth dependence on L. The fluctuations
are particularly pronounced near L, = 1.8 in Figs. 9 and 10, and L. =
1.3 in Fig. 10.

The standard errors of the L -slice estimates of A are typically 1 per-
cent for L < 1.95, but become as large as 6 percent where there are
no equatorial data, as is the case for L > 1.95. Fox x, estimates, the
standard errors are typically 0.5 percent. The estimates of S have a
standard error of about 5 percent (±0.015) near L = 1.5 and about
15 percent (±0.05) near L = 1.2 and L = 2. The meanings of the
curves in Figs. 8 to 10 will be discussed in the following sections.



1338 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

0.6

0.4

0.2

0

0

---FROM CB COEFFICIENTS
- FROM HTB COEFFICIENTS

L-- SLICE ESTIMATES

f.0 1.2 1.6

Lm
2.0

Fig. 10 - Three estimates of S as a function of L.

24

In summary, the. L -slice approach enables one to infer a functional
dependence of L -slice coefficients on L and to obtain an intuitive ap-
preciation of the quality and nature of fit. The fitting procedure re-
quires refinement by being carried out as a simultaneous two-dimen-
sional process in x and L jointly. This overcomes the "grouping"
inaccuracy in the L -slice approach and in addition makes good use of

the data in those regions where data are scarce. The resultant function
also provides convenient and excellent interpolation of data over the
entire x,L region while employing a relatively small number (8, 9, or
10) of fitted coefficients.

VI. THE TWO-DIMENSIONAL FIT FOR THE COMPLETE BODY OF DATA

The analysis of this section is a precursor to the more refined paral-
lel analysis of Section VII. This preliminary analysis produces the
following results of consequence: Model I (see Section 4.4) is shown
to be satisfactory; instrumental effects are identified and an objective
algorithm for partitioning the data to reduce these effects is formu-
lated; outliers are screened; and a more adequate basis for sample
selection is provided. Many statistical details are omitted from this
section, and statistical matters are dealt with more fully in Sections
VII, VIII, and IX and in Appendices B and C.

6.1 Sample Selection and Fit

It was necessary, for practical computing reasons, to make a selec-
tion of approximately 1000 observations on which to carry out the
simultaneous two-dimensional (in x and L) nonlinear (in the coeffi-

cients) least squares fit. In this preliminary phase, the nearly 80,000
data points were sampled by dividing the L -range from 1.15 to 3.00
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into 925 contiguous intervals, each 0.002 wide. One data point was
selected from each interval. As the data are approximately uniformly
distributed in x (in the x -range covered by the satellite) in each
L -slice (see Figs. 4 to 7), no effort was made at this point to in-
fluence the x distribution of the observations in this subset. The ques-
tion of the "design" of the sample to be used as a basis for fitting the
model is rather important, however, since the fit obtained with the
empirical model is responsive to the distribution of data in x,L space.
Other bases of sampling were employed later (see Section 7.1 and Ap-
pendix B.3).

Model I, described in Section 4.4, was fitted to the 925 -point sample
from the complete body (CB) of data. As this serves only as a pre-
liminary fit, the values of the CB coefficients and other statistics are
not presented here.

The quality of this fit was examined from various viewpoints: (i)
by its behavior along the boundaries of the belt; (ii) by comparison
with the L -slice fits; (iii) by plotting the residuals (observed value
minus fitted value) versus the x and L coordinates; and (iv) by ex-
amining the mean square residuals (MSR) in various regions of mag-
netic coordinate space. Though the coefficients of the model were. esti-
mated from 925 sampled data points, the evaluation of quality of fit
was based on all the nearly 80,000 observations.

6.2 Evaluation of Fit at Equator

The points in Fig. 11 are the values of Y (square root of observed
counting rate) plotted against L for all data points for which x is near
0, specifically x < 0.037 (i.e., x < 1°). For a given L, y' (x, L) changes
very little between x = 0 and x = 0.037 (see Figs. 4 and 5) and the
points in Fig. 11 may be regarded as approximate equatorial points.
The curve in Fig. 11 gives the fitted values of A' (L) = y' (0, L) using
the CB coefficients, and appears to represent the data very well. Note
that A' (L) has not come from a fit to the equatorial data as such, but
rather is the equatorial value of y' as predicted by the two-dimensional
fit. That is, the fitted A'(L) does not minimize the sums of squares of
deviations for just the equatorial points, but is, rather, the optimum
fit in the least squares sense to the 925 -observation sample, and these
observations are distributed through x,L space. The excessive scatter
in the equatorial value of Y between L = 1.35 and L = 1.55 which
shows in Fig. 11 will be taken up in the next section.

The values of A'(L) are also plotted for reference as the dashed
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10

0
1.0

CB

1.2 1.4

L
1.6 1.8 20

Fig. 11 - All data for x < 0.037 (i.e., within 1° of the magnetic invariant
equator) and the equatorial value estimated from the CB coefficients plotted
against L. A' and Y are in units of (counts/sec)''.

line in Fig. 8. One sees that the L -slices give quite good estimates for
A, although these estimates tend to be a little erratic and to favor
the lower values rather too much in the neighborhood of L = 1.4.

6.3 Evaluation of Fit at Cutoff

The cutoff may be thought of as the position of the outer envelope of
the nonzero counting rate, or the inner envelope of the zero counting
rate. Thus, in practice the location of the cutoff is associated with the
sensitivity of the detector, rather than with the absence of particles.
For L 2, there is a wide range of x over which there are many in-
stances of either zero or one count occurring during the 11 -second count-
ing interval, and as a result the cutoff is not well-defined. This is
exemplified in Fig. 6. The overlapping of the region in which no count is
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observed with that in which one count is observed shows clearly in
Fig. 12. The locations of occurrences of zero counts are plotted in R,X
coordinates in Fig. 12(b) and in x,L coordinates in Fig. 12(d). Figs.
12(a) and (c) show the locations at which one count (one, two, and three
counts for L < 1.5) was recorded. (The density of points has been re-
duced at high L to improve the clarity of the display.)

Because the cutoff is increasingly difficult to define from the data as
L increases beyond the position of the cutoff predicted by the fitted
model is not a good boundary condition to use in judging the quality of
the two-dimensional fit. Instead the locus of positions for which exactly
one count per counting interval is predicted is superimposed as the solid
lines in Figs. 12(a) and (c) upon the array of points giving the band
of positions at which one count per counting interval was observed. The
data are represented quite satisfactorily by the solid lines particularly in
the region (L 5 1.90) where the belt ends abruptly. The fit is least
satisfactory near L = 2 (X = 40°). Adding the terms r,(L - L0)4 and
r5(L - L0)5 to the expansion for R.(L) in (5) does not appreciably
improve the fit near X = 40°.

The line xG(L), representing the cutoff itself, is plotted as the dashed
line in Fig. 12 and is seen to be a reasonable outer envelope for the
nonzero counts.

The present estimate of se (L) is also shown as the dashed line in
Fig. 9. Below L 1.8, the estimates of xe from the individual L -slices
are in good agreement with estimates from the two-dimensional fit.
However, above L 1.8 the L -slices give erratic values for xc. As
demonstrated in Fig. 7, the L -slice estimates may be biased toward
high values, a circumstance which makes it difficult to extract a satis-
factory fit for x0(L) from the estimates of xc produced by fitting the
L -slices.

6.4 Behavior of S(L)

The values of the function S(L) generated by the two-dimensional
fit cannot be subjected to a simple boundary comparison with the data.
The function S (L) is plotted as the dashed line in Fig. 10 along with
the L -slice estimates. It will be seen that the L -slice estimates tend to be
somewhat higher than the values given by S(L) in the neighborhoods
of L = 1.3 and L = 1.9. However, if the form of S(L) is taken to
provide a better fit to the points in Fig. 10, then the resulting two-
dimensional fit yields a physically less satisfactory fit of the cutoff
function x,(L) to the boundary data without substantial improve-
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MAGNETIC INVARIANT EQUATOR 0°

(a)
ONES

1.8

1.0

L

f.5
R

2.0

Fig. 12 - All positions in R, X space (a) and x, L space (c) at which one count
(one, two, and three counts for L < 1.5) was observed in an 11 -second counting
interval, and all positions in R, X (b) and x, L space (d) at which zero counts
were observed in an 11 -second counting interval. The solid lines are the loci of
positions at which the CB coefficients estimate one count in 11 seconds. The
dashed lines are the loci of the cutoff function xa(L) or R.(L) calculated from
the CB coefficients. The trace R = 2.0 R., which explains the absence of data
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Fig. 12 - (continued)
in the lower right-hand corner of the x,L plots, appears in part (d). The cluster
of points near R = 1.1 and X = 20° in part (b) of the figure is data acquired by
the telemetry station at Woomera, Australia. It represents observations made
near perigee when the satellite was below the bottom edge of the proton belt,
which is high over the western Pacific Ocean.
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ment in the overall fit (see also Section 4.7). Admittedly, this judg-
ment is subjective because it is made in regard to regions where the
cutoff is poorly defined by the data because of the insufficent sensi-
tivity of the detector. The high values of S near L = 1.9 appear to
arise from the correlation problem discussed in Section V in connection
with Fig. 6 and Table II.

6.5 Behavior of the Fit on Several L Slices

The dashed lines in Figs. 4 to 7 are the values predicted by the CB
coefficients superimposed on the L -slice data along with the pre-
viously derived L -slice fit. In Figs. 4 and 5, the difference between the
thin solid and the dashed lines is insignificant, and this is generally
the case for L < 1.95. At L, = 1.79, the predictions from the CB
coefficients differ importantly from the fit to the L -slice only for x
values at which there are no data.

For L,,, = 2.2, however, the two predictions are noticeably different
as may be seen in Fig. 6. The fit to the L -slice gives the estimate
x, = 0.954 (see Table II) ; the two-dimensional fit yields x = 0.928;
and the difference exceeds two standard deviations. The question as to
which of the two lines is a better representation of the data in this
L -slice in the physical sense, rather than in the least squares
applied to these points by themselves, is connected with criteria
which will be discussed in the following sections. The basic fact is
that the two-dimensional fit provides a mechanism by which the data
on every L -slice can influence the fit on every other L -slice and
thereby provides a fit that is more satisfactory overall than the
collection of individual L -slice fits.

6.6 Residuals in x,L Space
The data were also examined for dependencies on x and L over

and above those provided for by the fitted mathematical model. This
is accomplished by studying the residuals, i.e., (Y - y), for all the
nearly 80,000 observations. The residuals provide a very sensitive basis
for judging the quality of the fit. The removal of the principal depen-
dence on x and L by subtracting the fitted function from the observa-
tions has the effect of allowing small systematic differences to be
prominently displayed.

Fig. 13 shows a 3100 -point sample of the residuals, Y - y, plotted
against L, where, to keep the density of the points reasonable, only
one point has been plotted from each of the nearly 3100 contiguous
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Fig. 13-CB residuals of Y (i.e., Y - y calculated from,the CB coefficients) plotted
against L. The arrows indicate ± the approximate standard deviation if Y2 were
Poisson distributed. No more than one point is plotted for an L increment of 0.0006.

L -intervals, of width AL = 0.0006, between L = 1.15 and L = 3.
Ideally, the residuals should scatter randomly about 0, without any
perceivable pattern. For L < 2.4 there is only a little indication of a
nonrandom trend. However, for L > 2.4 there is a distinct pattern.
This pattern is associated with the quantization error, which becomes
important where the number of counts per counting interval is very
small. When 0 < y < V1 count/11 sec and Y = 0 or V1 count/11 sec,
the result is the tailing upward toward the residual = 0 axis that starts
at L 2.4. When y = 0 and Y = 0 or 1/1 count/11 sec, one gets
the two-line pattern (0 and 0.0310 = 1-V-.7].) seen clearly in Fig. 13
for L > 2.7. (The thickening of the zero axis indicates the presence
of data points.)

Fig. 14 is a plot of the residuals against x for all points for which
1.4 < L < 1.6. The residuals in Fig. 14 show no structure; however,
their average value is a little less than zero. This dip is confirmed by
the points in the range 1.4 < L < 1.6 in Fig. 13, and means that the
value of y is slightly high relative to the data in this region. However,
the lack of structure in Fig. 14 indicates that the bias is independent
of x in this region.

Fig. 15, the plot of the residuals vs x for 1.85 < L < 1.90, shows
the region in which the fit is poorest. The residual points are not sym-
metrically distributed about zero and the asymmetry seems to depend
on x. Notice that the value of y is slightly too large near x 0.05 and
x 0.65. The discussion of these trends is continued below, after
some further analysis has been described.

6.7 Mean Square Residuals in x,L Space
Another way of gauging the quality of fit is to compute the mean

square of the residuals (MSR) separately for various regions of
x,L space. Trends in these quantities may indicate regional varia-
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Fig. 14- CB residuals of Y (i.e., Y- y calculated from the CB coefficients) plotted
against x for 1.40 < L < 1.60. The arrows indicate ± the approximate standard
deviation if Y2 were Poisson distributed.

tions in the adequacy of fit. The data and residuals were divided into
three groups. Group I contains all the "good" data points "within"
the boundaries of the > 50 MeV proton belt. These points are defined
as those not included in Groups II and III. Group II consists of the
"good" data points "outside" the boundaries of the belt. These are
points which meet two criteria: they have values of (x, L) for which
x is greater than x, (L) + 0.001, and they are not in Group III. Group
III comprises the outliers or "bad" data points, defined as those points
whose residuals are greater than three times the overall root mean
square residual of the points in all three groups together.* The most
probable origin of a point in Group III is a telemetry error.

If the number of counts in a counting interval behaves like a

* Note that only 0.5 percent of the data fall in Group III.
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Poisson random variable, then the variance of Y2 would be equal to
the average value of y2. As noted in Appendix B, when Y is not near
zero, the variance of Y would then approximately equal 0.023, inde-
pendent of the average value of Y. This value then might approx-
imately represent the average value of the mean square residual,
MSR, on the scale of Y. Thus, the number 0.023 provides a baseline
for the comparisons discussed below.

Table III lists the mean square residuals (MSR) by L range and
by Group. For Group II, Y is frequently zero and, as x > xc implies
y = 0, one finds that the residual is zero very often. Of course, under
the Poisson assumption the variance of Y when its average value is 0
or very close to 0 will be less than 0.023 (see Appendix B.2) and the
appearance of MSR values smaller than 0.023 in Group II is thus not
surprising. A similar circumstance exists in Group I for L > 2.6.

C 6
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Fig. 15- CB residuals of Y (i.e., Y- y calculated from the CB coefficients) plotted
against x for 1.85 < L < 1.90. The arrows indicate ± the approximate standard
deviation if Y2 were Poisson distributed.
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For the overall fit, the MSR of Group I (L range from 1.1 to 3.0) is
only twice 0.023. However, for 1.3 < L < 1.6 the Group -I MSR is four
times 0.023. This L range is associated with the large scatter in the
equatorial data plotted in Fig. 11, and Fig. 14 shows that this scatter is
independent of x, rather than just an equatorial phenomenon. This
issue is pursued further below.

6.8 Dependence of Residuals on Other Variables

Studies were made of the possible dependence of the residuals on
observed variables other than x and L. Indeed, it will appear that
some of the excess scatter exhibited in Table III and in Figs. 11 and
14 is associated with instrumental effects.

The regularities inherent in the orbit and orientation of a satel-
lite, the motion of the earth, and the location and operation of the
telemetry receiving stations lead to systematic interrelations among
the various coordinates listed in Table I. A simple example concerns
temperature. The satellite cools when its enters the earth's shadow.
This eclipse occurs only on the night side of the earth. Thus, if the
detector is temperature sensitive, one would see a false day -night
effect in the counting rate. If, because of additional dependencies,
data are available during eclipse for only a limited span of days, a
false secular effect might also be observed. Because of the implications
of the preceding discussion, a careful study was made of the behavior
of the residuals with respect to a large number of coordinates, and
attention was given to the details of the relationships among the
coordinates during the search for contributors to the inflation of the
MSR.

We present below the evidence that has led us to the conclusion that
two instrumental effects, variations in bias voltage and changes in
temperature of the detector, are principal causes of inflation of the
MSR.

There was no temperature sensor on the particle detector. The
instrument is not exposed to sunlight and is relatively well -insulated
thermally from the skin and frame of the satellite. Consequently,
temperature measurements of the skin are not closely related to the
temperature of the detector. However, a good indicator of detector
temperature is elapsed time since entering or since leaving eclipse.
Fig. 16 gives plots of the residuals, Y - y, against time in minutes
measured from the more recent of the two events, entered shadow or
entered sunlight. Residuals associated with periods during which the
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satellite did not enter eclipse once per orbit are segregated at the far
right-hand side of the plots, labeled A on the abscissa.

Figs. 16(a) and (b) are for 1.4 < L < 1.6. The points in Fig. 16(a)
are those for which the bias voltage was between 95.3 and 97.5 volts,
while Fig. 16(b) contains those for bias voltages between 92.0 and
95.3 volts. The decrease in the residuals (and also in the observed count-
ing rate) after the satellite enters eclipse (and the temperature falls)
and the increase after the satellite leaves eclipse (and the temperature
rises) may be seen distinctly in both figures. In addition the residuals are
noticeably more negative for the low (92.0 to 95.3 V) bias range. Both
low bias voltage and low temperature are known to decrease the ef-
ficiency of the detector and one expects an appreciable effect to be intro-
duced into the counting -rate data. In the present case the scatter is
about ±15 percent of the counting rate. A consequence of this is the
excess scatter that has been noted particularly with reference to Fig. 11
and Table III.

Figs. 16(c) and (d) are analogous to Figs. 16(a) and (b), but the
residuals are for the L range 1.85 to 1.90. Again, the systematic
influence of low temperatures and low bias voltages is unmistakable.

6.9 Partitioning the Data

Two ways of responding to these instrumental effects might be:
(i) to try to correct the data, or (ii) to disregard the affected data.
It is not possible to make a correction to the counting rate that is
properly independent of the experimental results because; (i) the bias
voltage was measured in steps of 1.11 V, which is not sufficiently fine-
grained; (ii) it would be necessary to estimate the temperature of
the instrument using a complicated hypothetical relationship between
the instrumental temperature, skin temperature, and time after enter-
ing eclipse (or sunlight) ; and (iii) we have an insufficient knowledge
of the temperature and bias -voltage sensitivity of the detector.

Though an ad hoc correction based on the observed counting rates
could have been attempted, it was decided for practical reasons to
eliminate both the low -temperature and low -bias points and use only
that data which was gathered under the following conditions:

(i) The satellite had been in sunlight for the previous 50 minutes,
and thus had attained temperature equilibrium reasonably well
(see Fig. 16).

(ii) The bias voltage was between 95.3 and 97.5 volts.
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This selection yields a homogeneous body of 41,135 points, hence-
forth referred to as high temperature -high bias (HTB) observations.
The remaining 36,500 points, which represent a mixture of tempera-
ture and bias conditions, were used only occasionally in further
analyses. This selection process coincidentally produces one unfort-
unate associated circumstance, namely, the exclusion, as low -bias

data, of all measurements made between days 325 and 373.
Further analysis and model fitting and development based on, and

directed towards, this HTB data is detailed in the following sections
and Appendix C.

VII. THE TWO-DIMENSIONAL FIT FOR THE SELECTED (HTB) DATA

7.1 Sample Selection

The distribution of the HTB data in magnetic space is indicated
in Fig. 17, which gives the R,A. coordinates of every tenth point from
the 41,135 L -ordered HTB observations. The data provide reasonably
adequate, though uneven, coverage. As a practical requirement for the
fitting procedure, a "representative" sample of about 1000 observa-
tions must be selected.

l.0 1.5 2.0

Fig. 17 - The spatial distribution of the HTB data for L < 3 in R, X coordi-
nates. Every tenth point from the L -ordered data is plotted.
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It is intuitively clear from preliminary knowledge of the radiation
distribution that some sample configurations will be far more effective
than others in defining the functional form of the proton flux.

The sample selection is important because: (i) nothing more than
a sophisticated smoothing function is being fitted and we want this
function to be broadly applicable over the entire space; (ii) an
optimum fit in one region of space does not necessarily imply a good
fit elsewhere; (iii) the spatial distribution of data points depends on
the satellite orbit and the position of the telemetry stations; (iv) even
with the square root transformation, there remains some differential
variance among the data.

These considerations argue against using a simple random sample
or even a random sample in x with a systematic sample in L such
as in the CB fit. Indeed, they also argue against fitting all (un-
weighted) HTB data, even if this were practical. Alternatively, points
might be chosen on the basis of a simple geometric grid in magnetic
space. Such a procedure would be easy to use, but it is arbitrary with
respect to the radiation belts.

Sampling procedures might be based on particular physical features
of the radiation belts to emphasize the goodness of fit, for example,
where the flux is high or where diffusion across L lines might be
important. However, such fits would be too biased for our present
general objective.

One is thus led to a sampling process based on properties of the
radiation belt itself, as described for example by the preliminary CB
fit. In particular, a high density of data points is desirable in regions
where the value of y is changing rapidly, while a low density will
suffice where the function is changing slowly. A realization of this
criterion would be to define about 1000 x,L cells, within each of
which the range of y from the preliminary fit would be the same.
However, there are appreciable practical difficulties in defining the
boundaries of such cells.

Thus, the following hybrid procedure was used to define the 960 -
point HTB sample on which the subsequent fitting was done: The
L -range from 1 to 3 was divided into about 120 L -slices of equal

0.017) width in L. Each L -slice was then divided into eleven
;L cells using a scheme that depends on the preliminary fit. The
first ten cells were chosen so that within each cell the range of y
predicted by the CB model is closely 1/10 of the equatorial value of
y at the center of the L -slice. The eleventh cell lies beyond x0. The
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method of partitioning in the x direction is illustrated by the partition
of the L -slice in Fig. 5 (a) into five x -regions by the horizontal
lines. (The distance d is added to x0 to define the lower -x boundary of
the last cell.)

To take some account of differential variances remaining after
the square root transformation, the following procedure was em-
ployed: The mean square deviation from the mean (MSD*) was
calculated for all the HTB data in each x,L cell defined above;
thence, after visual inspection of the results (see Appendix C), three
groupings of contiguous x,L cells were made according to whether the
MSD's were generally below 0.013, between 0.013 and 0.020, or above
0.020; the corresponding regions were then given relative weights of
2, 11, and 1, respectively. The weight 1 implies that one point was
sampled from the cell.

These weights were assigned on the basis of a judgment which con-
sidered: (i) the desire to increase the weight of low variance (i.e.,

near -zero counting rate) observations and thus to aid the definition of
the cutoff; and (ii) the desire to keep from "wasting" sample points
in the region x >> x, since such data will add little to the specification
of x0(L) and virtually nothing to the estimation of A(L) and S.

Fig. 18 shows the distribution in x,L space of the 960 -point sample
which was used. The number 960 came about because a number of
the defined cells had no data in them. Our experience with several
other samples of the HTB data gives us confidence in both the ration-
ale behind, and the results obtained with, this 960 -point set, henceforth
referred to as the HTB sample. However, sampling procedures tailored
to the requirements of special purpose fits will give better results in

some regions of x,L space.
Some additional discussions relevant to sample selection and data

usage are given in Section 13.3 and Appendices B.3 and C.2.

7.2 The HTB Fit

A slightly constrained version of Model I of Section 4.4 was fitted
to the 960 -point HTB sample. The results are referred to as the HTB
fit. The constraint is s1 = 0, in (3). Most of the values of s1 obtained
in preliminary fits to various samples of the HTB data differed from
zero by less than two standard deviations. Also, the points in Fig.

* See Table I for definition of MSD, MSR and MSE.
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Fig. 18 - The distribution of the 960 -point HTB sample in x, L space. The
trace R = 2.0 R. explains the absence of data in the lower right-hand corner of
the figure.

10 do not suggest a linear dependence of S on L.* The effect of this
constraint on the value of the fitted cutoff function was examined and
found to be unimportant.

The estimated HTB coefficients (obtained by fitting the constrained
model to the HTB sample) appear in Table IV. The physical inter-
pretation of Lo as the lowest L on which > 50 MeV protons were
measurable was noted in Section 4.3. The standard error of 0.001
km in altitude) is no larger than the uncertainties inherent in the
calculation of L itself.

The interpretation of S as a shape factor (see Section 4.2) is
straightforward in the present case, i.e., where si = 0. The standard
error of 0.005 is much smaller than the standard errors of the
estimates of S generated from the fits to L -slices (Table II) and is

* Some higher -order models for S(L) were tried but proved unsatisfactory (see
also Sections 6.4 and 9.2).
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Fig. 19 - Graphical summary of the HTB fit, (a) curves of y' vs L for constant
x, (b) curves of y' vs x for constant L, (c) contours of constant y' in x,L space.
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also small compared to the scatter in Fig. 10. This implies that a
substantial fraction of the scatter may be associated with the high
correlation between S and x0 on the L -slice fits. Further consideration
of standard errors and correlations of the fitted coefficients and
detailed statistical evaluation of the fit is deferred to Section VIII.

Fig. 19 presents a graphical summary of the function j' (x, L).
Part (a) of the figure shows y' vs L for (several) constant x. Physi-
cally, these curves correspond to values of the intensity of radiation
vs L for constant magnetic dipole latitude, because x = constant
implies A = constant. The nesting of the curves in Fig. 19(a) is a
consequence of the fact that G'(x; xe, S) decreases monotonically
with x [see (2) and Fig. 19(b)]. The shape of the curves changes
smoothly with L, and the position of the maximum shifts smoothly
toward higher L as the value of x (and therefore A) increases.

The nesting property does not hold for plots of y' vs x at constant
L. This general consequence of the existence of a maximum in A' (L)
is displayed in Fig. 19 (b). All the curves in Fig. 19(b) have similar
dependences on x.

L

Fig. 19 - (continued)
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HTB
MODEL I

0 6

Y (OBSERVED)

Fig. 20 - The value of y' computed from the HTB coefficients of Model I vs
the observed value, Y, for the 960 -point HTB sample.

Fig. 19(c) contains contours of constant y' plotted in x,L space
and completes the graphical summary. The contours surround the
point x = 0, L = 1.46 at which the peak intensity occurs.

7.3 Evaluation of Fit to the HTB Sample
A summary indication of the quality of the fit of the 9 -coefficient

Model I to the HTB sample is given in Fig. 20, in which the fitted
(computed) value, y', is plotted against the corresponding observed
value, Y. The solid straight line would represent the case of a perfect
fit. This is impossible on the basis of a model using only x,L
coordinates since different Y values were observed for the same x,L
pairs. It is seen, however, that the scatter of the plotted points about
the line of perfect fit is reasonably uniform and that the horizontal
width of the "scatterband" is roughly constant over the entire range of y'.
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In the following subsections, the quality of fit to the entire body of
HTB data is scrutinized, using many of the procedures used in the
previous section to evaluate the CB fit.

7.4 Evaluation of Fit on Equator

The HTB fit along the equatorial boundary is displayed in Fig. 21.
The points are the values of observed Y plotted against L for all HTB
data for which 0 S x < 0.037 (i.e., X < 1°), and the plotted curve is
A' (L), defined in (6), using the HTB coefficients of Table IV. Comparing
Fig. 21 with Fig. 11, it is seen that most of the excess scatter has been
eliminated. The curve in Fig. 21 does not deviate noticeably from the
center line of the points (except for 1.5 < L < 1.6, where the curve is a
trifle high and for L 1.95, where the curve is a trifle low).

10

Lu

z
= 6

V)

z
0
a_

4

2

0
1.0

H -re

1.2 1.4 1.6 1.8 2.0

Fig. 21- All the HTB data for x < 0.037 (i.e., within 1° of the magnetic in-
variant equator) and the equatorial value estimated from the HTB coefficients
plotted against L. A' and Y are in units of (counts/sec)''.
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In Fig. 8 the solid curve, which is A' (L) calculated from the HTB
coefficients, may be compared with the dashed curve, which is A'(L)
calculated from the CB coefficients. The HTB fit gives higher
equatorial values for y' when L is less than as might be ex-
pected from the fact, displayed in Figs. I6 (a) and (b) and discussed
in Section 6.8, that the HTB data select the higher values of Y for
1.4 < L < 1.6. For L greater than 1.9, the equatorial values of the
HTB fit are somewhat lower than those of the CB fit; however, there
is no equatorial data for L > 1.95, and the comparison of the fits is
not meaningful in this region. The points in Fig. 8 are estimates based
on CB, not HTB, data and are not immediately pertinent to the solid
curve.

An estimate of the standard error of the fitted equatorial function
A'(L), based on the HTB sample, is plotted as a function of L in
Fig. 22(a) (see Section VIII for details). The standard error of
A'(L) is typically less than one percent in the range of L (1.15 <
L < 1.95) over which equatorial data are available. Error bars of
this size would hardly be visible in Fig. 21. For the same values of L,
the standard errors of A' (L) derived from the HTB fit are sub-
stantially smaller than those from the L -slice fits listed in Table II.
As might be anticipated, the percent standard error of A' (L) in-
creases as the minimum x values of available data increases with
increasing L beyond L = 2. This increase to a value of 10 percent at
L = 3 reflects increasing uncertainty in the extrapolation of the fit.
Note that the curves in Fig. 8, which represent the equatorial values
of CB and HTB fits, differ, in general, by substantially more than two
standard errors and the difference is certainly "statistically signi-
ficant."

7.5 Evaluation of Fit at Cutoff

Figs. 23(b) and (d) show the positions, in x,L and R,X coordinates,
at which zero counts were observed during an 11 -second counting
interval. Figs. 23(a) and (c) are corresponding plots for one count
(one, two, or three counts for L < 1.5) per counting interval. Only
HTB data are plotted, and the density of points at high L has been
reduced to improve the clarity of the display.

Judgments regarding the quality of the fit are made, once again,
with reference to the well-defined band of one count, rather than in
terms of the more nebulous cutoff. The solid lines in Figs. 23(a) and (c)
are the loci of y'(x, L) = count/11 sec, using the HTB coefficients
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Fig. 22 The standard deviation of A, a m and the standard deviation of xo
crx, as functions of L. Units of a.A and crx, are the same as the units of A and x
respectively. (a) Model I. (b) Model II.
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in the model. These lines represent the data well. Although the fit
appears uniformly good in the x,L representation, a slight weakness
near the "corner" at X 40° is displayed sensitively in the R,X plot
(see also Fig. 12).

The dashed lines in Figs. 23(a) and (c) show the locus of the fitted
cutoff function, x,(L), calculated from the HTB coefficients. Error
bars indicating excursions of one standard error in sc(L) are shown at
two places on Figs. 23(a) and (c). The standard deviation of x,(L)
as a function of L has been estimated (see Section VIII), and is plotted
in Fig. 22(a). This standard error is smaller than those produced by
the L -slice fits at corresponding values of L (see Table II).

The values of x,(L) for the HTB and CB coefficients are plotted in
Fig. 9. Although there is no discernible difference between the two
curves in the figure for L < 2, the difference between the tabulated
values exceeds twice the standard error (which is very small) over
much of the range of L. The two sets of coefficients thus lead to results
which differ in a "statistically significant" manner. For L less tha

2, the significance of the standard error is more readily understood
when it is interpreted in terms of the altitude of the cutoff. This is
done in Section XI.

Beyond L 2, the values of x, for the CB and HTB coefficients
diverge noticeably, compare Figs. 12(a) and (c) with Figs. 23(a) and
(c), respectively. The magnitude of this divergence is quite sensitive
to the method used in selecting the samples to be fitted. As has been
discussed, the concept of a cutoff is not well defined in the context of
these measurements for L > 2. The uncertainty is reflected in the
rapid rise in the value of the standard error of sc(L) [see Fig. 22(a)]
as L approaches 3. The significance of this rise may be more readily
appreciated by referring once more to the error bars associated with
x,(L) in Figs. 23(a) and (c).

The partitioning of the data on the basis of electrical bias and tem-
perature, and the procedure chosen for selecting the sample to the
fitted, introduce statistically significant differences between the values
of xe(L) obtained from the HTB and CB fits, as well as the more
readily anticipated significant differences in the values of A'(L).

7.6 Standard Error of Fitted Value

The standard error for y'(x, L) is relatively constant, ranging be-
tween 0.01 and 0.04, except close to se(L). It should be understood
that this standard error is based on the fit to the HTB sample, and
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Fig. 23 - All positions for the HTB data in R, X space (a) and x, L space (c)
at which one count (one, two, and three counts for L < 1.5) was observed in an
11 -second counting interval, and all positions in R, X space (b) and x,L space
(d) at which zero counts were observed in an 11 -second counting interval. The
solid lines are the loci of positions at which the HTB coefficients estimate one
count in 11 seconds. The trace R = 2.0 R., which explains the absence of data
in the lower right-hand corner of the x, L plots, appears in part (d). The dashed.
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Fig. 23- (continued)
lines are the loci of the cutoff function xo(L) or Ro(L) calculated from the
HTB coefficients. The cluster of points near R = 1.1 R. and X = 20° in part
(b) of the figure is data acquired by the telemetry station at Woomera, Aus-
tralia. They represent observations made near perigee when the satellite was be-
low the bottom edge of the proton belt, which is high over the western Pacific
Ocean.
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thus applies to the estimate of the average value of y and does not give
the standard deviation of a single predicted observation. The latter
would be in the neighborhood of 0.04 = 0.2 (where 0.04 is approx-
imately the MSE, see Table IV).

Contours of constant percent standard error in the counting rate,
y2, are shown by the curves in Fig. 24(a). For L < 2 the standard
error is less than 2 percent except close to the cutoff, where the value
of y2 is falling fast. (Near the cutoff, the standard error in x, is more
informative.) In the absence of a fitted function, it would be neces-
sary to average between about 30 and 300 observations to achieve a
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Fig. 24 - Contours of constant percent standard deviation in the counting rate,
calculated from the fits to the HTB sample and plotted in x, L space. (a)

Model I. (b) Model II.
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Fig. 25 -HTB residuals of Y (i.e., Y -y calculated from the HTB coefficients)
plotted against L. The arrows indicate t the approximate standard deviation if
172 were Poisson distributed.

standard deviation as small as 2 percent. As discussed in Appendix
B.4, the estimates of the standard deviation based on the HTB sam-
ple are conservative and (if there were no biases in the model) the
values that apply to the 40,000 HTB points might be smaller than
those in Fig. 24(a) by a factor as large as 6.

The values in Fig. 24(a) are for relative counting rates (or fluxes)
and do not include the uncertainty in the absolute calibration of the
instrument noted at the end of Appendix A. Other discussion is given
in Sections 9.4 and 12.2 and Appendix B.4.

7.7 Behavior of the Fit on Several L -Slices

Using the HTB coefficients, values of yi,(x) were calculated for
L, = 1.35, 1.805, 2.0215, and 1.79. The results are plotted as the
heavy solid lines in Figs. 4 to 7. Recall that the points in these figures
are not all HTB points. In general, the HTB points are those with the
higher values of Y, although this may not be the case at L 2.2
because of the temporal effects discussed in Section X. The four
figures also allow further appreciation of the difference in results
between CB fit and the HTB fit produced by the partitioning of the
data and the refinement of the procedure by which the sample was
selected.

7.8 Residuals in x,L Space

The residuals, 17 - y, were computed for all the HTB data using
the HTB coefficients. Fig. 25 is a plot of residuals against L, and
Figs. 26 and 27 are plots of residuals against x, in the indicated
Li -ranges. These plots are analogous to Figs. 13 to 15, and as they
display properties similar to the earlier figures, the discussion of
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Fig. 26- HTB residuals of Y (i.e., Y -y calculated from the IITB coefficients)
plotted against x for 1.40 < L < 1.60. The arrows indicate ± the approximate
standard deviation if Y2 were Poisson distributed.

Section 6.6 applies. In particular, there is little indication of a de-
pendence of the residuals on the magnetic coordinates. Moreover, the
residuals in Figs. 25 to 27 are more closely clustered about zero than
those in Figs. 13 to 15, confirming the fact that there is less scatter
in the HTB data. This reduction in the scatter is especially marked
in the neighborhood of the peak of the radiation belt (near x = 0
between L = 1.4 and L = 1.6, Fig. 26).

7.9 Mean Square Residuals in x,L Space

A breakdown of the mean square residuals (MSR) by L -ranges
for the fit to the HTB data is given in Table III. This analysis is
analogous to that presented in Section 6.7 for the CB fit. For the
Group I data the MSR for the overall fit (1.1 < L < 3.0) is about
(1.5) (0.023) = 0.036 and the largest entry under HTB Group I is
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0.059. The anomalous trend of the MSR near L = 1.4 evidenced in
the fit to the unrestricted data (see Section 6.7) has been largely
eliminated. The overall MSR for the Group I data has been reduced
by 15 percent.

The breakdown of the MSR by L -ranges is not a particularly
refined test of the quality of the fit. This index is based on essentially
all the HTB data and, because the averaging procedure is blind to
the distribution of data within L -ranges, favors results that fit best
where the density of data is high. As the HTB sample was selected
using criteria dependent on the preliminary fit to the data and does
not necessarily favor x,L regions in which large quantities of data
were acquired, the results of fitting this sample does not produce the
lowest obtainable value of MSR for all of the HTB data. Examina-
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Fig. 27 -HTB residuals of Y (i.e., Y -y calculated from the HTB coefficients)
plotted against x for 1.85 < L < 1.90. The arrows indicate ± the approximate
standard deviation if Y2 were Poisson distributed.
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tion of the MSR in x,L cells shows the effect of the sample selection
procedure on the MSR in L -ranges. Appendix C contains further in-
formation and analysis of MSR. in x,L cells.

Model I with the HTB coefficients, provides a summary of the
HTB data that, in the light of the many sources of variability and
measurement errors, reasonably approaches the limit set by expected
statistical fluctuations.

7.10 Sources of Variability in the Data

The residuals for the HTB data are now examined to see whether
further identifiable sources of variability may be associated with
them. Possible sources are: instrumental effects, errors in the ephemeris
of the satellite, errors in the description of the magnetic field, telem-
etry errors, fluctuations in the length of the counting interval, de-
ficiencies in the model, and temporal variations. While all these must
make some contribution to the MSR, the interrelationships among
the coordinates discussed in Section 6.8 and the small size of the
individual contributions, make positive identifications very difficult.
We have not attempted to examine in detail the large number of

small, apparently systematic, deviations discernible on the residual
plots, although some of these may be "statistically significant." In-
stead we have restricted our study to effects which are readily ap-
parent on the residual plots. Where the observations are dense, an
effect would be glaringly apparent if it introduced a shift of 0.05

in the local mean of the residuals. (This corresponds to a change of
about 1.2 percent in flux at the peak of the proton intensity, and
about 12 percent when the flux is a hundredth of its peak value.)

Instrumental effects are associated with temperature, bias voltage,
radiation damage, and imperfections in the omnidirectional char-
acteristics of the detector. Restricting the range of temperature and
bias voltage removed the major fraction of the instrumental effects
associated with these variables. Directional effects in the detector
might show up when the residuals are plotted against y, the angle
between the spin axis and the local magnetic field vector. However,
no dependence was observed, indicating that the detector is effectively
omnidirectional. Radiation damage, though technically an instru-
mental effect, is more logically treated with temporal variations.

Examination of plots of residuals versus various geographic co-
ordinates did not reveal any systematic dependencies. In view of the
small excess of the MSR over expectation for a random Poisson
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process, and the existence of other sources of error, it seems reason-
able to conclude that the ephemerides were computed with sufficient
accuracy for this analysis.

The plots of residuals against the geographic coordinates as well
as against x and L values were used to judge the quality of the co-
efficients used to calculate the magnetic coordinates L and x. No
systematic effects that can be attributed to flaws in the coefficients of
the magnetic field were discerned. Nor is there any indication, in the
form of excessive scatter of the residuals, that L is an imperfect
coordinate in any part of the region of space covered by these data.

Gross telemetry errors and those that occur in conjunction with
noise bursts are easily identified and have been discarded. There
remain telemetry errors that are indistinguishable from good data
on a point -by -point basis, and these erroneous data must make some
contribution to the scatter. As noted in Section 8.1, the distribution
of the residuals has been looked into and they are found to be very
well-behaved. However, it is not possible to make any quantitative
estimates of the contribution of the remaining telemetry errors to the
MSR.

Temporal variations are an important source of variability, and
Section X is devoted to their analysis.

VIII. STATISTICAL CRITIQUE OF MODEL I.

This section presents further information on statistical evaluation
of the Model I fit. (Some background concerning relevant statistical
techniques is given in Appendix B.) While confirming the very satis-
factory performance of Model I in fitting the data, as presented in
Section VII, some unsatisfactory aspects are uncovered and several
defects of the model are pinpointed. The rectification of these defects
is effected by use of Model II, discussed in Section IX.

8.1 Fit of Model I to the 960 -point HTB Sample
The analysis of variance for the fit of Model I to the 960 -point HTB

sample is shown in Table IV. This gives various partitionings of the
total sum of squares (about 0) of the 960 observations (on the square
root of counting rate scale). Table IV indicates the relevance of the
model to the data in terms of its statistical effectiveness. Fitting the
nine coefficients of the model accounts for more than 99.3 percent of
the total sum of squares of the observations, leaving less than 0.7 per-
cent associated with "error" or lack of fit. On a per degree -of -freedom-
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basis, the ratio of mean square for "fitted model" with 9 degrees of
freedom to mean square for "error" is over 16,000.

Of course, simply fitting the mean of all the data accounts for a
sum of squares of 2121.2 of the total of 5374.7. Of the remaining "cor-
rected" total sum of squares about the mean of 3253.6, the part of the
model "orthogonal" to the mean accounts for 3218.9, i.e., approxi-
mately 98.9 percent (so that the squared multiple correlation coefficient,
R2, is 0.989). The corresponding ratio, mean square for the model with
(9 - 1) = 8 degrees of freedom to mean square for error, is over 11,000.

It is worth emphasizing that the sample selection process which was
used (see Section 7.1) is such that fitting the sample is, on a per ob-
servation basis, a more challenging problem than it would be for the
entire body of data (see Appendix B.3).

A summary graphical indication of the appropriateness of the fit is
given in Fig. 20 which shows the fitted value plotted against the ob-
served value. A perfect fit (essentially impossible here with any model
based on x,L coordinates because different integral values of Y are
observed near the same x,L point) would be the diagonal straight line
shown. Deviations from fit should be gauged as horizontal spread about
the line, since the observed quantities are plotted as abscissa, and are
seen to be reasonably uniform throughout.

Incisive indication of the quality of fit was provided by various
plots of residuals (against L, x, y, time, etc.). Some representative
plots over all the HTB data are shown in Figs. 25 to 27 and Figs. 41 to
43.

As a further examination of the adequacy of the fit to the selected
HTB data, normal and half -normal probability plots (see Appendix
B.8) were prepared for the 745 residuals comprising the subset of the
960 -point HTB sample for which x < x,(L). These plots are shown in
Figs. 28 and 29.

Fig. 28 does display a generally good linear configuration indicating
that the residuals may reasonably be regarded as a sample from a nor-
mal distribution. There is no suggestion of general asymmetry or other
distributional peculiarities. There are perhaps three values which are
statistically "too large," but not wildly so. Indeed, the plot is remark-
ably well-behaved and reassuring.

From some points of view, it is useful to consider the. statistical be-
havior of the residuals without regard to their sign. Fig. 29 is a plot
of the ordered absolute residuals against standard half -normal (folded
standard normal) quantiles. This presentation is more focussed and
sensitive to a statistical overabundance of large absolute residuals. The
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plot is also very well-behaved, with indication of the same three overly
large values.

The reason for omitting from these plots all residuals from points
for which x > x0(L) is that, for those, the predicted value y is 0 and,
in the great majority, the observed Y was 0; hence, the residual is 0.
Since it was exactly this information which determined the estimate
x6(L) and since one. could hardly expect a collection which includes
about 1/5 zeros to behave like a normal sample, these points were omit-
ted

From either Figs. 28 or 29 one can estimate a slope of about 0.21,
which is an estimate of the standard deviation of the (counting rate)/
observations, clear of the confounding influence of the nonvariance-
stabilized very low counting rate observations, since observations for
x > x, (L) have been omitted. The corresponding variance estimate,
0.044, clearly exceeds that from the Poisson approximation, 0.023,
and also is greater than the pooled value for the MSD(Y), 0.039,
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Fig. 28- Normal probability plot of residuals from fit of the model to the
HTB sample.
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(Appendix C) the overall HTB data 111SR(Y), 0.038, (Appendix C)
as well as the NISE(Y) from the fit to the 960 points, 0.036, (Table IV).
This is as one would expect, since the variance estimate from the slope

of Figs. 28 and 29 is not downward biased by the zero (and Vi71-.1)
residuals from the very low counting rate observations for x > x,(L),
while the other quantities are so biased.

The excess of the variance estimate of 0.044 over the Poisson value
of 0.023 may be due to any or all of several factors, including: (i) the
noncorrectness of the Poisson assumption, (ii) temporal variations in
the radiation belts or the detection equipment, (iii) measurement
errors or computational biases in time record, ephemeris or magnetic
coordinates, etc. (iv) noise bursts-the outlandish values were detected
and discarded, but the general effect must be an upward bias on varia-
tion, and (v) inadequacies in the model, including analytic form and

coordinates employed.
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Fig. 29-Half-mormal probability plot of absolute residuals from fit of the
model to the HTB sample.
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8.2 Statistical Measures Over All the HTB Data.
An extensive presentation and comparison of various functions of

the residuals over all the HTB data is given in Appendix C. Those re-
sults provide (i) an empirical justification for the use of the square
root transformation ; (ii) a strong indication that the fit attained by
Model I cannot he improved very much in the least squares sense over
all the HTB data; (iii) information on the extent of "unevenness" of
the cell -construction process by which the 960 -point HTB sample was
selected; and (iv) some indication of differential effectiveness of fit of
Model I to the data for different x,L regions.

8.3 Statistical Properties of Estimates of the Coefficients and Coefficient
Functions.

The least squares estimates of the nine coefficients of Model I fitted to
the 960 -point HTB sample are given in Table IV, with their approxi-
mate standard errors and pairwise correlations.* These provide the
information needed to obtain estimates and standard errors for func-
tions of the coefficients; e.g., y' (x,L), or A' (L), or the value of the max-
imum counting rate, or the position in space at which the intensity of
high energy protons is maximum, etc. (See Appendix B for the neces-
sary formulae.)

Some of the pairwise correlations in Table IV are exceedingly high.
This may be clue, in general, either to an unfortunate "design" (i.e.,
the array of positions of observations in x,L space in this application)
or to some inherent "coefficient redundancy" in the model, or to both
such blemishes. Occurrence of such near -singularities can lead to prac-
tical difficulty with the iterative fitting computation and/or make the
individual coefficient estimates poorly determined.

In the present model, only the coefficient Lo has a direct physical
interpretation. Its estimate has a very small standard error and an
entirely bearable correlation with the remaining coefficient estimates
(all values of lal < 0.5). Otherwise, physical interest centers mainly
on the coefficient functions A' (L), xe(L), and y' (x,L) whose estima-
tion is considered in Sections 7.2, 7.4, 7.5, 7.6, and 8.4.

For a given model and specified coefficient values, the matrix of ap-
proximate correlations depends only on the array of data positions in
x,L space. Thus, to check on whether the correlational problems might

* A resealing of the values of p, namely as the quantity a defined and moti-
vated in Appendix B.5, is also given in Table IV. The coefficient of dependence
a has more nearly the behavior of a "linear utility function."
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be due to inadequacy of the practically available (selected) array, a
correlation matrix was computed using an 'ideal' x,L array, namely
the 1034 values of (x,L) corresponding to the division of x,L space
described in Section 7.1 and Appendix B.3. While some minor improve-
ments in some of the correlations were noted, the changes were small.
Thus, it would appear that the main reason for the high correlations
is in fact some "coefficient redundancy" in the model.

Inspection of Table IV indicates that the very large correlations are
associated with some of the parameters of the A' (L) function, namely
a1, a2, a3, and n for all pairs of which Ipl > 0.99 (i.e., lal > 0.90).
Moreover, it will be seen in Section 8.5 below, that the present param-
eterization of the model leads to a markedly large indication of non -
linearity and there is reason for believing that this is largely due to
the same subset of coefficients. The combination of both defects stimu-
lated development of Model II which overcame them (see Section IX).

8.4 Estimates of Functions of the Coefficients

The estimates of the coefficient functions A'(L) and x,(L) have been
discussed in Sections 7.4 and 7.5 and summarized in Figs. 10 and 11.
Their estimated standard deviations, on a "pointwise" basis, are
graphed in Fig. 22(a), while the approximate correlations of the esti-
mates of A'(L), x,(L), and S, as functions of L, are shown in Fig. 30(a).

Despite the near -singularities (i.e., I p I near 1) in the estimates
of some of the individual coefficients of A'(L), it is seen that the estimate
of the square root of the equatorial counting rate provided by A'(L) is
well -determined over the entire L range. The standard error varies
between approximate limits of 0.018 and 0.040, nonmonotonically, and
these values are typically less, sometimes by a factor of 5 or more,
than the standard errors from the corresponding L -slice estimates
(see Table II) reflecting in part the statistical gain from the simul-
taneous two-dimensional fit.

For x,(L), the standard error is less than 1 percent over much of
the range of L, rising to 3 percent for large L values where the data
are statistically inadequate.

The three correlation functions pA ,,,(L), pA s(L), and ps,z,(L), for
the estimated coefficient functions A'(L), xe(L), and 8, are plotted in
Fig. 30(a) (see Appendix B.4 for formulae). In general, these correla-
tions are small (I p I < 0.5, a < 0.12). The statement applies to
the correlations involving A'(L) despite the very high correlations among
individual coefficients. The generally low correlation between A'(L)
and x,(L) is as intuitively expected since A'(L) is influenced mainly
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by observations at small x while x, (L) is determined mainly by those
at large x. The exception is near L = Lo , where PA ,x,(L0) approaches
1 as a result of the fact that the coefficient Lo is common to both func-
tions and that the forms of A'(L) and x,(L) [see (4), (5), and (6)]
require that both functions be zero when L = Lo

The statistical correlation between the fitted A and x, for the L -slice
fits was always positive (see Table II), which is not the case for PA,(L).
This change in sign gives some indication of basic differences in be-
havior between the results of the two-dimensional fit and the outcome
of the collection of one-dimensional L -slice fits.

The (A, 8) and (S, x,) correlations have the same signs in all cases.
The magnitude of the correlations among A, x, , and S is larger for
the L -slice fits (see Table II) than for the HTB fit at corresponding
values of L [see Fig. 30(a)]. This is very noticeable for L greater than
f -:-.J1.7. particularly for the large correlation between S and x, . It is
these large correlations which make it difficult to obtain reliable L -slice
estimates of x, or S when L., > 2 (see Fig. 6) or when the distribution
of the data within an L -slice is poor (see Fig. 7).

8.5 Nonlinearity Indices and Dependence of Estimates

Appendix B.5 discusses the use of the sum of squares function (i.e.,
sum of squares of differences between observed value and "fitted"
value, as a function of proposed coefficients) as an indicator of the
joint dependence and behaviour of the coefficient estimates and the
fact that the extent to which the contours of the sum of squares func-
tion are. approximated by a certain family of ellipsoids provides a meas-
sure of linearity of the model.

Fig. 31 shows 4 of the 36 pairwise projections of the 9 -dimensional
ellipsoid, whose size would correspond to a "0.99 joint confidence co-
efficient" as discussed in Appendix B.5. The axes are scaled in each
case according to the standard error of the coefficient. The orientation
and shape of the ellipse corresponds directly to the sign and magnitude
of the correlation, p, or its transform, a, for the pair of coefficients.
Thus, for example, Fig. 31(a) shows the projection onto the al -a:3
plane. The. resulting very narrow positively inclined ellipse corresponds
to a very high positive correlation of al , a3 (p = 0.9995, a = 0.97).
(The 45° inclination of the graphed ellipses is a result of scaling the
axes by their standard errors.) Part (b) of the figure shows a narrow
negatively inclined ellipse for the case of rather large negative correla-
tion between a3 and , estimates. Parts (c) and (d) illustrate results for
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small and negligible correlations between Lo, r.) and r3, S, respectively.
At various positions on these ellipses there appear numbers which

are ratios of the actual sum of squares at that "point" to the minimum
sum of squares. The computation of the actual sum of squares is done
for the coefficient values corresponding to the point on the 9 -dimen-
sional ellipsoid which projects into the point on the plotted ellipse.

If, in fact, the coefficients occurred linearly, all of these numbers on
all of the pairwise ellipses would be constant and in the present case
would have the value 1.023 corresponding to a sum of squares of resid-
uals of about 35.47. As a basis for judging the actual values and their
variability, the following table gives values which this ratio would
have, if the coefficients did occur linearly, for various joint (9 -dimen-
sional) "confidence coefficients:"

Conf. Coeff. Contour Ratio

0.90 1.015
0.95 1.018
0.99 1.023
0.999 1.029

In view of the variability of the actual ratios in Fig. 31, and of the
extent to which some depart from the values in the above table, it is
clear that in the present form of the model the coefficients behave
jointly in a markedly nonlinear fashion even in a relatively small
neighborhood around the least squares estimate.

Inspection of the entire set of (9) (8) /2 = 36 pairwise plots strongly
suggests that a major part of this nonlinear behavior derives from the
coefficients al, a., as, and n of the A' (L) part of the model. These also
are the coefficients whose estimates exhibit the undesirably high cor-
relations which have been shown above to be due mainly to a "coeffi-
cient redundancy" in the model.

Direct interpretation of the ellipses in Fig. 31, as indicating inter-
dependence of the coefficient estimates, depends heavily on the appro-
priateness of the linear approximation in the neighborhood of the least
squares estimate. Since the nonlinearity index is in fact distressingly
large one must be cautious in interpreting the ellipses or their asso-
ciated correlation or dependence coefficients.

8.6 Summary Statistical Criticisms of Model I.
Model I, with coefficients determined by fitting to the 960 -point

HTB sample, has been shown to provide a very good fit both to the
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Fig. 31 - Examples of projections of the approximate "0.99 joint confidence
region" for the estimates of Model I. (Axes are scaled by standard errors.)
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sample and to the entire body of some 41,000 HTB observations.
Moreover, the interesting coefficient functions y'(x,L), A'(L), and xc(L)
have stable statistical properties as has the physically interpretable
coefficient Lo.

However, the model has two statistical defects: Firstly, although
the model gives an extremely good fit to the data, the parameters

, a2, as, and 77 of the A'(L) part of the model have exceedingly high
mutual correlations (see Table IV), and these were shown not to be
due to an obviously defective design. Secondly, the model coefficients
exhibited distressingly high nonlinearity of behavior even within
rather close neighborhoods of their least squares estimates, with
grounds to suspect that this was caused by the a;, a2, as, n group of
coefficients. In addition, most of the coefficients of Model I do not
have any directly meaningful physical interpretation.

The modifications which led to Model II, as discussed in the
following Section IX, overcome these defects of Model I while re-
taining all its virtues.

IX. THE MODEL II FIT TO THE HTB DATA

This section presents the statistical analysis of the HTB data
using Model II, a modified version of Model I. The emphasis in the
presentation is on comparisons of Models I and II. Since it is shown
how very closely the fit of Model II approximates that of Model I,
such aspects as the direct presentation of Model II residuals overall
the data are unnecessary, and hence omittted.

9.1 Model II
The definition of Model II has been given in Section 4.6, together

with a discussion of the physical interpretation of its coefficients and
its mathematical relation to Model I. Specifically, the 8 -coefficient
Model II constitutes a specialization and reparameterization of the
9 -coefficient Model I. Thus, it follows that the minimum sum of

squares in fitting Model II to any body of data can not be less than
that from fitting Model I, though this may not be true of the mean
square error.

The evolution of Model II from Model I did not arise from any
simply described systematic process, as is indeed true in other aspects
of this study. Once the basic achievements of Model I were estab-
lished it was then opportune to focus on major remaining defects. The
character of these defects strongly urged elimination of one or more
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coefficients in conjunction with a nonlinear reparameterization of
the coefficients. The solution achieved was arrived at by empiricism,
persistence and good luck.

The remainder of this section documents the assertion that Model
II retains all the virtues of Model I while overcoming its defects.

9.2 The Fit of Model II to the 960 -point HTB Sample.
The analysis of variance from fitting the 960 -point HTB sample

by means of the 8 -coefficient Model II is given in Table V. As ex-
pected, the residual sum of squares, 34.7126, of Table V exceeds that of
Table IV, namely 34.6675. This difference is associated with the
one -degree -of -freedom nonlinear constraint defined in (13). Thus,
we see that the sum of squares associated with the one -degree -of -
freedom non-linear constraint is (34.7126-34.6675) = 0.0451 and this
gives a ratio of less than 1.24 in relation to the mean square error
of 0.03645. The value 1.24 corresponds to the upper tail 27 percent
point of the chi -squared -with -one -degree -of -freedom distribution.
The proportionate increases in the sum of squares for error is about
0.13 percent and the increase in the mean square error is less than
one part in 3000. Multiple R2 = 0.989 is effectively unchanged.

For the models of both Tables IV and V, the coefficient S is treated
as constant with L. If Model II is modified so that S(L) = so +
then, fitting this 9 -parameter version of Model II yields a sum of
squares for error of 34.520. Thus, we would have a sum of squares of
(34.713-34.520) = 0.193 associated with the "hypothesis" s1 = 0.
The main point of quoting this result is to indicate that these minor
differences in the sums of squares for error are judged as unimportant
in this context, even if under some highly formalized assumptions the
distinctions are "statistically significant."

Of greater interest and sensitivity are the following considerations:
(i) the behavior of the residuals from Model II as functions of x,L
and y; (ii) the behavior of the differences between Models I and II;
(iii) comparisons of the estimates of A'(L) of Model I and A"(L)
of Model II [see (6) and (11) I ; (iv) comparisons of the estimates of
x,. (L) from the two models; (v) the pattern of correlations of the
estimates of the eight Model II coefficients; and (vi) the indices of
nonlinearity for the coefficients of Model II.

9.3 Residuals of Model II Fit and Differences Between Models I and II.
Figs. 32, 33, and 34 are plots of the residuals of the 960 -point HTB

sample from the fitted values of Model II against L, x and Y, re-
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spectively. These plots show no systematic structure and are quite
similar to analogous plots for Model I. Furthermore, Fig. 35, showing
the observed Y versus fitted y" for Model II, is as well-behaved as
the corresponding Fig. 20 for Model I.

Figs. 36, 37, and 38 show the deviations between the fitted Models
I and II plotted against L, x, and Y, respectively. Of course these
figures show a systematic structure since one is plotting the difference
of two smooth functions. However, the. actual differences are totally
insignificant in the light of the data. (Note that the scale for Figs.
36, 37, and 38 differs from that of Figs. 32, 33, and 34 by a factor of
10.)

Thus, on the basis of one less coefficient, Model II fits the data
essentially as well as Model I, to which indeed it is a very excellent
approximation. It has the merit that the physically arbitrary coef-

0.8

0.4

0

-0.4

-0 8
1.0 1.5 2.0

L
2.5 3.0

Fig. 32- Residuals (Y - y) from the fit of Model II to the 960 -point HTB
sample vs L.
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Fig. 33 - Residuals ( Y - y) from the fit of Model II to the 960 -point HTB
sample vs. x.

ficients a, , and a3 of Model I have been replaced by A, and L, which
do have direct physical interpretations. As will be detailed in the
next subsection, Model II also has additional attractive statistical
attributes.

9.4 Coefficient Estimates

Table V gives the least squares estimates of the eight coefficients of
Model II together with their approximate standard errors, correla-
tions and a values. The estimates are seen to be extremely well -
determined. In particular, for the physically meaningful quantities
Ap, Lo, and Lp the standard errors are about 0.4, 0.1, and 0.15 percent,
respectively, while for the shape coefficients 71 and S they are about
1 and 1.5 percent, respectively.

Comparison with Table IV shows that the standard error has de-
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creased for every coefficient which is common to the models. The
most dramatic change is for 77 for which the standard error diminished
by a factor of about 8.

The estimates of A' (L) and A" (L) are in very close correspondence
as implied by Fig. 36. The comparison of Fig. 22 (b) with Fig. 22(a)
indicates that the standard error of A"(L) is uniformly lower than
(but in general agreement with) that of A'(L).

Entirely similar remarks apply to comparison of estimates of sc(L)
from Models I and II, as also documented by Figs. 22(a) and 22 (b).

It has already been shown that the fitted values of y'(x, L) and
y" (x, L) are in very close agreement. The pattern of contours of the
percent standard errors of [y"(x, L) ] 2, in Fig. 24 (b), shows that the
standard error is everywhere smaller than the corresponding results
for Model I, in Fig. 24(a).
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Fig. 34 - Residuals (/' - y) from the fit of Model II to the 960 -point HTB
sample vs V.
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One of the most dramatic changes between Models I and II is
indicated by comparison of the correlations in Tables IV and V. The

very large correlations > 0.99, lal > 0.9) among the A' (L) coef-

ficients of Model I do not occur for Model II. Only the (r1, r2) and
(r2, r3) coefficient pairs of Model II have I al values above 0.5. This is
inconsequential since these are physically arbitrary coefficients of a
cubic polynomial.

The correlations of A"(L), x,(L), and S from Model II remain much
like the corresponding results for Model I, as shown in Fig. 30.

9.5 Nonlinearity Indices
The further virtuosity of Model II is indicated by the behavior of

the nonlinearity index shown for the examples of "confidence regions"

w

CL

2
0

-a)

0 3 6 9

Y (OBSERVED)

Fig. 35 - The value of y" computed from the fit of Model II vs the observed
value, Y, for the 960 -point HTB sample.
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L

Fig. 36-Deviations between the Model -I fit, y', and the Model -II fit, y", vs
L, for the 960 -point HTB sample.

in Fig. 39. (See Appendix B for general discussion and definition.)
Specifically, it is seen that the numbers on the ellipses vary very
little and this is true for all 28 of these ellipses. These numbers would
be constant and all equal to 1.023 if the model were linear in the
fitted coefficients. Comparatively, Model II does indeed behave in a
reassuringly linear fashion. For sharp contrast, we may compare Fig.
39 with Fig. 31, for Model I, in which the values range up to 1000
around the 9 -dimensional ellipsoid.

The nonlinear behavior of Model I in relation to the linear be-

0.04

-0.04
0 0.2

1

0.4 0.6 0.8 to

Fig. 37 - Deviations between the Model -I fit, y', and the Model -II fit, y", vs
x, for the 960 -point HTB sample.
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Fig. 38-Deviations between the Model -I fit, y', and the Model -II fit, y", vs
Y, for the 960 -point HTB sample.

havior of its specialized reparameterized version, Model II, is in-
dicative of the reason for the high nonlinearity indices for Model I.
Effectively, a p -coefficient model defines a constraining "surface"
of p dimensions (p is 9 and 8 for Models I and II, respectively) in
the n -dimensional space of the observations (n is 960 in the present
case). In a small neighborhood of the least squares estimate, this
p -dimensional surface may or may not be planar. If the latter, one
will obtain high indices of nonlinearity. If the former, then one will
or will not obtain high nonlinearity indices according to whether
the individual coefficient coordinates within the p -dimensional surface
are or are not linearly behaved.

It is likely that the 9 -dimensional surface defined by Model I is
indeed reasonably planar, but the coordinate system defined by the
coefficients is highly nonlinear.

The correlation and nonlinearity effects, it should be noted, are not
in principle related. One can have very high correlations with linear
models and very low correlations with very nonlinear ones.

9.6 Summary Comments

Model II has been presented and validated as an evolution of Model
I. Though Model II represents the current recommended fit from
this study, several aspects of its justification, and of other comparisons
in this paper, are based on the 1VIodel I fit. For example, the statistical
study of residuals over all the HTB data, discussed in various places
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including Appendix C, is based on Model I. This hybrid attitude is
entirely sound, since the range of deviation between Models I and II is
small compared to the range of residuals from the fitted sample.

Thus Model II provides a fit to the HTB in which the 8 estimated
coefficients provide a "good description" of about 41,000 observations.
The deviations of the fit from the data are within reasonable statistical
fluctuations-variation in teleinetered counting rates, orbital errors,
observational errors, mapping -to -magnetic -coordinate uncertainties,
etc. (See Appendix C.3). A number of the coefficients have physical
interpretations and these are statistically well -determined and rela-
tively uncorrelated. Model II, though nonlinear in the coefficients,
behaves in a very linear fashion in the neighborhood of the least
squares estimates.

X. TEMPORAL VARIATIONS

This section and the two to follow are devoted to discussion of
some specific physical results of the analysis.

Temporal variations are considered in three classes: diurnal (day-
night) , secular, and short term. Residual plots were used to study these
effects.

10.1 Diurnal Effects

The HTB residuals were plotted against local tune for various
x,L regions. The HTB data are not well -distributed in local time
near the magnetic dipole equator, making it difficult to draw firm con-
clusions. However, no evidence of a diurnal variation was found.

Specifically, to produce a change of about two percent in the
average value of Y on the equator (x = 0) would require a diurnal
shift in the radial position of the magnetic field line of about 0.01
Re at L = 1.35, and a shift of about 0.02 Re at L = 1.55, if there
were no other effects. At these two positions, the value of y is large

8) and ay/aL is large, and a two -percent change in y would
correspond to a shift in the mean of the residuals of =0.16 between
noon and midnight local time. An effect of this magnitude would be
readily observable on the residual plots.

Thus, it is unlikely that displacements larger than 70 km and 140
kin, at equatorial L's of 1.35 and 1.55, respectively, would escape de-
tection, and these distances are offered as upper limits to the day -
night changes of the magnetic field at the two positions. As both of
these displacements are equivalent to a change in field strength of
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Fig. 39-Examples of projections of the approximate "0.99 joint confidence
region" for the estimates of Model II. (Axes are scaled by standard errors.)
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about 300 gamma (0.003 gauss), this particle experiment does not
qualify as a sensitive indicator of adiabatic changes in the earth's

magnetic field.

10.2 Secular Effects

The HTB residuals are plotted against elapsed time, in days, for
1.85 < L < 1.90, in Fig. 40. It would appear that the average value of
Y decreased between days 191 and 255. This decrease is exhibited in all
parts of the belt where we have measurements during this interval.
Between days 191 and 225, the orbit of the Telstar® 1 satellite did not
take it into the central region of the belt (1.3 S L S 1.8, X 5 10°). In
other regions the decrease in the average value of Y over this period is

about ten percent. The extremes are two percent and 20 percent, but it

0.8

0.4

0

-0.4

- 0.8

HTB

: !..1;:. .

*:.

:34
4.r . .: . .

" .. .
.. %.:;,,,,\,.941-:,, 

":.:.
,, .

:....::-Y4,11..74;',:4,04: : -:.1:t4.;.

.:.  ::;! 

1.85 < L < 1.90

180 220 260 300 340
TIME IN DAYS FROM JAN. 0,1962

380 420

Fig. 40-HTB residuals of Y (i.e., Y -y calculated from the HTB coefficients)
plotted against time for 1.85 < L < 1.90. The arrows indicate ± the approximate
standard deviation if r were Poisson distributed.
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is not possible to separate out other variables which may be influencing
the results.

From the magnitude of this effect, it is clear that it must be con-
tributing substantially to the MSR. A decrease of ten percent in the
average value of Y corresponds to a decrease of about 20 percent in
the flux. A fractional change in the flux which is independent of x
and L cannot be distinguished from a change in the characteristics
of the instrument. Among other possibilities, radiation damage or the
decay of protons which might have been associated with the Star-
fish high -altitude nuclear test of July 9, (day 190) 1962 might have
produced the observed effects. Because of this ambiguity, we are
unable to offer any well-founded interpretation of the time depend-
ence of the data before day 225. For reasons to be noted shortly,
ambiguities are also encountered when interpretation of the temporal
behavior of data acquired after clay 400 is attempted. In the inter-
mediate period, the time dependence does vary with x and L. By
using Fig. 40, which shows comparatively little fluctuation during
this intermediate period, as a standard we are able to measure
relative changes in the belt. The stretches of sparse data near days
240 and 320 in Fig. 40 are a result of the orbital configuration, there
being less opportunity to acquire "high -temperature" data during
these periods. The absence of HTB data between day 325 and 373
was caused, as noted in Section 6.9, by the low bias condition that
existed during that time. However, an examination of residuals from
the CB fit between days 325 and 373 reveals nothing that vitiates the
conclusions drawn from the HTB data in what follows.

Residuals versus time -in -days have also been plotted for x,L cells
of size 0.1 in L by 0.2 in x. Below L = 1.9 we find only one change
with time within the sensitivity of our measurements, namely, a
secular decrease between days 225 and 400 which occurs only near the
ends of the field lines (x > x, - 0.2). We are unable to quantify this
effect because, in order to see the droop above the noise, we need to
collect residuals from a fairly sizable region of space. The term "sizable"
means a region over which y changes so much that an average value of y
in the region is not sufficiently representative to be used as a basis for
computing a percent change in the flux. Fig. 41 gives an example of an
x,L cell near the cutoff where this decrease may be seen. However, in
the adjacent lower -x region, Fig. 42, where the ability to discriminate
absolute changes in the average value of Y is the same and the ability
to discriminate percent change in the average value of Y is much greater
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Fig. 41- HTB residuals of Y (i.e., Y -y calculated from the HTB coefficients)
plotted against time for 1.6 < L < 1.7 and 0.8 < x < 1.0. The arrows indicate
± the approximate standard deviation if Y2 were Poisson distributed.

than for the region of Fig. 41, no corresponding secular decrease be-
tween days 225 and 400 is evident.

The droop in the residuals after day 400, which is noticeable in
Fig. 42, is characteristic of many of the plots of residuals versus
time -in -days. The widespread occurrence of this effect confuses in-
strumental and "real" variations and introduces unresolvable am-
biguities when attempts are made to identify the source of the droop.

The observation of the general downward slope in Fig. 41 might
be explained by a small decrease in xe, which corresponds to a small
increase in the altitude of the cutoff, between August 1962 and
January 1963 on L -shells below 1.9.23 Alternatively, one might be
observing the decay of the 55 MeV protons whose perturbation by
the Starfish high -altitude nuclear test of July 10, (day 190) 1962 and
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subsequent behavior have been measured by Filz24 near the bottom
of the trapped proton belt. There are too few data for us to attempt
further interpretation of this qualitative observation concerning the
secular behavior of x0. The number of points affected and the mag-
nitude of the shift are too small for this effect to contribute interest-
ingly to the MSR.

10.3 Short -Term Effect

The plots of the residuals versus time -in -days, for x,L regions,
show a short-term fluctuation which is sufficiently singular to be re-
ferred to as an event. This event is an increase in the average value
of Y over the 30 -day period which starts about day 280. It can be
seen clearly in Fig. 43. The increase is discernible only for L > 1.9.
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0.4

-P.

0

- 0.4

- 0.8
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: .
. . .
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0.6 < x < 0.8

f

220 260 300 340 380
TIME IN DAYS FROM JAN. 0,1962

420

Fig. 42-HTB residuals of Y (i.e., Y -y calculated from the HTB coefficients)
plotted against time for 1.6 < L < 1.7 and 0.6 < x < 0.8. The arrows indicate
± the approximate standard deviation if Y2 were Poisson distributed.
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TABLE VI -FRACTIONAL INCREASE IN FLUX BETWEEN DAYS 280
AND 310, 1962.

L x 0.1 0.3 0.5 0.7 0.9

<1.9 - - - -
1.95 0.05 0.07 0.12 0.20 0.70
2.05 - - 0.37 0.46 0.90
2.15 - - 0.28 0.33 -

Table VI gives the fractional increase in the average counting rate
(Y2) during this period at various values of x and L. By L = 2.25
the change is barely observable and for L > 2.3 it has disappeared.
The data acquired between days 325 and 373, which are not included
among the HTB data because the bias voltage was low, were ex -
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Fig. 43-HTB residuals of Y (i.e., Y -y calculated from the HTB coefficients)
plotted against time for 2.0 < L < 2.1 and 0.6 < x < 0.8. The arrows indicate
± the approximate standard deviation if Y2 were Poisson distributed.
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amined ; and there appears no reason to believe that there were any
changes in the intensity of the >50 MeV protons for L > 1.9 during
these 48 days.

While it is not possible to be quite sure that we are observing a
"true" temporal effect, it is difficult to contrive any alternate ex-
planation. This event can be compared with the changes produced in
the high energy proton distribution by the magnetic storm of Septem-
ber 22, 1963, and observed with Relay 125 and the Telstare 2 satellite.5
In both cases only L shells with values above 1.9 were affected, and the
effect is more pronounced at higher x's. However, the storm produced a
decrease in flux whereas an increase was observed in 1962; the effects of
the storm were more severe at larger L's, whereas in this event, a max-
imum fractional change was observed near L = 2.05; and the effect
of the storm was sudden, i.e., the flux decrease took place within 24
hours, while the increase observed in 1962 was gradual and required
a month to complete. Increases in flux having some of the features
described here were observed with Explorer 7.20 However, it is dif-
ficult to be certain that those increases were caused by protons with
energies above 18 MeV, rather than electrons with energies greater
than 1.1 MeV.

The high-energy protons appear very stable over the seven months
covered by our data. In particular, no effects associated with the
USSR high -altitude nuclear tests of October 22, October 28, and No-
vember 1, 1962, or the large magnetic storm of December 18, 1962 have
been observed.

In summary, changes through time in the observed values of the
flux are generally less than 20 percent, although they may be larger
in some regions of space. We have not been able to detect a diurnal
effect. Often, secular changes are not separable from other variables,
an exception being an apparent change in the position of the cutoff.
An event which appears to comprise a measurable redistribution of
the proton flux over an appreciable volume of space and period of
time has been noted. We do not know whether the redistribution is
in energy or space, and find no indication of the mechanism in the
data.

XI. THE CUTOFF'

As discussed in Sections V, 6.3, and 7.5, the cutoff function, xr(L), is
defined in terms of our instrument, model and fitting procedure. For
L < 2, the value of x, (L) corresponds to the position on the given L
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shell at which the omnidirectional flux is of the order of 1 proton/cm2
sec, more than three orders of magnitude below the highest flux in
the belt. However, because the flux is falling so fast with x, this
position is almost certainly very close to the place at which the flux
becomes 0. The last statement is not true for L > 2. Here, although
the value of x,(L) (the place at which y = 0) still corresponds to
the point at which the limit of sensitivity of our instrument is
reached, the position of x is not so well-defined by the fit. In addition,
one has only to examine Fig. 23 to realize that x, may be significantly
removed from the value of x at which the flux falls to zero.

The Model -I HTB coefficients of Table IV define the cutoff func-
tion, and we have made use of a modification of R. H. Pennington's
mirror trace program* to calculate the minimum altitude correspond-
ing to x,(L) for L < 2.2. This inversion was accomplished using the
Jensen and Cain magnitude field coefficients for 1960,13 the same set
used to calculate x and L (see Table I). (Other sets of coefficients are
available.27 However, using the GSFC (7/65) coefficients" does not
produce significantly different altitudes.)

The minimum altitude is smallest in the Southern Hemisphere over
the Atlantic Ocean. Fig. 44 shows the results in graphical form. The
minimum altitude is .c:-.:.270 km near the equator (L = Lo 1.13),
decreases to a minimum of =160 km at L = 1.6, and increases very
rapidly thereafter. For L less than 1.5, the standard error in altitude,
derived from the standard error in x0 (see Fig. 22), is about 10 km,
which is roughly the. accuracy of the inversion procedure as we used
it. The standard error in altitude for L > 1.5 is indicated by the
dashed lines in Fig. 44. At L = 2, where the cutoff mechanism is only
partially atmospheric, the standard error is nearly 50 km.

The minimum near L = 1.6 in the altitude curve of Fig. 44 appears
to reflect the existence of the South American magnetic anomaly.
Although R0(L) [see (5) J increases monotonically with L for L > 1,
the increase is apparently not fast enough to override the influence of
the anomaly. This result is true for all the sets of coefficients pro-
duced in many trial fits as well as for the HTB coefficients in Table
IV. We have not yet carried out the obvious next step of averaging the
atmospheric density over the orbital path of the protons to see
whether or not the shape of Fig. 44 can be explained on the. basis of
present models of the atmosphere.

Although the shape of the minimum altitude curve remains the

* Kindly communicated to us by D. J. Williams.
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same, the value of the altitude is sensitive to the method of select-
ing the sample (see Section 7.1). For example, the minimum value of
altitude calculated from the CB coefficients is 100 km (again at
L = 1.6), 60 km lower than the 160 km calculated from the HTB
coefficients. The weighting of the HTB sample emphasizes the high
x data and gives better representation, and therefore a better ex-
pectation of fitting well, near the cutoff. However, the Te/stare 1 satel-
lite, with its eccentric orbit and relatively high (950 km) perigee, could
not give detailed information about particles near the top of the atmos-
phere, and this is reflected in the results of the analysis.

In conclusion, the curve of Fig. 44 probably represents the quali-
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Fig. 44-The minimum altitude reached by > 50 MeV protons as a function
of L. This altitude is determined in geographic coordinates from the transform
of xc(L). The dashed curves are ± one standard error.
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tative behavior of the minimum altitude of the cutoff reasonably well,

but the uncertainty in the value of the altitude is larger than a
simple examination of the standard error plotted in the figure would
lead one to believe. The implications of these results for the details
of the cutoff mechanism have not been examined in detail; however,
it is clear from the sudden upturn of the curve in Fig. 44 that the
mechanism is principally atmospheric for L less than about 1.9 and
principally nonatmospheric on higher L shells.

XII. COMPARISON WITH OTHER WORK

12.1 Introduction

When making comparisons among the various high-energy proton
measurements it is desirable that the results be extensive in time and
space, reported in terms of omnidirectional fluxes at various positions,
and that these positions be expressed in magnetic coordinates de-
rivable from the B,L set. A list of some experiments which meet these
desiderata is given in Table VII.

Following a presentation of flux maps, comparisons among these
experiments are made with respect to the following features: the
absolute intensity at one point in the belt, as close to the maximum of
intensity as is practical; the intensity vs L in the equatorial plane;
the behavior of the intensity on selected L shells; the flux near the
top of the atmosphere, and the equatorial pitch angle distribution.
Comparisons covering a larger range of proton energies have also
been made by Vette29 and Fillius.2°

One of the difficulties encountered in making comparisons among
the various bodies of data is that most of the results have been pub-
lished in graphical form, rendering it necessary to scale numerical
values from small plots, an inaccurate procedure at best. A welcome
exception is the Explorer 15 data, which McIlwain18 has made avail-
able by means of a series of interpolation functions in the form of a
FORTRAN computer program.

12.2 Telstar® 1 Flux Maps

For this discussion, the Telstar® 1 HTB results have been converted
to omnidirectional flux, J, where J = 47y2/#. (Note that the value of

derives from the assumptions of Appendix A regarding the energy
spectrum.) This procedure provides an estimate of the flux of protons
with energies between 50 and 130 MeV at positions, (x, L), in mag-
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Fig. 45 - Omnidirectional isoflux contours derived from the HTB coefficients
and plotted in R,X space. Dashes indicate extrapolation beyond the region in
which data were acquired. Long dashes form contours of constant percent standard
deviation.

Label A B C D E L

Omnidirectional
flux (J)

5 X 101 2 X 103 1 X 103 5 X 102 2 X 102 1 X 10° protons/
cm' sec

netic space on the basis of the presently provided model and fit to the
HTB data.

For ease of reference, Telstar® 1 HTB flux maps are presented in
three commonly used forms: Fig. 45 shows contours of constant flux
in R,A coordinates; Fig. 46, contours of constant flux in B,L co-
ordinates; and Fig. 47, log flux vs log B curves for various values of L.
These three graphs give an overall picture of the particle distribution.
In these figures, dashed lines are used to indicate the extrapolation of

fitted values to regions not penetrated by the satellite. Note the way
the geometry of the coordinate transformations affects the extrap-
olated regions. In particular, the functional extrapolation in B,L
coordinates gives much more curvature to the contours than might
be anticipated. The difference between the functional and straight
line extrapolation in B,L can be as large as a factor of 2 in the
flux (a shift of 0.2 in L) at L = 3. Except for the region of the
secondary local maximum in the flux near L = 2.2, this functional
extrapolation compares surprisingly well with the measurements made
on higher altitude satellites.3.13

In the altitude range covered by the data, a single maximum is
observed. This maximum in the omnidirectional flux of 6 x 103
protons/cm2 sec is located on the magnetic equator at R = L = 1.46.
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The intensity falls abruptly near the bottom of the belt (the top of the
atmosphere) and decreases more gradually toward the sides and top
of the belt. On a given L shell, the intensity is a maximum at the
magnetic equator, and deceases monotonically as the distance from
the equator increases.

Neglecting the uncertainties in the calibration of the instrument
(-25 to +50 percent), which are discussed in Appendix A and are
mentioned in the next subsection, the estimated standard deviation of
the estimate of J is less than 2 percent of J over much of the region of
space discussed in this section. Smoothed contours of 1 percent, 2
percent and 5 percent standard error are plotted as the dotted
lines in Fig. 45. Near the cutoff, where the counting rate is falling to
zero, the standard deviation in x, (see Figs. 44 and 22) is a useful
indication of uncertainty in the flux. Other information concerning

0.30

0.25

0.20

0j5

0.10

0.05

0
1.0 1.4 1.8

L

2.2 2.6 3.0

Fig. 46 - Omnidirectional isoflux contours derived from the HTB coefficients
and plotted in B,L space. Dashes indicate extrapolation beyond the region in
which data were acquired. Labeling is given in Fig. 45.
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standard deviations may be found in Sections 7.4 to 7.6 and 8.4, Figs.
22, 23(a), 23(c), and 24.

The equations defining Model II (see Section 4.6) and coefficients
of Table V, together with the transformation equations among various
magnetic coordinate systems, allow accurate relative flux values to
be easily calculated in any coordinate system.

12.3 Comparison of Absolute Intensities
The solid curve in Fig. 48 is the fitted omnidirectional equatorial

flux of 50-130 MeV protons measured by the Te/stare 1 satellite. The
points are fluxes observed on other satellites (Table VII) at the mag-
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Fig. 48 - Values of equatorial omnidirectional flux, for the satellites indicated
in the legend, corrected to the energy range 50-130 MeV and plotted at the ap-
propriate value of L. An integral power -law energy spectrum (see (17)] of ex-
ponent -M, where M is given is a function of L by the dashed curve, was used
in making the corrections. References are given in Table VII.
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netic equator and corrected to 50-130 MeV by using a single -com-
ponent integral energy spectrum of the form

N(>E) CC E -m . (17)

The values of M at the magnetic equator are plotted as the dashed
line in Fig. 48. These values were taken from Gabbe and Brown,3 and
are consistent with those of Brown, Gabbe, and Rosenzweig,3 and also
those of Fillius and Mcllwain,34 and Freden et al," where the data
overlap. Because. of uncertainties in the geometric factors of the de-
tectors (see Appendix A) and changes in the belt with time (see
Section X), one might expect agreement only within a factor of about
2. On this basis the agreement in absolute intensity is quite reason -
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Fig. 49- Values of equatorial omnidirectional flux, for the satellites and en-
ergy ranges indicated in the legend, plotted against L. The dashed curve is the
ratio of Telstar® 1 to Explorer 15 measurements. References are given in Table
VII.
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able. However, the Telstarg) measurements are somewhat on the low
side, and those of Imhof and Smith32 (H2 and H3 on Fig. 48) are
much higher than the other observations.

The points represent measurements taken before, after, and during
the Te/stang 1 experiment so it is unlikely that changes in the flux
with time explain these differences. It is difficult to account for the
discrepancies in absolute flux in terms of the spectral correction,
unless more complex spectral forms than those of Appendix A are
considered, because the comparisons are among results of detectors
whose threshold energies are close to 50 MeV. The most likely sources
of the differences are errors in absolute calibration. It follows that
a good deal of caution should be exercised in drawing conclusions
about temporal effects and energy spectra from measurements made
with different instruments.

12.4 Intensity vs L in the Equatorial Plane
Fig. 49 is a plot of the omnidirectional equatorial flux for each of

the satellites listed in the legend of the figure. The data are from de-
tectors having several different energy ranges and no spectral cor-
rections have been made. The general features of the data in these
energy ranges have been noted previously in the literature. The flux
increases rapidly with L, goes through a maximum near L = 1.5 and
then decreases. The decrease is not as rapid as the initial rise and in
this energy range the flux generally does not decrease monotoni-
cally18, 20 for L > 2. Excepting the measurements of Imhof and
Smith,32 the flux decreases with increasing energy, indicating a falling
energy spectrum.

The dashed line in Fig. 49 is the ratio of the 50-130 MeV proton flux
measured with Te/stare 1 to the 40-110 MeV proton flux measured with
Explorer 15. This ratio is a good qualitative index of the energy spec-
trum near 45 MeV, and in these circumstances the change in this index
is independent of the absolute calibrations of the instruments. The
ratio is seen to decrease monotonically as L goes from 1.25 to 1.9,
indicating, in agreement with the references cited in the previous sub-
section, a softer spectrum* at higher L.

12.5 Intensity vs B on L Shells
In Fig. 50 {parts (a), (b) , and (c) I measurements from various

satellites are compared on the three L shells, 1.3, 1.5, and 1.8. The

*A softer spectrum contains a larger fraction of low -energy particles.
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Explorer 15 and Injun 3 measurements have been compared in more
detail by Valerio.1° Observe that J decreases monotonically with B
on all the L shells and the shape of J vs B is very similar for all the
measurements on the same shell except for the lowest L shell where
the dependence on the energy response of the detector is most im-
portant. Information concerning the energy spectrum near 45 MeV
is contained in the changes in the ratios of the measurements, and in
these circumstances the changes are independent of the absolute
calibrations of the instrument.

To cast more light on the qualitative behavior of the energy spec-
trum, the ratio of the 50-130 MeV proton flux measured with the
Telstar® 1 satellite to the 40-110 MeV proton flux measured with Ex-
plorer 15 has been calculated as a function of B for fixed L. The results
are plotted in Fig. 50 (d). All the ratios increase with increasing B for
L from 1.2 to 1.9 inclusive. The values of B in the plot cover the range
from the magnetic equator to a magnetic dipole latitude (A) of about
30°. The increase in the ratio indicates a spectrum that hardens with in-
creasing B in the neighborhood of 45 MeV. At L = 1.8 Freden et a135
find a spectrum that hardens with increasing B for proton energies
between 10 and 35 MeV, but softens with increasing B for proton
energies above about 55 MeV. Our results suggest that this change in
behavior cannot have occurred below 50 MeV.

12.6 The Intensity Near the Top of the Atmsophere

The position of the 8-protons/cm2 sec flux contour from the Telstare 1
satellite is plotted in B,L coordinates in Fig. 51 (a), together with our
own extrapolation of the published Injun 3 data" to a flux of about 10
protons/cm2 sec,* and the 16-proton/cm2 sec flux contour from Explorer
4. The purpose of this figure is to test whether or not the altitude
dependence of contours of constant counting rate at low altitudes is
consistent with other data. The qualitative agreement of the results
plotted in Fig. 51(a) is quite good, especially for L < 1.8, where the
atmosphere is controlling. A number of effects may contribute to the
divergence of the results for L > 1.8. Among them are: temporal ef-
fects, this region of the belt is shown to be subject to temporal varia-
tions in Section X; instrumental effects, the instruments are near their
threshold sensitivities in a region of magnetic space in which the en-
ergy spectrum may be anomalous; and biases in the fitting procedure,

* Valerio1° states that his fits (and therefore his Fig. 8) are not intended to
represent the data accurately at low altitude.
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examination of residuals give some. indication of a slight bias in the
fitted function in this region.

It is difficult to get direct insight into the altitude dependence
from a B,L plot, so the values of B have been transformed into mini -
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mum altitude by using the procedure mentioned in Section XI. The
minimum altitudes are plotted against L in Fig. 51 (b). It is character-
istic of all three bodies of data that the minimum in the minimum
altitude curve does not occur at minimum L.

It is tempting to consider whether the lower altitude of the Explorer
4 points, coupled with the lower low -energy threshold and high flux asso-
ciated with the Explorer 4 measurements, might imply that the exo-
sphere was less dense when the Explorer 4 measurements were made.
However, the uncertainty in the position of the Telstar® contour (see
Section XI) is so large that the use of this figure to refute the hy-
pothesis that the atmosphere contracted23 between 1958 (;:-- solar
maximum), when the Explorer 4 measurements were made, and 1962,
when the Telstar data were taken is precluded, even if one were pre-
pared to overlook the possibility that the energy spectrum at these low
altitudes is anomalous3° and consequently that the calculated geometric
factors of the instruments may be in substantial error near the cutoff.

12.7 Equatorial Pitch Angle Distribution

The solid curves in Fig. 52 (a) represent the equatorial pitch angle
distributions, at various values of L, calculated from (8) and the co-
efficients in Table V. When these are compared with the equatorial
pitch angle distributions obtained from the Injun 3 data,1° which have
been replotted as the dashed curves in Fig. 52(a), they are found to
be very similar in shape, although the Telstar® curves are a trifle
flatter. This would be anticipated from the previous discussion of the
tendency of the energy spectrum of protons with energies near 45 MeV
to harden at high values of B. The shape of the distributions are, how-
ever, appreciably different from those derived by Lenchek and Singer"
from consideration of possible injection and loss mechanisms. This
may be seen in Fig. 52(b) which contains the present results as the
solid lines, and the results of Lenchek and Singer37 as the dashed lines.

12.8 Other Bodies of Data

A portion of the considerable body of relevent high-energy proton
data, some of which does not meet the requirements for inclusion in
Table VII, is noted here. The earliest measurements of proton intensi-
ties were made on Explorers 1 and 3 by Van Allen." His historic esti-
mate of 2 x 104 protons/cm2 sec with energies >40 MeV at the heart
of the inner belt (x = 0, L 1.56) has been substantiated by all the
measurements reported to date. In particular, the high-energy proton
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measurements made in the inner belt by Explorers 6, 12, and 14 and
Pioneers 3 and 4, have been noted by Frank et al" to agree with each
other and with those on Explorers 1 and 3. Reference to some measure-
ments made with ballistic probes may be found in the article by Freden
et al.35

XIII. QUO VADIS

The mathematical model which has evolved along the lines summa-
rized in Section IV has provided a very satisfactory representation of
the high-energy proton data from the Telstar® 1 satellite, as discussed
in both statistical and physical terms in Sections VI through XII. It is
appropriate to consider how this work might be extended.

13.1 Further Improvements within the Present Scheme
The final fit of Model II has a mean square error which is less than

twice the variance to be expected on the assumption of a Poisson dis-
tribution of the count data. Some of this excess is surely due to "ex-
perimental error." However, one might seek some additional improve-
ment by the addition of more parameters to the fitting function as
indicated in Model III of Section 4.7. Such fits, carried out on an
approximately 1000 -point selected data set, will almost surely lead to
a reduction in the mean square residuals because of the increased free-
dom the additional parameters provide. However, as noted in Section
4.7, preliminary work with Model III has not led to a really substan-
tial improvement, either statistically or aesthetically as judged by plots
of the residuals.

Additionally, one might try to improve further on the representative-
ness of the sample by simple iteration. Using the HTB fit to Model II
to determine new x,L cells, another sample might be selected and fitted.
The very small differences between the Model -I CB fit and the Model -I
(or II) HTB fit do not suggest that this would he fruitful in the present
case. If the preliminary fit used for determining the x boundaries of
the cells were a poorer fit, iteration would clearly be worthwhile.

A further extension of the procedure for designating representative
cells would involve the development of a two-dimensional version of
the basic idea and procedure outlined in Section 7.1. Specifically, one
would try to define approximately 1000 x,L cells within each of which
the preliminary fit to y (x, L) has the same range. In the present case,
the anticipated gain from this refinement did not seem to justify the
practical difficulties. However, a practical, well-defined algorithm for
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such a process in several dimensions simultaneously might prove very
useful.

13.2 Another Approach to the Model

All the models presented so far are of the form

y(x, L) = A(L)  b(x ; ei(L)), (18)

where A (L) represents the variation in intensity along the magnetic
equator and b (x; et (L)) represents the variation with x on an L -shell.
The {el(L) } adjust the nature of the dependence on x, as a function
of L. This approach arises from the L -shell orientation of the adiabatic
theory of trapped particle motion.

Alternatively, one might focus attention on the shape of y as a func-
tion of L at constant x, rather than on y as a function of x at constant
L. It is shown in Fig. 19 (a) and discussed in Section 7.2 that y (x, L)
as a function of L for fixed x forms a simple nesting set of curves at
successive values of x. This is a consequence of the monotonic decrease
of y with x at any fixed L. With this orientation, a model might be
expressed as:

y(x, L) = F(L; p,(x)) , (19)

where F(L) is the shape of a constant -x section, whose parameters,
the {pj}, are expressed as functions of x. Although this approach would
not contain the L -shell orientation of the particle motion explicitly, it
seems to offer very significant practical possibilities.

13.3 Full Data Utilization
In the two-dimensional fits that were carried out, only a selected set

of data were used, either chosen at random within a set of narrow,
contiguous L -slices, as in the fit of Section VI, or chosen on the basis
of a preliminary fit to the data as in Section VII. All the data were
examined by residual plots and mean square residual measures of the
fits, but only a small part of the data were actually used in determin-
ing the values of the fitting parameters. With this procedure, informa-
tion is clearly being lost that could be used to "better" determine the
function.

Several methods have been applied in the past to allow all of an
existing body of satellite data to influence the mathematical descrip-
tion of that data. The most direct method uses interpolation or smooth-
ing functions. It is often the case that consecutive satellite observa-
tions from a particular detector are closely enough spaced to determine
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the local spatial variation. Under these conditions a sequence of data
points can be averaged or fitted to a local smoothing function. A num-
ber of points in a sequence may thus be replaced and represented by a
single point which is determined by them all. The replacement may
also be made at some particularly convenient coordinate location, for
example, at one of a fixed set of L or x values on which functional
fitting may subsequently be carried out. This method has been used
on the data of Explorer 15, portions of which have been described by
Mcllwain,18 Roberts.° and Brown.41

In the context of the high-energy proton data from the Te/stare 1
satellite, a different but analogous procedure could be used. Rather
than selecting at random one data point within each of approximately
1000 x,L cells, all points within a given cell could be used to determine
a value. which would represent the observable at the central point of
the cell. This might be done by simply averaging the points within the
cell, but the cell size is large enough so that the x and L dependence
within the cell generally cannot be neglected. A more representative
procedure would be to fit the points within an x,L cell with a local
smoothing function. This function can be the same function with which
the finally selected data values would be fitted across the complete
range of x,L space (see Appendix B.7). Although in the present case
the average number of points per cell is about 40, in many cells the
number of points is fewer than the number of coefficients of the Model
II function, and some coefficient constraint would be required. This is
not a substantial objection, however, since the function is only being
used for smoothing and does not need to be capable of elaborate varia-
tion over an x,L cell.

A procedure of this kind greatly reduces the chance that members
of a final 1000 -point set will be nonrepresentative and acknowledges
the experimental weight of adjacent observations in fixing the values
of the set. Accordingly, one would expect a reduction in the mean
square residuals overall the data, from a fit to such a smoothed sample.

The procedure of smoothing within a cell could be used with larger
x, L cells (with more points per cell) to define a point set smaller than
1000. It can of course also be used with much larger bodies of data
up to a maximum of 1000 points per cell with the existing computer
program.

13.4 Extension to Other Cases
There are very evident values in being able to communicate the

essence of a large body of data in terms of a mathematical model with
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a small number of coefficients. This is very effectively accomplished by
the present empirical representation of the Telstar® 1 high-energy
protons, but the model is very specialized. As previously noted, includ-
ing a wider range of space such as that explored by the Telstar® 2
satellite requires modification of the function. Characterizing the pro-
ton distribution for substantially lower energy protons may well re-
quire functions outside the generality of even Model III. Treating
electrons in almost any region of space requires treating time as well

as position variables because a complete set of measurements of the
spatial distribution of the particles cannot readily be obtained in a
time short compared with significant time. variations.

No single formulation yet exists which is capable of coping in a use-
ful way with the range of measurements of particles trapped in the
magnetic field of the earth. However, the success of the present formu-
lation as it has been evolved and the general methods that have been
developed gives us confidence that other and more complicated cases
can be treated.

XIV. SUMMARY AND CONCLUSIONS

This section provides a summary, with references, for the entire
document including the appendices.

14.1 General Accomplishment
The main accomplishment is the development of a relatively simple

(empirical) mathematical model which gives a statistically accurate
representation of the spatial distribution of high-energy protons meas-
ured with the Telstar® 1 satellite.

14.2 The Data

14.2.1 Space and Time Coverage (Sections I and II)

The data were acquired between July 1962 and February 1963 within
the region of space bounded by 1.09 R. < R 5 1.95 R. and 0 S X < 58°.
Inside these boundaries good temporal and spatial coverage were
achieved.

14.2.2 Energy Range and Instrumental Sensitivity (Appendix A)

The nominal energy interval of the detector is 50 < E < 130 MeV
and its nominal geometric factor is 0.143+0:03: cm2 ster. The in-
strument is effectively omnidirectional and the lower threshold of
sensitivity is fr:.,1 proton/cm2 sec.
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14.2.3 Telemetry (Section II)

Each observation consisted of the number of counts registered in 11
seconds. With this was associated the time at which the telemetry was
received, and auxilliary information.

14.3 The Models

14.3.1 Coordinate System (Section III)

Each model relates the omnidirectional intensity of high-energy pro-
tons to a two-dimensional magnetic space whose coordinates, x,L, de-
rive from a mapping of the earth's main magnetic field onto an axially
symmetric dipole field through the adiabatic invariants of the particle
motion.

14.3.2 General Form and Properties (Section IV)

The models have the form of a product, A (L)  G (x,L) , in which
the first term expresses the equatorial intensity as a function of L, and
the second term describes the diminishment of intensity, as a function
of increasing x, for fixed L. The functional expressions for G (exclud-
ing G"') transform in closed form to equivalent pitch angle distribu-
tions.

14.3.3 Specializations (Sections IV and IX)

Retrospectively, all the models may be considered to be specializa-
tions of Model III, but historically the two-dimensional models evolved
from a series of one-dimensional fits on L -slices. These fits led to the
L -slice model which was then generalized empirically to the two-di-
mensional Model I. Model I was in turn specialized to Model II to
overcome some statistical (nonlinearities and high correlations) and
interpretive difficulties encountered with Model I.

14.4 Fitting

14.4.1 Criterion (Section III and Appendix B)

The least squares criterion was used in deriving estimates of the 8
(or 9 or 10) coefficients required by the models to fit the data.

14.4.2 Scale (Section III and Appendix B)

To stabilize the variance of the observations, the models have been
fitted to the square root of the observed counting rate.
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14.4.3 Sampling (Sections 6.1, 6.9, 7.1 and Appendix B.3)
Coefficients of Models I and II were estimated by fitting samples

containing about 1000 of the nearly 80,000 available observations.
Sampling is necessary to avoid exaggerating the importance of regions
of x,L space where data are abundant, and also for compatability with
existing computer programs. A method of sample selection based on a
preliminary fit has been developed to provide a good overall represen-
tation of the data. Before selecting the sample, the data were parti-
tioned to remove instrumental effects and outliers identified by study-
ing residuals from preliminary fits.

14.5 Quality of Fit

14.5.1 Criteria of Judgment (Sections VI to IX and Appendices B
and C)

Judgments regarding the quality of fit were largely based on graph-
ical studies of residuals, the behavior of the fit at the boundaries of

the radiation belt and various statistical measures. Residuals (equal
to observed minus fitted), on the square root scale, were particularly
useful as sensitive indicators of the. quality and nature of the fit.

Among Models (Sections V and IX)
The L -slice fits give good one-dimensional representations of very

limited regions of data. Both the standard errors of the coefficients and
the correlations among coefficients are high compared to the corre-
sponding measures derived from the two-dimensional fits. The fits of
Models I and II to the 960 -point HTB sample are practically equiva-
lent. However, Model II is superior in the following respects: one less
coefficient is required, standard errors are uniformly smaller, correla-
tions among the coefficients are uniformly smaller, the index of non -
linearity is very much smaller, and more of its coefficients have a phys-
ical meaning.

14.5.3 Coordinates (Sections VI and VII)
Plots of residuals vs x, L, time, etc. indicate the general adequacy

of x,L coordinates for the organization of the data.

14.5.4 Quantitative Measures (Sections VII, VIII, IX, and Appendices
B and C)

Typically, the fits account for nearly 99 percent of the variability
about the data mean. The mean square error of fit is about 1-i times
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as large as would be anticipated on the basis of assumed Poisson sta-
tistics. Even in the worst of quite small spatial regions, the mean
square residual does not exceed 21- times the Poisson -based prediction.
-Probability-plotting procedures indicate that the residuals are closely
normally distributed and lead to an estimate of the variance which is
about twice the Poisson -based prediction.

14.5.5 General Limitations (Appendix C)
Statistical examination of all the data, categorized in x,L cells de-

fined from a preliminary fit., indicates that it is unlikely that the fit
given by the present model could be significantly improved by any
simple modification based on x,L coordinates alone.

14.6 Numerical Values of Fitted Coefficients, Standard Errors, etc.

14.6.1 L -Slices (Section V)

Coefficient values and other statistics for four L -slices appear in
Table II, and values of coefficients for a large number of L -slices are
shown in Figs. 8 to 10.

14.6.2 Models I and II (Sections VI to IX, also Sections V, XI, and
XII)

Model II is the preferred model. Coefficients, standard errors, cor-
relations, and other summary analysis -of -variance statistics appear in
Table IV for Model I and Table V for Model II. The coefficient func-
tions: (i) square root of average counting rate, y (x,L) ; (ii) square
root of average equatorial counting rate, A (L) ; and (iii) position of
cutoff, x,(L); are well -determined and applicable values, standard
errors, and correlations appear in Figs. 19 and 24 for y (x, L) (and
Figs. 45 to 47 for the flux) ; Figs. 8, 11, 21, 22, and 30 for A (L) ; and
Figs. 9, 12, 22, 23, and 30 for xt.(L) (and Fig. 44 for altitude).

14.7 Some Physical Results

14.7.1 Flux Maps (Section XII)

Flux maps are given in B,L and R,X coordinates and as J ,B contours
for constant L, based on the fitted model and using a calibration of the
detector assuming certain single -component energy spectra. Neglecting
uncertainties of calibration, the relative fluxes have a standard error of
about 2 percent. The value of the maximum flux is (5.7_1::) X
103 protons/cm2 sec at L = 1.46 on the magnetic equator.
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14.7.2 The Cutoff (Section XI)
The minimum geographical altitude corresponding to the fitted cut-

off function was computed. This altitude varies as a function of L and
has a value of about 270 km at the magnetic equator at L = Lo = 1.13
and a minimum of about 160 km at L = 1.6. The shape of this L de-

pendence suggests that the interaction between the protons and the
residual atmosphere is of major importance in determining the cutoff
for values of L less than 1.9. For larger L values, the loss mechanism
determining the cutoff is of different origin.

14.7.3 Temporal Effects (Section X)
The general spatial distribution of high-energy protons is very stable

in time over the period covered by the present data; however, using
residuals as a sensitive indicator, we find two temporal effects that are
distinguishable from instrumental effects. Firstly, there appears to be
an increase in the flux in the 1.9 < L < 2.2 region during the 30 -day
period starting about day 280, 1962. This increase varied from about
5 to 90 percent depending on both x and L. Secondly, there is an indica-
tion of a qualitative increase in the altitude of the cutoff over the pe-
riod of the observations. The present results indicate that any diurnal
variability of the earth's magnetic field would have an upper limit of
0.003 Gauss at L 1.5.

14.7.4 Comparison with Other Experiments and Theory (Section XII)
The absolute fluxes measured in this experiment agree well (within

a factor of two) with other extensive experimental measurements, but
the present values are in general slightly lower. Spatial distribution of

the flux agrees very well with other measurements but differs appreci-
ably from published theoretical calculations.

14.8 Extensions (Sections XIII, IV, and Appendix B)

The methods developed in this work have lead to a very satisfactory
representation of the high-energy proton data from the Te/stare 1
satellite.

With the better methods of utilizing data and selecting samples
noted in this paper, and with more general functional forms (some
approaches to which have been indicated), it should be possible to rep-
resent the radiation intensity for other more extensive and less "well-
behaved" bodies of data than the one treated here. Most aspects of
the statistical methods developed are generally applicable to problems

of modeling data mathematically.
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APPENDIX A.

The Instrument

Energetic electrons and protons were measured on the Telstar® 1
satellite by a group of detectors in all of which the sensitive element
was a phosphorous -diffused silicon diode specially developed for such
particle measurements.7 The active volume of the device is the disk -

shaped space -charge region of the diode under reverse bias. For the
detector measuring protons with energies above 50 MeV, the reverse
bias was approximately 100 volts, the space -charge region was approx-
imately 2.8 mm in diameter and 0.39 mm thick, and the diode was
shielded by about 12 mm of aluminum over a solid angle of 27r and
somewhat more than 12 mm of aluminum equivalent over the remain-
ing hemisphere (see Fig. 53).

The thickness of the space -charge region of the detector was meas-
ured with protons from a cyclotron. A calculation of the path -length
distribution for unscattered particles in the space -charge region and in
the surrounding shielding materials has been made. These calculated
results have been combined with range -energy information, and the
properties of the associated electronic circuits, to give the geometric
factor of the instrument, g(E), as a function of the energy, E, of pro-
tons incident on the spacecraft. The geometric factor varies with the
reverse bias voltage and the temperature of the detector, both of which
affect the effective thickness of the active volume of the diode. Fig. 54
is a graph of g(E) vs E for a bias voltage of -97.5 volts and a temp-
erature of 20°C, the nominal operating conditions of the instrument.
Note that protons with energies below 50 MeV were not detected.

The geometry of the detector and shield is only approximately omni-
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directional. However, the satellite was spin stabilized, the symmetry
axis of the detector was nearly perpendicular to the spin axis of the
satellite, and the telemetered counting rate was an average over at
least 15 revolutions of the satellite. This averaging process tends to
remove any directionality inherent in the detector geometry. A sensi-
tive analysis noted in Section 7.10 failed to show any directional de-
pendence in the data.
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For a differential energy spectrum N(E), where N(E)dE is the number
of protons with energies between E and E dE, the average geometric
factor, 0(E,, E2), of the detector for particles with energies between
E, and E2 is defined by

g(E)N(E) dE
Y(El, E2) - ° E.

N(E) dE
(20)

The function 0(50 MeV, E2) has been evaluated numerically for various
values of E2 and forms of N(E). The values of g(50 MeV, 130 MeV)
are plotted in Fig. 55 as a function of n for the single -component power -
law spectrum N(E) cc , and also as a function of E0 for the single -
component exponential spectrum N(E) cc exp(-E/E0). It may be
seen from the figure that #(50 MeV, 130 MeV) varies by less than
6 percent from 0.143 cm2 ster for 0 < n < 7.5 and 10 MeV < Eo <
90 MeV. These ranges of n and E0 include most experimentally de-
termined values by a comfortable margin.''''"'"'" The omnidirectional
flux, J(E,, E2), of protons with energies between E, and E2 is given by

471- Y2AEI y E2) E2) (21)

where Y2 is the counting rate of the detector. In the body of this paper,
the values E, = 50 MeV, E2 = 130 MeV and

g = g(50 MeV, 130 MeV) = 0.143 cm2 ster (22)

are used. The flux J(50 MeV, 130 MeV) is designated simply by J,
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energy spectrum.
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and the counting rate to flux conversion is considered to be independent
of the proton energy spectrum.

While the relative value of g shows a variation of less than 6 percent
for the wide range of single -component energy spectra noted above,
the absolute value of g is less well specified. Variations in the ambient
temperature and reverse bias voltage may change the effective geo-
metric factor by as much as 25 percent. The difficulty of dealing with
the complexities in shielding geometry, caused by embedding the
instrument in the spacecraft, introduces additional uncertainties in

the absolute value of g. These uncertainties are in the range of - 25
to +50 percent.

No provision was made for recalibrating the detector once the
satellite was in orbit. However, the evidence, which is discussed in
Section X, concerning the temporal variations of the proton distribution
is that neither the detector nor the associated circuit elements were
substantially affected by the space environment. Instrumental (e.g.,

temperature and bias voltage) effects are often quite different in char-
acter from temporal changes in the proton belts and may be separated
from them in many circumstances. It is, of course, possible to postulate
instrumental effects that will be inextricably confounded with certain
secular changes that might take place in the proton distribution.

APPENDIX B.

Some Statistical Details
B.1 Introduction

This appendix presents, heuristically, some facts and formulae con-
cerning the statistical analysis of the data. While a variety of statis-
tical principles, precepts and procedures were employed as guides, the
main judgments came from empiricism, scientific intuition and com-
mon sense. Various kinds of plots of residuals, used informally, have
been of key importance, both for evaluation and for suggestion.

Simply stated, the objective was to produce a statistically accurate
analytical description of the intensity distribution of high-energy pro-
tons in space surrounding the earth. The process of analysis involved
the empirical evolution of a mathematical model, in interaction with
the application of fitting and evaluative techniques. The data source
and processing have been described in Sections II and III. The itera-
tive and interactive processes of the final stages of model development,
fitting, data partitioning and data sampling are described in Sections
IV to IX.
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Appendix B.2 deals with the basis for use of the square root trans-
formation, Y, of the counting rate data, y2. Appendix B.3 discusses the
selection of a sub -sample used in fitting. The use of the method of least
squares in nonlinear model fitting, to estimate unknown coefficients,
or functions of the coefficients, and their standard errors and correla-
tions is reviewed briefly in Appendix B.4. Some remarks on construc-
tion of sums of squares contours, often referred to as confidence re-
gions, and of indices of local nonlinearity of the model are given in
Appendix B.5. Appendix B.6 discusses several issues relevant to the
interpretation of the analysis of variance results. Appendix B.7 de-
scribes a mode of "smoothing" data within cells, which could have
been used in conjunction with the sub -sampling procedure. Appendix
B.8 concerns the technique of probability plotting.

B.2 The Square Root Transformation.

It appears a reasonable assumption (supported by some empirical
evidence) that, in the absence of geophysical disturbances, at a fixed
point in space relative to the earth, the number of counts Z, recorded
in the detector in 11 seconds, will vary in time according to a Poisson
distribution, i.e.,

Probability {Z = z} = , z = 0,1, 2, 3, , (23)
z!

where the parameter of the distribution, v, is the mean value of Z.
With this statistical model, the average intensity of radiation in the

region of space measured by the detector is proportional to v, where
the proportionality factor depends on the counter geometry and effi-
ciency. The objective is to develop a function which describes how v
varies in space, based on observations of the quantity Z at different
positions in the satellite orbit.
- For the Poisson distribution, the variance of Z is also v, i.e., the
average of the squared deviations, (Z - 02, is v. Thus, as the value of
v changes, the variance of the associated random variable Z also
changes. Hence, the scatter of Z about its average value will be differ-
ent in different regions of space as the average intensity fluctuates.

Working with the experimental data on the scale of Z has two draw-
backs. Firstly, if one fitted a mathematical model to the data using a
least squares criterion, the different observations would have variable
weight, which would require appropriate, troublesome, allowance in
the fitting procedure. Secondly, graphical judgment of the adequacy of
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any particular fit would be difficult because of the variable scatter of

the data about a fitted function in different regions.
Thus, the square root transformation, Y, of the counting rate

(Y2 = Z/11 counts per sec) was used to "stabilize" the variance and
the model -fitting procedure employed unweighted nonlinear least
squares on Y (but with some data weighting as discussed in Section
7.1 and Appendix B.3).

Heuristically, consider the linear Taylor's expansion of Z about v

VZ =V; ±
2 V

Then, the variance of VG is approximately

If

then

2

Var ( VG) -*
2
vpl Var (Z - v) -1- .

Var (Z - V) CC 10,

Var (VG)4
v

1 v 1- - = -4 '

(24)

(25)

(26)

(27)

that is, Var ( VG) would be approximately a constant.
Discussions of this transformation are given by Bartlett' and

Anscombe.' If the distribution is in fact Poisson, then Anscombe shows
that the average value of VG is approximately

1

Vp 1280 '

while the variance of -12 is, asymptotically,

4{11

3 17
321,2 }

Again for the Poisson distribution, Bartlett gives exact values of the
dependence of the variance of VG on v, summarized in the following:

v:1010.5111213141619115
Var 1/Z:1010.31010.40210.39010.34010.30610.27610.26310.256

For a Poisson distribution, a transformation of the form VZ + 1/2
or VZ -1- 3/8 or (1/Z + VZ + 1 - 1) will improve the variance
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stabilization at smaller v values. In the present application, such a
modification would have appeared physically artificial and incon-
venient. Moreover, the actual variance of the observations exceeds
the Poisson variance (see Appendix C) and the "correction" was thus
felt to be unwarranted. Some response to the (empirically defined)
variance instability remaining after the square root transformation
was made in the form of some weighting in the data selection (described
in Section 7.1 and Appendix B.3).

Of course, if one wished to adopt the assumption of a Poisson dis-
tribution as an absolute basis for procedure, instead of as a guide, then
one might choose to use maximum likelihood to estimate the coeffi-
cients of the model. This would mean developing a procedure for de-
termining values of the coefficients [of the function v(x,L) I which
would maximize

II L )[1,(X, L)]`/z.
observations

In the present case, a general program for nonlinear least squares was
available while a procedure for Poisson likelihood maximization would
need to be evolved. Apart from this practical consideration, however,
it seemed more robust to use the Poisson assumption as a guide to
developing an appropriate transformation preliminary to fitting by
least squares. The point is that the square root transformation will
effect an approximate variance stabilization not only when the variance
is equal to the mean (as in the case of the Poisson distribution) but
also when, more generally, the variance is proportional to the mean.
Empirical vindication of this caution is given in Appendix C. More-
over, the least squares approach enables the approximate statistical
interpretation of results using familiar procedures from linear multiple
regression methods.

The present analysis is based on the quantity Y, where Y2 = count-
ing rate = Z/11 counts per sec. Thus, if in fact Z were a Poisson vari-
able,

Var ( Y) = (111)(4) - 0.023, (28)

as a reasonable approximation. When the average counting rate ex-
ceeds 1/11, this value of 0.023 is a lower bound on the variance of Y,
even with the Poisson assumption. Moreover, there are many other
possible sources of intrinsic variability and experimental error in this
situation.
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A further benefit which one might expect from the square root trans-
formation in this circumstance is that the distribution of residuals
would tend to be more symmetric and more nearly normal (Gaussian) .

Some empirical properties of this square root transformation in the
present body of data are given in Appendix C.

B.3 Sample Selection

As a practical requirement, the available multivariable, multicoeffi-
cient, nonlinear least squares fitting program could operate with a
maximum of 1000 data points. Hence, the 41,135 HTB observations
needed to be sampled or condensed at a 1 in 40 ratio.

As in all real sampling or experimental design situations, many com-
peting criteria and practical difficulties were relevant. Perhaps the
overriding point, explicitly understood here (and probably true in most
actual model fitting problems), is that the model which was being de-
veloped was not the "truth" but was really just a smoothing function
which one wanted to fit well over a wide region of space. Thus, it was
not appropriate to think of estimating the model coefficients, say, so
as to optimize their apparent (indicated) statistical reliability, nor
would it be appropriate to try to use all the available data in an
equally weighted manner, since accidents of orbital position and in-
strumental behavior would have too great an effect on the distribution
of data points.

The procedure developed for the present use is outlined in Section
7.1, with pertinent remarks also in Section 13.3 and Appendix B.7.

The method of Section 7.1 yielded 960 observations to which the
model was then fitted using unweighted least squares. The 960 sampled
observations were selected so as to be roughly speaking, "widely
spaced," the metric being change in average counting rate. Thus, the
challenge of fitting the 960 -point sample, as measured by sum of
squares of residuals, is greater, on a per -observation basis, then would
be that of fitting the entire body of 41,135 HTB observations, very
many of which are quite close together. The "model bias" difficulties of
the entire body of data are concentrated in the sample. The statistical
fluctuation would be approximately the same, on a per observation
basis, in the sample as in the whole body of data.

B.4 Estimation Procedure
The unspecified coefficients of the models defined in Section IV were

estimated so as to minimize the sum of squares of deviations between
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the observed Y and fitted y, for the sample array of data. The itera-
tive, multivariable, multicoefficient, nonlinear least squares fitting
was executed using a computer program clue to Huyett and Wilk,"
based on a procedure outlined by Wilk45 (see also Lundberg, Wilk and
Huyett) 47

The classical statistical properties of least squares estimation,
namely unbiased estimates with minimum variance, apply in the case
of statistically uncorrelated observations having equal variances and
with the coefficients to be estimated occurring linearly in the model
(see, for example, Wilks"). In the present case, even with the square
root transformation, the observations do not have equal variances but,
for practical purposes, the weighting implied by the selection proced-
ure (see Section 7.1) compensates adequately. The model is, however,
quite nonlinear in the coefficients. Still, one hopes that the attractive
statistical properties of linear least squares carry over approximately
to the nonlinear case because, in small enough neighborhoods, non-
linear functions can be linearly approximated. (An index for measur-
ing model nonlinearity is described in Appendix B.5.) In any case,
the least squares criterion is geometrically appealing and primitively
meaningful.

Among the by-products of the fitting procedure, applied to the par-
ticular array of data in x,L space, are approximate values for the
standard errors of the estimated coefficients, a matrix of approximate
pairwise correlation coefficients for the estimated coefficients, an anal-
ysis -of -variance table giving the sum of squares accounted for and
not accounted for by the fitted model, a list of residuals (equal to
observed minus fitted), and various plots.

The least squares estimates of single -valued functions of the coeffi-
cients, such as A(L), xr(L), or y(x, L) are simply the same functions
of the estimates of the coefficients (since least squares is an invariant
process). Approximate variances and correlations of functions of the
coefficients may be derived as follows: If 0' = (0 , 0) denotes
the coefficients of the model, and 6 their estimates, then the approximate
covariance of the estimates g(0) and h(0) of the functions g(0) and
h(0) is

Covariance (g(6), h(0)

= Cov (g(0), h(0))

= Statistical average of { (g(0) - g(0))(h(0) - h(0))}
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E E ram)] rakoi Coy (6,, 61)iLae, a aci

= E [aga(0! )],[ah(:)1var coo

pag(0!)1e[alia(00i)16[Var (6i) Var (OM' pi; , (29)

where pi; is the correlation of 0, and 01 . The formula for the approx-
imate variance of g(0) is then just a specialization of the above, putting
g = h.

Some associated facts and issues are worth mentioning here. First,
the approximate statistical correlations pi; of the estimated coeffi-
cients of the model, or of functions of these, depend on (i) the distribu-
tion of the sample in x,L space, (ii) the values of the coefficients and
(iii) the nature of the mathematical model; but do not depend on the
actual adequacy or appropriateness of the fit. Similarly, the approximate
standard errors of estimates are each made up as a product of which
one term depends upon the square root of the mean square of the
residuals of fit and the other depends only on the same factors as do
the pii . Second, the various statistical measures, such as standard
errors of estimated coefficients which are obtained from the fit to the
960 -point HTB sample are, in a narrow statistical sense, conservative
because they refer to the sample only and do not make allowance for
the fact that the fitted model does indeed fit very well to the entire
body of 41,135 HTB data. Thus, if statistical fluctuations were the
only factor in the uncertainty of the estimates, one might further
reduce this uncertainty by some factor, roughly approximated by
6 V41,135/960. This view of statistical uncertainty does not,
however, give appropriate weight to the "model bias", which will not
be eliminated by any number of observations. Third, all the summary
statistical measures, which are referred to as standard errors, correla-
tions, confidence regions, etc., should be used and interpreted in a
data analytic way, i.e., as indicating facets of the body of data and the
adequacy of its description by the model and analysis-rather than in
terms of some supposedly "true" model or hypothesis which one is
trying to evaluate in probabilistic terms.

B.5 Sums of Squares Contours, "Confidence Regions" and
Nonlinearity Indices

The models of Section IV are defined up to the values of the, un-
specified coefficients. Any set of values for these coefficients may be



PROTON DATA FROM TELSTAR 1 1435

said to provide a "fit" to the 960 -point sample of data. Thence one can
define a sum of squares function of the set of coefficients as

SS (coefficients) = E (observed - "fitted")2, (30)

which will take on various (positive) values as one varies the values
of the coefficients. In the space of the coefficients there exist then, in
principle, contours of this "sum of squares" function.

While standard errors provide information on reasonable allowances
for the estimate of a single parameter in the light of the fit of the
model to the actual body of data, they do not carry any information
on the joint statistical properties of the estimates. A reasonable (ro-
bust and primitive) indication of joint statistical behavior is provided
by these "sum of squares" contours in coefficient space.

In the case of models in which the unknown coefficients occur lin-
early, these contours are a family of ellipsoids defined by certain sim-
ple quadratic functions of the coefficients. The orientation and shape
of this family of ellipsoids indicate the interdependence of the esti-
mates of the coefficients in the light of the data, and show which
coefficients are well -determined and which poorly. However, the in-
terpretive value depends heavily on geometrical appreciation and, for
more than a few coefficients, high -dimensional representation cannot
be achieved directly.

The ellipsoid (even in the linear case) is not defined, in general, by
its one-dimensional projections. (The standard error of a coefficient
estimate is half the length of the projection of the unit ellipsoid of
the family onto the coefficient axis.) But, as a matter of simple geo-
metrical fact, all pairs of two-dimensional projections do uniquely de-
fine the ellipsoid. Thus, one practical means of a complete graphical
representation of the high -dimensional ellipsoid is in terms of all possi-
ble pairwise planar projections.

Tor the case of linear models, on the basis of a series of assumptions
-namely that the differences between the model and the observations
are due to statistical fluctuations which are normally and independ-
ently distributed all with zero mean and the same variance-some may
choose the abstract probabilistic interpretation of these ellipsoids as
"confidence regions" (see, for example, Wilks"). If this interpretation
is used, it is necessary that the distinctions and relationships between
the joint, pairwise and marginal confidence coefficients and regions or
intervals be understood. Details will not be provided here. Briefly, if
a nine -dimensional ellipsoid were specified to have a confidence coeffi-
cient of /i9, then any two-dimensional projection would have a con-
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fidence coefficient of /12,
j89 and is indicated by

interpreted marginally. The relation between
the following:

02 02

0.13 0.90

0.25 0.95

0.50 0.984

0.75 0.997

0.90 0.9994

0.95 0.99995

In the present case, the model is nonlinear and the fluctuations are
not normal. Contours of the sums of squares function as a function of
the coefficients can, in principle, be obtained for a given body of data
and will not be ellipsoids. In practice, however, obtaining these con-
tours is so laborious as to be virtually impossible.

However, one may consider a linear (planar) approximation to the
nonlinear model in the neighborhood of the least squares estimates of
the coefficients and thence obtain expressions for a family of ellipsoids
which may be reasonably good approximations to contours of the sums
of squares function. An index of the effective nonlinearity of the
model is the nonconstancy of the sums of squares of residuals on these
ellipsoids and this can be normalized by division by the value of the
minimum sum of squares. Such measures are presented and discussed

in Sections VIII and IX.
Given that the linear approximation is adequate, the nonnormality

of the observations should not deter those who seek (and who believe
in) the general probabilistic confidence interpretation since the statis-
tical process is likely very robust.

Sections VIII and IX contain specific examples of some of the pair -

wise projections of these "approximations to sum of squares contours."
Specifically, the size of the 9 -dimensional ellipsoid was such that, if
all the statistical assumptions applied, a joint 0.99 confidence coeffi-

cient could be attached. Since a complete set of pairwise projections
for nine coefficients involves 36 ellipses only a few are shown. As a
summary indicator of the nature and behavior of these ellipses the
quantity

a = (sign of p)  (1 - 1 - p2) (31)
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is tabulated (in Tables IV and V), where p is the correlation of the pair
of coefficients involved. The value of 1 - 1,1 is the ratio of the area of
the actual ellipse to that of the largest ellipse which could be inscribed
in the rectangle formed by the horizontal and vertical tangents to the
actual ellipse (see Wilk"). The range of a is -1 < a S 1 and large
values of lal (say above 0.75) corresponds to narrow ellipses with major
axis oblique to the coordinate axes, and represent situations of high
interdependence of the coefficient estimates.

B.6 The Analysis of Variance

The analysis of variance provides a summary description of th6
apportionment of the "variability" of a body of data in the light of
the model employed for analysis, where variability is defined in terms
of sum of squares.

Given n observations, one may visualize an n -dimensional observation
space, whose coordinates represent the possible values of each of the
n observations. The data are then represented by a fixed point in this
space.

The model, having p unspecified coefficients, implies certain functional
relationships amongst the coordinates of the observation space. Thus
the model effectively defines a constraining "surface" of p dimensions,
and each point on this surface corresponds to some set of values of
the unspecified coefficients of the model. The least squares estimate
of the coefficients corresponds to that point on the constraining surface
which is closest to the actual data point. If the coefficients in the model
occur linearly then the constraining surface is a hyperplane which
ordinarily, by definition of the observations, contains the origin, and,
if the model includes a constant term, also contains the equiangular
line (corresponding to the mean).

The squared distance of the data point to the origin is then the total
sum of squares, E , while its shortest squared distance to the
constraining surface is the error or residual sum of squares, associated
with lack of fit. The difference between these may be termed the model
sum of squares and, for linear models, this is actually the squared
distance from the least squares estimates point to the origin.* If a
constant term is included in a linear model, then the model sum of
squares may be further decomposed additively in terms of the squared

* In the linear case, the model sum of squares is easily computed directly as
the squared length of the projection onto the hyperplane of the line joining the
data point and the origin. This fact is used in the present iterative computer pro-
gram in checking convergence.
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perpendicular distance (call it DD of the least squares estimate point
to the equiangular line and the squared distance (call it D22) along the
equiangular line, from the foot of that perpendicular, to the origin.
This latter quantity D: is usually termed the sum of squares due to
the mean. The squared distance of the above -defined point on the
equiangular line to the data point is called the corrected total sum
of squares, E (V, - 17)2 and is just E -D. . The ratio of the
squared length D0, to the corrected total sum of squares is defined as
the squared multiple correlation, R2, and often used as a measure
of accomplishment of a model. It is easy to show that R2 defined above
is equal to

1
sum of squares for error

total corrected sum of squares
This latter quantity is computable even when the model is nonlinear
and/or does not contain a constant term.

One may define contours of sums of squares of residuals in the con-
straining surface as the loci of the intersections with the surface of
given radii from the observation point. In the event that the constrain-
ing surface was a hyperplane, which would be true if the unspecified
coefficients in the model occur linearly, then these loci (or contours)
would be a family of p -dimensional spheres. For nonlinear models,
this will be approximately true for a sufficiently small neighborhood
of the least squares point.

The particular form of the model, in regard to the unspecified co-
efficients, defines a coordinate system within the constraining surface.
Three cases are worth distinguishing. First, the constraining surface
is a hyperplane and the coefficients are linear. Second, the surface is

a hyperplane but its coordinates are nonlinear. The second case may
be reduced to the first by appropriately transforming the coefficient
coordinate system. Third, the surface is nonlinear. In this case one
can approximate the surface by a hyperplane in a small neighborhood.
Thus, in a sufficiently small neighborhood, the situation can be re-
garded as linear.

The approximately or exactly linear coordinates implied by the
model will in general be nonorthogonal. Thus, the representation of
the spherical (exact or approximate) contours in an orthogonal co-
ordinate system for the coefficients yields a family of ellipsoids. In the
sense of measuring lack of fit by sums of squares between fitted and
observed values, these contours in coefficient space constitute sets
whose members are "equidistant" from the data point.
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B.7 A Procedure for Smoothing in Cells

In Sections 7.1, 13.3 and Appendix B.3, discussion of why and how
to sample and possibly "smooth" the data has been given. One specific
practical possibility is now described.

Suppose one has a preliminary fit of the model, represented by
g(w, ; 0), where O' = (8 62, , "0) are the fitted coefficient values
and wi denotes the independent variables. Suppose this preliminary
fit is used to partition the space of the independent variables (here
x and L) into some approximation of equirange cells, as described
earlier. As argued in Section XIII, it may be profitable to "smooth"
the data in each cell so as to yield a value generally representative
of all the observations in that cell, instead of using a random selection
from the cell.

A sensible smoothing function for each cell is, clearly, the model
g(w; 0). A simple procedure is, for each cell separately, to carry out
one stage of linear adjustment, doing the linear least squares regression
of { - g(wi ; O)} on ag/001 Ig , , 8g/80 I; , to obtain the regression
coefficients = (S , gi,), for that particular cell. Then the smooth-
ing function for that cell would be g(w; 0) where 0 = 0 + a. A rep-
resentative "smoothed observation" for that cell might then be the
quantity g(11); 0), where ft') is, say, the mid -point of the cell.

This process permits each cell, overall, to determine a single value
to represent it in the entire fitting process and diminishes the chance
that a random selection from a cell may be unnecessarily nonrepresenta-
tive of that cell behavior.

If one had wished to fit to all the available data, then the smoothed
cell values would be weighted in proportion to the number of data
in the cell. In the present case, this was deliberately not done.

The goodness of fit of a model to smoothed cell values, not dif-
ferentially weighted, cannot be statistically judged directly from the
analysis of variance since the residuals are no longer individually
statistically comparable and the mean square residual is not an estimate
of the error variance of the observations. However, the fitted model
can be assessed by functions of its residuals from the original data
(or a sample thereof).

B.8 Probability Plotting

The techniques of probability plotting are useful for data analysis
in a wide variety of circumstances. (See Wilk and Gnanadesikan'T for
a general discussion of probability plotting techniques.) For instance,
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in the present work, plots of residuals against various variables have
provided invaluable guidance., but one is also interested in the dis-
tributional behavior per se of the collection of residuals. As presented
in Section 8.1, normal and half -normal probability plots have been
used for this purpose.

The rationale for such probability plots is roughly as follows: If one
draws a random sample of size n from a population which is normally
distributed with mean p, and variance o2 then the ordered observations
would be expected to approximate, roughly, to a linear function, p,
azi(n), of appropriate "representative" values zi(n) from a standard
normal (p. = 0, o = 1) distribution. Thence a plot of the ordered ob-
servations against the zi(n) would tend to be linear, with intercept
approximately /.1. and slope approximately Q. For the representative
value, zi(n), corresponding to the ith ordered observation, one can use
the standard normal quantile for the proportion (i-.4) /n..

This plotting technique displays the individual observations in a
sample graphically and does so against a backdrop such that the ex-
istence of outliers and asymmetry, as well as other distributional prop-
erties, are sensitively indicated. Of course such plots are usually profit-
ably supplemented by others that order or partition the data according
to information extraneous to the responses themselves.

We expect the mean of the residuals, Y - y, in the present study (see
Section 8.1) to lie near 0. Also we expect that their variances will be
approximately the same, since that is the purpose of the square root
transformation. As a further benefit of the square root transformation
we expect that the distribution of the residuals will tend to be sym-
metric and to approach normality; thence the present application of
normal probability plotting of the residuals. The fact that these resid-
uals are not entirely statistically independent-since they derive from
a commonly estimated fitted function-is a minor issue since the num-
ber of observations is so much larger than the number of fitted coeffi-
cients.

Half -normal probability plotting employs the ordered absolute re-
siduals plotted against standard half -normal (standard normal folded
at 0) distribution quantiles. Such a plot eliminates any symmetry -type
information but provides an incisive focus in bringing together on the
plot the largest departures from fit.

Probability plots can provide very sensitive indications of distribu-
tional peculiarities especially in regard to "overly" large values. Some-
times the indications are of little practical interest, such as minor
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lumps which one can see in Fig. 29, but in other regards, such as in
estimating an "intrinsic" error standard deviation, the plots may per-
mit a good judgment on how to discount or correct for apparently
aberrant values which might. otherwise have an undue influence, say,
on mean square error.

Error standard deviations may be estimated from normal or half -
normal probability plots as the "slope of the linear configuration."
Typically, it will not be relevant to make a great show of objectivity
in this process since the declared purpose is to permit an informal dis-
counting of unexpected distributional peculiarities. Thus, in Fig. 29,
one takes the slope as defined essentially by the bulk of residuals,
ignoring the few largest.

APPENDIX C

Statistical Measures Over All the HTB Data

This appendix presents various statistical measures over all the
41,135 HTB data. These measures concern the fit of Models I and II
and the partition of the x,L space (as described in Section 7.1 and
Appendix B.3) into 1034 cells of which 813 were nonempty of obser-
vations. The partition is such that the range of y within cells is rela-
tively small. For each cell, two functions are used: (i) The mean
square deviation (MSD) defined as

1 nMSD (u) = E - (32)n - 1 1=1

where the cell has n observations and u; denotes some function of a
cell observation, e.g., Yi or Y , and a is the mean of the u; in the cell;
(ii) The mean square residual (MSR) defined as

1 c-,n
M SR ( Y) = Ora -?!;)2(33)n

where yi is the fitted value (from Model I or II) corresponding to the
observed Y.

C.1 Empirical Justification. of Square Root Transformation

Figs. 56 and 57 show plots of MSD (Y2) versus the cell mean of Y2
and MSD ( Y) versus the cell mean of Y, respectively. It is seen that
MSD ( Y2) shows a distinct and major dependence on the average
value of the counting rate, Y2, while MSD( Y) does not show syste-
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matic increase relative to the average value of Y, except, as expected,
in the close neighborhood of zero counting rate.

A more detailed analsis of the results of Fig. 56 indicates that the
dependence of MSD ( Y2) on cell mean of Y2 is somewhat curvilinear
having larger slope for larger Y2 values. This curvilinearity is very
likely mainly due to the mode of definition of the x,L cells. The
procedure used tends to produce cells which are "too large" in regions
where the counting rate is also large, thus leading to an apparent
extra increase in MSD (Y2) with Y2. At all values, however, the
dependence of MSD (Y2) on Y2 is greater than the slope 0.09 ( =1/11)
which would be associated with the Poisson distribution. The em-
pirically observed slope varies from about 0.15, based on small values,
to 0.3, based on large values of the MSD (Y2).

These results suggest that one cannot hope to achieve, by means of
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Fig. 56- Cell MSD (Y2) vs cell mean of Y2 for the x, L cells defined in Sec-
tion 7.1 and Appendix B.
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Fig. 57 -Cell MSD (Y) vs cell mean of Y for the x, L cells defined in Section
7.1 and Appendix B.

any fitted model based on x,L coordinates, on the scale of Y, a mean
square residual (error) as low as 0.023 which is associated with the
Poisson assumption.

Although the Poisson assumption provided a useful stimulus toward
a profitable transformation of the data, these results confirm that
it would have been unwise to have tied oneself too closely to the
assumption as a complete basis for analysis, as for instance in basing
the fit on maximization of the Poisson likelihood function (see
Appendix B.2). Possible sources of variability and error in the data,
beyond Poisson fluctuations in counts, have been discussed elsewhere
in this paper.

C.2 Determination of Weights

The sample selection procedure involved "weighting" the 813 non-

empty cells by selecting 2, 3/2, or 1 observation per cell. The observed
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MSD (Y) were classified into three groups defined by: 0 1VISD

0.013; 0.013 < MSD < 0.02; 0.02 < MSD. The x,L coordinates of the
midpoints of cells so identified are shown in Fig. 58. The actual assign-
ment of weights was based on applying contiguity considerations to this
plot.

C.3 Analysis of Variance Over All the HTB Data

Table VIII summarizes the analysis of variance over all the 41,135
HTB data. The table covers the fit of Models I and II to all the data,
using the estimated coefficients (see Tables IV and V) from the fit
to the 960 -point sample. Also, one can regard the collection of

averages of the Y values in each of the 813 nonempty cells as pro-
viding a fit depending on 813 fitted quantities. The corresponding
"error" (cell deviations) is the pooled cell MSD (Y). Finally, the
residuals of the fit of Model I (or II) can be "fitted" by 813 cell
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TABLE VIII- ANALYSIS OF VARIANCE OVER ALL THE HTB DATA
(41,135 POINTS MINUS 226 OUTLIERS).

Due to d.f. Sum of squares Mean square

Total (41,135-226) 40,909 230,267.45
Mean 1 115,755.39
Corrected total 40,908 114,512.07
Model I residuals 40,900 1,411.3 0.0345
Model II residuals 40,901 1,419.6 0.0347
Cell deviations 40,096 1,541.4 0.0384
Cell dev. of Model I res. 40,085 1,167.0 0.0291
Cell dev. of Model II res. 40,086 1,166.9 0.0291

Multiple R2 value

Model I
Model II

0.988
0.988

averages of the residuals, leading to an "error" which is the pooled
cell MSD ( Y - y), i.e., due to the cell deviations of the Model I (or
II) residuals.

The fits to all the data provided by Models I and II are equally
good, as was true for the 960 -point sample. The mean square resid-
uals over all the data (about 0.035) is lower than the value (about
0.036) obtained for the sample even though the fit of the model was
determined by the sample. This bears out the expectation (see Ap-
pendix B.3) that the mode of selection of the sample is such that the
sample was harder to fit. on a per -observation basis than the entire
body of data.

The cell means provide overall a poorer actual fit than Model I or II,
and allowing for the number of fitted coefficients, the mean square for
cell deviations exceeds that for the models by about 12 percent.

Fitting cell means to the model residuals yields an additional sub-
stantial reduction in the sum of squares of the model residuals and a
mean square of about 0.029, which is some 17 percent lower than the
value for the models. If in fact the models gave an "unbiased" fit every-
where, then one would expect that the values of pooled MSR(Y) and
pooled MSD ( - y) would be nearly the same. The excess of the
former is due mainly to systematic inadequacies of the fit. (see
Appendix C.4).

The value 0.029 represents virtually a lower bound on the achiev-
able 'mean square error' for this body of data. Despite its downward
bias from the substantial number of 'zero counting rate' observations,
it exceeds the 'Poisson' variance of 0.023 by about 25 percent. This
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excess is probably due to a combination of factors, including incom-
plete elimination of temperature and bias voltage instrumental effects,
as discussed further below.

The 'improvement' of the MSD (Y - y) over MSR cannot be taken
to mean that some smooth "simple" adjustment of the model based on
x,L coordinates might be found so as to yield similar improvement.
Some of the bias apparently associated with x,L coordinates in dif-
ferent regions may be due to artifactual association with temporal,
instrumental, or other small effects and such corrections could not be
made overall in terms of a "simple" x,L dependence.

C.4 Analysis of the Excess Variation

A study of plots of cell MSD (Y) against each of y, x, and L
indicates that large MSD values occur mainly in the 1.2 < L < 1.7
region, at high average counting rates. This excess is due largely to
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Fig. 60- Positions of centers of regions in x, L space having certain ranges of
cell MSR(Y)/MSD(Y). The ranges are indicated in the legend. (Plotted
points are mid -points for the cells. Points appearing to the right of the boundary
R = 2.0 R. represent cells which have data only in one corner.)

the hybrid mode of x,L cell formation, in which the L -slices were
equal length intervals, while within each L -slice, the x segments were
chosen to have equal increments of y. Thus, at L values where y is
large, the x,L cells will tend to have a larger y range.

The tendency of MSD to rise with cell average counting rate is
not mirrored by cell MSR behaviour. As shown by Fig. 59, the level
of MSR is not dependent on y except, as expected, for those cells
where the counting rate is near zero. Roughly speaking, the average
level of cell MSR for y values away from zero is about 0.04, in agree-
ment with the probability plot estimate of Section 8.1. Of course, Fig.
59 shows both smaller ordinate values and less dependence on the
abscissa values than the comparable plot of Fig. 57.

The relation of cell MSR to cell MSD is partially indicated in Fig.
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60, showing positions in x,L space of various ranges of the value of
the ratio MSR/MSD. One sees that MSR tends to exceed MSD along
the "outside" of the data region. The excess along the R = 2 R.
boundary is due mainly to model bias or inadequacy. The excess at
high L -high x is probably associated with temporal effects. The large
ratios along the left edge of the data, which is the cutoff region, is
likely a reflection of deficiency of the function. The excess of MSR
over MSD is associated in the main with small y values.

Fig. 61 shows cell mean square deviations of residuals, 1VISD(Y -y),
plotted against y. This plot shows less scatter (most noticably for
MSD ( Y - y) > 0.075) than that of Fig. 59, and a lower average level
of MSD ( Y - y) for y > 0, as expected. The high values of MSD ( Y - y)
are not related to y as such but rather, as other plots show, with
"extra fluctuations" in the 1.2 < L < 1.7 region. This is probably
associated with the coarse HTB data partition which does not corn -
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pletely take care of the temperature and bias voltage instrumental
effects.
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Gold Doped Silicon Compandor Diodes
For N2 and N3 Carrier Systems

By K. R. GARDNER and T. R. ROBILLARD
(Manuscript received May 2, 1967)

Companding has proven to be a valuable technique for improving
the signal-to-noise ratio of voice transmission at baseband frequencies.
A compandor consists of a compressor element which reduces the dy-
namic range of a transmitted signal in a predetermined manner and an
expandor element which restores the signal range at the receiver. Prac-
tical Bell System applications to date have used electron tubes, ger-
manium point -contact semiconductor diodes and unpassivated silicon
mesa diodes. Each of these variolosser elements had serious short-
comings. Two new diode pairs have been designed which eliminate the
problems of impedance range control and linearity, diode noise and
electrical stability. The new design utilizes heavy gold doping of a
planar oxide-passivated wafer design to produce a bulk controlled de-
vice capable of unusually high manufacturing yields.

I. INTRODUCTION

Compandors are a special application for a diode because the diodes
are used as variolossers and the electrical parameter which must be
controlled is the small signal forward impedance as a function of bias
current. Furthermore, control of impedance is required over two orders
of magnitude. Other requirements are low noise and good stability. The
484/489A and 484/489B diode pairs, which are electrically identical
and differ only in mechanical outline, are silicon "planar" diodes which
were designed for use in this application. The new devices were de-
signed to replace two pairs of troublesome unpassivated "mesa" type
devices in both the N2 and N3 carrier systems.

A comprehensive diode design was not previously available for this
application. Diodes were obtained by selection from available types at
low yield. This paper discusses the theoretical and empirical design
and the fabrication of the new diodes.
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II. CIRCUIT FUNCTION OF COMPANDORS

Noise is an important problem associated with long distance tele-
phone transmission. Elimination or reduction of this undesirable effect

is a consideration in the design of all transmission equipment. Noise

occurs in transmission from many sources such as thermal noise, ex-
ternal interferences, and crosstalk. The compandor circuit, which was
first introduced into the Bell System in the transatlantic radio circuit
in 1932,1 is one of the methods used to reduce noise. While the first
compandor circuits used vacuum triodes' as the variolosser units, later
compandor circuits used semiconductor diodes when they become

available.
A compandor2 is composed of two -parts, compressor and expandor,

one at each end of a transmission path. The compressor circuit com-
presses the dynamic range of the transmitted signal power by taking
the square root of the signal (although other functions could be used).
If the maximum signal levels are transmitted at the same power with
compression as they would be without compression, then the minimum
signals will be transmitted at relatively higher power with compression
than without. Therefore, a higher signal-to-noise ratio results for the
minimum signals on the transmission path if compression is used. At
the receiving end of the transmission line the expandor circuit squares
(expands) the signal to its original dynamic range.

The N2 and N3 carrier system compandors3 compress a 60 -dB signal
range into a 30 -dB range for transmission. Therefore, 30 -dB higher
noise may be potentially tolerated in the transmission path. At the
receiving terminal the expandor portion of the compandor expands the
signal range to its original value of 60 dB and restores the signal to its
original form. Since a compandor is an interchangable plug-in unit and
the compressor and the expandor in the same unit do not work together,
it is necessary that all compressor circuits track closely with all ex-
pandor circuits.

The core of the compressor and expandor circuits is a pair of vario-
losser diodes. The stringent requirements on the compandor circuits are
reflected in stringent requirements on the variolosser diodes. This paper
reports the development of two diode pairs which meet the unique re-
quirements of these circuits.

III. THE DIODES

3.1 General Description
The first semiconductor diodes used as the compandor variolossers

were selected from available types. While the New York -London long
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wave radiotelephone circuit (1932) used vacuum triodes,' the N1
carrier system used germanium point -contact diodes;.' the P1 and 0
carrier systems used silicon alloy diodes;5 and the N2 carrier system
originally used diffused silicon, mesa diodes.3 Several problems
arose with the use of these state -of -the -art -diodes although care-
ful selection and circuit adjustment could correct most of them. The
major problems of high device cost, high noise, and periodic supply
shortages arose directly from a lack of understanding of the physical
mechanism controlling the forward impedance characteristic.

It was possible, by designing a new diode, to overcome all of the
problems and at a much lower cost. The new design uses silicon planar
techniques coupled with controlled gold doping and heat treatment to
produce the desired diode characteristics.

The following parameters are used to characterize the diodes for the
compandor applications:

(i) The small -signal forward impedance,* Zh at a specified mid-
range dc dias current.

(ii) The ratio, R1, of the small -signal forward impedance at a
specified lower current to the impedance at the above mid -range
current.

(iii) The ratio, R., of the impedance at the mid -range current to the
impedance at a specified higher current.

(iv) The impedance difference between the diodes of a pair measured
separately at the idling current.

(v) Noise generated by the diode over the current and frequency
ranges of interest.

Table I shows the limits for these parameters for both the mesa and
the planar type diodes.

3.2 Design Theory

The primary parameter to be controlled was the small -signal for-
ward impedance, Z1. The theoretical forward impedance of the semi-
conductor diode may be obtained by differentiation of the current -

voltage equation. For semiconductor diodes the relationship is:

/, = /.(exp qV/nkT - 1), (1)

where

/,, = saturation current,

*For simplicity the expression 'small -signal forward impedance' will often be
shortened to 'forward impedance' or 'impedance' in this paper.
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q = electronic charge,
V = applied voltage,
n = experimentally determined constant

commonly between 1 and 2,
= Boltzmann's constant,

7' = absolute temperature.

Therefore,

f

OV nkTql exp - qV /nkT .
"

For forward bias, V, greater than a few nkT/q (kT/q = 0.026 volts

TABLE I - SALIENT CHARACTERISTICS

Planar compressor Mesa compressor
Parameter and expandor and expandor Units

Z1, Forward impedance, at
50 AA de bias

For single diode of pair 900 ± 35 1045 ± 125 ohm

For diode pair in series 1800 ± 70 2070 ± 70* ohm
H,, Impedance ratio =

Z, at 10 AA de
Z1 at 50 AA de

For single diode of pair 5 . 0 ± 0 . 2 4 . 9 ± 0 . 4

For diode pair in series 5 . 0 ± 0 . 2 4 . 9 ± 0 . 2*
H,, Impedance ratio =

Z1 at 50 AA de
Z1 at 300 AA de

For single diode of pair 6 . 0 ± 0.2 6 . 2 ± 0 . 5

For diode pair in series 6 . 0 ± 0 . 2 6.15 ± 0 . 2*

Parameter Compressor only Compressor only Units

AZ/ = Difference in impedance
of diodes of pair measured
separately:

At 2 AA de bias 2000 max 2000 max ohms

At 10 AA dc bias 500 max 500 max ohms

Vjj = Noise voltage of single
diode or pair at 2.5pA de
bias. Bandwidth 200-
3500Hz. Parallel resist-
ance 17,000 ohm. 20 max AVrms

* Computer selected.
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at room temperature) one has exp qi7nkT > 1 and to a good approxi-
mation*

nkT 1Zf (2)
q IF

It is this Z1 -/F functional relation which is used in the design of the N2
and N3 compandor circuits.

There are five sources of current in a forward biased p -n junction;
diffusion, bulk recombination, surface recombination, channel and
tunneling currents. The total diode current is given by

IF = ID (diffusion) 'RR (bulk recombination)
IsR (surface recombination) + ICL (channel)

+ IT (tunneling). (3)

The diffusion currents at small bias is given by

= /d(expqV/nkT - 1), (4)
where

and
= qA[pn(D,/r,)1 n,(Dir.)1]

Tp = lifetime of holes on n side of junction,
T = lifetime of electrons on p side of junction,
pn = hole concentration in n -region,
ni, = electron concentration in p -region,
D, = diffusion constant for holes,
D = diffusion constant for electrons,
A = area.

At high forward bias (injection) the current will be given by

ID = /,i(exp qV/2kT - 1) (5)

and in the intermediate range the current equation will be similar to (1).
The bulk recombination current's for bias voltages, V, greater than

several kT/q is given by

'BE = I exp qV/2kT, (6)

where

1(1c1 D.:. A

r
2° qE To

ni = intrinsic carrier concentration,
* The error is less than 1 percent for voltages greater than 0.2 volts and less

than 0.1 percent for voltages greater than 0.3 volts.
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E = electric field at junction,
and ro = lifetime.

The exact voltage dependence of (6) depends in a complicated way
on the physical parameters of the junction, but in a given range may
be described by

ibr exp qV NAT , (7)

where nbr < 2 and accounts for the voltage dependence of /r, , while

ibr is the voltage independent factor.
Surface recombination current may be described by a similar equa-

tions

I SR = /a, exp qV /narkT , (8)

where n., > 1.
Channel current' at V > kT / q may be described by

/CL = /al exp qV /naikT , (9)

where nal = 1 up to 4 or 5 or more for poorly stabilized surfaces.
By considering the five currents in parallel one may calculate a

small -signal impedance for each current, and the forward impedance
of the diode may be expressed as five impedances in parallel.

1 1 1 1

+
1 1

= kT nbrkT narkT nakT ZT

qIl) qIBR qI sR qICL

or 1 IBR ISR
f kT nb, flat nci

kT ).
qZTI

Diffusion current cannot be made dominant over recombination
current in silicon except at high current densities where the value of the
multiplier, n, may be modified by carrier injection. In both mesa and
planar diodes the diffusion current was reduced by using heavily doped
starting material (approximately 0.005 ohm -cm p -type silicon). The
use of such low resistivity material had the further advantage of re-
ducing the series resistance of the bulk silicon to about 0.04 ohms. At
all currents of interest the 0.04 ohms made a negligible contribution to
the diode impedance.

The bulk recombination current was greatly enhanced by introduc-
ing trapping centers by heavily gold doping the diodes. The effect on
the diode parameters of various gold doping levels was investigated by
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varying temperature and time of gold diffusion and subsequent heat
treatments. These effects are discussed in detail in Section 3.4.3.

From the previous equations and measurements on existing diodes
the relative values of the five currents and their contributions to the
total impedance may be compared. As an example, values are calcu-
lated for a bias of 0.4 volts and diode parameters which approximate
those of the actual diodes.

The diffusion current is calculated from (4) as

ID = 10-9A = 0.001AA,

where the following values are assumed:

Tn = Ty = 10-10 sec (Ref. 9)
N = N,, = 2 X 10'9 cm -1 (0.005 ohm -cm)

= 30 cm2/volt sec (Ref. 10)
tin = 75 cm2/volt sec (Ref. 10).

The bulk recombination current is calculated from (6) by using the
approximation

E = (0 - 17)/W,
where !yo is the built-in voltage and W is the space -charge width. The
bulk recombination current is

I BR = 3011A > = 0.001AA.

Estimates of surface recombination and channel currents were made
from measurements on planar type diodes. These estimated values
were much smaller ( by several orders of magnitude) than the bulk re-
combination current. Likewise, the observed magnitude of the forward
tunneling current is negligible since doping levels are relatively light
and the junction is graded.

Hence, bulk recombination current is dominant and the junction
impedance becomes

111 CT 1 nbrkT 1Z =
.

(11)
q F q BR

By way of contrast the impedance of the mesa diode was primarily
dependent on surface damage introduced during mechanical formation
of the active diode wafer. High surface recombination (mechanically
damaged) wafer edges were created when the diffused slices were dia-
mond sawed into wafers. A portion of this damage was then removed
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by chemical etching to set the diode multiplication factor, n, and hence
forward impedance to the nominal value.

3.3 Mesa Diode Deficiencies

System and manufacturing experience pointed out three major
shortcomings of the unpassivated mesa design. The first of these short-
comings was lack of good control of the nominal impedance value and
range. Manufacturing problems were experienced until the planar re-
design efforts delineated the physical mechanisms controlling forward
impedance. Even with this understanding manufacturing control could
not be improved sufficiently to obtain narrow distributions of im-
pedance; a computer selection of individual diode pairs was necessary
for reasonable yields.

A second electrical characteristic which could not be controlled
in the manufacturing operation was the noise voltage produced by the
device in the 200-3500 Hz band. The N2 and N3 systems require that
the noise voltage be less than 20 microvolts for the compressor pair
and 40 microvolts for the expandor pair when operating at a direct
current of 2.5 microamperes. This characteristic was checked on a non -
parametric basis at the equipment assembly location; and, quite fre-
quently, shipments of diode pairs would be found which exhibited
excessively high noise.

Finally, the short-term stability objectives of the systems could
never be achieved with the unpassivated device.

As shown in this paper, the redesigned device readily meets all noise
and stability objectives and permits manufacture of diodes at very
high yields without the need for computer matching.

3.4 Planar Diode Design

3.4.1 Structural Features

While the primary compandor diode design effort was directed toward
understanding and controlling the physical variables associated with
the active semiconductor chip, the encapsulating structure was also
changed to provide an assembly more suited to printed circuit board
mounting. As shown in Fig. 1, each diode pair of the mesa type was
composed of two metal package diodes molded in epoxy and glued to-
gether with an epoxy cement. This arrangement is costly and results in
a double ended structure whose leads must be trimmed and formed for
mounting. The redesign diode structures are simply two TO -18 en-
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49

Fig. 1- Outline of mesa diode pairs and package outline.
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capsulations which are snap fitted into an acytal copolymer plastic
block. The lead arrangement shown in Fig. 2(a) was used for im-
mediate production and field replacements; the straight -through lead
arrangement shown in Fig. 2(b) is being used in new equipment which
incorporates modified circuit boards. The latter structure requires
neither lead trimming nor forming for insertion. Code and date mark-
ings are molded into the plastic carrier which eliminates the need for
coding individual finished devices. The plastic carriers are bullet -
shaped to identify polarity and are color coded to provide positive
differentiation of compressor and expandor pairs in the equipment as-
sembly areas. The leads of the device are solder coated to facilitate
wave soldering to printed circuit boards.

The essential features of both mesa and planar type wafers are
depicted in Fig. 3. Fig 3(a) shows the mesa structure used in the
earlier diode. In this case, a p -n junction is formed approximately

PLASTIC
MOUNT

(a)
484 A/B

(b)
489 A/B

Fig. 2 - Outlines of 484A/B and 489A/B diode pairs.
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Fig. 3 - (a) Mesa structure of component diodes. (b) Plantir structure of
component diodes.

0.0002 inch below both faces of a one -inch diameter silicon wafer by
gaseous diffusion producing a p -n -p structure. One of the p -n junctions
is then removed from the wafer by mechanical lapping. The lapped
slices are next plated with nickel and gold to form ohmic contacts. The
wafers are then cut into 0.045 -inch square chips by a diamond sawing
operation to produce the final chip. This chip is subsequently eutectic -
bonded to the package mounting stud, etched to remove a controlled
amount of sawing damage (thus adjusting the impedance to the nom-
inal value), and finally spring contacted during final encapsulation to
complete the device. A cut -away view of this structure is shown in
Fig. 4.

DIODE WAFER,

L A

SOLDER JOINT

WELD WELD

Fig. 4 - Cut -away view of mesa diode package.
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Fig. 3 (b) depicts the mechanical features of the planar wafer. In this
case, a p -n junction is formed in the p -type silicon by diffusing phos-
phorus through a 0.008 -inch hole cut into the protective layer of silicon
dioxide. Since the starting crystal is very heavily doped with boron
(approximately 2 x 10" atoms/ce), it is difficult to overdope this ma-

terial and produce a deep junction; in this device, the junction lies
0.0003 inch below the initial surface of the silicon. As explained else-
where, the silicon is also very heavily gold doped by a high tempera-
ture diffusion to control the recombination -generation current and
thus the diode multiplication factor which in turn controls diode im-
pedance. An aluminum contact is evaporated and alloyed selectively
into the hole in the oxide to complete wafer fabrication. The planar
wafer is next eutectic -bonded to a gold-plated TO -18 header and a
thermocompression wire bond is made between the metal button and
the header lead. Final closure of the device is accomplished by resis-
tance welding a Kovar can to the gold-plated Koval. header. A barium
oxide impregnated porous nickel cylinder is brazed to the top of the
can and serves as a moisture getter. A cut -away view of the individual
planar device is shown in Fig. 5.

3.4.2 Fabrication Process
Many of the basic processes used to fabricate these diodes are com-

mon to other planar silicon devices and have been presented else-
where.11,12 This section, then, will deal mainly with those processes
which determine the forward impedance, noise and stability aspects of
the device. A basic flow chart of the major assembly operations is
presented in Fig. 6. In this chart, the header assembly operations,
getter fabrication, activation and assembly operations and the semi-
conductor crystal growing operations are not shown.

DIODE
WAFER

Bao GETTER

--KOVAR CAN

--GLASSED HEADER

Fig. 5 - Cross-section view of planar component diode.
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Fig. 6 - Flow chart for fabrication of planar diodes. Only fundamental opera-
tions are shown.

The first fundamental design choice involves the selection of resis-
tivity type and doping level. The choice of p -type silicon allows use
of a junction diffusant (phosphorus) which can be easily cleaned off

of the surface of the wafer contact area. The choice of very heavily
doped starting material is also of paramount importance in producing
a stable. device. It has been demonstrated13 that alkali ions, a universal
source of contamination, can electrolize through a protective silicon
dioxide layer at high temperature under reverse bias and invert the
conductivity type of the p -type material surrounding the junction.
This inverted area can cause high channel currents to flow and also
drastically increase the capacitance of a device when operated under
reverse bias.

When operated in the forward direction, a "channeled" device will
exhibit a multiplication factor of typically 2-4 and occasionally up to
10. Obviously, such changes would drastically shift the impedance
levels of the device. However, with starting material doped to a level
of 2 x 101° atoms/cm3, it is estimated from the curves of Ref. 14 that
1013 surface charges/cm2 would be necessary to invert the material.
Contamination levels of this magnitude are not encountered if mini-
mal care is exercised in the oxide growing, diffusion and contact evap-
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oration steps. Hence, as discussed in Section 3.2, the choice of heavily
doped starting material essentially eliminates the contribution of
channel recombination -generation current to the total diode current
when compared to the bulk recombination -generation current. Also,
as calculated in Section 3.2, the diffusion current contribution to the
total diode current for this (or any practical) starting resistivity is
also negligible compared to the bulk recombination -generation current.

The next pair of design choices, heavy gold doping and planar oxide-
passivated technology, combine to produce a very large bulk con-
trolled recombination -generation current and a negligibly small sur-
face current contribution. As indicated in Fig. 6, the polished slice is
first oxide passivated and then is selectivly etched to open 0.008 -inch
circular holes in the oxide using photolithographic techniques. Kodak
Thin Film Resist (KTFR) is used as the emulsion in the photo -shap-
ing operation. After junction diffusion, the junction assumes the shape
shown in Fig. 3(b). The junction diffuses laterally as well as verti-
cally. Lateral diffusion under the oxide layer provides a p -n junction
which terminates at the semiconductor surface at a low surface charge
location (under the passivating oxide). The low surface charge results
in low surface recombination current. Thus, the resultant loW resistiv-
ity, planar, oxide -protected, heavily -gold -doped combination results in
a device which is completely bulk controlled and capable of being
predictably controlled in manufacture.

The gold doping level must next be selected to provide the desired
value of diode multiplication factor and hence forward impedance.
Since many mesa devices are currently in field service, and since both
the N2 and N3 were designed to accommodate this device, it was de-
sirable to attempt to set the impedance level at a value of 1035 ohms
at 50 microamperes or a multiplication factor of approximately 2. Since
values of the multiplication factor at room temperature from gold
doping as high as 1.85 had been reported in the literature,8 this ap-
proach appeared to offer promise of successfully achieving the desired
objective. As shown in Fig. 7, the impedance level of the device is a
very strong function of the gold diffusion temperature. As can be seen
from this combined plot of impedance and maximum solid solubility"
of gold in silicon as a function of temperature, the impedance level is
directly related to only the bulk properties of the device as calculated
in Section 3.2 and discussed previously in this section. The impedance
values presented in this plot were achieved with other impedance con-
trolling variables held constant. In particular, the time and tempera-
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Fig. 7 - Forward impedance at 500,A bias current as a function of gold dif-
fusion temperature. Diffusion time 10 minutes. Contact sinter time 3 minutes.
Solid solubility after Trtimbore.

ture used for contact sintering to provide contact adherence were held
at 3 minutes and 625°C, respectively. Fig. 16 presents the variation
of impedance level with contact sintering time at 625°C. It can be

seen that maximum impedance results when the contact is not sin-
tered. Heat treatment of the gold -loaded slice (even without metal
contacts present) results in lowered impedance probably through an
oxide-gettering or precipitation mechanism. With minimum contact
sintering, average values of impedance as high as 990 ohms at a for-

ward current of 50 microamperes have been achieved for a gold diffu-
sion temperature of 1300°C. The corresponding multiplication factor
for these experimental conditions is 1.91. For good mechanical adher-
ence of the contact it was desirable to sinter the contact at about
625°C for 9.5 minutes (a standard process) ; hence, the impedance level
of the redesigned device was set at 900 ± 35 ohms for a gold diffusion
temperature of 1300°C. This shift in impedance nominal from the mesa
component diode nominal value of 1045 ± 125 ohms necessitated a
change of a few resistor values in the compandors.

As discussed in Section 3.3, noise in the low audio frequency range
was a serious problem with the mesa diode. While a detailed study of
the physical noise mechanisms in silicon was not undertaken in this
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development, design information was obtained which clearly indicates
methods of controlling this important parameter. Control of the 1/f
low -frequency noise results as a by-product of heavy gold doping for
impedance control. As illustrated in Fig. 10, the noise voltage of the
device in the 200-3500 Hz band when biased in the forward direction
at 2.5 microamperes is independent of the gold level up to about 1200°C
then drops sharply and begins to level out beyond 1300°C. Since the
mesa device saw no high temperature gold diffusion, no beneficial ef-
fect of the gold was realized.

As seen from Fig. 10, at the specified diffusion temperature of 1300°C
the bulk of the planar component diodes are approaching the test set
lower limit of 2.4 microvolts and no devices are approaching the com-
pressor or expandor limits of 20 and 40 microvolts, respectively. This
parameter is now easily controlled in manufacture; hence, both com-
pressor as well as expandor limits have been set at 20 microvolts.

After oxidation, diffusion and contacting, the slices are simply dia-
mond scribed, cracked apart, eutectic (gold -silicon) wafer bonded and
thermocompression wire bonded to the TO -18 header. Finally, the metal
can containing an activated moisture getter is resistance welded to the
assembled header. The excellent device stability which will be pre-
sented in a later section is attributable to the use of very low resistiv-
ity semiconductor material, to extremely high gold doping and to the
use of oxide passivation techniques.

The design factors discussed in this section combine to produce a
device with a very narrow range of impedance, a low noise voltage,
extremely stable electrical characteristics and which can be produced
with good manufacturing control.

3.4.3 Design Variables
The diffusion of gold into silicon is a complex process involving

interstitial -substitutional equilibrium." In addition, both diffusion
constant and solid solubility are partially dependent on the concentra-
tion of other impurities such as boron and phosphorus."' 18 Because
complete data were not available on the entire ranges of interest of
diffusion temperature or boron and phosphorus concentration, and be-
cause data were not available on the effect of annealing which would
necessarily occur during the contact sintering, the effects of gold diffu-
sion temperature and time and contact sintering time were determined
empirically. A matrix experiment was performed where one parameter
was varied, and then another etc., holding the other parameters con-
stant.
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Fig. 8 - Impedance ratio, R, = Z(10pA)/Z(50AA), as a function of gold
diffusion temperature. Diffusion time 10 minutes. Contact sinter time 3 minutes.

Selected results of the experiments are shown in Figs. 7 through 16.
Each point represents the average of about 40 diodes. Unless indicated
otherwise, the gold diffusion temperature was 1300°C, the gold diffu-
sion time was 10 minutes, and the. sintering time was 3 minutes.

The effect of gold diffusion temperature on Z(50p,A), R1, R2, noise
voltage, capacitance and forward voltage is shown in Figs. 7 through
12. Below about 1200°C the gold diffusion has little effect, but at
higher temperatures the diode parameters depend mainly on the gold

solubility. Above 1200°C the spread of measurements was also much
smaller, which indicates that the bulk rather than the surface prop -
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Fig. 9 -Impedance ratio, R2 = Z(5012A)/Z(300/2A), as a function of gold
diffusion temperature. Diffusion time 10 minutes. Contact sinter time 3 minutes.
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erties were dominant. This information resulted in the choice of a high
gold diffusion temperature of 1300°C.

The effect of gold diffusion time on Z(50p,A), forward voltage and
noise voltage is shown in Figs. 13 through 15. At times greater than 10
minutes the forward voltage and noise did not change with time. How-
ever, the diode impedance and hence the multiplier, n, did change
which means that an equilibrium condition was not reached. Since
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Fig. 11 - Capacitance at 1 MHz and zero bias as a function of gold diffusion
temperature. Diffusion time 10 minutes. Contact sinter time 3 minutes.
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gold is known to precipitate or collect in phosphorus doped silicon
dioxide" and at dislocations, as well as to form a complex with phos-
phorus, equilibrium would not be expected only on the basis that solid

Ten minutes was chosen for the diffusion
time.

The importance of contact sintering time can be seen in Fig. 16
which shows forward impedance, Z(50,u,A), as a function of sintering
time. A sintering time of 9.5 minutes was chosen because it corresponds
to a standard transistor process which results in good contact adlier-
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Fig. 13 - Forward impedance at 50 LA bias current as a function of gold diffu-
sion time. Diffusion temperature 1300°C. Contact sinter time 3 minutes.
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once and because the slope of impedance versus sinter time is low at
that time.

Studies were carried out in which the diffusion depth was varied
from 0.3 to 0.8 mils while holding the gold diffusion to the standard
conditions. There was no effect on diode parameters.
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Fig. 15 - Noise voltage (200-3500 Hz) at 2.5ALA bias current as a function of
gold diffusion time. Diffusion temperature 1300°C. Contact sinter time 10 minutes.
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3.4.4 Electrical Characteristics
The salient electrical characteristics of the planar diodes namely:

forward impedance, impedance ratios and impedance differences are
summarized in Table I. The impedance of a typical unit is shown in
Fig. 17 in the range of 111A to 10mA bias. Impedance measurements are
made at a frequency of 1000 Hz. In the frequency range of interest,
the capacitance has negligible effect on the impedance. In the worst
case, at the highest frequency of interest (3500 Hz), and at a forward
current bias of 101hA, the capacitive reactance is more than two orders
of magnitude greater than the resistive component. Therefore, the dif-
ference between the total magnitude of impedance and the resistive
component is less than 0.01 percent. The dependence of forward im-
pedance with temperature is shown in Fig. 18 for Z(50µA). The tem-
perature coefficient of 0.85 ohms/°C is less than would be predicted
directly from (2) and implies a temperature dependence of the multi-
plier, n, which has been noted elsewhere.8

Although no requirements are placed on forward voltage, a plot of
forward voltage versus forward current for a typical component diode.
is shown in Fig. 19 for completeness. It is, of course, the linearity of
this semilogarithmic plot which results in the excellent impedance con-
trol of the new diodes with current.

The stability requirement placed on the diodes is that the impedance
value, Z(50µA), should not drift with time; in particular it should not
drift in the first few minutes of application of bias. The short term
drift, as has been noted, was a problem with the mesa diodes. No short
term drift has been detected in the planar diodes by a test system
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Fig. 16 - Small signal forward impedance at 50AA bias as a function of contact
sinter time. Nominal sintering temperature was 625°C.
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capable of detecting a drift of 1 ohm (0.1 percent change). Likewise,
no long term drift has been detected either. In one life study a sample
of 24 component diodes showed a drift of less than 0.5 percent (which
was test set limit) after 4000 hours of greatly accelerated switched
power aging (I0 = 50 mA, Vie (peak) = 5V) at an ambient of 150°C.
Another important characteristic is the noise generated by the diodes
in the frequency range 200 Hz to 3500 Hz (C message weighting). The
noise appears as a hissing sound to the listener when no voice signal
is present. Measurements are made with 17,000 ohms in parallel with
the diode or diode pair which is what appears in the actual circuit.
Since the diode impedance at 2.5 i.tA. is comparable to 17,000 ohms, and
the noise voltages add as the square root of the sum of the squares,
the measured noise voltage of two diodes in series is actually less than
the noise voltage of either diode singly. The circuit requirement was
less than 20 p,V rms for a compressor pair and 40 ,u,V rms for an ex-
pandor pair. Therefore, by requiring a single diode to have less than
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20-/LV rms noise, the pairs are guaranteed to meet the 20 -IN nns limit.
Most diodes had noise voltages less than or comparable to the test set
limit of 2.4 µ,IT rms. A check of 862 diodes produced during the devel-
opment showed only 1 device to fail the noise limit.

Measurements made on noisy mesa diodes and other diodes produced
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Fig. 19 - Forward current versus forward voltage for typical component diode.
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during the development of the planar diode and the reasons for the
noise improvement are discussed in the next section.

3.4.5 Noise Discussion
The decrease of noise voltage with increasing gold doping can be

seen in Fig. 10.* Based on measurements made on units with measur-
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Fig. 20- Noise voltage squared as a function of forward bias current, b, for
two noisy development diodes.

able noise, the noise is 1/f noise over the audio frequency range, i.e.;

= (const/f)Af

or

Din = (const/f)zlf,

where v,, = noise voltage, i = noise current and Af = small frequency
range.

Measurement as in Fig. 20 shows that the dependence of noise volt-
age on total dc current, IF, is

v7,2 = (const)/I:6.

* Except for the noise voltages plotted in Fig. 10, which are measured as
described in the last section, all noise voltages are equivalent open circuit
voltages. All noise currents are equivalent short circuit currents.
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Because of this dependence of noise voltage on forward current, the
noise limit is specified at the low current of 2.5 A.

Note that because i = v/Zi and Zf=nkT/TIF,

in = (const)/V. (12)

The decrease of noise at a given forward bias current, IF, with in-
creasing gold doping may be explained in the following manner. As
recombination -generation centers are increased, the forward voltage,
VF, required to attain a given forward current decreases. If there is

a secondary current (much less in magnitude than the recombination -
generation current), which is the noise generating current, and if the
noise due to this current increases with increasing forward bias volt-
age, then adding gold decreases the forward voltage for a specified
current and the decreased forward voltage results in lower noise. This
secondary current is quite likely associated with surface, bulk or chan-
nel leakage components or excess tunneling current derived from anom-
alous intermediate energy states.

If the above explanation is correct, the noise current measured at a
specified forward voltage should be the same for various gold doping
levels. The noise current is compared for a forward voltage of 0.463
volts for several groups from Fig. 10. The reason for comparing noise
currents rather than noise voltages will be made clear shortly. Average
noise voltages from Fig. 10 were corrected for test set noise and for
the parallel 17,000 -ohm resistor and converted to noise current.

v! (corrected) = v: (measured) - v (set) where v! (set) = 2.4µV

v. = v (open circuit) = v (corrected) (1.7 X 104 + Z1)/1.7 X 10'

i = v/Z,
The V -I characteristics of each group gave the bias current, /F, for

VF = 0.463 volts for that group. The empirical equation (12) was used
to find the noise current at this new current, since the constant in (12)
could be found from the measurement at 2.5 p.A. above. Calculations
were made for gold diffusion temperatures of 1150, 1200, 1225, and
1250°C where the greatest change in noise appeared to take place. The
results, in Table II, are in rather good agreement with the hypothesis
that the noise current depends only on the voltage VF.

The fact that the noise must be described as a current generator
(rather than a voltage generator) follows logically from a circuit anal-
ysis of the physical diode. An equivalent circuit for the diode is given
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TABLE II - NOISE CURRENT AND DC CURRENT AT VF = 0.463 VOLTS.

Gold diffusion temperature 1150°C 1200°C 1225°C 1250°C
IF 3.75/2A 2.5i.LA 6.0AA 21i2A
in (short circuit) 1.05nA 0.95nA 1.03nA 1.36nA

in Fig. 21(a), where LI is the diode current calculated (arlier and L.
is an excess current.

An equivalent ac circuit including noise sources is given in Fig. 21(b),
where x refers to excess current quantities and d to the dominant diode
current quantities. If it is assumed that I. << Id , Z. >> Zd and inx - -

the circuit of Fig. 21(c) results. The Thevenin equivalent of Fig. 21(c)
is shown in Fig. 21(d). The noise voltage, vn , is dependent on quantities
related to two independent currents. The noise voltage measured at a
specified voltage, changes with gold doping because Z, (which equals
nkT/IF) changes with gold doping, while my remains constant. Thus,
the noise current is directly related to the noise mechanism, while the
noise voltage is indirectly related.

As previously mentioned, there are several candidates for the cur-
rent which produces the excess noise. It does not appear to be asso-
ciated with bulk recombination current because gold doping does not
change it. It could he associated with surface, channel or bulk leakage

Zd Zf

(C)

(b)

(d)

Fig. 21- Equivalent circuits of diode with noise sources.
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currents since 1/f noise has been widely reported for these, components.
It could also be the excess current associated with tunneling20 since 1/f
noise has been reported for this current in germanium.21 While these
diodes do not exhibit measurable tunnel current, they are near the
tunnel diode doping levels.

IV. CONCLUSIONS

A new semiconductor compandor diode has been developed in which
the critical small signal forward impedance characteristics are con-
trolled by bulk material properties. The heavy gold doping employed
in this design forces bulk recombination -generation currents to domi-
nate over all surface, channel and diffusion currents and results in a
low -noise device with well -controlled electrical characteristics. Oxide
passivation and very low resistivity semiconductor material combine
to produce an extremely stable device capable of being manufactured
at yields governed almost exclusively by assembly workmanship. These
devices were initially designed for use in the N2 and N3 Carrier Sys-
tems and have also been incorporated into the 3A Echo Suppressor
System as a variolosser element.
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Noise -Like Structure in the Image of
Diffusely Reflecting Objects in

Coherent Illumination
By L. It ENLOE

(Manuscript received April 13, 1967)

Holographic and other imaging systems utilizing coherent light introduce
a speckled or noise -like pattern in the image of a diffuse object which
severely degrades image quality. It is desirable to understand this effect
quantitatively. Intelligent design in many cases requires knowledge of
the mean -square value, spatial power spectral density, and autocorrelation
junction of the noise -like fluctuations. These quantities have been deter-
mined for the image of a uniform diffuse object. Major results are:

(i) The mean -square value of the fluctuation in the image intensity
is equal to the square of the mean intensity.

(ii) One can decrease the relative magnitude of the noise -like fluctua-
tions at the cost of a corresponding increase in the aperture required of
the optical system (or hologram) over that required to resolve the desired
image in a spatial frequency sense. In a holographic facsimile or TV
system, this calls for a corresponding increase in electrical bandwidth.

(iii) The improvement in (ii) is not possible for direct viewing with
the human eye, since the resolution of a healthy eye is known to be limited
by diffraction at the iris.

I. INTRODUCTION

Holographic and other imaging systems using coherent light have
been receiving considerable attention lately.1, 2' 3' 4 Most analyses on
this subject assume that the object reflects specularly, or transmits
specularly if the object is a transparency, i.e., the reflectivity or
transmissivity of the object varies smoothly. Most objects, however,
are more nearly diffuse reflectors. When the image of a diffusely re-
flecting object is formed it will be covered with a noise or grain -like
structures, 0. 7 which is the speckle pattern which one sees when laser
light is used to illuminate an object.

1479
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In this paper we investigate the noise -like or speckled nature of
the image of a uniform diffuse surface. It should be emphasized that
we are interested in the properties of the image in contradistinction
to the direct backscattered field studied by Goldfisher.8 We show
that the intensity consists of two parts. The first is the mean or en-
semble average intensity and is proportional to the intensity which
would be obtained if incoherent light were used for illumination. This
is the desired component of the image and might be likened to a
signal. The second part of the image is the speckled or noise -like
component which tends to obscure the average intensity. This noise -
like component occurs because of the random phase angles associated
with the scattering centers comprising the microstructure of the dif-
fuse surface. The spatial autocorrelation function and power spectral
density of the speckle pattern in the image are found, and are shown
to be dependent upon the size of the aperture stop. It is shown that
the variance of the intensity fluctuation is equal to the square of the
mean intensity. The fluctuation may be reduced, however, if one is

willing to sacrifice resolution by recording the image on film whose
resolution is much poorer than that set by the aperture of the optics.
Unfortunately, this alternative is not available when viewing with the
human eye, since the resolution of a healthy eye is known to be de-
termined by the diffraction limit of the iris.8 This seems to place
definite limitations upon the use of coherent light in visual systems.

II. ARBITRARY APERTURE

The model which we shall use for a diffuse object is shown in
Fig. 1. Although the object is shown to be a granular transparency,
it could equally well have been shown as a reflector without loss of
generality. The essential point is that a monochromatic coherent light
wave of unit intensity is assumed to be scattered by a random set of
point scatterers. Each scatterer is assumed to be a unit scatterer which
is many wavelengths in depth from its neighbor. The relative phase
of the wave scattered from each scatterer may be assumed to be a
random variable which is statistically independent of the phase of the
waves scattered from other scatterers. Any phase change between 0
and 2ir is equally likely. Multiple scattering will be neglected.

The scattered field just to the right of the granular transparency
can be expressed by the equation

K

F o(x, E 5(x - x i , y y ;)''' , (1)
+=1



NOISE -LIKE STRUCTURE 1481
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F2 (v,0))

Fig. 1- A uniform wave of coherent light is incident on a transparency com-
posed of randomly distributed unit point scatterers. Light collected by the
aperture A, placed in the far -field, is imaged by lens L on plane P.

where 0i is the relative phase of the wave scattered from the scatterer
located at x = xi, y = yi. 0,, xi and yi are assumed to be random vari-
ables uniformly distributed in the intervals (0,27r), (-X,+X) and
(- Y,+ Y), respectively. Notice that because of our assumptions, the
statistics of the scattered field are independent of any deterministic
variation in the phase of the illuminating field.

A Fourier transform relationship exists between the scattered field
given by (1) and its far -field. The far -field is given by

+co

F1(t, 71) = F 0(x, y)""/""'"") dx dyJ- -
tR

Eeioi+;(2./)\d)(zit+yiq)
i=1

(2)

where we have suppressed the time factor &+'n'. Notice that each scat-
terer has produced a plane wave, and that the slope of the phase front
of each wave with respect to the t, n axes is determined by the position
(x, , yi) of the random scatterer.

Let the far -field Fi(t, n) be passed through an aperture having an
amplitude transmission function H(t, n), and then through a lens which
is placed a distance z behind the aperture. Since the field at the back
focal plane of a lens is a Fourier transform like function of the field in
front of the lens, an image of the granular transparency, as modified
by the aperture, will be formed in the back focal plane, and is given by'°

F2(v, co) = eiccp.+(J2)

(=. h

n)F,Q, n)1127/x()(Ev+,,) (4 (hi

Xi W Yi)
Jed

(3a)
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where c = ir(z - f)/Xf2, and where h(t, u) and H(, n) are Fourier
transform pairs in the sense

h(t, u) = H(, "n)'2te+) dl dn. (3b)
0

Notice that except for the unimportant phase factor ei"'" , (3a)

differs from (1) for the field at the granular transparency only in that
h( ) functions have replaced the delta functions. That is to say, the
delta function of light from the scatterer at (xi , yi) is reproduced as a
broadened h( ) function located at v = - (f /d) x; , w = - (f / d)y
The image is reversed, and magnified by the factor m = f/d. Notice
that because of the random phase Oi of each, the impulse functions will
add vectorially in a random fashion when they overlap one another.

The situation is analogous to passing shot noise impulses through
a low-pass filter having an impulse response h( ). The impulses are
broadened into h( ) pulses whose width depends inversely upon the
filter bandwidth. In the coherent light case, however, the process is
two dimensional and the applied impulses have random phase angles
distributed uniformly between 0 and 2r, rather than being constrained
to be positive impulse functions as is the case for shot noise.

The quantity of greatest interest to us is the intensity of the image,
which is found by multiplying the image field by its conjugate.

/(v, w) = F 2(v , (OF t(v , w) (4)
K K

h(y X k CO yk10,(1,_ xi
Xd

(..± yi)
Xf Ad ' Xf Ad Xf ' Xf Xd e

The uniform diffuse object is assumed to exist in the region -X 5
x +X, -Y y +Y. The number K of point scatterers in this
region is a random variable, as are their positions (xi, yj) and their
relative phase angles 0i. We may, therefore, obtain the ensemble
average of the image intensity I by averaging (4) with respect to the
2K + 1 random variables consisting of the K positions (x,, yi), K
phase angles Of, and K itself:

I=
+c 0 + oo K

_I_ Y k) el 0 k(I) .1  k co
. . . f Xi -1- Ad ' Af ' Ad-.

.[EK

v_ .+ i CO 7.1i _io0 _ _4_, + .), .

...., Af ' Ad ' XI Ad

W(:ci , yi , x2 , Y2 ; xi,- , YK ; 0, ; OK ; K)

 dx, dy,    dxK dyK dO, ; (19K (1K (5)
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where W( ) is the multi -dimensional probability density function.
Now the positions (st, yi) are considered to be statistically inde-

pendent variables, as are the relative phase angles 61. They are also
independent of K, so we may simplify (5) to obtain

I = f W(K) dK

K K I

LE E fi=1 x 2X

ei(ek-eoh(IL Xk

Xf Xd

+dXK f" dy,c r2- do, rr doK

C.±

Xf

2X 2Y Jo

lik)11*(11
Xd Xf Xd

2r

Xf

Jo

Xil

2r

(6)

We see that the above expression vanishes unless 6, = Bk , i.e., i = k.
Further, all of the h( ) functions have the same shape so that if the
size of a resolution element in the image is small compared to the
field of view, i.e., the extent of h(v/Xf, w/Xf) is small compared to X
and Y, then we may replace the limits of integration ±X and ± Y by
± co to obtain

I -
d2

_2

(

Y

0 f +00

Pl ' KW(K) dK. (7)

pi (u, v) is the autocorrelation function of the aperture impulse
function h(e, 7,), i.e.,

f+00 i- x

-
+ 00 + 7.0

- 00 - 00

it* , T)11(t + T dt dr

H(, fl)H*(E, 77)"'"'")d dn.
(8)

If we now assume that the number of scatterers per unit area of the
transparency has a Poisson distribution of mean N, then the mean
intensity is

I = a2x2s-p1o, 0). (9)

Next we wish to determine an expression for the autocorrelation
function of the intensity, from which we may determine the spatial
power spectral density and variance of the noise -like fluctuations. The
autocorrelation function of the intensity as given by (4) is

R(r , t) = co)I 2(v + T, co t)

-f

.

+ 00

It

(
Xf

i)

+ X(I Xf

to

+ Xd

Yk)eiek]
71(

(10)
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h*(1XLi )11

h(v -I- 7 , t y .1
Xf Ad ' Al X(1/

Z21 W+ + 11)e- i.
Xf Ad ' Xf

 W(xi , yi ix2,y2 ;  x4J 0, OK , K) dx,  dK.
Because of the statistical independence of the phase angles posi-
tions (xi, yi) and K, and because of the assumed uniform distribution,
we may simplify (10) to

R(7, t) = 117(K) dK

IC K. K K. 00

ax'+00 E
k = 1 i=1 m=1 n = I .-co 2X i 2Y

cisic re. dy.
L00 2X i 2Y

2 do, do, [eicok-oi+0.-on)u XL.,
YLA(;)9lo 27r-

(Y X i )h r w t

. `1*\Xf Ad/ k Af Ad ' Af Ad

h*(v AFf t Ad.)

We see that the integral vanishes unless

i = k and it = in
or

which gives

R(T, t) =
+.0

n = k and i= n2,

W(K) dK

IC K r dx,
1 - 1 - 00 2X 2 Y 9dY;

y t + x,,, + y0,

h(v s dk ciXf AlXf '

4_ Yk Ih Af Ad Af Ad/

2

h V + Xk Yk) h* + 7 Xk ± tyk
Xd Xf Ad ' Xf Ad

v x y,)h(v T CO t y).
(12)

1`* ()TI Ads )71 Ad Xf Ad ' Af Xd



NOISE-LIKE STRUCTURE 1485

Now, we have two subcases here. There are K (K-1) terms for which
k in, and there are K terms for which k =

r+.R(r, t) = K(K - 1)W(K) dK

Xf X(I X f X(1*{[44 /1 -±

1
roo v(v w y

4X Y Loa Xf Xd ' Xf Xd

11,v+ 7 x t 1-1-) dy dx
of Ad' Xf Xd -

r+.0+ 2 L. KW(K) dK'
Y[4,1CY hAd d ' Xwf Ad!

h( x - t y)
Xf Xd ' xf xd/

2 dx dy]

dy dx]. (13)

Assuming that the distribution of scatterers W (K) is Poisson and
using the definition of it ( ) given in (3b), straightforward evalua-
tion of the integrals in (13) yields

R(r, t) = 72[1 + I PI(T/IX'
p,(0, 0)2

where pi (u, v) is defined in (8) and
+co +co

I+ 2 p.(0, 0) P2T/ iX, t/fx), (14)

P201, = I h(T, 0 12 I h(T U, t + v) 12 dr dt
ao 00

= autocorrelation function of the magnitude squared of
the aperture impulse function.

The spatial power spectral density is found by taking the Fourier
transform of (14). After simplification we obtain

+ + co

S(q, p) = f R(T, 1)E -'2r("+') dr dt

= 12{6(g(IVp) + 1-1. (xjq, xfp) I' @
p, (0, 0)- H(Xig, Xfp) 12

2(fX)2
-I H(Xfq, Xfp) pp H(Xfq, Xfp) 121, (15)

pi(0, 0)1
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where ® stands for convolution. In particular we define

F(Xfq, Xfp) OO G(Xfq, Xfp)

F*(x, WG(Xfq x, Xfp y) dy dx. (16)

Equation (9), which gives the mean intensity of the image, and

(15) , which gives the power spectral density of the intensity fluctua-
tions, are the major results of this section.

III. CIRCULAR APERTURE

Now consider the special case of a circular aperture of radius re,
and let it be located on axis so that

H(, n) = {01'

where

r
r > r

+v, n2.

The average intensity in the image plane is given by (9) and is

= d2X2Rp,(0, 0) = ricr(Xdr0)2,

where pi was evaluated

pi (0, 0) = f+c°

(17)

(18)

f+c° n) 12 d do = rr2, . (19)

Evaluation of the integrals in (15) gives the power spectral density

s 2 8- - -
2s, r

,
(2s, 9ssAS(q,

p) 72[ 7r1s,
1

{, - - sin

+ F
-1 (1 - sin -1 (±

9s
-) -

where

9 (
\9s.)1 s

1/)1}1 (20)

q, p = image plane spatial frequencies
+ .1/42 p2

= 7.,/fX = cutoff frequency produced
aperture.

d2 x2iv
F=

27rre

= overlap factor.

in rectangular coordinates,

by diffraction at the circular
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The overlap factor F warrants some discussion. Basically it is equal
to the average number of point scatterer image centers contained
within an area equal to that occupied by the image of a single
scatterer. That is, a single point scatterer located at (0,0) in the
object plane would produce a point in the image plane at (0,0)
having intensity

1 =

=

,

2.1,(22r-rt -Vv2 ± co2)_

,62
Ix

2

The intensity is down" approximately 50 percent at (2irr,/fX)
\A?, -I- wi = /-, and the area covered by the image of the point
scatterer at this 50 percent value is A 7r(v2, w2i) f2x2 /271.2 For
a diffuse object, the average number of imaged scattering centers per
unit area in the image plane is ft = (d/f)2N. If we define the overlap
factor F as the average number of scatterer image centers falling in the
area of one of these images we have

F = = d2 X2

27rr;

For a truly diffuse surface, the overlap factor F >> 1 so that (20) re-
duces to

S(q, p) = 12[6(q, p) {1
2; sin s

2 s 2

28,)\1 - Us) (21)

which is plotted in Fig. 2. Note that it is symmetrical about the
vertical axis. For very small spatial frequencies, (21) can be approxi-
mated by

S(q, p) = P[s(q, p) + .?1 (22)
7rS

The total fluctuation or noise power occurring in spatial frequencies
less than some frequency si is

p
(sg)(71.821)

r (1 ) 2 (23)
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IV. CONCLUSIONS

We have found that the image of a uniform diffuse object illumi-
nated with monochromatic coherent light consists of two parts. The
first is the mean or ensemble average given by (18), for a circular
aperture, and is proportional to the intensity which would be obtained
if noncoherent light were used for illumination. This is the desired
component and might be likened to the signal component of the
image. The square of this term appears as the first term in (20),
(21), and (22), and as the delta function in Fig. 2. The second part
of the image is a grainy or noise -like component which tends to
obscure the mean intensity or signal. This noise -like component
occurs because of the random phase angles associated with the point
scatterers comprising the microstructure of the diffuse object. This
component is shown as the second term in (20), (21), and (22), and
as the continuous part of the power spectrum in Fig. 2. Integration of
(21) shows that the variance of the noise -like fluctuations in the
intensity is equal to the square of the mean intensity (or to the signal
power). This is fortunate to the extent that when the signal is small,
the noise is likewise small. However, while our analysis was for the
particular case of a uniform diffuse surface, we can safely predict
that for nonuniform diffuse objects fine detail in the image will be
largely obscured by the noise -like fluctuations if resolution is limited
by diffraction.

The noise -like fluctuations in the image can be reduced if one
records the image on film whose modulation transfer function has a
bandwidth which is much smaller than the diffraction limit of the
optical system. The high -frequency noise in Fig. 2 will not be resolved
in this case. For instance, if one requires the "signal-to-noise" ratio
to be increased from unity to 103 (30 dB), then from (23) we see that

s (q,P)
,1

=7r5 8 (q,p) +1 72 SIN -I( S (S0 77. \,2sci 2S0

1.0

(s/2sc)

Fig. 2 - Section of the spatial power spectral density for a uniform diffuse
surface imaged through a circular aperture. The complete two dimensional
spectrum is obtained by rotating the above curve about the vertical axis.

+1
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the diffraction bandwidth s of the improved optical system must be
103'2 = 31.6 times the bandwidth s1 resolvable by the film, and there-
fore by the whole system. (Since most transducers produce a signal
which is proportional to the intensity of the incident light, it seems
appropriate to consider the square of the mean intensity as signal
power and the variance of the intensity fluctuations as noise power.)

Although we have analyzed the very special optical system shown
in Fig. 1, our results are not critically dependent upon the placement
of the aperture. The aperture could be the lens aperture rather than
an independent physical device, or it could be the aperture defined
by the finite size of a hologram, for instance. Our results should also
hold approximately for the human eye, since the resolution of a
healthy eye is known to be determined by the diffraction limit of the
iris.° The predicted value of unity for the signal-to-noise ratio is the
right order of magnitude for what one observes when laser light is
used for illumination if one is careful to hold the eye stationary and
hence not average the noise out as a function of time. Although
moving the eye tends to average out the noise, the residual noisiness
remains objectionable. This places definite limitations upon the use
of coherent light in visual systems.

The author wishes to thank Messrs. C. B. Rubinstein and A. B.
Larsen for helpful discussions.
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The Excitation of Planar Dielectric
Waveguides at p -n Junctions, I

By J. McKENNA
(Manuscript received April 26, 1967)

The fields excited within a planar dielectric waveguide by an externally
incident electromagnetic field are studied in this paper. The dielectric
waveguide fills the half space z > 0, while the half space z < 0 is air.
The waveguide is formed by a nonuniform, anisotropic, nonabsorbing,
dielectric medium. Different choices of the dielectric tensor for this medium
yield different waveguides. Certain models which are particularly relevant
to electro-optic diode waveguides and laser diode amplifiers are studied
in some detail. An arbitary incident field will, in general, excite not only
a finite number of propagating modes, but also a background of continuum
modes. Integral representations of the total transmitted field within the
waveguide as well as of the reflected field are obtained. The representation
of the total transmitted field can be decomposed into a finite sum of discrete
propagating modes, a continuum propagating field, and an evanescent
field. Explicit evaluation of the fields depends on the solution of a pair
of integral equations. In practice, the dielectric tensor of the waveguide
differs but little from the dielectric constant of the surrounding material.
An approximate solution is found for this case, and numerical results
will appear in a following paper.

I. INTRODUCTION

Recently there has been great interest in the guiding of light by the
p -n junction region in certain piezoelectric semiconductors, for it has
been noted that the Pockels effect due to the electric field within the
p -n junction can be used to modulate light which propagates parallel
to the junction plane.' -4 This effect was first observed, and has been
most intensively studied, with visible light in GaP junctions,' but it
has also been observed with infrared light in GaAs junctions.", 4

All treatments of the effect so far have assumed that the p -n junc-
tion region, which has a higher dielectric constant than the surround -

1491
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ing, normal GaP, behaves like a dielectric waveguide.1-° A detailed
analysis of this waveguide would require a knowledge of the optical
properties in the neighborhood of the junction. However, since these
properties change significantly in a fraction of a wavelength, it is ex-
tremely difficult to investigate them individually by experimental
means. In order to get around this difficulty it has been necessary to
adopt an indirect approach based on analyzing a number of different
mathematical models and comparing their predictions with experiment.

As part of this program Nelson and McKenna° have investigated
the possible discrete modes which can propagate in a number of dif-
ferent models and have studied in considerable detail the properties of
the lowest -order mode of each polarization. Recent experimental work
has made it increasingly clear, however, that a knowledge of the dis-
crete modes alone is not enough to provide an understanding of these
p -n junction dielectric waveguides. This is because a beam of light,
when focused on the face of a junction waveguide, excites within the
waveguide not only a finite number of discrete modes, but also a back-
ground of continuum modes. In many cases this background light is
intense enough to mask important features of the discrete propagat-
ing modes. Thus, unless an understanding of this background light is
available, the task of comparing the predictions of different mathe-
matical models with experiment is almost impossible. An understand-
ing of the electromagnetic boundary value problem involved also has
great relevance to understanding what happens when light is intro-
duced into a laser diode amplifier.

The purpose of this paper is to study in some detail a class of math-
ematical models of the excitation of dielectric waveguides. These mod-
els are simple enough so that the mathematical analysis can be per-
formed and the background light can be investigated carefully. At the
same time, it is felt that the models are realistic enough so that their
predictions can be compared with experiment.

The models can be described as follows. The waveguide consists of
the half space z > 0, as shown in Fig. 1, while the region z < 0 is air.
The waveguide itself is assumed to be formed by a nonuniform, aniso-
tropic, nonabsorbing dielectric. The components of the dielectric ten-
sor are functions of the coordinate x only, and for each value of x the
dielectric tensor is diagonal in the fixed coordinate system shown in
Fig. 1. As an example, for the GaP electro-optic diode modulator stud-
ied in NM this corresponds to the cases where the junction field is in
the [111] or [100] directions. Each such model is determined by its
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INCIDENT
FIELD

(a)

Ks, Ku, Kz

(b)

Z

Fig. 1-Symmetric step model illustrating the coordinate system used in all
the models. The dielectric tensor is always diagonal in this fixed coordinate sys-
tem.

dielectric tensor whose diagonal elements we will denote by K (x)
(n= x, y, z).

It was shown in NM that the amount of absorption encountered in
GaP electro-optic diode modulators was too small to affect significantly
the shape of the modes. It is, therefore, felt that the study of absorp-
tionless models here is well justified. It was also shown in NM that
the detailed analytical form of the functions K (x) is not important
when only the lowest -order discrete mode of each polarization can
propagate. The most important features of the discrete modes can be
determined by studying models for which the functions K.(x) are
step functions (piece -wise constant). Although it is possible to carry
out a good deal of the analysis without specifying the functions K.(x),
the final detailed results naturally depend on the choice of K.(x). We
shall concentrate here on two models, the symmetric step model and
the asymmetric step model. The symmetric step model is defined by
the equations6

K,(x) = K,, I x f <w (1)

=Ko, IxI>w (2)

and the asymmetric step model is defined by the equations6

K,(x) = Km x < w (3)
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= K1 ,

= K2 ,

x < -w (4)

x > w, (5)

where K2 < K1, and K,,, > Kj 1, m = x, y, z, j = 0, 1, 2 (see Fig.
2). In the case of the GaP electro-optic diode modulators there are
relations of the form°

K,,, = n2(1 -I- 5,), (in = x, y, z) (6)

K, = n2(1 - K1 = n2(1 - Ai), (j = 1, 2). (7)

In (6) and (7) n is the index of refraction of normal GaP, the quan-
tities 8,,, are linear in the junction field (the linear electro-optic effect),

and 0 18d < A << 1.
In Section II we will write down general integral representations for

incident waves in the region z < 0, as well as integral representations
for the resulting reflected and transmitted fields. These. integral rep-
resentations will involve a number of unknown functions. Some of
these functions are determined directly from the structure of the wave -
guide and are independent of the incident field and the boundary con-
dition at z = 0. The remaining unknown functions are determined by
the incident field and the boundary conditions at z = 0. We show that
these functions satisfy a set of linear integral equations. The results
of Section II are independent of the specific form of K,,, (x) and the
incident field. In Section III we. explicitly calculate the unknown func-
tions which depend only on the structure of the waveguide for the
symmetric and asymmetric step models. In Section IV we obtain ap-
proximate solutions of the integral equations for a special class of

Km (X)

-Km

< Ko=
n2(j-.A0)

Km (X)

4-

K,-
--K2 !

-w w -w
(a) (b)

Fig. 2- (a) The function Km(x) for the symmetric step model. (b) The
function K, (x)for the asymmetric step model,
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waveguide models. The remaining unknown functions are determined
for these models in terms of the incident field. In a second paper on
this subject we will give asymptotic expansions and numerical results
for the fields within the waveguide. for the symmetric and asymmetric
models when they are excited by a Gaussian incident wave.

H. A GENERAL DESCRIPTION OF THE. FIELDS

In this section we study formal solutions of Maxwell's equations
which describe an incident wave in the region z < 0 moving to the
right and striking the waveguide from the left, a reflected wave in the
region z < 0, and a transmitted wave in the region z > 0. The fields
are assumed to be monochromatic and independent of the coordinate
y. We write for the total electric and magnetic field vectors

E(x, z, t) = Re (e(x, , H(x, z, t) = Re (h(s, z)e""), (8)

and for the total electric displacement and magnetic induction vectors

D(x, z, 1) = Re (d(x , z)eiwt) , 13(x , z, t) = Re (b(x, z)ei"), (9)

where Re denotes the real part and o) = 27rf is the angular frequency
of the radiation. Then Maxwell's equations are

O X e =

V x h =
V d = 0,

V b = 0.
(10)

From our assumptions about the model, the constitutive equations can
be written as

b = Eu11, d = EK  e, (11)

where Eo and Ao are, respectively, the permittivity and permeability
of free space. The dielectric matrix K = K(x, z) is the unit matrix
for z < 0, and for z > 0 it is a diagonal matrix whose diagonal elements,
K(x) (n = x, y, z), are functions of x only. It is a straightforward
matter to show that any solution of Maxwell's equations satisfying
the above assumptions can be written as the linear combination of a
TE solution and a TM solution. We consider these solutions separately.

2.1 TE Fields

We first look for TE solutions having the form

e(x, z) = [0, e(x, z), h(x , z) = [11,.(x, z), 0, Mx, z)]. (12)
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In the region z < 0, ey must satisfy the Helmholtz equation

a2e a2e

ax az
= 0, (13)

where the free -space wavenumber k is defined by

k = co(01.40)4 = 27r/X

and X is the free -space wavelength. The total field in z < 0 is the sum
of the incident field ei,") and the reflected field e(T) and both e`" and ev(r)

are solutions of (13). In the region z > 0 there is only the transmitted
field which satisfies the equation

a2eu

axe az2
k2K(x)ey = 0. (14)

A solution of (13), which can be found by separation of variables,
and which describes a general incident field due to sources in z < 0

at a finite distance from the plane z = 0, is

where

ei,")(x, z) = fee gi,")(1) exp -iC2(1): - dl, (15)

2(/) 1/k2 - /2, I 1 l < k

= -W12 - k2 , I 1 I > k.
The components of the magnetic field vector can be obtained with the
aid of Maxwell's equations by differentiating (15). Let 1 (zo) denote
the strip -co < x < co, 0 y 1, lying in the plane z = zo. Then
the time averaged power incident on (z), z 0, is independent of z
and is

= Re LeLi)(x, z)ki)(x, z)* dx

(16)

= (47040-1 I /it - 12 1 C)(1) f 2 dl, (17)
k

where * denotes complex conjugation. We will assume that

J: g(1)(1) 12 dl < a) and f- C/(/) I I CV)(/) dl < .

(15) is to describe an incident field due to sources at z = -cc , then
"it is easy to see that we must have 8)(1) = 0,1 n > k. Since the incident

field must be specified, it will always be assumed that 8,,u) (1) is known.
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A solution of (13) describing a general wave reflected from the wave -
guide surface z = 0 is

ev(r)(x, z) = -1 f 8(r)(1) exp (i12(/)z - dl. (18)27

We will always assume that the source of the incident radiation is
perfectly absorbing so that enx, z) ei,(r)(x, z) is the total field in
the region between the source and the surface of the waveguide at
z = 0. It will be seen that because of the boundary conditions at z = 0,
8") (1) generally does not vanish outside some finite 1 interval. Because
of the factor exp {iS2(/)z}, that part of the integral in (18) between
the limits -k and k, f k I dl, represents a traveling field, while
the remainder of the integral represents an evanescent field which
damps out very rapidly in the negative z direction. The time averaged
power reflected back through the strip 2(z), z < 0, is

= (471-como)-
-

k k2 12 8 (l) 12 dl. (19)
k

We now turn to the transmitted field. We use the method of separa-
tion of variables, and we seek transmitted waves which are linear
superpositions of solutions of (14) of the form

e"'(x, z) e (x) exp (20)

In (20) v is a real separation parameter, and if v > 0, = I -\/;.
If (20) is substituted into (14) we get the eigenvalue equation

de
dx-

(k-K,,(x) v)ei, = 0. (21)

Equation (21) defines a singular, self-adjoint, second -order boun-
dary value problem on the interval - oo < x < co. The theory of this
equation is well known, and we refer the reader to Coddington and
Levinson7 for a detailed treatment. We give a summary here of those
properties of such equations which we will need.

For all the models under consideration, the functions K,,, (x) are
positive, bounded functions, which are bounded away from zero, and
which are differentiable except for at most a finite number of step dis-
continuities. Equation (21), therefore, defines a problem which is called
limit -point type at both plus and minus infinity. This means that for
arbitrary, complex v, (21) possesses exactly one solution (up to a con-
stant factor) which is square integrable over 0 < x < oo, and exactly
one solution which is square integrable over - oo < x < 0.
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For a given real number v, let vi(x, v) and (p2(x, v) be the two solutions
of (21) which satisfy the conditions that coi(x, v) and co'i(x, v) be con-
tinuous and which satisfy the initial conditions

(MO, v) = 1, ce4(0, v) = 0, (22)

so2(0, v) = 0, 4(0, v) = 1, (23)

where ' = d/dx. Equation (21) also determines a 2 X 2 matrix -valued
function p(v), - 00 < v < 00, having the following properties: (i) p(v)
is Hermitian (pik(v) = pegv)). (ii) p(v) - p(u) is positive semidefinite
if v > IL (iii) pik(v) is of bounded variation on every finite interval.
The matrix p(v) is called the spectral density matrix and its construction
is outlined in Section III. Then if f(x) is any square integrable function
(f °° I f(x) 12 dx < 00), we can define two transforms of f(x), g i(v) (j =1, 2),

such that
. 2 L

line f E {gm - f(x),p,(x, v) dx}
L-co --oc , ,k -1

f
,/,

/,

9k(v) -
L

f(x)cok(x, v) dx} dpik(v) = 0. (24a)f
`This is referred to as convergence in the mean with respect to the
measure p(v), and in the manner of Fourier transforms of 22 functions,
we write

MP) = f f(x)vv(x, v) dx (j = 1, 2). (24b)

In terms of these transforms, the Parseval equality
00 2f f(x) dx = r g i(v)*( ay) d p k(v) , (25)

.k..1 -co

911(1 the expansion
2

f (s) = E ci(r, ogk(p) dpik(v) (26)
-oe

are valid. Equation (26) is defined in terms of convergence in the
mean. The set of real points v at which the functions pik(v) are noncon-
stant is the spectrum of (21) . The set of points where any pik(v) is

discontinuous is the point spectrum and for each such value of v, (21)
has exactly one square integrable solution. The continuous spectrum
is the set of points of continuity of p (v) which are in the spectrum. In
Section III we will exhibit the spectral density matrices for two im-
portant models.
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We can now write down a formal expression for the transmitted
field:

2

eN")(x,z) = exp 1,;(x, v)ak(v) d pik(v). (27)
1 -x

The two initial value solutions soj(x, v) (j = 1, 2), as well as the func-
tions pjk(v) (j, k = 1, 2) are determined, independently of the bound-
ary conditions at z = 0, by (21) and we can assume that they are
known. The two unknown functions gj(v) (j = 1, 2) in (27) are de-
termined by the field at z = 0, since with the aid of (24) we can write

My) f e")(x, 0)(pi(x, v) dx. (28)

It is clear that because of the factor expi1/-vz the parts of the
integrals in (27) represent the propagating portion of the trans-
mitted field, while the parts R° reprent the evanescent portion of the
transmitted field. With the aid of the Parseval relation, (25), we can
write down an expression for the time averaged power transmitted
across any l(z), z 0,

2

P (2(410-1 E \iLVg (v)* g ,(v) d pi/XI)).
i.d -ao

(29)

We now make use of the conditions that ey(x, z) and hx(x, z) must
be continuous at z = 0 in order to write down a set of integral equations
which determines Kr)(/), My), and g2(v).

1 f[8! )(1) g,(:) (Me- Ex di = E 4,1(x, P)gk(v) dpik(P), (30)

1
SZ(1)[8(i) (1) - g;,r)(1)]e-'14. dl

2= E
1

OC.

(x, v)gk(v) d p ik(v) (31)

Although there. appear to be only two equations in three unknown
functions, because of (24) and (26), (30) and (31) are sufficient to
determine the unknown functions. We indicate formally why this is
true, although it will be clear from the results of Section IV that this
scheme must be modified in specific cases. We do not go into these
modifications, because in Section IV we use a different scheme to get
approximate solutions. With the aid of (24b), solve (30) and (31) for



1500 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1907

gi(v), giving the four equations

.( z
My) = f v) 9, f [8;,I) a(1) + t, (1)]e-it dl, (32)

V-vg,(v) v) SZ(/)[8")(/) - C(r)(/)]e-"x dl, (33)

for j = 1, 2. On eliminating g 2(0 between these equations we get the
two equations in the unknown gt,' (1).

P) dx -1 1' (-V -1, + C2(1))8,7)(1)e-ix dl,
2r _ co

=v) (IX f P (2(0)g,")(l)e-"x dl,-dr ,

(34)

for j = 1, 2. Now from (26) we can write f (x) = fi(x) + f2(x) where
2 s

fk(X) = E p)g k(v) d p k(v) (k = 1, 2), (35)
i=1 -00

Li k(x)(pi(x, dx = Bikgi(p) (j, k = 1, 2), (36)

and ,k is the Kronecker delta function. It is this decomposition of
an arbitrary f (x) into components lying in the two subspaces spanned
by 401(x, v) and 0,2(x, P) which is reflected in the two integral equations
(34). The solution of (34) with given j yields the component of the
reflected field lying in the subspace spanned by the corresponding
so i(x, v). Let 8(;:) (l), j = 1, 2, denote the two solutions. Then 8,(r) (i) =
8,,,T (1) ± &i,(;) (1) describes the total reflected field. With this result
g; (v) (j = 1, 2) can be obtained from either (32) or (33). We have been
unable to obtain exact solutions for the integral equations (30)-(31)
for any of the models considered here. However, in Section IV approx-
imate solutions are obtained for certain situations of interest.

2.2 TM Fields
We next seek TM solutions of Maxwell's equations of the form

e(x, z) = (ez(x, z), 0, e,(x, z)), h(x, z) = (0, h(x, z), 0). (37)

In the region z < 0, by must satisfy (13). In the region z > 0, by must

satisfy the equation

a

ax
3 {(1 / K :GO

ax)
+ {(1/Kz(x)) -"Mz"} = 0. (38)

az a
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Just as for the TE fields, a general incident field due to sources in
z < 0 at a finite distance from the plane z = 0 is

/Lynx/L
1

,

27r
x, z) = - 3C")(/) exp - ilx} dl. (30)

The time averaged power due to this wave which is incident on 1(z),
z < 0, is

Pi = z Re f e= (x, z)hi,)(x, z)* dx = (-17Rof0) f,2(/) ac,r)(0 12 di.f
k

(40)

We assume that ff colEv(i)(/) 12 dl < co and f 12(1) I
I ac,,m(i) 12 dl < co .

As for the TE field if the sources of the TM field are at z = -
then Jel,i)(/) = 0, / J > k. Furthermore, it will always be assumed
that acLi)(/) is known.

A solution of (13) describing a general reflected wave is

1r rz) = 2- (r)(/) exp {ii2(/)z - ilx} dl. (41)

Just as in the case of the TE field, hi,(r)(x, z) can be split into a prop-
agating field and an evanescent field. The time averaged power re-
flected back through the strip 1(z), z S 0, is

Pr = (4rwe0)-1 f_, C2(1) 3e,r)(/) 12 dl. (42)

The transmitted field is again treated by separation of variables,
and we write

hum (x, z) hy(x) exp z}.

Then ii,, (x) satisfies the eigenvalue equation

Kz(x) -dx
dh{(1/K,(x))dx + (k2Kx(x) p)hz, = 0. (43)

d

Equation (43) is not in the canonical form of a self-adjoint boundary
value problem. However, if we make the change of variables

u = f (K=(t)}-1dt,

(43) is transformed to the equation

(44)

-d
du [11(z(u)K,Mr -du] + (k2K,(u) v)h = 0. (45)
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This equation defines a self-adjoint boundary value problem,8 and
even though the function {KZ(u)K2(u) -1 may have step discontinuities,
the techniques of Ref. 7 can be shown to be still valid. Equation (45)

is limit -point at u = ±°3, and so on transforming back to the variable
x, the following statements can be made.

For a given real number p, let 0,(x, v) and 11,2(x, v) be the two solu-
tions of (43) which satisfy the requirements that

I/4x, v) and {IC,(x)}-1 tri(x, v)

he continuous for all x, and which satisfy the initial conditions

01(0, v) = 1, (1/K,(0))4,;(0, v) = 0, (46)

p2(0, v) = 1, (1/1C,(0))C(0, v) = 1. (47)

Equation (43) determines a 2 X 2 spectral density matrix Q(v) whose
construction is given in Section III. If f (x) is any square integrable
function of x, we define two transforms of f (x),

hi (v)= f f(x)1,1,;(x, v) { Kr(x)} -, dx (j = 1, 2), (48)

where. equality in (48) is defined in terms of convergence in the mean
with respect to the measure v(v). In terms of these transforms, the
Parseval equality

00 2

1 i(x) 12 IK.(x) dx = hi(v)hk(v)* da ik(v), (49)
i.k=1

and the expansion

f(x) = E
-

v)hk(v) dcrik(v). (50)
i .k=1 oo

are valid. The last equality is again defined in the sense of convergence
in the mean.

We can write down a formal expression for the transmitted field

h,`,"(x, z) =
-

exp z} v)11,,(v) do- ;kW. (51)
i .k=1 oo

The two initial value solutions 0(x, v) (j = 1, 2), as well as the func-
tions aik (v) (j, k = 1, 2) are determined, independently of the bound-
ary conditions at z = 0, by (43) and we can assume that they are
known. The two unknown functions h; (v) (j = 1, 2) in (51) are de-
termined by the field at z = 0 since with the aid of (48) we can write
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h; (v)= hu")(x, 0) IP; (x, v) I Ki(x)r. dx. (52)

With the aid of the Parseval relation, (49), we can write down an ex-
pression for the time averaged power transmitted across any (z),
z 0:

= (24.4Eo)-1 FL; 11(v)*hk(v) do- ik(v).f (53)
i .k=1 co

We can now make use of the conditions that er(x, z) and 14(x, z)
must be continuous at z = 0 in order to write down a set of integral
equations from which 3C(r) (1), h,(v), and 112(v) can be determined.

pc,°(0 + dl =2r k-1

1

.17. 2(00 - 3L')(1)]e-izx dl

Oi(x, v)hk(v) dcrik(P), (54)

00

= t Kx(x)} v)hk(v) chr ik(v) (55)
i.k -1

fco

Just as in the case of the TE field, the solution of (54) and (55) re-
duces to the solution of the two integral equations

i(x , v) dx 2zrv/K z(x) S2(1) j ae:,r)(/)e-11x dl

= fz v) dx ;-1 fp'
27- ,

.3e,;')(1)e-'11. dl, (j = 1, 2). (56)

- \/-v/ K=(x) OW}

III. THE SPECTRAL DENSITY MATRIX FOR SEVERAL MODELS

3.1 General Outline of the Construction

In Section II it was shown that the determination of the transmitted
field for a given model depended on a knowledge of the initial value
solutions Bpi (x, v) and %G; (x, v) (j = 1, 2) and the spectral density ma-
trices p(v) and o -(v). In this section we study these functions in some
detail for two simple but important models, the symmetric step model
and the asymmetric step model. These calculations illustrate the
technique for treating the whole class of piecewise constant models.

We first outline the general construction of the spectral density
matrices.' The solutions of (21) have the property that the functions
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gyp; (x, v), (4(x, v) (j = 1, 2) are entire functions of v for each fixed x,
when v is a complex variable. The first step is to determine the two
functions of v, m. (v) and m-(v) such that when Im v > 0, (p,(x, v)
m.(v)(p2(x, v) is a square integrable function of x over [0, 00] and

v) I)) is square integrable over [- 00, 0]. The ele-
ments of the spectral density matrix are then given by the formula

p,k(v) - pail) = lim 1 f Im Mik(n ie) do (57)
.-.+0 7 A

where p, and v are real, Im denotes the imaginary part, and for arbi-
trary complex v

M11(v) = (m -.(v) - m.(P))-1, (58)

M12(P) = M21(v) = i(m-.(v) m.(v))(m-.(0 - m.(0)-1, (59)

M22(v) = m-.(v)m.(v)(m-.(v) - ni.(P))-1 (60)

Equation (57) defines pik(v) uniquely at points of continuity up to
an arbitrary, additive constant. The functions Mik(v) (j, k = 1, 2)
are meromorphic if Im v 0 and all their real poles are simple. The
point spectrum consists exactly of the points which are real poles
of one of the /1/ik(v). There are at most a countable number of such
points. Let vo be a real pole of Mik(v) and let air, be the residue there,

Mik(0 - _

V VO

(61)

Then it follows from (57) and (61) that

Pik(vo + 0) - Pik(v0 - = -Re (aik) (62)

If vo is not a pole of any Mik(v), and Im /IIik,- (1/0, 0 for some (j, k),
then vo is a point of the continuous spectrum and

dp,k(vo) =
1- Im ik(vo)
ir

(63)

If vo is not a pole of any MAW and Im Mik(v) = 0 for all (j, k) in
some neighborhood of vo, then vo is not in the spectrum and

dpik(v) = 0 (j, k = 1, 2) (64)

in a neighborhood of vo.

3.2 TE Fields for Symmetric Step Model

We now apply these formulas to the symmetric step model for the
case of the TE field. The functions K(x) (n = x, y, z) are defined by
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(1 and 2). Equation (21) has constant coefficients in the two regions
lx1 < w and Ix' > w. Since ev(x, z) and hz(x, z) must be continuous
at x = ±w, the desired solution of (21) must be continuous and have
a continuous derivative. We have

v) = cos (04x), I x I w (65)

= cos (wow) cos {(4(1 x I - w))

- (wy/c00) sin ((.0w) sin Iwo(' x - 01, ixl tv (66)

,p2(x, P) = (1/wv) sin (wax), I x I < w (67)

= (1/04) sin (wow) cos 10/0(X w)

(1/we) cos (cox) sin Iwo(x - w)1, x > w (68)

42(x, = v), x < -w (69)

where

W. = {v k2K. 4 (n = 0, x, y). (70)

In (70) wn is defined as a single -valued function of v in the complex
plane cut along the real axis from -k2Kn to oo. That branch is chosen
which is positive real on the upper side of the cut. Simple calculations
now yield

nico(v) = -m _ co(v)

= sin (wow) iw0 cos (w,w)l I cos (wow) - i(wo/w) sin (ww)1-1.
(71)

Therefore,

/II(v) = -1/{411122(v)} = 1/12m-.(0)
11112(v) = .21/2,(v) = 0.

(72)

(73)

In order to determine the spectrum, we begin by decomposing the
whole real axis into the union of three intervals

I, = [- 00, -k2K], 12 = (-k2K,, , -k2K0), /2 = [-k2/(.0 , cc]. (74)

From (57) and (73) it is clear that p 12(v) and p21(1) are constant for
all v, hence

d/312(P) = dP2 1(0 = 0, -co < v < oo (75)

It is easily seen that M11 (v) and M22 (v) are real and have no poles or
zeros in I. Therefore, /l contains no points of the spectrum, and

p11(v) = pii(- 00), dpii(v) = 0 v e I1 (j = 1, 2). (76)
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In the interval 12, M11 (v) and M22 (v) can each have a finite num-
ber of poles, and from (72) it follows that the poles Mil (v) are the
zeros of M22(v) and vice versa. The real poles of Mii (v) are the real
solutions of

coy sin (wyw) icoo cos (wi,w) = 0 (77)

and the real poles of 11122 are the real solutions of

cos (coyw) - '404/04) sin (coop) = 0. (78)

For v E 12, w, is real while wo is purely imaginary. If we let

b(p) = co(p), P(v) = -icoo(v) = (-v - k2 K0)1 , (79)

then (77) in the single unknown v can be replaced by the set of three
equations

k2K0 p2, -v = k2K, b2, b tan bw = p, (80)

in the two positive real unknowns b and p and the original unknown

v. Similarly, (78) can be replaced by the set of equations

k2K0 p2, -v k2K,, b2, b cot bw = -p. (81)

These equations are well known and their solutions have been deter-
mined.6' 9 The set of equations (80) has a finite number of real solu-

tions and always has at least one solution for all positive values of the
parameters, w, k, Ky - Ko. These are the even modes of NM. We
denote corresponding values of v by Fib j = 1, 2,    , R1. The set of
equations (81) also has a most finite number of solutions, although if
(wk) 2 x (Ky - Ko) is small enough it has no real solutions. These are
the odd modes of NM. We denote the values of v corresponding to these

roots V21, j = 1, 2, '  , R2 The points vl f, v2 j, which are all in the in-
terval 12, comprise the point spectrum of (21). Let

Sp(v) = rim { p(v - p(v - . (82)

Then with the aid of (62) it is easy to show that

= P(vii)/11 5P22(vi1) = 0, j = 1, 2, , R1 (83)

OPII(P21) = 0, OP22(V21) = b2(v21)P(v21)/ {1 wP(v2i) },

j = 1,2, ,R2 (84)

With the aid of (65) through (69) and (77) through (79) it is readily
shown that
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p1(x, v11) = cos (b(vi,)x),
1 x 1

< w

= cos (b(v.)w) exp 1p(v,,)(w - 1 x 1)1,

,02(x, P2,) = 1/b(P2i) sin (b(P2,)x), x 5 w

= 11/b(v2,)1 sin (b(P2,)w) exp 1p(P2,)(w -

(P2(s, v25) = 1)25)

It is also true that
X < -W

(85)

x w (86)

(87)

x > w (88)

(89)

Pik)2 dx = 1/6Pii(vd.), h = 1, 2, , R , j = 1, 2. (90)

The remaining points in 12 are not in the spectrum.
Finally, in the interval /3 it is readily shown that M11 (v) and AI- (v)

have no poles. It is shown easily then that the whole interval 13 is in
the continuous spectrum, and in this interval

(1 pi i(v) = i(P) c1 v (j = 1, 2), (91)

where

pi ,(v) = - (c o w) co.;-; cos' (c0w)) lw , (92)

P2(11) = [Wu) COS2 (6),,W) (.44,2 sine (04w)]-1,02,04 . (93)2r

In summary, the spectrum of (21) consists of the points vik, k
1, 2, , R1, j = 1, 2, and the interval 13. Equation (27) for the trans-
mitted field can be written as

2 R

enx, = E E 6Pii(vik)ai(vik)4oi(x, vik) exp zi
i-1 k 1

exp zlco,(x, v)g,(v)p;i(v) dv
i=1 ktio

2

+ E exp -Vi"; zlco,(x, v)g,(v)/4,(p) dv. (94)o
The terms in the first, double summation in (94) are just the possible
TE modes which can be excited in the waveguide. The terms in the
second summation represent the propagating continuum field while
the terms in the last summation represent the evanescent part of the
transmitted field. A useful interpretation of the propagating continuum
field can be obtained as follows. Consider within the waveguide in the
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region x < -w an incident plane wave of the form

ey""(x, z, v) = exp z - icoo(v)x}, (95)

so that if 9 is the direction of propagation of this wave (measured
clockwise from the positive z axis), then

cos 0 = , sin° = coo(v)/k ViCo . (95)

On striking the region of higher dielectric constant, lx1 < w, part of

this wave will be reflected and part of it will be transmitted through
the region ix' < w. Denote by x+ (x, z, v) this total electromagnetic
field set up by the incident wave, (95). Similarly, denote by (x, z, v)
the total electromagnetic field set up by the incident wave in the region
x > w

evo'(x, z, v) = exp i z ia,o(v)x 1 . (97)

In Fig. (3) we give a schematic description of x+ and . Then it can
be shown that for - k2K0 < v < 0,

exp z}coi(x, v) = ai(v)x,(x, z, v) bi(v)x_(x, z, v) (j = 1, 2).

(98)

For the above values of v the directions of propagation of the incident
waves for x+ and fill the interval -7/2 < 0 < 7/2. Thus, the prop-
agating continuum field is just a wave packet of plane waves appropriate
to the medium defined by the dielectric tensor K(x).

Similarly, the evanescent part of the field can he interpreted as a
superposition of waves bound to the surface z = 0 and propagating in

w

-w

z

w

w

(b)x _

Fig. 3 -A schematic diagram of the plane waves appropriate to the dielectic
medium in the symmetric step model. The wave x+ is incident on the junction
region from the positive x direction, while x- is incident from the negative x
direction.
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the positive and negative x directions. The distinction between the
propagating and evanescent parts of the transmitted field is further
shown in the expression for the time averaged transmitted power, (29),
which for the symmetric step model is

2 Rf

P = (2C '40 E E -V-, gjoi,) 12 spii(,)
j=1 k,,

2

+ (2,0por E V-, g,(v) 12 p;,(v) dv. (99)
-k.K.

As this expression shows, the evanescent part of the field transmits no
energy on the average.

3.3 TM Fields For Symmetric Step Model

The TM fields of the symmetric step model can be treated similarly.
Equation (43) has constant coefficients in the two regions Ix! < w
and I x > w. Since e,(x, z) and lay (x, z) must be continuous at x = ±w,
the solutions of (43) must be such that #, (x, v) and {1/K,(x)}C(x, v)
(j = 1, 2) are continuous. We have

01(x, v) = cos (Ifrco,x), I x I < w (100)

= (I rcoxw) cos icoo(1 x w)1

- (co../C0)/(cooK(,)1 sin (IC,.co,w) sin {64(1 x I - w)1,
02(x, v) = {191coz} sin (Krwxx), I x I w

= {K,/cox) sin (Krcozw) cos (C00(X W)

{K0/w0) cos (Krw,w) sin {0)(x - w)}, x > w (103)

C(x, v) = -11/2(-x, v), x < -w (104)
where

x I w (101)

(102)

Ka = (KzK2)1, Kr = (Kg/Kx)i, (105)
and o, and wo are defined in (70). Next,

m (v) = - nn_ (v) (coz/K,,) sin (Krcoxw) i(wo/K0) cos (Kro.),w))

{ cos (1 rco,w) - 4K -944/K004) sin (K,w,w)y-i. (106)
Therefore,

211,,(v) = -1/ {4M22(0) = /12 (107)

111 ,,(v) = 11121(v) = 0, (108)
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and from (57) and (108) we have

do -12(v) = dcr21(v) = 0, - 00 < p < oo . (109)

The spectrum in the case of TM fields is determined in the same
way as in the case of TE fields, and we merely state the results. There
are no points of the spectrum in the interval /1 = - oo, -k2Kx],

o ->>(v) 00), daii(v) = 0, v e (j = 1, 2). (110)

The interval /2 = -k2K0) contains a finite number of points
in the point spectrum. The points of discontinuity of v11(v) are the

real solutions of

(04/Kg) sin (Law) + i(c00/Ko) cos (10.0,w) = 0, (111)

while the points of discontinuity of 0-22 (v) are the real solutions of

cos (K,cozw) - i(K °coo/ K °cox) sin (Law) = 0. (112)

If we let

b(v) = K 4(0 p(v) = - if.00(v) = (-v - k2 K o)5 , (113)

then (111) in the single unknown v can be replaced by the set of equa-
tions

-v = k2K0 p2, -v = k2K, - Krb2/K bK, tan bw = pK 
(114)

in the two positive real unknowns b and p and the original unknown
V. In the same way, (112) can be replaced by the set of equations

-p = k2Ko p2, -v = k2Ki. - Krb2 /K, , bK, cot bw = -pK1 .
(115)

The set of (114) has a finite number of real solutions and for all posi-

tive values of the parameters Ko/K, Kx/K w, k2 (Ka, - K0) there is
always at least one solution.6, 9 These are the even modes of NM. The
corresponding values of v are denoted by vii, j = 1, 2, , Si. The set
of equations (115) also has at most a finite number of solutions, al-

though if (wk)2 - Ko) is small enough it has no real solutions.
These are the odd modes of NM. The corresponding values of v are
denoted by v21, j = 1, 2, , S2. The points vii, v21 are the point spec-
trum of (43) and they all lie in the interval I2. Furthermore,

derii(vii) = 8(P(vii)), 50-22(1,11) = 0, j = 1, 2, , S, , (116)

Scr11(v21) = 0, 50.22(12j) = NV21)2 S(P(P2a))/ j = 1, 2, .
, S2 (117)
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where

k2KoK.(K7 -S(p)
= LP[wP (K.Kz - Kbe + k2nK. - . (118)

From (100) through (104) and (111) through (113) it follows that

IP1(x, = cos (b(vii)x), I x I w (119)

= cos (b(vii)w) exp 113(vii)(w - Ix i) ), I x I w (120)

itt2(x, v2;) = ilfz/b(P2i)) sin (b(v2i)x),
I

x
j <= w (121)

= {iCz/b(P2i)} sin (b(v21)x) exp IP(P2i)(w - x > w,
(122)

1,1/2(x, v21) =-* ---4/2(-x, v21). x < -w (123)

It is also true that

-CO
4/1(x, vik)2{Kr(x)}-i = 1/ Soii(vi,), k = 1, 2, , Si , j = 1, 2.

(124)

The remaining points in /2 are not in the spectrum.
The continuous spectrum is the interval /3 = [-k2A70, co]. For

points of the continuous spectrum

do i(v) = dv (j = 1, 2), (125)

where

(P) =

T22(v) =

1 2 2 2- [1(0.) sm. (Law)2r

2

-2r [K ow= cost (Krco.w)

cost (Krtozw)IlKoKrKzuh, , (126)

K,Kzco: sine (Krw,w)I1Koc02.00 (127)

To summarize these results, the spectrum consists of the points vjk,
k = 1, 2,  , Si, j = 1, 2 and the interval /3, and the transmitted field
can he written in the form

2 si
hum z) = E E exp {-i\-vikz}

i=1 k=1
2 nn

+ E exp {-i -v z p)//, (v) r; i(v) dv

+ E
2 .

exp { - -\/;z}1,G,(x, v)12,;(00 -;,(v) dv.
J (128)

0
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Just as for the TE fields, the terms in the first, double summation in
(128) are the possible TM modes which can be excited in the wave -
guide. The terms in the second summation represent the propagating
continuum field while the terms in the last summation represent the
evanescent part of the transmitted field. Just as for the TE fields, the
propagating part of the continuum field can be interpreted as a wave
packet of reflected and refracted plane waves, and the evanescent part
of the field can be interpreted in terms of surface waves at z = 0.
Equation (53) for the transmitted energy is

2 Si

Pt = (2wE0)-1 E E Ar=-Tik I hicpio 12 ouii(vio
1-1 k=1

+ (2,0Eor E
2

i-1 k.K.

IMO 12 cr;i(v) dv. (129)

3.4 TE Fields For Asymmetric Step Model

We now turn to the second of the two models which are studied in
detail and examine the TE fields for the asymmetric step model. The
functions K(x) (n = x, y, z) are defined by (3) through (5). Equa-
tion (21) has constant coefficients in the regions Is! < w, x > w, x <
-w, and we seek solutions which are continuous and have continuous
first derivatives. Then

soi(X, = cos (wax), I X I < W (130)

= cos (0.),,w) cos {w2(x - w)}

- (04/402) sin (ww) sin {co2(x - w) , x >= w (131)

= cos (co,,w) cos 140,(x w)}

+ (644)0 sin (couw) sin {coi(x w)} , x < -w (132)

<P2(s, = (1/wa) sin (wyw), I x I -5: w (133)

= (1/04) sin (wow) cos {w2(x - w)}

+ (14)2) cos (covw) sin {(.02(x - w)} , x > w (134)

-(1/w) sin (cow) cos twi(x w)1

(1/04) cos (04w) sin (0),(x w)}, x < -w, (135)

where

(v k2K)1 (n = 1, 2, x, y). (136)
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As before to,, is defined as a single -valued function of v in the complex
plane cut along the real axis from -k2K to 00. Then

mc.,(v) 1(0, sin (wow) + i(02 cos (c.),,w)1

{ cos (00,,w) - i((02/(0) sin ((0,w)1-1, (137)

= - {(0,, sin (04w) i(0, cos (ww)1

 1cos (ce,w) - i((0,/(0,,) sin (04w)1-1. (138)

From (58) through (60) and (137) through (138) we obtain

111 k(v) = N ,k(v)/ D(v) (j, k = 1, 2), (139)
where

N,1(v) = N(1 - co1w2/c02,,) + (1 + wic02/c02,) cos (20.),,,w)

- + (02)/041 sin (20.),,w)], (140)

N,2(v) = N 21(P) = (i72)(w' - W2), (141)

N22(v) = - 0)1(02) - (c02,, wici-,2) cos (2c0,,w)

ico,,(0)1 + 0)2) sin (2(0w)1, (142)

D(v) = (c0, coiwWw) sin (2(0w) w2) cos (2(0w). (143)

To determine the spectrum we note first that in the interval /1 =
1- 00, -0Kid, the functions 3/1,;(v) (j, k = 1, 2) are analytic and
real. This interval, therefore, contains no points of the spectrum and

dp,k(v) = 0 (j, k = 1, 2), v c I, . (144)

The only real poles of the functions M (v) are in the interval 1,, =
(-k2Ky, -0K1). These poles are the real solutions of D (v) = 0. In
I.2, (0 is real while (01 and (0,, are purely imaginary. If we let

b(v) = (0,(v), pn(v) = -i(.0(v) = (-v - k2K)1 (n = 1, 2), (145)

then the equation D (v) = 0 is equivalent to the set of four equations

-v = k2K1 p2, , -v = k2 K 2 + p , -v = 1,72 K  - b2 , (146)

tan 2bw = 1p,/b p2/b1/11 - (p,/b)(p2/b)1,

in the three positive real unknowns b, pl, p0 and the original unknown
v. These equations and their solutions have also been studied in de-
tail." In order that (146) have a solution, it is necessary and suffi-
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cient that

Ky > Kr, = 1, 2),

2wk(K, -K > tan' 1(K, - K

If conditions (147) are satisfied, D (v) = 0 has a finite number of real

solutions, v, j = 1, 2, , R which all lie in the interval I, This is
the first significant difference between the symmetric and asymmetric
step models. The symmetric step model always has at least one point
in its point spectrum while the asymmetric step model may have no

point spectrum.
We can write, assuming that (146) and (147) are satisfied.

(147)

OPik(Pi) = -N,A(PO/DVO, j, k = 1, 2, 1 = 1, 2, , R, (148)

where D'(v) = (d/d1) D(v). If we make use of (145), it is easy to show
that

{4140}2 = OPII(Pi)(3P22(Pt), l = 1, 2, , R. (149)

Neither of the functions co1(x, v1) or co2(x, v5) is square integrable over
-00 < x < 00 for j = 1, 2, , R. However, because of (149), they
appear in (27) for ev") (17, z) only in the combination

(I)(x, v,) = VaPil(Pi) toi(x, Pi)

{ (5P12(Pi)/ V6Pli(Pi) ko2(x, Pi),

If we define

j = 1, 2, , R. (150)

4)0(x, Pi) = Vbpii(P,) cos (b(v

+ P12(v / v ( 5 P b(vi) ) sin (b(vi)x), (151)

then because of (146)

(I)(x, v,) = (I)0(x, vi), Ix I
C w (152)

= (I)(w, vi) exp Ip2(vi)(w - x)I, x w (153)

= 4'o(-w, vi) exp {pi(vi)(w x)}. x < -w (154)

Thus, the functions (1)(s, Ki) are square integrable, and, as we. shall see,
are just the possible propagating modes in the wave guide. The re-
maining points in the interval are not in the spectrum.

The remainder of the real axis, the interval -k2K, < v co, forms

the continuous spectrum. To show this, consider first the interval
= [-k2K1 In , co and co, are real, while co,, is purely
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imaginary. The functions Ill ik(v) have no poles in I, and their imaginary
parts are not zero. We introduce the notation

64(0 = NO, wi(v) = Pi(v), co2(v) = ip2(v), v e I, . (155)

Then we can write

d pik(v) = IP 1(0/ 6,(017* i(Ork(v) (j, k = 1, 2), (156)

where

r,(v) = cos bw (p2/b) sin bw, (157)

r2(v) = b sin bw - p2 cos bw, (158)

A(v) = { b sin 2bw - p2 cos 2bw}2

{(p,p2/b) sin 2bw pi cos 2bw}2. (159)

For v E I. it is clear from (131), (134), and (155) that go,(x, v) and go2(x, v)
both grow exponentially as x co . However, from (156) we see
that in (27) for enx, z), the functions coi(x, v) (j = 1, 2) appear only
in the combination

A(x, = ri(P)coi(x , ± 1.2(v)go2(x, (160)

when P . However,

A(x, v) = cos lb(x - - (p2/b) sin {b(x - w)} I < tv (161)

= exp {p2(w - x)} , x > w (162)

= (cos 2bw (p2/b) sin 2bw) cos fp,(x w)1

+ (1 / p i)(b sin 2bw - p, cos 2bw)

sin fp,(x w)} , x < -w. (163)
Equations (161) through (163) represent the second important differ-
ence between the symmetric and asymmetric step models. In the. sym-
metric model all the components of the continuum field are oscillatory
functions of x on both sides of the waveguide while in the asymmetric
model some of the components of the continuum field are exponentially
damped on one side of the waveguide. The physical interpretation of
A (x, v) will be discussed later.

In the remaining interval, /4 = [-k2K2, co ], the functions (n, =
1, 2, y) are all real and the functions Mil; (v) (j, k = 1, 2) have no
poles. Therefore,

(iPik(v) = P',A(P) dv, (164)
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where

= - (oh + 0)2) 12 cos2 (wyw) + w1w2 sin2 (covw) (165)

PL(P) = A21(v) = 1 coy(coi - w2)(0): + 0,10,0 sin (coy.) cos (wyw)/D, (165)
7r

PL
1(P)

= w:(011 (-02)12. sin2 (wyw) co1c42 cos2 (04w))/24, (167)

D(v) = (co2i, + (4,0,02 sin2 (2040 + c4((41 0,2)2 cos2 (2couw). (168)

The spectrum for the TE fields of the asymmetric model consists of
the (possibly empty) set of points Pi j = 1, 2, , R and the interval
-k2K, < v < 00. The transmitted field can now be written in the
following way.

et,") (x, = i{ OPII(Pi)rtOPik(vi)gk(vi) exp z}010(x, Pi)

1 j-kIKI 2

exp - z} A(x, v){ ri(ogi(v)}{pi(p)/A(v)} dv
101C ,

2+ E exp { z}coi(x, v)gk(v)P;k(v) dv
i,k 1 IcalCa

ao

exp I - z ko,(x, v)gk(v)p,,(v) dv. (169)

The expression for eynx, z) has been split up into a sum of parts in
order to facilitate its physical interpretation. The first part represents
the possible discrete, propagating modes which can be excited in the
system. The form of these modes has been studied in detail elsewhere,5'
and as pointed out earlier, unless condition (147) is satisfied, no such
modes can be excited. In order to interpret the second term, consider
within the waveguide in the region x < -w an incident plane wave
of the form

e,°)(x, z, v) = exp { z - icoi(v)x}. (170)

At the surface x = -w, part of this wave will be reflected and part
will be transmitted. However, at the surface x = w, the wave will
suffer total internal reflection. The total electromagnetic field set up
by ey"))(x, z, v) is proportional to A(x, v) exp { VT-vz }. The second
term is then just a superposition of plane waves which are totally
reflected at x = w. In Fig. 4 we give a schematic description of these
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K2 (< Ki)

Km

K1

z

Fig. 4 -A schematic diagram of the totally reflected wave in the asymmetric
step model. The wave is incident on the junction region at x = -w where it is
partly reflected and partly transmitted. The partly transmitted portion is then
totally reflected at x = w.

waves. In microscopy the theory of the Becke line is based on just such
a superposition of totally reflected plane waves.° The third term is a
superposition of plane waves which are reflected and refracted at
x = ±w. The last term is a superposition of waves bound to the surface
z = 0 and propagating in the positive and negative x directions.

The time averaged, transmitted power is

E V I Vapdvi)
1-1

+ OP12(v1)/ V6P11(V1)1g2(P1) 12
k2K.

(2041070-1 f I r1(v)91(v) 1'2(092(v) 12 1P1(11)/A(V) dv

0 2

 (20410)-1 Nri; E gm*gk(v)p'ik(v)} dv.
f-k2K, .k-1

(171)

3.5 Till Fields For Asymmetric Step Model

The TM fields for the asymmetric model present no new features,
and we merely record the results. We have

114x, v) = cos (K,wxx), I x I < w (172)

= cos (Krw,w) cos {c02(x - tv)}

- (co.,K2/(.42/c) sin (Krcoiw) sin {w2(x - w) , x w (173)

= cos (Krcoxw) cos {coi(x w)}

(co,K,/co,Kg) sin (Krco,w) sin {o,(x w)}, x < -w (174)
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02(x, = (K,/w=) sin (KA0M, ixi6w
= (K,/w=) sin (K,corw) cos {co2(x - w)}

(K2/w2) cos (Krce.w) sin Iw2(x - w))

= - (K ,/w=) sin (Law) cos (0,,(x w))

+ (K1/0,1) cos (Lcogw) sin 10.11(x w)), x S -w (177)

where 61/4(v) (n = x, 1, 2) are defined in (136) and K, and Kr are de-
fined in (105). Next,

(175)

x w (176)

me(v) = ((0)./K) sin (K,.04w) i(c02/K2) cos (K,04w))

{ cos (Krco.w) - 1(w2Kg/w.K2) sin (1C4,41.0)-1, (178)

m- (v) = - (0)./Kg) sin (Ifro4w) i(01/K1) cos (K, -co=w))

 (cos (ICAhw) - i(w,Kg/co.Ki) sin (K,w,w)ri . (179)

Then from (58) through (60) , (178), and (179) we obtain

Affh(v) = Nik(v)/D(v) k = 1, 2), (180)

where

Nii(P) = - cutco2K2d04KIK2)

+ (1 + co1co2K:MKIK2) cos (21C,040

- i(lf 0/co.)(wi/Ki + w2/K2) sin (2K,44.0],

Ni2(v) = Ar21(v) = (i/2)(0,1/K1 - oh/K2),

N22(v) = 1[(0Z/K22 - co1(02/K1K2)

- (4/K: + coico2/K1K2) cos (21C4o.w)

 i(cui/K,)(o),/lCi o1/2/1C.) sin (2K,cow)], (183)

D(v) = (cor/K ohco2K,/caC,K2) sin (21Crw.w)

w2/K2) COS (210.o.w). (184)

There are no points of the spectrum in /1 = [ - oo, -k2IC]. The
only real poles of the functions M ik (V) are in the interval /2 = (-k2Kx,
-k2K1). In /2, ok, is real while 04 and 0,2 are imaginary. If we let

b(v) = K,u),(v), p(v) = -44(v), n = 1, 2, (185)

(181)

(182)
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then the equation determining the poles, D (v) = 0 is equivalent to the
set of equations

-v = elf 7) , --p = k2K2 + A ,
Kr-v = k2Kr -.7(.1)2 ,

(186)
tan lbw = ./bK, p2K2/bK2)/(1 - p1p2K2z/b2K1K2).

In order that these equations have a solution, it is necessary and suf-
ficient that5,

Kx > K (n = 1, 2),
(187)

2wk {iCz(Kx - KO/ Kx)1 > tan -1 I - K2VIC:(K. - K1))1 -
If conditions (187) are satisfied, D (v) = 0 has a finite number of real
solutions in 12, v.', j = 1, 2,  , S.

If (186) and (187) are satisfied, we can write

Baik(vt) = -N ik(vt)/1)'(vt), j, k = 1, 2, 1 = 1, 2, , S. (188)

Just as for the TE fields, it is true that

{ 60'140}2 = 5a11(vi)60.22(P1), 1 = 1, 2, , S. (189)

Because of (189) the functions 1,1.1(x, v,) and 1/2(x, vi) appear in (49)
for 1?,(;)(x, z) only in the combination

`I(x, vi) = Voa ,,(O',) ikiCr, v

{ 60-12(P ,)/ v buii(v 1)1 12(x i) j = 1, 2, , S. (190)

If we define

1110(x, Pi) = 1/5cri,(v,) cos (b(v,),v)

K.:50'12(vi) /Vcril(v,) b(v ,) I sin (b(vi)x),

then because of (186)

gr(x, v,) = NP,,(x , v1), I x I < to

(191)

(192)

= 4,0(w, vi) exp Ipbi)(w - x)), x >= w (193)

=4/0(-w, vi) exp p ,(p i)(w x)) . x _5 -w (194)

The remaining points in /2 are not in the spectrum.
The remainder of the real axis, the interval -OK, < v

the continuous spectrum. In the subinterval .13 = [- 1,72K 
wx and col are real while oh is imaginary. If we let

K,40,(v) = b(v), w1(v) = p1(v), w2(v) = ip2(v), v e I, , (195)

co forms
2-kK2),
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then we can write

67 ik(v) = ; {IWO/ C 'A(018 ,(v)Sk(v) dv (j k = 1, 2), (196)

where

My) = cos bw (p21C,/bK2) sin bw, (197)

s2(v) = -(p,/K2) cos bw .) sin bw, (198)

A(v) = {(b/K,) sin 2bw - (p2/K2) cos 2bw)2

+ (PiP2K./bK,K2) sin 2bw (p,/K,) cos 2bw}'. (199)

When v e 01(x) and 02(x, v) appear in (51) for 14`)(x, z) only in
the combination

Z(x, v) = 81001(x , s 2(0;1/ 2(x , v) . (200)

We have

Z(x, = cos { b(x - w)}

(P2Ka/bK2) sin { b(x - w)}, I x I < w (201)

= exp p2(w - x)}, x z w (202)

{ cos 2bw (p2K./bK2) sin 2bw} cos {Pi(x w)}

(1/1)0{0/Cl/IQ sin 2bw

- (P2Ki/K2) cos 2bw) sin {p,(x w)}, x 5 -w. (203)
In the remaining interval, /4 = [-k2K2, oo ], the functions w (n =

1, 2, x) are all real and we can write

dcrik(v) = cr'ik(v) dv, (204)

where

=
1
- (w,/K1 (42/K2){(co://0 cos' Crc xW)

(wiw2/K1K2) sin' (Krco.w))/D, (205)

(42(0
1

= aL(P) = (w:/K,)(6),/K, W2/K2)7

 {2.7-1C co,w2/KIK2} sin (K4...w) cos (K,w,w)/D, (206)

a12(v) = 1 (w.r/Kw)2(6),/Ki (.02/K2){(wic02/KiK2) cos' (Law)

(co./K,)2sin2 (Lowy)) /0, (207)
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= Rcoi/Kg)2 (co,c02/K,K2) 2 sin2 (21ccazw)

(wz/IC,)2(04/K + 0)2/K2)2 cost (2K,cozw). (208)

To summarize, the spectrum for the TM waves of the asymmetric
model consists of the (possibly empty) set of points vi , / = 1, 2, , 8,
and the interval -k2/C1 < v < 00. The transmitted field can be written
as

S 2

hnx,z) = E E 80.,(pi)0 aaik(v,)hk(vi) exP Z111/(X, vi)

-k2K, 2

+ -1 exp ( Ar-7, z) 17,(x, v) E si(v)h,(v) 1p,(v)/KiA(v)) dvr
2

+ :E: exp { z) Ohk(v)a;,(v) dv
,k-1

+ E Jr' exp 1//v z v)hk(P)eik(P)
0

The time averaged, transmitted power is

(2c00)-1 E V -I/ t:1 a z) hi(Pt) 10-12(vt)/ cril(Pt)lhAvi) 12

-k.K.
Ar-71; I S l(P)h 1(0 S 2(P)h 2(0 12 11 1(P) K A(1,) I dv

k,K,

(209)

0

-11- (2(4E0) 1 f 1/r1; E hi(o.hk(oeik(v) dv. (210)

IV. APPROXIMATE SOLUTION OF THE INTEGRAL EQUATIONS

In Section II we obtained general expressions for the reflected and
transmitted fields for the TE fields in (18) and (27) and for the TM
fields in (41) and (51). In (27) and (51) there appear the functions

v) and 1/; (x, v) and the spectral density matrices p(v) and o(v).
A technique for determining these quantities in certain cases was
illustrated in Section III by explicitly calculating them for the sym-
metric and asymmetric step models. In order to complete the determina-
tion of the reflected and transmitted fields, the functions Kr' (/), ae(r)(/),
gk(v), and hk(v) must be calculated. In Section II we showed that
these functions were determined by the integral equations (30)-(31)
and (54)-(55).

We have been unable to solve these integral equations exactly for
the general case. However, there are certain cases of great physical
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interest, such as the electro-optic diode modulator, where excellent

approximate solutions can be obtained. Let

M = max Kn(x),

and assume that

= min lin(x), (n = x, y, z) (211)

(iW,, - m)/7n << 1 (n = x, y, z). (212)

Then the incident field impinges on an essentially uniform, plane
dielectric interface, and the reflected field can be calculated as if the
region z > 0 were a uniform dielectric. Let En (n = x, y, z) be suitably
chosen, constant values for the dielectric tensor for z > 0. Then it is
readily shown that for the TE fields

Kr)(/) = Re(/)g")(/), (213)

and for the TM fields

3cLr)(0 = Rh(o3cLi)(0, (214)

where the reflection coefficients are

R,(1) = SZ(/) - lc,S2(1/kv)11S2(1) kS1(1/14)ri , (215)

Rh(1) = {k=2(1) - S2(1/kz) kx 0(1) + 0(1/k)}-', (216)

= (g)1 (n = x, y, z), (217)

and n (/) is defined in (16). In this approximation, the total fields at
z = 0 for the TE and TM fields are, respectively,

ey(x, 0) = T ,,(1)8Li) WC"' dl, (218)

hy(x, 0) = 21; f Th(1)3C,;')(1)e-"x dl,

where the transmission coefficients are

(219)

T(1) = 1 + R(1), n = e, h. (220)

Now that ey(x, 0) and hy(x, 0) are known, gi(v) (j = 1, 2) can be cal-
culated from (28) and h ,(v) (j = 1, 2) can be calculated from (52),
since ey(x, 0) = e,;`)(x, 0) and hy(x, 0) = (x, 0).

We illustrate some features of the calculation of gk(v) and hk(v) with
the symmetric and asymmetric step models. We first note that if these
models are used to study an electro-optic diode modulator, typical
values of the parameters defining the dielectric tensors in (1) through (7)
area n = 3.31, A 10-3, (5 2 X 10' (n = x, y, z), O1 = 0.960,
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02 1.04 A. Then M - in 1.4 X 10', inn 10.9. Condition
(212) is thus well satisfied.

For the symmetric step model we let En = Ko (n = x, y, z). If the
functions 8V)(1) and 3C,") (1) are sharply peaked about 1 = 0, then
(218) and (219) can be further approximated by

ey(x, 0) = Te(0) lx di = 11,(0)e!,i)(x, 0), (221)

h(x, 0) = T h (0) (x, 0). (222)

The calculation of gk(v) and hk(v) is now reduced to quadratures. If
the incident field is not sharply peaked, we define

(1),(/, =
fcc

(pi(x, v)e- dx, (223)

*Ai, = _1
27- fco ",p.(x 0110 dx, (224)

so that

g i(v) = f T 6(1)8,(;)(1)(1),(1, v) dl, (225)

h1(v) = f 71,(/)3Cf;)(/)*,(/, v) dl, j = 1, 2. (226)

If v is in the continuous spectrum, (1);(/, v) and 4;(/, v) are distributions
which are easily determined with the aid of the relation"

fo

cc

eix° dx = 1/(io) 8(Q), (227)

where (5(a) is the delta function and when 1/a appears under an integral
sign, it is assumed that the Cauchy principal value is taken. If v is in
the point spectrum, c1);(/, v) and 1/, (1, v) are ordinary functions.

For the asymmetric step model we let En = + K2), (n = x, y, 2).
For this model, a straightforward application of (28) and (52) fails
in general if v is the point spectrum or if P e Ia , because soi(x, v) and
&, (x, v) now grow exponentially as x tends to either plus infinity or
minus infinity. This apparent difficulty is merely a reflection of the
manner of convergence of the integrals defining gk(v) and hk(v). For
our purposes here, it is enough to note from (169) and (209) that
when v is in the point spectrum, the functions gk(v) and hk(v) do not
appear independently, but only in the linear combinations
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2 co

E oPii(Pi) I 'oPik(Pi)gbi) = Le(x, 0)c1)(x, vi) dx, j = 1, 2, , R,

(228)
2 ao

EOff I i(v (50-i k(P i)hk(Pi) = f h(x , 0)N1f(x , vi) dx, j = 1, 2, , S.
k-1 -co

(229)

The integrals on the right of (218) and (219) are now well defined.
Similarly, if v /3 , the relevant quantities to calculate are

2 oo

E rk(ogk(v) = ey(x, 0)A(x, v) dx, (230)fklco
2 co

E sk(ohk(v) = hu(x, 0),S.7(x, v) dx. (231)
k..1

fco

If v t /4 , (28) and (52) can be applied directly. Now, all the techniques
discussed in the case of the symmetric model can be applied here.

V. SUMMARY

In Section I we have defined a class of dielectric waveguide models.

The waveguide is formed by an anisotropic, nonuniform dielectric
filling the half space z > 0. The dielectric tensor is diagonal in the
fixed coordinate system of Fig. 1, and the diagonal matrix elements
are functions of x only, Kn(x) (n = x, y, z).

Integral representations for the incident, reflected, and transmitted
fields were given in (15), (18), and (27), respectively, for the TE fields,
and in (39), (41) and (51), respectively, for the TM fields. These rep-
resentations are very general, holding for a large class of functions
Kn(x) and incident fields. These integral representations, however, con-
tain the unknown functions cf, 1(x, v), C(x, v), p ik(v) and crik(v) (j, k = 1, 2),

which are determined solely by the dielectric tensor, Kn(x), and the
unknown functions gk(v), hk(v), (k = 1, 2), 6,;')(/), and 3C(') (0, which
also depend on the incident field and the boundary conditions at z = 0.
It was shown that this latter group of unknown functions are the solu-
tions of two sets of integral equations, (30)-(31) for the TE fields
and (54)-(55) for the TM fields. These equations are very complicated,
and we have been unable to solve them exactly for any specific models

of interest.
In Section III we gave a detailed calculation of the functions cpi(x, v),

v), pik(v), and crik(v) (j, k = 1, 2) for both the symmetric and
asymmetric step models. These calculations are important in their own
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right, since the symmetric and asymmetric step models have been
used extensively in the study of the electro-optic diode modulators.1-6
However, these computations also illustrate the technique for treating
the whole class of piecewise constant models. This is important, for
it is not yet completely established which is the correct model to use
in exploring the behavior of the electro-optic diode modulator, and
it is felt that any actual physical situation can be well approximated
by a piecewise constant model.

It should be noted that the success of the techniques used in this
paper depends on being able to obtain exact analytic solutions of (21)
and (43), or at least good analytic approximations to these solutions.
There are a number of other models for which the exact solutions of (21)
can be obtained, for example the continuous dielectric constant models
described in Section III of NM. It is, however, much more difficult
to find models, other than the piecewise constant models, for which
(43) is solvable in terms of known functions. Nevertheless, the pos-
sibility remains of investigating the TE fields for a fairly wide varity
of models.

The calculations of Section III provide a method of determining
the discrete modes which is different from the methods used in earlier
treatments.5'°'9 These calculations showed also that the asymmetry
of the background light is accentuated in the asymmetric step model
by total internal reflection at the junction region boundary.

Finally, in Section IV it was shown that good approximations can
be found for the functions gk(p), hk(p), ac(r)(/), and 8m(/) in certain
cases of physical interest. In particular, these approximations are valid
for the electro-optic diode modulator. These approximations do not
depend on a particular choice of the incident field.

The final results of this paper then are integral representations for
the fields for both the TE and Till fields. Of the various functions in
the integrands, some have been determined exactly and good approxi-
mations have been found for the remainder for a number of important
models and for arbitrary incident fields.

These integral representations are complicated in appearance, but
when z is large enough, asymptotic expansions of them can be found
which lend themselves to numerical analysis. In a subsequent paper
asymptotic expansions of the transmitted fields will be presented for
the symmetric and asymmetric step models in the case that the inci-
dent field is Gaussian and numerical results for cases of experimental
interest will be presented.
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Demagnetizing Fields in Thin
Magnetic Films

By D. B. DOVE
(Manuscript received January 31, 1967)

Demagnetizing fields play an important role in the operation of many
thin magnetic film devices. A requirement of high packing density leads to
strong localization of induced changes in magnetization; and, therefore, to
correspondingly large demagnetizing fields and drive currents. A treatment of
the demagnetizing field problem for thin film materials is given here for
film properties and fields which are nonuniform along the hard anisotropy
axis. Specifically considered are saturating fields, variations in film thick-
ness and anisotropy constant, interaction between films, and the effect of
easy direction bias fields.

I. INTRODUCTION

The behavior of the magnetization in thin magnetic films of large
lateral extent subject to a uniform applied field may be calculated
directly from a knowledge of film properties and field strength. The
calculation of the behavior of magnetization in the presence of non -
uniformity of film properties or of applied field, however, must take
into account the demagnetizing field that arises from a local non -
uniformity of magnetization. Such a situation occurs in many problems
of practical interest. Internally generated fields give rise to a number
of effects when nonuniform fields are applied to thin uniaxially ani-
sotropic films.1' 2 For example, the hard axis field required for satura-
tion may be several times the anisotropy field and the induced mag-
netization component may spread to regions where the applied field
is very small. The occurrence of such effects in thin films has been
considered by Rosenbere using a calculus of variations approach and
by Kump and Greene' and Kump5 using an iterative numerical pro-
cedure. More recently Dove and Lone have shown that there is a
simple solution to the nonuniform field problem in the case of non -
saturating spatially periodic applied fields, and have treated localized

1527
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fields by using a Fourier series technique. Good agreement was found
with Kerr -effect probe measurements on flat and cylindrical permalloy
films.

The purpose of the present work is to show how the Fourier series
technique permits straightforward solution of a number of thin film
magnetostatic problems. Flat and cylindrical film geometries are
treated; however, the results are of special interest to the case of
cylindrical films with axial hard direction, owing to the circumferential
flux closure. Specifically, we consider the cases of ;

(i) nonuniform hard axis field,
(ii) nonuniform saturating field,

(iii) variation in film thickness,
(iv) variation in anisotropy constant,
(v) external fields due to magnetization distribution in film, flux

linkage with conductors, magnetic shielding,
(vi) interaction between parallel films, keepers, and
(vii) nonuniform hard axis field in presence of easy direction bias

field.

It is assumed that the quantities of interest vary along the film hard
axis only and that properties and fields are uniform along the easy
axis. Film thickness is taken to be sufficiently small that the direction
of magnetization always lies in the plane of the film, exchange forces
are neglected, being insignificant for cases considered, and anisotropy
dispersion effects are not included.

II. GENERAL CONSIDERATIONS

We consider demagnetizing field effects that arise in thin uniaxially
anisotropic films when relevant parameters vary only along the hard
anisotropy axis. Many applications fall within this category and will
be treated in following sections. 1VIany of the results may be applied
to thin films of other types of magnetic materials in the range where
they exhibit a constant permeability, if the effective anisotropy field
is taken to be equal to the saturation magnetization divided by the
permeability.

Although the demagnetizing field may be found if the magnetization
distribution is known, and conversely a knowledge of the field enables
the distribution to be found, there is considerably greater difficulty in
determining both distribution and field directly. In the thin film case,
the Fourier series technique provides a means of representing the field
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distribution for which the demagnetizing field can be found quite
generally. The rotation of magnetization within a film may then be
found by balancing, for example, (for nonsaturating fields) anisotropy
torque versus the torque due to applied field and demagnetizing field.
This leads to equations relating the coefficients of the various series
which in a practical application may be most conveniently evaluated
by computer.

The number of terms included in the series determines the resolu-
tion with which a particular curve may be delineated. However, a
series with, say, 100 terms may be made to fit ordinates at 100 loca-
tions exactly, with oscillations about the required curve elsewhere.
The procedure followed here is to use the series to calculate ordinates
at the 100 locations, and a smooth curve is then drawn through the
calculated ordinates. Refs. 7 and 8 have been found of value for the
evaluation of integrals occurring in the following sections.

Numerical examples, where given, refer to nonmagnetostrictive 80/20
NiFe films. The films are finely polycrystalline and are characterized
by a uniaxial anistropy. The easy direction is taken to be circumferen-
tial in the cylindrical film case.

HI. NONUNIFORM HARD AXIS FIELD

This case has been discussed previously° but is included here briefly
for completeness. Let x represent distance along the film hard direc-
tion, M is the value of saturation magnetization, T the film thickness,
K the anisotropy constant and 0(x) the angle which the direction of
magnetization (at x) makes with the film easy anisotropy direction.
We now assume that the applied field H (x) may be adequately repre-
sented over a range -A/2 to +A/2 by the series

H(x) = E hn exp (27rinx/X) (1)
-cc

and that the resulting hard direction component of magnetization
ilf(x) may be similarly represented,

M(x) = M E inn exp (27rinx/X). (2)
n --co

The distribution M(x) gives rise to a local (positive) pole density at
location (X, Y) of amount - div M (X, Y). This gives rise to a field
dH at (x, y) distance R from (X, Y) given by

dH(x, y) = -div M(X, y) . (dv1) . (RN (1)
'1?/
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Fig. 1- A divergence of magnetization at (X,Y) gives rise to a field dH at
(x, y). The x direction is taken to coincide with the film hard (anisotropy) direc-
tion. Under no applied field the direction of magnetization lies along the y, or
easy, direction.

where dH is parallel to R, as in Fig. 1. Since the only variation of mag-
netization is along the x direction, variation with thickness being ne-
glected, then div M reduces to dM(X)/dx where .11/(X) is the x direction
component of M, at X.

The field dH has both easy and hard direction components, however,
symmetry ensures that the resultant field H,(x), obtained by integrating
over the film volume, lies along the hard direction. Then, we find, for a
flat film

1' r- dM(X) (x -
dx R3

X) dX dY T, (3)

where T is the film thickness. Substituting R = [(x-X) 2 (y-Y)2]
and integrating over Y we have

dM(X) 1
H,n(x) = -2T fx--. dx x -X dX.

Now substituting for 31(X) in terms of the Fourier series, we have

farin) exp (27rinX /X)
H,n(x) = +2TM f' dX

y, - X X X

and evaluating the integral,

H,(x) = E anm exp (27rinx/X), (4)
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where an = 477-2TMn/A, n > 0, and a,, = a. A similar result holds for
cylindrical films having a circumferential easy direction, where x now
refers to distance along the cylinder axis. In this case, we find

a = 47M(T/a)(27rna/X)2/0(27rna/X)K0(27rna/X),

where a is the cylinder radius and /0, Ko are modified Bessel functions.
The local rotation 0(x) of magnetization away from the easy direc-

tion due to the applied field is determined by balancing the torque due
to the applied field against the torques due to anisotropy and the
demagnetizing field

2K sin 0(x) cos 0(x) + M ,(x) cos 0(x) = MH(x) cos 0(x), all (5)

We note that sin 0(x) = .11(x)/31, and providing cos 0(x) 0, we
may rewrite (5) as

2K
M MM(x)

,(x) = H(x). (6)

If the field is sufficiently large that 0(x) becomes equal to r/2 then the
film is said to have saturated (at x) and the torque equation (5) is
replaced by M (x) = M. In the nonsaturating case the series represen-
tations (1) , (2), (4) are now substituted in (6) giving

HK E exp (2irinx/X) E ann? exp (27rinx/X)

= E h exp (27rinx/X),
where /1K = 2K/31. Equating coefficients of corresponding terms gives
the result,

mn = + an).
Hence, the series for the M (x) distribution may be obtained in terms
of the coefficients of the applied field and geometrical parameters an
which automatically take into account the demagnetizing field,

M(x) = M E
HK

h"a. exp (27rinx/X).

As an example, we consider a wire at distance d from a flat film,
lying parallel to the film easy direction. A current I along the wire
produces a hard direction field component given by H (x) =
CdI/(d2A-x2), where the origin for x is taken directly beneath the wire,
and C is a calibration constant whose value depends on the units used,
(C = 78.8 for d and x in mil inches, I in amperes, H in oersteds). It is

(7)
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next assumed that the field is repeated at intervals A along the hard
direction in such a way that the field over one wavelength is given by

C dI X X< x
Mx) d2 + X2 2 - - 2

To determine the Fourier coefficients we proceed in the usual way, and
find that for A. sufficiently large H (x) is given to a good approximation
by the cosine series,

Cur 2CIir cl-,' -2..dixH(s) = + 2_, e cos 2irrtx/X .
X A n=1

Substituting into (7) we have

CIMr 2CIMr 6-2 rnd/X

111(x) - cos 2rnx/X. (8a)
X n=1 HK

If such a drive wire arrangement is used to apply a field to a
cylindrical film, there is some variation in axial field strength across
the cylinder. In many cases of interest, the cylinder diameter is
small compared with axial dimensions and there is very tight magneto -
static coupling around the circumference. We therefore take the ef-
fective axial field as that applied along the wire axis, a reasonable
approximation for many cases. The result (8a) then applies to the
cylindrical film case provided a is given the appropriate value.

When a field is applied by a circular loop of radius d around the
film (of radius a), it may be shown that the axial field at the surface
is given by the series, for A sufficiently large,

CIr 2CIir 271-nd (
X

27rnd) (27rna) 27rnx
H(x, a) =

X + X
K, /0

X
cos ---

XX -1

where I0 are modified Bessel functions. The field is defined over
-A/2 to +A/2 and d > a. The axial component of magnetization in
a cylinder excited by such a field is then,

2irnd K(27rricl\I0(27rna) 27rnx

CI Mr 2CIIIIr A \x/kx cos

111(x) - (8b)
XHK X n=1 HK + an

Similar results may be derived for fields applied by more complicated
drive wire or drive strap arrangements. It can be noted that the effect
of superimposing several applied fields results simply in superimposing
the magnetization distributions obtained for the fields separately.
Hence, one approach to designing a magnetization distribution of a re-
quired shape is to approximate the shape by superimposing a set of
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known distributions. Many distributions of practical interest may be
described by a cosine series and discussion in the following sections is,
for clarity, limited to the cosine rather than the full series. Results for
the full series may be readily derived, if required.

Fig. 2(a) to (f) shows the relative fall off in applied field H (x)
and in axial magnetization component 31(x) for a range of drive
strap geometries. The plots are for a 1µm thick cylindrical permalloy
film of 5.0 mil diameter. Curves a, b, c, d correspond to drive strap
half widths of 1.0, 5.0, 10.0, 20.0 mils, respectively. In Fig. 2(a) ,

(b) the distance between drive strap (or return strap) and film axis
is 3.5 mils. Fig. 2(c), (d) and (e), (f) correspond, respectively, to a
distance of 5.0 and 10.0 mils. It can be noted that the magnetization
distributions extend to a considerable distance and do not vary as
strongly as the applied field. The fields of Fig. 2(a), (c), (e) are
shown to normalized scale, however, the peak field or drive current
required to just saturate the axial component at x = 0 varies signifi-
cantly with geometry, and is shown in Fig. 3.

In a plated wire memory, the local state of a region of film may be
assigned as positive or negative depending on the remanent circum-
ferential component of magnetization. To read out the circumferen-
tial component in a nondestructive manner, a local axial field is
applied by a drive strap surrounding the wire at the location of in-
terest, and the signal appearing across the ends of the plated wire
is measured. The signal is due to the circumferential flux change
integrated along the wire (neglecting capacitive or other emfs). The
circumferential component distribution is obtained simply from the
axial component using the relation, 111 (circumferential) = (M2 - 111
(axial) 2) The total area under this curve is proportional to the signal
obtained when the circumferential component has been set completely
into one direction. It is convenient to equate the integrated circum-
ferential component to an equivalent length of film that has every-
where a 90° rotation of magnetization. Fig. 4 shows the equivalent
lengths of film for the curves of Fig. 2.

If now a locally reversed region is established and the readout field
applied again, the signal will have decreased, since the reversed region
contributes to the signal with reversed sign. It has been found previ-
ously6 that the presence of a domain wall has little effect on the macro-
scopic magnetization distribution; hence, the curves of Fig. 2 may be
used to estimate the new signal. In this case, the area under the cir-
cumferential plot is taken negatively over the length of the reversed
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region and positively for the remainder. Fig. 5 shows curves of net
equivalent length versus width of reversed region. Curves a, and h
correspond to strap half width of 1.0 mil but half separations of 3.5
and 5.0 mils, respectively. Curves c and d correspond to strap half
width of 10.0 mils, and half separations of 5.0 and 10.0 mils, respec-
tively.

IV. NONUNIFORM FIELDS LARGE ENOUGH TO PRODUCE LOCAL SATURATION

When the local effective field reaches the value HK then the local
magnetization rotation has the value /r/2, hence, 111 (x) = M, the
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Fig. 2 - The curves denoted a, b, c, d refer, respectively, to a parallel drive strap
arrangement of half widths 1.0, 5.0, 10.0, and 20.0 mils. (a) and (b) correspond
to a strap -to -film axis distance of 3.5 mils, (c) and (d) correspond to 5.0 mils and
(e) and (f) to 10.0 mils. (a), (c), and (e) give to normalized scale the field
H(x)/H(0) applied along the axis of a 5.0 mil diameter, 1Arn thick cylindrical
permalloy film with Hs = 3.0. (b), (d), and (f) show the resulting axial mag-
netization components M(x)/M due to the actual (i.e., non -normalized) ap-
plied field.

saturation value. A further increase in the field cannot therefore, pro-
duce any further increase in M (x) and it is necessary to modify the
preceding discussion to take the effect of saturation into account.

We assume that the magnetization distribution is monotonic, and
the width of the saturated region is specified at the outset. The cur-
rent required to produce this degree of saturation may then be found
for a given drive strap geometry, and the resulting magnetization dis-
tribution is calculated. This somewhat arbitrary procedure renders
the problem tractable.

If the film has saturated over a region -R x LC. R then the
material within this region has M (x) = Ill a constant; hence,
dM (x) /dx vanishes within this region. It is convenient to introduce a
modifying function S(x), having period A, that is zero over the range
-R 5- x R, but is otherwise unity. The product S(x)c/./1/(x)/dx
then has the property of being zero over -R x R but is otherwise
equal to dM (x) /dx. By introducing this product into the integral for
the demagnetizing field in place of dM (x) /dx, we have effectively
modified the integral without changing the limits of integration. Let
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Fig. 3 - Current in drive strap required to just saturate the film of Fig. 2 at
x = 0, for the several drive strap geometries of Fig. 2.

H (x) and M(x) be represented by the finite series

H(x) = E hn cos 2irnx/X, M(x) = M E mn cos 2irnx/X,
0

also let S(x) be represented by a cosine series, then

CO

As(x) = E s. cos 2rnx/X,
n-0

where for the required step function

= 1 - (2R/x), S = - 4R (sin 2rnR/X)
X 2irnR/X

Differentiating the series for M (x), we have

dM(x) 27M
dx - X-

E nm. sin 2irnx/X.
n=0

Then the product may be written,

8(x)
(x) 271-M E E sinm. cos 27rjx/X sin 2irnx/X

dx - a-0 n..0

n > O.

rM= - E E sinmn(sin 27r(j n)x/X - sin 27(j - n)x/X).
A a-0
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This represents a series of the form Ao + Aisin 27x/A + . . . and we
may rearrange by grouping the coefficients to obtain

S(x)
dM(x) -

7m N
pspmp

dx A

EN

E (sip-, - sp+n + son)pin, sin 27ritx/X,
n=1 p=i

where 67, = 1 when p = n, but is otherwise zero, and the series for S(x)
is terminated for subscripts greater than 2N. Using this final series in
place of the series for dM (x) / dx in the integral (3) for the demagnetizing
field we obtain,

{ 1H pi(x) = E, 2n E - s+ ± soCpm,,}a cos 27rnx/X, (9)
9-1

where the an have the values calculated previously for the nonsaturat-
ing case. There are now several conditions that the magnetization dis-
tribution must satisfy: it has the value M(x) = M over the range
-R < x < R and satisfies the torque equation (6) outside this range,
and finally, the amplitude of the applied field is such that M(x)
determined from (6) has also the value M at x = ±R. The required

given by particular drive strap
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5 10 15 20
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Fig. 4 - The change in circumferential component of magnetization averaged
along the film is proportional to the signal obtained during readout. This is ex-
pressed in terms of equivalent length of film that would produce the same signal
when uniformly excited to saturation. The plots are derived from the axial com-
ponent distributions of Fig. 2.
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configuration. We now substitute the series (1), (2), and (9) into

the torque equation (6) and gathering coefficients, we obtain,

HKmo = ho

and the set of N equations,

N

for n = 0

H Knz E Pan (s1,1 - ±
2-

aninn = h.so

2n

n = 1, 2, , N. (10)

These N equations constitute a set of linear simultaneous equations in
the N unknown coefficients mn. These equations may be expressed,

30

20

(,)

I- 10

w
z

w

a
w -10
w
z

-20

-30

Ec,m, = hn n = 1, 2, , N ,
p-i
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d

0 20 40 60 80
WIDTH OF REVERSED REGION, MILS

100

Fig. 5 - Change in net equivalent length of film (proportional to output signal
during NDRO), versus width of reversed domain established beneath drive strap.
Curves a, b refer to strap half width of 1.0 mils, and strap to film axis distances of
3.5 and 5.0 mils, respectively. Curves c and d refer to strap half width of 10.0 mils
and strap to film axis distances of 5.0 and 10.0 mils, respectively. The curves are
derived from the axial distributions of Fig. 2.
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Fig. 6 - (a) Theoretical curve and experimental points taken with the Kerr
effect probe' for a saturated cylindrical film. The broken curve shows the relative
fall off of the axial applied field. (b) The field is applied by a parallel drive wire
arrangement shown in cross section. The current I applied in the drive wires is
1.14 A.

where the c,,,, are given by

Cnp = 2n (81n-p I - sn+p) ( + HK)

Such a set of equations may be conveniently inverted by computer
for any particular case giving the m, coefficients in terms of the hn's.
Since the mn and hn coefficients are linearly related, a scale factor, e.g.,
current in drive strap, is applied to H(x) to ensure that the distribu-
tion has a value IV at x = ±R. The resulting series indicates a non-
uniform distribution for /11(x) within the range -R < x < R, but, by
the action of S(x), this produces no demagnetizing field and therefore
does not influence the distribution obtained outside the range. The
value of 211(x) is therefore set equal to 111 inside the saturation range.
The plot obtained withinTthis range reflects instead the value of
(H - H.)/11K

Fig. 6(a) shows a plot of the axial magnetization distribution where
the film has saturated over a length of 30 mils, for a cylindrical film
of 5.2 mil diameter, 0.69p,m thickness and HK = 3.1 Oe. The broken
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Fig. 7 - Axial component of magnetization for the cylindrical film of Fig. 6
when driven to different degrees of saturation.

curve of Fig. 6(a) shows a normalized plot of the applied field. The
field is applied by a drive wire, and the separation between drive and
return wire is 20 mils as shown in 6(b). The calculation indicates a
current of 1.14 amps to produce this degree of saturation. The points
represent measurements made previously° using the Kerr Effect probe.

Fig. 7 shows the axial magnetization component for the geometry
of Fig. 6 where the film has saturated to widths of 0, 10, 20, 30, 40 mils.
The applied field is shown in Fig. 8, curve a, versus width of saturated
region produced by the field. Curve b is for a drive strap of half width
10 mils and strap to film axis distance of 10 mils. The shape of the
curve does not appear to vary markedly with drive strap geometry.
It can be noted that little increase in current is required to extend the
saturated region from 1 to 10 mils, but that saturation to greater
widths requires increasingly larger currents.

V. FILM THICKNESS VARIATION

Now let T (x) be the variable film thickness and assume that T (x)
and H (x) have the same periodic distance A, then we may write

T(x) = E t cos (27,n,x/x).
n=0
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In the thin film approximation, magnetization variations within the
thickness of the film are neglected and demagnetizing fields are cal-
culated from the net pole density per unit area of film. To take into ac-
count a variation in thickness we take the product T (x)M (x) as the
total magnetization component in the hard direction and evidently the
pole density is then given by - (d/dx) [T (x)M (x)].

Taking the product of the series, we obtain

T(x)M(x) = -§- {to no tnmz,
p-0

N N

+ E Emp[(tn+, + t,-,) + t o;:] cos 27rns/X},

hence, replacing M(x) by T (x)M (x) in (3), the demagnetizing field
is given by

N N

I I = 2_, E in,,(1+, + tog) cos 271-n0, (11)
n=0 p=0
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Fig. 8 - Current required to produce a given width of saturated region along
a cylindrical film of radius 2.6 mils, thickness 0.69im, HK = 3.1 Oe. Curve a is for
the arrangement of Fig. 6. Curve b is for a parallel conductor drive strap of width
20 mils situated at ±10 mils from the film axis.
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where 613 = 1 when n = p but is otherwise zero. Substituting into the
torque equation (6), and equating coefficients we have finally

Hon, = /to
and

(t.. + t + tog) + Thcad nip =h. , n = 1, 2, ,

p=0
N

2 1"-91

i.e.,

E (in+, + tin_,,, + tog) + HKod hin = . - aninho/ K (12)
D=1

This last expression represents a set of linear simultaneous equations
which may be solved numerically to give the coefficients m in terms
of tn and h,,. The calculation, when applied to the case of a fiat film
strip having an ellipsoidal cross section along the hard direction, sub-
ject to a uniform field, predicts a uniform demagnetizing field of
magnitude very close to that indicated by the tables of Osborne9 based
on the solution of Maxwell's equation for the general ellipsoid. Fig. 9
shows the magnetization distribution near an edge of a uniform thick-
ness (0.22 tan) flat film with HK = 2.62 Oe. The points represent data
taken with the Kerr effect probe.
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Fig. 9 - Magnetization component near the edge of a flat film of thickness
0.22iim, and HK = 2.62 Oe. The applied field is uniform and equal to HK. The
edge runs parallel to the film easy direction. The points show measurements
taken with the Kerr effect probe.
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Fig. 10-Axial magnetization component for cylindrical film segments of differing
length due to the field from a parallel wire drive strap at distance ±7.5 mils from
film axis. Curves a, b, and c refer to segments of length 40, 80, 160 mils, respectively.
d refers to a continuous film. The current in the drive wire is 0.5 A. (b) shows a
cross section of the drive wire arrangement.

Fig. 10 shows, for comparison the magnetization distribution for a
nonsaturating hard direction field applied to 5.2 mil diameter cylindri-
cal film segments of differing lengths, but uniform thickness of 0.7p,m,
and HK = 3.0. The field is applied by a parallel drive wire arrangement
of separation 15 mils. Finally, Fig. 11 shows the axial magnetization
distribution for a uniform field applied to a cylindrical film having a
circumferential cut. Film radius is 2.6 mils, thickness is 1.0 !dm and HK
= 3.0 Oe. It is to be noted that the present technique has a spatial
resolution limited both by the number of terms of the series that can
be retained for computation, and by the basic limitation that exchange
forces are neglected. We cannot, therefore, expect to obtain detail of
magnetic behavior very close to an edge, for example, or for an ex-
tremely narrow scratch.

VI. ANISOTROPY MAGNITUDE VARIATION

Let us assume that the anisotropy constant is represented by a
cosine series, i.e.,

K(x) = E lc. cos 2irnx/X.
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Fig. 11- Plot of axial magnetization component for a 5.2 mil diameter cylindri-
cal film with a circumferential gap. The curves show the result for a 4 mil, 6 mil
and wide gap. The axial applied field is uniform and equal to 3.0 oe. Film thickness
is 1.0pm and HE = 3.0 Oe.

Then substituting into the torque equation (6) , and gathering terms
we find

N

E 1 (k koOmp = ho (13)
P

and

E {- (fr, k," _ , k03',;) a674)11 = h ,
p=0

n = 1,2, ,N. (14)

Together these equations represent N +1 linear simultaneous equations
in N + 1 unknown coefficients m , and may be solved by computer.
This calculation may be used for example to find the local behavior of M
at the junction between two regions with differing anisotropy constants,
or to find the effective permeability of a film having some systematic
variation in anisotropy constant. A simplified discussion of this latter
problem has been given previously.' Fig. 12 shows the effect of using a
high HK buffer region surrounding a normal HK section of film. Curve a
shows the distribution for a uniform wire with HK = 3.0, b shows the
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modification when HK is increased to a value HR = 15 for all distances
beyond x = 10 mils and c shows the result when HK is further increased
to 30 oe in the buffer region. The effectiveness of the high HK buffer
region in sharpening the distribution can be noted. This is achieved,
however, at the expense of greater current required to just saturate at
x = 0. For curves a, b, c the currents are 0.50, 0.79, and 0.93 A, re-
spectively. Fig. 12(b) shows a cross section of the parallel conductor
drive strap arrangement.

VII. FIELD EXTERNAL TO FILM

Combs and Wujekll have calculated the field external to a thin film
rectangular slab assuming a pole distribution concentrated at the
edges of the slab. We now calculate the field external to a continuous
film subject to various applied field conditions where the details of the
effective pole distribution form the essential part of the problem. The
results of previous sections may be adapted to find the field external
to films which have a hard axis variation in thickness or anisotropy

(a)

25

11 MILS
--1" 5.2

MILS -

( b)

= 3.0 Oe T= t.o,um

a b

I = 0.5 0.79 0.93 A

Hk2 = 3 15 30 Oe

20 40 60 80 100 120
X, MILS ALONG WIRE

Fig. 12 - (a) Effect of high HE buffer region surrounding a normal HE section of
cylindrical film. Curve a shows the magnetization component for a uniform
film with HZ = 3.0. Curves b and c show the result when HZ is increased to 15 and
30 Oe, respectively for distances greater than 10 mils to either side of the drive
strap centerline. (b) Details of drive strap arrangement. The currents required to
just saturate the film at x = 0 are 0.5, 0.79, and 0.93 A for the cases a, b, and c,
respectively.
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but these cases are not considered in detail here. Consider the field at
some distance d from the surface of a flat film and at distance x
along the hard axis. The external field H. parallel to the film due to
the distribution of poles over the film surface may be found by evalu-
ating the integral

dMx(x) (x - dX dY T
dH.,(x, d) = (15)

[d2 + (X - x)11 
Substituting for M (x) and performing the integration we find

4r2/117'
1-1,e(x, d) - E nin cos 27rn:r/X. (16a)

X n-1 n

This is the external field parallel to the plane of the film given as a
function of distance d from the film. For a cylindrical film the result is

H ,,,,(x, d) = -4i1 -a711 E (-2P)2Ko(27,ndix)

 /0(2rna/X)m,, cos 2rnx/X , (161))

where a is the cylinder radius, and d is the distance from cylinder axis
to the location at which the axial component of field is measured,
(d > a). The field inside the cylinder may be similarly derived, the
result is

2

H,(x, d) = - 4raT M E (-7-P) K(2rna/x)/0(2701d/x)mn cos an-rix/X,
n..1 A

where now d < a. Along the cylinder axis /0(0) = 1. Fig. 13 shows a
plot of the axial component of the demagnetizing field for several values
of distance from film axis. The cylindrical film is assumed to have a
diameter of 5.2 mils, HK = 3.0 Oe, thickness is 1.0p,m, and is excited by
a one turn loop of radius 7.5 mils.

The flux coupling a parallel wire loop parallel to a flat film surface
and to the film easy direction with the conductors at ±D from the
surface may now be found. The flux F per unit length of the parallel
conductor loop is then

F = 42-21(x)T - 2 f H,e(s, z) dz.
0

Substituting for II me and rearranging, we find
N

F = 4r1IIT E m r "Dix cos 27rnx/X. (17)
To..0
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Fig. 13 - External axial component of field due to the distribution of mag-
netization along a cylindrical film. (The field due to the drive strap is not in-
cluded.) The field is plotted along lines parallel to the film axis, at several dis-
tances from the axis. The film has a thickness of 1p,m, Ha = 3.0 Oe, diameter
5.2 mils, and is subject to the field from a one turn circular loop of diameter 15
mils. Curves a, b, and c refer to distances of 2.6, 5.0, and 10 mils from the axis,
respectively.

If the magnetization distribution is due to the field from a parallel
wire loop with conductors at ±d from the film surface, then using ex-
pression (8a), we have

F(x) 7CI111 2irCIM e- " d) cos 27-nx/X
4771 XHK ± (18a)

It can be noted that F(x)/47T is formally equivalent to the magneti-
zation component in the film at the plane of the loop due to a current
I in a loop with conductors at ±(D d) from the film. The mutual
inductance between two loops (not necessarily enclosing the film) may
then be found directly from the above results.

The flux linkage between the film and drive loop is obtained by set-
ting x = 0 and D = d. A current I in the loop gives rise to a magneti-
zation component M(0, I, d) at x = 0, and the flux linking the loop is
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given by M(0, I, 2d), using (18a). The fractional flux linkage is there-
fore M(0, I, 2d)/M(0, I, d).

At x = 0, the expression (18a) may be evaluated in closed form; the
result is,

F(0) 2IC_ - exp (2dIIK/47rMT)Ei(-2dHK/47rMT).
47rT 47r/1/T

Hence the fractional flux linkage (FFL) is

FFL = exp (Ad)E;(- 2Ad)/Ei( -Ad),
where p. = 2HK/47r111T and Ei is the exponential integral. This is a
useful parameter which shows the degree of coupling between loop and
film, and is plotted in Fig. 14 as a function of d, for a flat film of thick-
ness 0.1Ar1, HK = 4.0 Oe.

The result for cylindrical films is more complicated. In this case it
can be shown that

17(x) 2C/7riV/

47rT X

"
prnyKo(2n-nD)I0(27rna)Ki(

X

27rnd)I0(27rna }cos 2.7r7E.,l\x
47r111T (27rnay.s..27rna)io(27r-na)

HI: ± a \ X o\ X \ X

1.0

w

< 0.8

X
3
LL 0.6
-J

0

U 0.4
Ix
LL

0.2
0

LIMITING VALUE FOR LARGE d

4 8 12

d, MILS
16 20

(18b)

Fig. 14 - Fractional flux linkage between a flat film of thickness 0.1ktm, HK
= 4.0 Oe, and a pair of parallel wire conductors as a function of distance from
film to the conductors. The parallel wire conductors serve as both drive and
sense windings.
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where the cylinder has radius a, thickness T and is excited by the field
from a circular loop of radius d. F (x) gives the amount of flux picked
up by a loop of radius D at an axial distance x from the drive loop.

VIII. INTERACTION BETWEEN PARALLEL FILMS

Consider two plane parallel films (denoted 1 and 2) of thickness T
and T' and anisotropy fields H, and HA., respectively, separated by a
distance w along a normal to the film's surface. A nonuniform field is
applied along the (parallel) hard directions by a drive strap. Let the hard
direction fields be H(x) and H'(x). The field acting on film 1 due to the
distribution within film 2 we denote by H(x),, , and similarly the field
acting on 2 due to film 1 is H(x)21 . These fields are taken to act along the
film's common hard direction, and the films are assumed to be sufficiently
thin that fields normal to the surface have negligible effect.

The torque equation determining the local rotation of magnetization
within the two films may be written

HK sin 0(x) = H(x) H,(x) H i2(x) , film 1 (19)

HK sin 0'(x) = H ' (x) H,' (x) H21(x) , film 2. (20)
Let M(x), M' (x) be the hard direction components of magnetization
in the two films, then from previous sections we have (assuming cosine
distributions)

H(x) = E h. cos 2irnx/X
H ' (x) = E cos 27rnx/X

H ,,,(x) = E nmn cos 2rnxIX, H',.(x) = -0T/ E nln;, cos 27rnx/X
/112(x) = 137" E ninni exp (-2.-nw/x) cos 27rnx/x

H21(x) = -0T E nnin-exp (-271-nw/X) cos 2irnx/X,
where /3 = 471-2M/A. Noting that sin 0(x) = M (x)/M and sin 0' (x) =
M' (x)/M, we substitute the above series into the two torque equations
and equating coefficients, we obtain,

HKm = h. - OnTm. - finT'914, exp (- 27rnw/X)

H;cin: = h: - - OnTmn exp (-27rnw/X)
Solving for mn and , we have finally

exp ( -2rnw/X)171? = [hn finT'

HK (3nT - 02n2T7" exp (- 4rnw/X)1-1[ (21)H; 13nT'
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m' [74, anTh7, exp (-27r-nw/X)1
HK f3nT

HK 3nT'
ten2TT' exp (-47rnw/X)1-1.[ (22)

HK f3nT

These expressions can be compared with the results when the films are
present singly, i.e., at large separations,

my, = (h.)(Hic f3nTi1

m,', = (11,0(H;c. f3n?")-1

Evidently the calculation can be extended to a greater number of layers
and it is immaterial whether the drive fields are applied positively or
negatively provided the fields are appropriately assigned, that is, the
field may be generated by conductors located between or completely
to one side of the films. The equations relating the coefficients mn , mf,'

may be concisely expressed in matrix form,

H0 HOJ on[oT TO] exp (-2
70' TO1}[Z] [h n

(23)

The three matrix terms of the left-hand side represent in turn the effect
of anisotropy, demagnetizing field, and interaction between films. The
extension to three or more films is straightforward. Fig. 15 shows the
effect of flux closure between two films only 2 mils apart subjected to the
field from a drive wire sandwiched between them. The films have equal
thickness of 0.1 Am and anisotropy field HK = 4.0 Oe. Since the fields are
applied in opposite directions in the two films the demagnetizing fields
tend to cancel and the magnetization distribution widths are smaller
than for similar films well spread apart. Curve a shows the coupled
distribution, and b shows the distribution with one film removed. The
current required to just saturate the films is 0.127 A, with one film re-
moved the current required rises to 0.170 A. With films of thickness
1000 A, separations of order a few mils are essential for this effect to be
appreciable.

We may use the results (21) and (22) to examine the effect of a keeper
layer. The action of the keeper is to modify the field applied to the film
and to provide some degree of flux closure. Consider the case of a flat
film situated between two drive wires, distance d from the film, with a
keeper layer distance w > d from the film. Let primed quantities refer
to the keeper, and unprimed refer to the film. The keeper typically has a
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Fig. 15 - (a) Effect of flux closure between two identical flat films, separated by
a distance of 2 mils. The field is applied by a single wire placed between the
films as shown in (b). The films have a thickness of 0.1gm and lig = 4.0 Oe.
Curve b shows the result when one of the films is removed. The current required
fq just saturate the films at x = 0 now rises from the bifilm value 0.127 A to 0.170
A for a single film.

thickness of mils or tens of mils and hence 471-2/1/r/X > Hi', for reason-
able values of M and X. Equation (21) then reduces to,

= [h - exp (-27rnw/X)] /[HK OnT(1 - exp (-47rnw/X)]. (24)

The field applied to the film in the absence of the keeper is H(x) = E hn
 cos 27-ns/X, where for the present case

ho =
X

2CIr
'

hn
4CIr

exp (-27rnd/X).

I is the current in the drive wires. The field applied to the keeper is
given by E cos 27rnx/X where hi; = 0,

- 2 CIr
h:, exp (-27rn(w d)/X) - exp (-27rn(w - d)/X)) .

Then, mo = 2C/7/X//K , and

m = C/(277 -/X):2 exp (-2irrid/X) - exp (-27n(2w d)/X)

exp ( -271-n(2w - d)/X)V[HK 13nT(1 - exp (- 47rnw/X))]. (25)
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It can be noted that the terms in the numerator are equivalent to the
coefficients of the field due to the drive strap directly, and to images
of the drive straps, with the keeper as mirror. The image property of
the keeper layer is well known and has had considerable application
to the discussion of keepers, see, for example, Refs. 12 and 13. The
effect of the mutual interaction between keeper and film is to modify
the a factors (a = 1312T for a flat film) by a term 1 - exp (- 47rnwp.).
The influence of this term is two fold, (i) the spreading of the mag-
netization component is reduced and (ii) the drive field required is
reduced.

Fig. 16 shows the effect of a keeper layer on the distribution in a
flat film of thickness 0.2ilm, HK = 4.0 Oe. Field is supplied by a pair
of drive straps of width 10 mils carrying a current of 0.22 A, at a dis-
tance of 5 mils from the film. The keeper layer is taken to be 6 mils
from the film. Curve a shows the hard direction component in the
absence of the keeper, b shows the effect only of the image fields
clue to the presence of the keeper, and c shows the final result when
image fields and partial flux closure are taken into account.

1.0

0.8

0.6

M(X)
M

0.4

0.2

C KEEPER

6 MILS

*

,?',/," ' ,,,,,' ,7//, z, --///..,../././///,..,
t

--,/,,c,/,- t ---A-

MILS

1 -1E10 -->1
110

a

( b)

FILM

i--

(a)

Hk = 4.0 Oe T= 0.2µM
FOR CURVES a, b, C

1 = 0.22 A

10 20 30
X, MILS

40 50 60

Fig. 16-(a) Effect of a keeper layer on the magnetization distribution in a flat
film of thickness 0.2,um, HK = 4.0 Oe. Field is applied by parallel drive straps of width
10 mils at ±5 mils from the film. The keeper layer is taken to be 6 mils from the
film as shown in (b). Curve a shows the hard direction component in the absence
of the keeper, Curve b shows the effect of the image fields only when the keeper
is present, and Curve c shows the final result when image fields and flux closure
are taken into account.
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The effects of a flat keeper layer on the response of a cylindrical
film are not amenable to calculation by the present method owing to
the mixed geometry.

The case of a cylindrical film with a concentric cylindrical keeper
is next considered. The discussion closely parallels that for flat films
and leads to a result analogous to (24),

/0(27rna) 1.0(27i-na) (2rnA) -'
A /K0\ Xmn = hn - h'

(2 A
HK + an 1 (26)

7rn )
10 0

(27rnA)r( (27rna
AX

where for cylindrical geometry an = 47rM(T/a)(27na/X)2/0(27rna/X)
 K0(2/rna/X). The field is applied by a loop (of radius d) around the
cylindrical film (of radius a), and hn , hn are the Fourier coefficients of
the field at the surface of the film and at the keeper (radius A), respec-
tively. The axial field from a circular loop of radius d, at distance a from
the axis and x from the plane of the loop, is given by"'"

H(x, a) = Cl[K(k) d - a)a2 + X2 E(k)1/ [(a + d)2 + ,(d

where K and E are complete elliptic integrals of the first and second
kinds, respectively, and k2 = 4da/ [ (a + d)2 + x2].

It can be noted that the effect of the keeper is to modify the applied
field and to reduce the demagnetizing field. Fig. 17 shows a practical
approximation to such a keeper geometry. Fig. 18 shows a plot of axial
magnetization component in a 1p.m thick permalloy film with HK =
3.0 Oe plated on a 5.2 mil diameter wire, subject to the field from a one
turn circular loop of diameter 7.5 mils carrying a current 0.3 amps.

KEEPER
LAYER

DRIVE
STRAP

"CYLINDRICAL FILM

Fig. 17-A possible practical approximation to a cylindrical keeper geometry.
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Fig. 18-Effect of a cylindrical keeper layer on the axial magnetization dis-
tribution in a cylindrical film of thickness 1.0p.m, HZ = 3.0 oe, diameter 52 mils.
Field is applied by a one turn loop of radius 7.5 mils. Keeper radius is taken to
be 10 mils. Curve a shows the distribution with no keeper present, curve b shows
the effect of the keeper in modifying the applied field, and curve c shows the final
result when field modification and flux closure are taken into account.

The keeper radius is taken to be 10 mils. Curve a shows the distribu-
tion with no keeper present, b shows the effect of field modification
alone when a keeper cylinder of diameter 20 mils is in place, and c
shows the final result when field modification and flux return are taken
into account.

IX. NONUNIFORM HARD DIRECTION FIELD IN PRESENCE OF EASY

DIRECTION BIAS FIELD

In this case the torque equation has to be modified to include the
easy direction field HE(X), then

2Ksin 0(x) cos 0(x) = M(H(x) - H.(x)) cos 0(x) - MH E(x) sin 0(x). (27)

Providing cos 0 0, we may write,

HE sin 0(x) = H(x) - H.(x) -H E(x) tan 0(x), (28)

where HE = 2K / M and it is assumed that HE is parallel to the easy
direction component of magnetization. It is convenient to represent
HE (x) tan 0(x) by a series
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HR(x) tan 0(x) = E d cos 2lrnx/7r.

Substituting into the torque equation (28), and gathering coefficients,
we have

(HK an)))t = hn - do , n = 0, 1, 2, , N.
The coefficients dn are now complicated functions of the nin's and this
equation cannot be solved directly. Instead we use an iterative proce-
dure as follows: H(x) is given a peak value insufficient to produce
saturation in the case HE = 0 and then successive approximations are
found for the m coefficients. In the first approximation we take

inn - hn

HK + an
tan 0(x) may now be found from sin 0(x) = M(x)/111, and the Fourier
coefficients d of the product HE (x) tan 0(x), may be obtained. In the
next approximation, we take
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Fig. 19 - (a) Axial magnetization component for a cylindrical film with
uniform easy direction bias field of 1.0 oe. The nonuniform hard direction field
is applied by the drive strap arrangement shown in (b). In curve a, the bias field
aids the rotation of magnetization for large x. A reverse domain is assumed to
have been written into a width 20 mils, for x < 10 mils therefore the bias field
opposes the rotation of magnetization. Curve b corresponds to zero bias field.
Curve c corresponds to a reversal of bias field where it is assumed that the re-
versed region has been erased.
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hn - dn
mn = HE + an

We now find, as before, new coefficients d ; hence, new coefficients m ,
until the m coefficients change by less than, say 5 percent per iteration.
The curves for H(x) and M(x) are then plotted. The whole procedure
may be repeated as necessary. The bias field may be a constant HE or be
a step function changing from HE to -HE at some location x = R. The
step function corresponds to the case of a domain wall being present at
x = R. The use of the step function provides a formal way of treating
the modification to the torque equation, due to HE and the easy com-
ponent of M being parallel for x < R, and antiparallel for x > R.

It is to be noted that the torque balance becomes unstable for certain
combinations of applied fields. The critical fields are related by [H(x) -
11,(x)11 111 = HK , where it is assumed that HE is antiparallel to the
easy direction component of M. This limitation does not apply when
HE and the easy direction component of M are parallel.

Fig. 19 shows a typical axial magnetization distribution for a cylindri-
cal film, and corresponds to the procedure of "writing" into a region of
film. A current in the plated wire produces a uniform easy direction bias
field of 1.0 oe and an external drive strap produces a nonuniform hard
direction field. The greater spread of the curve a compared with the
zero bias field distribution [shown by curve b] is due to the bias field
lowering the effective anisotropy to HE - HE for rotations less than
about 40°. The attempt to "erase" by reversing the bias field, curve
c, raises the apparent anisotropy to HE + HE over much of the curve,
and hence the film response is generally reduced. In curve c it is as-
sumed that the reversed region has been erased. It will be appreciated
that the present calculation assumes at the outset that a domain
wall has some given location. The resulting distribution must then
be inspected to decide whether the location chosen was appropriate
or even stable under the applied field. In a practical case, wall location
is affected by additional factors such as dispersion and creep, and is not
discussed further here. Experiments on flat films show that the reversed
region is not totally erased by simple reversal of bias field. Fig. 20(a) is a
Kerr effect picture showing a reverse domain of width 20 mils, written
in by a bias field of 1 Oe and a peak drive field of 5.0 Oe (11 mil strap,
10 mils from film). Fig. 20(b), shows the result of reapplying the fields
with reversed bias. Fig. 20(c) shows the result of first demagnetizing
the film into a fine domain structure, the width of the domain established
is now much wider. In this case, the effect of the bias field changing the
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FILM

DRIVE STRAP

(a)

(b)

(C)

(d)

Fig. 20- (a) Kerr effect picture showing reversed domain (light) in a flat
film written in by an 11 mil drive strap situated 10 mils beneath the film. (b)
When bias field is reversed, the domain is not completely erased. (c) Width of
domain written after first demagnetizing film with a large uniform hard axis
field. (d) Shows the drive strap arrangement to the same scale.

apparent anisotropy is much reduced, but the film now has an appre-
ciable remanent state; hence, significant hard direction local demag-
netizing fields exist in addition to the field introduced by the effect
of the external fields. The relevance of such considerations to domain
wall creep processes, under practical operating conditions, warrants
further study but is not pursued here.

X. CONCLUSION

Demagnetizing fields play an important role in the operation of
many thin magnetic film devices. The requirement of high packing
density as in a memory, leads to strong localization of induced changes
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in magnetization, and to correspondingly large demagnetizing fields
and drive currents.

In an open flux structure attempts to confine magnetization changes
by using segmented films or high anisotropy buffer regions are suc-
cessful only at the expense of a considerable increase in drive field
requirement. To some extent flux keeper layers may be used to modify
applied fields and to permit partial flux closure, with in consequence,
both a lowering of drive currents and a reduced spread in induced
magnetization component.

The method of calculation given here permits a detailed examina-
tion to be made of the effectiveness of such procedures, and has been
applied to a variety of thin film demagnetizing field problems. Kerr
effect probe measurements(' are in good agreement with calculation
although relatively little data is at present available. The results have
particular applicability to cylindrical film problems, where axial varia-
tion of field or properties is of primary concern.
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Some Properties and Limitations of
Electronically Steerable Phased

Array Antennas*

By D. VARON and G. I. ZYSMAN
(Manuscript received April 4, 1967)

This paper is a treatment on linear and planar phased arrays of current
sources, whose amplitudes are uniform and scan -invariant. By recognition
that the radiation impedance of an array element is an analytic function
of a complex scan variable, a powerful mathematical tool becomes avail-
able for the investigation of some important properties of the impedance
as a function of scan. For example, it is proven that in a finite array the
impedance seen by such a scan -invariant current source cannot be per-
fectly matched over a continuous scanning range using lossless, linear,
passive and time -invariant elements. This result is extended to the infinite -
array case by treating the latter as a pericdic structure, and assuming
that the Green's function of the unit cell is analytic with respect to the
scan variable. The theory includes both linear and planar arrays. Among
other results it is shown that the element impedance in an infinite array
must be of a specific mathematical form. It is hoped that by recognizing
the limitations imposed thereby, useful guidelines will be established for
achieving optimal match of an array into space.

I. INTRODUCTION

The class of antennas widely known as phased arrays includes es-
sentially two types of radiators: stationary and steerable ones. The
first operates at fixed amplitude and fixed relative phase between the
array elements. Consequently, the antenna characteristics, such as ra-
diation pattern, input impedance, and mutual coupling between ele-
ments, remain unchanged during the entire operational lifetime of the
antenna. The steerable antenna is characterized by time varying ex-

* This work was supported by the U. S. Army under contract DA -30 -069 -
AMC -333(Y).
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citation. The relative phase between adjacent elements is varied either
mechanically or electronically to bring about a variation in the orien-
tation of the beam. In most instances scanned arrays are large in size
and may contain several thousand elements. Their illumination has a
linear phase taper. As a result the antenna characteristics become scan
dependent. The relationship between scan angle and various param-
eters of interest such as gain, element impedance, and mutual coupling
between elements have been the subject of intense investigation in re-
cent years.1, 2 One particular direction has been towards improvement
of the impedance match over wide scanning ranges.8 At present the
merit of a matching technique can be determined only relatively to
other techniques. To the best of the authors' knowledge an absolute
mathematical criterion, based on physical realizability requirements,
has not been formulated. Some investigators4.5 claim that a perfect
match of an infinite array for all scan angles (at which the active im-
pedance is not infinite, zero or purely reactive) can be achieved by an
infinite set of interconnecting network elements. However, the proof
is based on the assumption that the scan -dependent equivalent load
impedance at the array -space interface remains unchanged after the
sources have been interconnected by coupling elements. Although this
assumption has been successfully applieds. a to improve the matching
capability of an infinite array, it is incorrect to use it in a perfect
matching scheme.

In this paper a new mathematical approach to phased array anal-
ysis is presented. The model for the analysis is a phased array of ideal
current sources (electric or magnetic) of scan -invariant uniform am-
plitude. This model is further discussed in Section II. The analysis
itself is based on the general laws of antenna theory and on those
properties which are common to all phased arrays represented by the
model.

The first part of the theory is devoted to finite arrays and is treated
in Section III. The starting point of the theory is a theorem which
establishes that the radiation impedance of an element in a finite array
is an analytic function of the scan angle. Further, it is shown that an
element in a linear or planar phased array cannot be perfectly matched
over a continuous scanning range by using lossless, linear, passive and
time -invariant elements. Then it is demonstrated that the directions
in space of the beams' maxima are eigenvalues of a Laplacian differ-
ential operator with periodic boundary conditions which are related to
the phase taper of the array, and several useful properties of those
eigenvalues are derived.
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The second part of the theory appears in Section IV and is devoted
to infinite arrays, which play an important role in the analysis of large
phased arrays. The investigation is based on a transformation between
the scan angle and a complex variable s = a + 0, which can be in-
terpreted on 0 < a < 1, = 0 as the trigonometric sine function of the
angle between the plane of the array and the direction in which a chosen
grating lobe propagates. It is subsequently shown that the element
impedance, as a function of s, is restricted to a specific mathematical
form. Recognition of the limitations imposed thereby may provide new
insight into the behavior of such arrays.

II. PRELIMINARY REMARKS

The model chosen for the following treatment is a linear or planar
phased array excited by a set of ideal current generators of uniform
amplitude and linear phase taper. The description ideal implies that
the sources have no internal impedance and are invariant under any
loading. This means that except for the relative phasing between con-
tiguous generators the currents are scan independent. Frequently in
antenna analysis induced currents are replaced by equivalent sources
by application of the equivalence principle.° Such currents are not part
of the sources. The induced currents are accounted for automatically
by fulfillment of the requirement that the tangential component of
the electric field has to vanish on all conductors. In general, the source-
current amplitude in each element of the array may be a function of
scan. However, this dependence is generally unknown and is often
neglected in theoretical work. The types of excitations commonly used
are the "free excitation" and "forced excitation".* The first assumes a
generator with a scan -invariant internal impedance which is capable of
delivering scan -invariant incident power. In the latter a constant termi-
nal voltage or current is maintained. As pointed out by Oliner and
Malech free excitation is easier to realize in high -frequency technology
than forced excitation. The latter, however, is more tractable here.
The results of this study remain valid for scan -dependent excitation
as well, provided the current density of the source is a smoothly vary-
ing function of scan angle and can be analytically continued into a
complex scan -angle plane.

Under the assumption that the array is excited by a uniform ampli-
tude and a linear phase taper, the current density excitation function

* A. A. Oliner and R. G. Malech, Ref., 1, pp. 209-211.
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of an M -element linear array (Fig. 1) is given by

J(x, y, z, =

Jo(x - ma, y, z)eit ,

0 otherwise

ma x (in + 1)a,

m. = 0, 1, , 111 - 1
(1)

and that of an M x N element planar array of rectangular symmetry
(Fig. 2) is given by

J(x, y, z, , =

Jo(x - ma, y - 'nb, z)el(mogi-noy)

ma < x < (m 1)a,

nb y (n 1)b,

= 0, 1, 2,  ,M - 1,
n = 0, 1, 2, , N - 1,

0 otherwise.

(2)

The above currents can be either electric or magnetic the latter being
regarded as equivalent to ideal electric voltage sources.

Note that the spherical coordinate systems in Fig. 1 and 2 differ
from those commonly used in phased array analysis. The poles are
located at endfire instead of broadside and the ranges of colatitude and
azimuth are such that the upper hemisphere is spanned by 0 < 0
0 < 7r. This convention is chosen for reasons of mathematical
convenience. The results derived in Section III are valid for linear
as well as planar arrays. The inclusion of both cases in a single
treatment is facilitated by a generalized notation for the current
density excitation function. The steering phases and impx
nlY are replaced by an equivalent "steering coefficient" o -,(co) in
the plane of scan oriented at azimuth angle copa . The steering coefficient

z

0
Pcl -x

Joe -J° Joes14' Joe '12° 
--a---).1

Fig. 1- Linear phased array.
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Fig. 2-Planar phased array.

is derived by its relationship to the direction of a beam's maximum,
which is determined for linear arrays by the equation

t, 2pw = ka cos 00 p = 0, ±1,
and for planar arrays by

2p7r = ka cos cosOp. cp,, p = 0,

2q7 = kb cos 0g sin (p q = 0,
where k is the wave number in the medium, and 0, is as shown in Fig.
1 and 2. The steering coefficient is then defined by

0.mn(9,a) = k(ma cos 9a nb sin 407,Q)

p, q = 0, ±1, ±2,  ± 00 .
Equations (1) and (2) can now be written as

J(s - ma, y - nb, z) exp cos e),

ma < x < (m + 1)a,

nb (n 1)b,

±2, ± 00 (3)

±1, ±2, ± 00 (4a)

±1, ±2, ± 00 , (4b)

(5)

y
J(x, y, z, Opo) = (6)

= 0,1, -1,
n = 0, 1, , N - 1,

0 otherwise

at (p = const.
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Under the above generalization the excitation function for the
linear array becomes a special case, q = 0, N = 1, copy = 0, and the
period in the y -direction extends from -00 to + 00 ; or alternatively
p = 0, 111 = 1, go = 7/2 and the period in the x-direction extending
from - 00 to + 00 . Since the phase constant exp fjo-,(v,) cos Op. }
is independent of (p, q), any 09,2 may be chosen as the independent
variable of scan. The subscript pq will henceforth be omitted whenever
the mathematical expressions are independent of (p, q).

The time dependence el" is assumed throughout the analysis. In
a steerable array the phase taper is time dependent. However, it is
understood that the rate of change of the phase taper is very small
in comparison to the angular frequency, i.e., thii/dt << w, since only
under that condition do the classical concepts of directivity and radia-
tion impedance remain meaningful. If Vi(t) is a step function it is as-
sumed that the time interval is long enough to allow all transients
to reach negligible values before a new step is initiated.

The formal solution of the array problem is obtained from Max-
well's Equations via a vector potential A(x, y, z, 0) which is a solution
of the inhomogeneous reduced wave equation

V 2A -I- k2A = /.4J(x, y, z, 0), (7)

where /A is the permeability of the medium. The magnetic field is given by

H = -1 V X A, (8a)

and the electric field (under Lorentz gauge) by

E = -jco(A. 47-1 V V A) (8b)

The solution to (7) over infinite space V can be written in closed
form in terms of a dyadic Green's function'

A(x, y, z, = f §(x, y, z I E, n, 0RE, n, r, 0) A do dr,

where §(x, y, z I E, n, r) is a solution of
2§ 2§'

az2axeay2 76(x - E) (5(y - n) a(z - (10)

7 being the unit dyadic aiai ayay aza, . The boundary conditions
which § has to satisfy are derivable via the Vector Green's Theorem*

* P. M. Morse and H. Feshbach, Ref. 7, p. 1767.

(9)
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by imposition of the requirement that the tangential component of
the electric field has to vanish on all conductors. This guarantees that
all induced currents are accurately determined.

It can be shown8 that the average complex power delivered by the
mnth element in the array is

Pmn = --1 f EJ: dv,
2 v,.

where

J,(x, y, Z, 0) = J(x, y, z, 0),

ma < x < (m + 1)a, nb < y < (n + 1)b (12)

the asterisk (*) denotes complex conjugate, and V. is a simply con-
nected volume occupied by J, . If S, is a surface obtained by taking
a cross section through V, , the total current, /, , flowing through
the cross section S, is

=
ffJ-cls. (13)

S PS I{

The element radiation impedance, Z,,,,,, is defined in terms of the com-
plex power by

Pmn =
1 I mn 12 Z.. (14)

By (10) and (13) via (8b) and (9), the element radiation impedance
can be defined directly in terms of the array geometry and the excita-
tion:

1 r r
= z, 0)O(x, ?I, z I E, ?I, 0

J(, 0) dr dv, (15a)

where dr = clOndt, dv = dxdydz, and

O(x, y, z 15 r n, = jcoµCl + VV).§(x, y, z 1E, n, . (15b)

Operator V operates on (x, y, z). The quantity 1/-12 is introduced for
the purpose of normalization, and may depend on the choice of the
cross section Sm..

The definition of the impedance includes both linear and planar ar-
ray elements. It is consistent with the commonly known definition of
impedance' if the latter is viewed as a relation between the average
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complex power delivered by the generator and the rms current flowing
into the. load. The definition given by (15) is necessary in view of the
fact that in a system excited by distributed currents, a terminal volt-
age in the time domain is not always uniquely defined. In a system
excited by magnetic currents, (15) defines the element admittance if
the permeability p. is replaced by the permittivity E and the electric
currents by their magnetic counterparts.

In the following theoretical discussion, it is assumed that the. phased
arrays are excited by a uniform amplitude and a linear phase taper.

HI. FINITE ARRAYS

Theorem 1: The element radiation impedance in a finite, steerable, linear
or planar phased array of scan -invariant current sources, radiating into
a linear, lossless, passive and time -invariant system, is an entire function"
of the scan angle 0 in any given plane of scan, with an essential singularity*
at 0 -3 00.

Proof: By (15a)

I / Zr = Lr. Jrt(x, y, z, 0)6(x, y, z n, J(E, n, , 0) (17- dt'.

(16)

On expanding (16) in a double sum of integrals over all cells ( (m, n) ),

m = 0, 1, , M - 1; n = 0, 1,  ,1V - 1, and using the relationships
of (6) followed by a change of variable in each term of the sum, one
obtains

where

2mnra

I.

M-1 N-I
Zra(0) = E E2n,ura exP Vcr. - (fr.) cos

m=0 n=0

Ira I. L.. fro. Jo (x,
1

0(x ra, y sb, z I t + ma, n %La, n, r) dr dv. (17b)

In any given plane of scan co is constant, so that

a-,,,,, - (J- = k[(m - r)a cos (I) + (it - s)b sin io] = (18)

is independent of 0. Both cos 6 and the exponential function are entire
functions.t Consequently, the exponential function appearing in (17a)

(17a)

* R. V. Churchill, Ref. 10, Sec. 68, p. 157; Sec. 112, p. 270.
t R. V. Churchill, Ref. 10, Sec. 21, p. 47; Sec. 23, p. 50.
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is an entire function of an entire function, which is likewise entire".
(entire functions are also called integral functions). Zr8(0) is a finite
sum of entire functions and is also entire.

The nature of the essential singularity at 9 -> oo is obtained by first
expanding cos 0 in the complex 9 -plane

cos (0,. j01) = cos 0,. cosh 01 - j sin 0,. sinh 0, . (19)

Then, if 0, I -+ co in such a way that (o-,,,,, - > 0, the mnth
term behaves as exp II%, Qrnn - bra I Sill exp 0, Ill Q.E.D. Note
that even when J0(x, y, z, 0) is scan dependent, Z,..(0) is analytic pro-
vided Jo(x, y, z, 0) is analytic. However, other isolated singularities
may exist.

aCorollary la: Re {Z,.,,} and - Re{Z,..} are entire functions of 0 each
a0

with an essential singularity at 0 -> co . Proof appears in Appendix A.

Theorem .: The power radiated by an element in a finite, steerable, linear
or planar phased array of scan -invariant current sources, radiating into
a lossless, linear, passive and time -invariant system cannot be kept con-
stant over a continuous scanning range with lossless, linear, passive and
time -invariant network elements and scatterers only.

Proof: Let 0(x, y, z 77, p) be the dyadic Green's function of the
entire system including all equalizing elements. The radiation impedance
of the mnth element of the array is given by (15a) for a lossless, linear,
passive, time -invariant system. If the array is radiating constant power
over a continuous scanning range, the real part of the radiation im-
pedance, R,.,,(0) = Ref Z,a I , must remain constant in that range and

- [R,(0)] = 0, e, e, , 01 = o (20)a0

where 0 = 0,. j0, . By Corollary la, (10-a [R(0)] is analytic in the

closed 0 -plane and has an essential singularity at 0 -* 00. However,
if the derivative vanishes along the line 0, =< 0,. < 02 it must vanish
everywhere in the 0 -plane*. Hence, it cannot have an essential singu-
larity at infinity. The contradiction implies that R r (0) cannot be
constant over a continuous scanning range. Q.E.D.

Equations (3) and (4) specify the directions of the beams' maxima,
however, not all of them correspond to real directions in space. Whereas
y, is real for all (p, q), Om can be either real or imaginary, as may be

* P. M. Morse and H. Feshbach, Ref. 7, Vol. I, p. 390.
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seen from the solution of (4):

= tan-1 2q70a 0 < r (21a)
(1,t, 2p7r)b ,

0 = cos -1 4/r + 27)7 - cos -1 'fry + 2q7 0 < < 7r (21b)
ka cos copc, kb sin cop, ' "

If 0 is real it is said that the beam is in real space. By way of mathe-
matical generalization it is said that all those beams having an imaginary
09. are in "imaginary space". If 8 = 0, or 8 = ir, it is said that the
beam is in a grazing position between real and imaginary space. It
can easily be verified from (21) that for a given phasing (#z , 0) every
pair (p, q) corresponds to a unique direction (co , O) in the complex
domain 0 < o < r, 0 < Re {0} < 7r. These directions are the char-
acteristic directions of the system. They are directly related, through (4),
to the eigenvalues of

ax a
r2F(x, y) = 0

y

with the following periodic boundary conditions

F(x, y) = F(x + a, y) exp (-jtkx),

LI? (x, y) =
axax

(x + a, y) exp

(22)

(23a)

(23b)

F(x, y) = F(x, y b) exp (23c)

aF ,
(x, y) =

a
-6 V, y b) exp (- jikv). (23d)

The eigenfunctions, which form a complete orthogonal set in the
interval 0 5 x< a, 0 <= y-<_ b are

F(x, y) = exp [j(ikx 2p r) exp [KC, 2q7r) ,

p, q = 0, ± 1 , ±2,  ± co. (24)

By (4) they can also be written as

F,Jx, y) = exp {jk cos 0°(x cos (,2 y sin coi,)). (25)

The eigenvalues (r) are

r = k cos Op, p, q = 0, ±1, ±2,  ± 00. (26)
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The results thus derived lead to several interesting conclusions which
are summarized in the following lemmas.

Lemma 1: Every steerable linear or planar phased array with a linear
phase taper has only a finite number of beams in real space. Proof appears
in Appendix B.

For every pair of phasing (o. , 4's) there exists an infinite set of
characteristic directions , yo). As the array is scanned by varying
the values of (tpx , 00 in the intervals -r 5 Ox -,r 7
some characteristic directions will go through a grazing position going
from imaginary to real space or vice versa. We shall call such char-
acteristic directions "transitive characteristic directions".* Since the
condition for a grazing position is I cos 0 i = 1, it follows from Lemma 1
that the number of transitive characteristic directions is finite.

Lemma 2: The radiation impedance of an element in a linear or planar
phased array can be expanded by an infinite series over all characteristic
directions of the system. Proof appears in Appendix C.

IV. INFINITE ARRAYS

In analyzing large arrays it has been found useful to approximate
the behavior of the center elements by the behavior of identical ele-
ments in an infinite array of the same geometry.12 This approximation
is motivated by the fact that the performance of the center elements
is strongly affected through mutual coupling by contiguous elements,
but very weakly by elements far away."

The formulation of the infinite array problem may be obtained from
the results derived for finite -size arrays by letting the number of
elements Ill and N approach infinity. The infinite array problem can
also be treated as a periodic structure by application of Floquet's
theorem. In the following, the latter approach is adopted, but first it
is demonstrated that both methods are consistent.

The electric field of an infinite array as given by (8b) must satisfy
the same periodicity conditions as the source function, i.e.,

E(x + ma, y nb, z) = E(x, y, z) exp [jo-,(p) cos 0]. (27)

* Note the distinction made between "grazing position" and "transitive charac-
teristic direction". A beam associated with a transitive characteristic direction
may attain a grazing position for a particular phasing, but may also point in other
directions.
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On the other hand, the electric field

E(x, y, z, = a(x, y, z I E, n, 01(, n, r, 0) dr

can be expanded in an infinite sum of integrals using the relationships
of (6) :

E(x, y, z, 0) = - E E exp (jam. cos 0)

(28)

0(x, y, z I + ma, n nb, dv, (29)L.
where V00 is the volume occupied by Jo,. Define a new Green's function

00(x, y, Z I
n, 6

= E E exp (jam cos 0)0(x, y, z I E + ma, n nb, (30)
m=-co

and notice that

00(x, y, z I t Ma, n Nb, = exp (-jam, cos 0)00(x, y,z I E, n,
(31)

since by (5)
0-m+M,n+N = (limn + OMN (32)

From (27) and (31) it follows that 00(x, y, z 15f n, ?") can he expanded
by the eigenfunctions (25) as

ce

Go = E E r)Fng(s, n), (33a)

where

JO
yna = aT GoF.a, nwpvx, dx dy dE dn. (33b)

Substituting (30) via (33a) into (15a) for the center element, nz =
n = 0, one obtains

zoo = E E z, , (34a)
p --co

where
1

z - J° er y
Pa

I00 12 V. "
 gPa (2' I OFPA, n)P9a(x, y) .M, n, (17 dv. (34b)
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Equation (34) is an alternate representation to (86) for the radiation
impedance of the infinite array element and it demonstrates that
Lemma 2 is valid for infinite arrays as well.

By substituting the new representation for Co , (30), (33), into (29)
and noting that the electric field satisfies the homogeneous reduced
wave equation in the source -free region, one obtains for the unbounded
space

CO

E(x, y, z) = E E 8F(x, y) exp (-7,, I z

where

Vm-00 Qm-00

824-7pq1z1

) IzI>d,x, (35a)

7, = VrL - = jk sin Op, (35b)

L.000(z I r) .J°(, n, oF:Q(, n) dr, (35c)

and d... is the projection on the z-axis of the largest distance between
two points on the surface enclosing V00. It can be seen that the electric
field in the source -free region, above the central area of a large array
may be approximated by a finite number of homogeneous plane waves
propagating in the real characteristic directions, and an infinite num-
ber of nonhomogeneous plane waves, exhibiting exponential decay in
the direction perpendicular to the plane of the array. The latter are
interpreted as waves propagating in the imaginary characteristic di-
rections.

In an infinite array all elements are embedded in an identical en-
vironment, and therefore the power radiated by each element is the
same. There is no net power flow into a unit cell through the "side
walls". Consequently, the quantity Re{1/00122q} of (34b) is equal to
the power propagated by the plane wave (p, q) within a unit cell in
the direction perpendicular to the plane of the array. By Lemma 1
there is only a finite number of plane waves with transitive charac-
teristic directions (see footnote p. 1571). Let them be distinguished
from all other plane waves by assignment of the subscript (p, q) =
(r, v)

E = 8F(x, exp (- jk lz
I sin Or.), I

z I > dr,,x (36)

H = 3CT,FT,(x, y) exp (- jk I z I sin 0),
I

z > climax , (37)

where F(x, y) is given by (26), and 8 by (35c). If

Sy, = jk[cos O cos caaz -I- cos OF, sin cpai, - sin Oaz] (38)
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then

Jerp = 3:0,, X ET, (39)

The power radiated by a (r, v) plane wave per unit cell into the upper
hemisphere is

=
1

Re (Er, X Hrt)az cls dy. (40)
- 0 0

Substitution of (36) through (39) into (40) gives

abP = - sin 04 1 tryax I2 + 1 Erpa I2 .
sin 0 eaz 12] (41)sin 0

where no = (1.1/ 01. From (41) a radiation resistance per wave is defined as

R,r,
1

= 2 (42)
/00

"
1

Since the entire system is passive and lossless, then by conservation
of energy, the power P must originate from the element itself. Hence,

R = Re {z}, O real, (43)

where z is given by (34b).
From (41) it follows that when a wave (r, is in real space R

is real, and when it is in imaginary space R is imaginary (in which

case Re (z } = 0). Hence, of all the elements comprising the source's
load, R appears either resistive or reactive, depending upon the
scan angle. Such properties of a load, which are unknown in lumped
network theory, are a consequence of the losslessness postulate. When
propagation is possible power is carried away from the source. When
propagation is inhibited there is no net loss of power and the load
must be reactive. By Lemma 1 only Re {z } has those properties.
All other z,,, (p, q) 0 (r, v) and Im tz I always retain their dis-
sipative or reactive characteristics. Further, there is only a finite
number of terms having Re {zp.} > 0. In practical phased arrays the
spacing between the elements and the scanning range are such that
only one such term exists at a time.

The following two definitions summarize the properties described

above:

Definition 1: An 0 -type network function is a scan -dependent immit-
tance (impedance or admittance) which is seen by the source as resis-
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tive when the beam is in real space and as reactive when the beam is
in imaginary space, and it behaves like an open circuit for impedance
and like a short circuit for admittance in the grazing position.

Definition 2: An E -type network function is a scan -dependent immit-
tance (impedance or admittance) which remains either resistive or re-
active when the beam passes through the grazing position.

The motivation behind the nomenclature introduced by the two defi-
nitions will become clear later, in Theorems 4 and 5. The 0 -type and
E -type immittances are of distinct mathematical form. To arrive at it
consider first the following transformation: *

s = sin 0, (44)

x = cos co, (45)

where (m, n) is one particular transitive characteristic direction out
of all (7, v). Given s and x all other characteristic directions are
uniquely determined. By (4)

kaxvi - 8 - 2 mr (46)

= kb1/1 -x21/1 - S2 - 2nr, , (47)

where (1 - x2)1 0 for all possible x and (1 - > 0 if 0 < 0, < 7/2,
and (1 - s2)1 < 0 if 7/2 < 0, r. Then by substitution of (47)
into (22) all other characteristic directions are found:

kab (1 - x2)/(1 - + 2(q - n)lratan (0 -(48a)kabx(1 - s')1 ± 2(p - ni)71-b

cos 0, = fpg(s), (48b)

where

kax(1 - + 2(7) - m)lrf.(.8) - (48c)
ka cos copa

This suggests that when characteristic direction (m, n) is scanned in a
plane x = const, each of the components z of the total input impedance
as given by (34) can be expressed as a function of the same variable s.
The conformal mapping between the 0, -plane and the s -plane is shown
in Fig. 3. In view of the branch cut -1 a < 1 it will be understood
that s = a denotes s = a - j0 if 0 < 0, S it/2 and s = a + j0 if
r/2 < 0,, < 7. Let s = s be the value at which characteristic direc-

* Recall that onn, and pmn are not in the conventional spherical coordinate sys-
tem (see p. 1564).
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tion (r, v) is in grazing position. At this value

f.(s) = 1. (49)

Of all values {s ) there is at least one which satisfies (49) for s = 0.
From (48) it is obvious that r.(0) = 1, and there may be other transi-
tive characteristic directions (r, v) (m, n) which attain their grazing
positions at s = 0.

Theorem 3: In an obstacle -free space, the impedance function zi,g(s),

associated with the characteristic direction (p, q), is an analytic function
of the complex variable s = a + ji3, with branch points at s = s and an
essential singularity at I s I --> co . If (p, q) = (m, n) then z,(s) may
have a simple pole at s = s, = 0.

Proof: The general definition of z is given by (34b) in which the
BDQ dependence is contained in the Green's function component
(z P)Ft(E, n)F(x, y). The Green's function is derived from (10)

via (15b). Green's function §(x, y, z satisfies the same periodic

boundary conditions as 60(x, y, z I r) and can be expanded in a
series similar to (33a):

co

= E E jp.(z OF,.(x, n). (50)
-CO CI -CO
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By substitution of (50) into (10) and use of the orthogonality property
of F(x, y) one obtains a differential equation for C(z 1 0

d'opo 6(z

dz2
(51)

jk sin 0

with the additional requirement that as I z I - 00, ov. behaves as an
outgoing or evanescent wave. The solution of (51) for free space is

(7,,,(z
I

=
1

2jabk sin Op,
exp 1-jk I z - I sin (52)

is obtained from opo(z 1 through an operator dip, :

where

g (z --- jwii.2c(z I 0,

- - 1= / k2 PG PQ

(53a)

(53b)

Op being given by (38). Substitution of (52) into (53a) followed by
substitution into (34b) gives

Zp, -
2abk I. 12 sin 0 fir.. L.. 'Mx' 11/, z)

GT,QJoa, n, exp {jk cos 6q [(x - t) cos v

(y - n) sin - jk I z - I sin Op.) dr dr. (54)

The integranci is an entire function of 0 with an essential singularity
at I Im { 8g} 00. Hence,* if J,(x, y, z) is piecewise continuous,
the integral is also an entire function with the same essential singularity.
By (48)

sin Opq = [1 -- gq(s)]l.
By Lemma 1,

(55)

f;;,(s) 1 if (p, g) (r, v). (56)

From Fig. 3 it is readily seen that s I < 00 when 16p,, I < co which
implies, via (48), (55) that I cos 6+ 1 < 00 and I sin Opq I < 00 as long
as I s I < 00. Thus, the singularities introduced by the transformation
(44), (45) are the branch points at s = s . Also if (p, q) = (m, n) t

* E. J. Copson, Ref. 11, Sec. 5.5, pp. 107-109.
t Recall that (m, n) is the characteristic direction which defines the transforma-

tion from (1p., 11/1) into (s, x), (44)-(47).
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z may have a simple pole at s = 0. (Note, for example, that for hori-
zontal polarization, Jo = axJ0 , there is a simple zero in the plane of
scan corresponding to co, = 0, at s = 0.) Q.E.D.

The above proof can be applied separately to the real and imaginary
parts of the right-hand side of (54). If z = R(s) jX(s), then R(s)
and X(s) are analytic functions of s, real on the real axis of s, with
an essential singularity at I s co , branch points at s = s , and
possibly simple poles at s = 0.

In systems other than obstacle -free space, the normalized complex
power z(s) has different forms. Except for isolated values of s, the
radiated power and the stored energy per unit cell are bounded and
continuous functions of s over those portions of the real and imaginary
axes of the s -plane which have physical meaning. Hence, it is reasonable
to postulate that an analytic continuation of zi, as a function of scan
can be made into a region of the complex s -plane which includes por-
tions of both the real and imaginary axes. It may be of interest to
note that the impedance function z(s) derived by L. Stark" for the
planar dipole array over a ground plane is analytic. The regularity
of z(s) depends directly on the regularity of -"q(z s). The singu-
larities of 4,2 in the s -plane are determined by the boundary conditions
which g (z s) satisfies.

Theorem 4: An E -type immittance function V(s) is an even function of s.

Proof: Let the complex variable s be defined with respect to the transi-
tive characteristic direction (m, n). Once (m, n) is chosen, the proper
branch of (1 - s2)/ in (48) is uniquely determined. Let (k, 1) denote
all other transitive characteristic directions which reach their transitive
position simultaneously with (m, n). Formally, this implies

f;)(0) = 1 er, = (m, n), (k, 1). (57)

As a consequence of Definition 2 and Lemma 1, V(s) is recognizable as

T- (s) RpQ(s)(p, (m, n) , (k, l), (58)

XQ(s) all (p, q),

where R (s) + jX(s) = z (s), z given by (54). Thus, (58) estab-
lishes the connection between the defined E -type function and physical
quantities corresponding to R (s) and X(s). Consider Definition 2
which states

V(s) - V*(s) = 0 s = a 0 < a < 1, (59a)

V(s) - V*(s) = 0 s = (59b)
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Since V(s) is analytic and also real on the real axis of s, (59) may be
rewritten as*

V(S) - V(s*) = 0 s = a 0 < a < 1, (60a)

V(s) - V(s*) = 0 s = jai. (60b)

On the real axis

V(a) - F(a) = 0. (61a)

On the imaginary axis

V(j13) - V(-0) = 0. (61b)

By analytic continuationt of (61b) from the imaginary axis to a point s
in the complex plane one obtains

V(8) - V(-8) = 0.
Hence, V (3) is an even function of s. Q.E.D.

(62)

Theorem 5: An 0 -type immittance W(s) is an odd function of s. The
proof is similar to that of Theorem 4 and it appears in Appendix D.

It has been shown in Theorem 2 that a finite phased array cannot
be perfectly matched over a continuous scanning range. The proof is
limited to finite arrays and cannot be directly extended to infinite ar-
rays since the representation of the element impedance by (17a) does
not guarantee convergence in the complex 0 -plane if the limits of the
summations are extended to infinity. In treating the infinite array, the
element impedance is derived by symmetry considerations from which
it is concluded that the net complex power radiated from each element
is conserved entirely within the unit cell of that element. It has been
shown that the two definitions are consistent. Although the problem of
whether an infinite array can be perfectly matched is of academic in-
terest only, it is worthwhile noting that as for finite. arrays, the answer
in this case is also negative. To show this the reader may recall that
the impedance has been defined as normalized power and postulated to
be an analytic function of the scan variable s = a + I. The normaliza-
tion constant is 1/0012 given by (13). If the complex power as a func-
tion of scan is represented by

P(s) = 1 /00 12 [R(s) jX(s)], (63)

* P. M. Morse and H. Feshbach, Ref. 7, Vol. I, p. 393.
t Morse and Feshbach, Op. Cit., p. 389.
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then by Lemma 1, the term R (s) is a finite sum of analytic functions
of the complex variable s. Consequently, R(s) is an analytic function
of s. In general, it may he represented as

R(s) = E(s) 0(s), (64)

where E(s) is an even function of s and 0(s) is an odd function of s.
Under conditions of perfect match over a continuous range, constant
power, Pr , is radiated over that range. Since R(s) is analytic it implies
R(s) = PriI001-2 everywhere in the s -plane. Since a constant is even,
0(s) = 0. Further, E(s) must have a branch cut on the real axis of the
s -plane in the interval [ -1,1]. But the branch cut does not exist if
E(s) = Pr 100 1-2. The contradiction implies that P(s) in (63) cannot
equal a constant over a continuous range of s.

Theorem 6: The resistance and reactance functions of an element, or their
derivatives, in an infinite linear or planar phased array of current sources
are discontinuous when a grating lobe is in a grazing position.

Proof: In an infinite array the grating lobes are plane waves propagating
in the characteristic directions. By Theorems 4 and 5 the element
impedance Z(s) in an obstacle -free space can be written as

Z(s) = P(s) (2(8) (65)

For real values of s, P(s) is an even complex function of s bounded at
s = 0, and Q(s) is an even real function of s nonzero at s = 0. On the
real axis of s

Z(a) = P (a) + Q (a)
a

On the imaginary axis of s

z(i0) = P(j3) j(200)
0

(66a)

(66b)

A grating lobe is in its transitive position at s = 0. The pole discon-
tinuities are established by showing that

Re { lim Z(a) - lim Z(j()1 = lim
Q(a)

.-0 13-0 a-.0 a

Im { lim Z(a) - lim Z(0)} = lim Q(j13)
a )3,0

3

= 00

- Co.

(67a)

(67b)
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The pole discontinuity has to be interpreted as an invalid mathe-
matical solution at the. transitive position. It is a result of the idealiza-
tion introduced by the concept of an "infinite array." If R0m(s) has a
simple zero at s = 0, as is the case when a horizontally polarized array
is placed above a ground plane, then the active impedance in the
neighborhood of s = 0 can be written as

Z(s) = R(8) jX(s) , (68a)

where R(s) and X(s) are real functions of s (real for s real).

R(s) = E a ,si (68b)
i=0

X(s) = E b2is2i. (68c)
i-0

When the beam whose transitive characteristic direction is in real
space, s = a

R. R(a) = E aicti (69a)

and when it is in imaginary space, s = :113

Rs Re IR(i#) = (-1)ia2i02i. (69b)
-0

The discontinuity in the derivative of the resistance is

dR dR
lam - lim y = a1. (70)

p -o Up

Similarly, the reactance

Xa A X(a) E (71a)
i-0

X5 Im Z(j0)1 = E (-1)1b2102' + a2i+102' (71b)
.-0

. dX dX8
lim - lim = -ai (72)
a-4) da d13

The proof can be generalized for any order algebraic singularity or
zero at s = 0. For example, if there is a zero of multiplicity N the dis-
continuity will be in the Nth derivatives of the resistance and react-
ance. A noninteger order zero yields a discontinuity after a sufficient
number of differentiations. Q.E.D.
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V. SUMMARY AND CONCLUSIONS

A new mathematical approach to phased arrays has been adopted
to investigate and discover various properties of the radiation imped-
ance of an array element as a function of scan angle. The underlying
idea of the method is the treatment of the impedance as an analytic
function of a complex scan variable, which enables one to prove that
an array element subject to the model chosen cannot be perfectly
matched over a continuous scanning range by using lossless, linear,
passive and time -invariant elements.

The first half of the theory is devoted to finite arrays. It is shown
that the directions (in space) of the beams' maxima are eigenvalues
of a Laplacian differential operator with periodic boundary conditions,
which are related to the phase taper of the array. It is proven that
there exists only a finite number of real eigenvalues. The known con-
cept of imaginary space is then adopted to accommodate the imagi-
nary eigenvalues. Furthermore, it is demonstrated that all beams except
a finite number are completely confined either to real space or to
imaginary space, and that only a finite number of beams may attain
a grazing position. The unique properties of the latter beams have
been found to play an important role in the investigation of infinite
arrays, to which the second half of the theory is devoted.

The interest in infinite. arrays, apart from its academic aspect, stems
from the good approximation it provides for the behavior of the cen-
ter portion of a large finite array. It has been found that the infinite
array element impedance as a function of scan is restricted to a spe-
cific mathematical form. It is the authors' hope that recognition of the
limitations imposed by that form may provide useful guidelines in
achieving optimal match of an array to space.
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APPENDIX A

Proof of Corollary la

Corollary la: RetZ) and -"e WZral are entire functions of 0 each

with an essential singularity at 0 .
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Proof : Denoting

2nanr Pmnra Xmnrs

one obtains from (17a)

ReVr,(0)) R(0)
M-1 N-1

= E E {p, cos [B,"(0)] - x,ra sin [B.,(0)]
na 0 n 0

where

and

B,(0) = (0-, - cr) cos 0

M-1 N-1

as"R (6) = E EB:,..r.(0p,,, slll [B.,-(0]
m..0

1583

(73)

(74)

(75)

x..r. COS [Bmnrs(0)] j (76)

Since cos 0 is an entire function of 0, cos [B mnra (0)] and sin [B,,,nr8(0) ]
are entire functions of an entire function, and are therefore entire. The
existence of the essential singularity can be demonstrated in a similar
fashion to that in Theorem 1. Q.E.D.

APPENDIX B

Proof of Lemma 1

Lemma 1: Every steerable linear or planar phased array with a linear
phase taper has only a finite number of beams in real space.

Proof : A beam (p, q) is in real space if I cos 0 I 1. Dividing (4a) by
ka and (4b) by kb, squaring and adding, one obtains

r1 2 2

or

1

ka kb

(tr 02(02 1.

Necessary conditions for the above inequality to be satisfied are

(77)

(78)

(79)

(80)
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Since

1 1,t, 1 1 1< - and
2 97r - 9 - 2 = 27r = 9

q +

Hence, both p and q are bounded. Q.E.D.

APPENDIX C

(81)

(82)

Proof of Lemma 2

Lemma 2: The radiation impedance of an element in a linear or planar
phased array can be expanded by an infinite series over all character-
istic directions of the system.

Proof : The current density excitation function of a finite -size array
given by (1), (2) satisfies the periodic boundary conditions (23) in
the finite domain occupied by the array. Let this domain be denoted
by D. The current density can, therefore, be uniquely expanded in D
in terms of the eigenfunctions (25) :

where

.0 0.

J(x, y, z) = U(x, y, D) E E j(z)F(x, y),
-00

1 aj(z) =
ab o

.1f b Jo(x, y" z)F*
" '

(x y) dx dy

and U(x, y, D) is a two-dimensional unit step function

U(x, y, D) = f1 (x, y) in D,

10 otherwise.

Substitution of (31a) into (15a) yields
0. 0.

where

Im.PQ =

Q.E.D.

z, = E E mnpQ ,
p --no

J'itn(r, ' (.;(1' z I

(83)

(84)

(85)

(86a)

j(.l-)/eng(E, 77)U, D) dr dv. (86h)
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APPENDIX D

Proof of Theorem 5
Theorem 5: An 0 -type immittance TV (s) is an odd function of s.

Proof: Let the complex variable s be defined with respect to the tran-
sitive characteristic direction (m, n). Let (k, 1) be all other transitive
characteristic directions which reach their transitive position simul-
taneously with (m, n). Then as a consequence of Definition 1 and
Lemma 1

W(s) = lip.2(s) = (m, (k, 0 , (87)

where R(s) = Re{z}, z given by (54). Thus, (87) establishes the
connection between the defined 0 -type function and a physical quan-
tity corresponding to Ri,,(s). From Definition 1

W(s) - W*(s) = 0 s 0 < a < 1 (88)

W(s) W*(s) = 0 s = jf6. (89)

Since W (s) is real on the real axis of s, (88), (89) may be rewritten as

W(s) - W(s*) = 0 s = a (90)

TV(s) W(5*) = 0 s = jQ. (91)

On the real axis

W(a) - W(a) = 0. (92)

On the imaginary axis

IV(f) MHO) = 0. (93)

By analytic continuation of (93) from the imaginary axis to a point
s in the complex plane one obtains

W(s) W(-s) = 0.
Hence, W (s) is an odd function of s. Q.E.D.
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An Energy -Density Antenna for
Independent Measurement of the

Electric and Magnetic Field
By W. C. -Y. LEE

An energy -density antenna which can measure both the E field and H
field of a plane wave simultaneously has been developed, consisting of two
small orthogonal semiloops over a ground plane. Hybrids were used to take
the sum and difference of the loop outputs, giving voltages uniquely pro-
portional to the E and H fields. The loop dimensions and optimum con-
figurations were experimentally determined by measurements at a frequency
of 836 MHz in a man-made free -space environment. Energy -density com-
putation from the measured E and H fields of a standing wave in free space
showed that the maximum -to -minimum range of the energy density is much
less than that of either the E or H fields alone.

I. INTRODUCTION

A new way of reducing the signal fading encountered on a mobile
radio transmission path is being investigated.' One source of fading
is due to the fact that plane waves propagating in opposite directions
at the same frequency produce a standing wave with nulls in the elec-
tric field every half free -space wavelength. The magnetic field also
has nulls like the electric field but displaced a quarter wavelength
from the electric field nulls. The electromagnetic energy density of
such a pure standing wave is constant. If we sample E and H in free
space and amplify the signals by the appropriate relative gains,
square and add them, we obtain a signal proportional to electromag-
netic energy density

i(e.E2 pH2).
(1)

The resulting output would be constant as we move through this
idealized standing wave pattern. This method of energy -density uti-
lization may be helpful in overcoming the rapid fading due to motion
through the more complicated standing wave patterns in the mobile
radio electromagnetic field. To utilize the energy concept, we need an

1587
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antenna that has three outputs independently proportional to the
field components E,, H0, and Hy at any point in the field (assuming
vertical polarization). Since neither the ordinary loop antenna nor the
shielded loop antenna can be used in this particular case, an investiga-
tion was undertaken to develop a suitable antenna.

This paper describes a particular antenna* which satisfactorily meets
these requirements. The antenna consists of two small orthogonal loops
and will be described later. Measurements on such an antenna and
several other comparable ones were made in a simulated free -space
environment.

II. METHOD OF TESTING THE PROBES

First of all, we need a method of test which tells us how well the
antenna is responding to the H field alone. As mentioned before, the
nulls of the E and H field in an ideal standing wave pattern are A./4
apart. Therefore, if we can establish such an ideal pattern, the E nulls
can be located accurately by a whip antenna; then the positions of the
H nulls are known. Then we can test the magnetic probe in this en-
vironment, looking for nulls at these H -null positions.

A conducting ground plane 16 feet x 3 feet was surrounded with
commercially available absorbers (minimum absorption is 17 dB one-
way) to provide a man-made free space. Two waves traveling in
opposite directions were produced by exciting two identical trans-
mitting antennas from a common source. These two transmitting
antennas "S" and "N," approximately 12 A apart, were A/4 whip
antennas operating at 836 MHz over the ground plane as shown in Fig.
1(a). The receiving antenna under test could slide in a slot about 2 A
long which is in between the two transmitting antennas. E fields were
first tested separately from the two transmitting antennas in order to
make sure that the reflections in the man-made free space were small,
and that the individual fields were sensibly constant along the length
of the slot. The two curves shown in Fig. 2 are the amplitudes of the
signal from each of the transmitting antennas. The field from the "N"
antenna had a maximum -to -minimum variation range of about 2.5 dB,
and that from the "S" antenna a variation range of about 3.5 dB.

*A brief description of this antenna appears in two papers: (1) Theoretical and
Experimental Study of the Properties of the Signal from an Energy Density
Mobile Radio Antenna, presented at the IEEE Vehicular Communications Con-
ference on December 2, 1966, in Montreal, Canada. (2) Statistical Analysis of
the Level Crossings and Duration of Fades of the Signal from an Energy Density
Mobile Radio Antenna, B.S.T.J., 46, February, 1967, pp. 417-448.
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Fig. 1- (a) Experimental set-up. (b) Energy -density antenna-double orthog-
onal loop antenna.

These variations, due to residual reflections, were felt to be acceptable.
Since the average amplitudes of signal strength of two transmitting
antennas were not quite the same, 11 -dB attenuation was put on "S"
antenna, and 10 dB on "N" antenna in order to get a good standing
wave. The peak -to -null value of the standing wave produced when
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Fig. 2 - Amplitude of signal strength along the slot receiving from one trans-
mitting antenna only.

both transmitting antennas were excited was then 23 dB, as shown in
Fig. 3. We should remember that the measured standing wave was ob-
tained from two E fields. Then we know a standing wave of the H
field exists which will have the same peak -to -null value but a A/4
shift from the standing wave of the E field.

III. TYPE OF ANTENNAS TESTED

3.1 Single -Ended Loop

A semiloop with one end grounded and the other end as output can
be used as a magnetic field probe. However, the size of the loop is
critical. Large errors are obtained in measuring the magnetic fields
unless its diameter is less than 0.01 A. (about 0.14 inch diameter at
836 MHz) .2

3.2 Double -Ended Loop

A semiloop with two output ends can be used as a combined electric
and magnetic probe.3 If the double -ended loop is in the field of a plane
wave, the sum of the two outputs of the semiloop is proportional to the
E field, and their difference to the H field. If the plane of the loop is
in line with the direction of propagation the output is proportional to
the total H field, otherwise only to a component of H field. This would
be a limitation in using this type of probe for general purposes.

3.3 Two Orthogonal Loops

This antenna has been proposed for receiving a linearly polarized
wave coming from a remote source which may not necessarily be in
line with the plane of the loop. It consists of two double -ended loops
with their planes perpendicular to each other. The "orthogonal loop
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antenna" has two pairs of outputs. Adding two pairs of outputs sep-
arately gives two values which should be identical and expressed
theoretically as proportional to the total E field. Subtracting two pairs
of outputs separately gives the two components of the H field. These
two components are the components along the rectangular coordinates
which have been defined by the planes of the two loops. The orthogonal
loop antenna is an electric and magnetic field probe which appears to
be promising for probing the energy density of the total field. Hence,
it is called the energy -density antenna.

3.3.1 Connected Loops

The two loops are electrically connected at the top point. Since this
configuration can allow the two loops to be identical, the two values of
E field obtained from the two loops are expected to be equal, the cur-
rents in the two loops are correspondent to the two components of the
H field which are normal to the planes of two loops. However, the
connection at the top points is not exactly at the middle, which may
introduce some errors.

69
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Fig. 3 - Standing wave along the slot by using a whip antenna as a receiving
probe.
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3.3.2 Unconnected Loops

The two loops are not connected electrically at the top points. In this
configuration the two loops cannot be identical. One loop must be bent
at the top in order to disengage the top point from that of the other
loop. Therefore, the E field obtained from two loops may be different;
also the two H component fields. However, the current in one loop
may not be affected by the other due to the fact that the two loops are
unconnected.

IV. EXPERIMENTAL RESULTS

4.1 Single -Ended Loop

The standing wave along the slot was measured by using different
sizes of the single -ended loop. Investigation of three loops, 1, 1.5, and
2 inches in Fig. 4 shows that a 1.5 -inch loop is better than the other
two. The nulls of H field of the 1.5 -inch loop are located more like the
true H field though the amplitude of H field is 2 dB less than the 2 -inch
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Fig. 4 - Standing wave of H fields along the slot by using a semiloop as a
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loop. Comparing the 1.5 -inch loop with the 1 -inch loop, the amplitude
of the 1.5 -inch loop is 3 dB higher and the nulls are still located slightly
better than in the 1 -inch loop. Hence, the 1.5 -inch loop is chosen even
though it is 1/36 A off the true H field (the standing wave of the true
H field should be exactly a A/4 shift from the E field). This was due
to the effect of the electric field. The 1.5 -inch loop is approximately
0.1 A. in diameter. This size of the loop was selected and used in the
other types of loop configurations.

4.2 Double -Ended Loop

The standing wave along the slot was measured by using a semiloop
as a receiving probe. The two outputs from the 1.5 -inch semiloop were
connected to a hybrid ring where the sum port gave the E field, and
the difference port gave the H field. Since the plane of the loop was in
line with the two transmitting antennas, the H field was a total H field.
The E field and the H field outputs are shown in Fig. 5. The first null
of the H field on the right had a slight disturbance which was prob-
ably due to the imperfect free space.

4.3 Two Orthogonal Loops (unconnected)

This probe consisted of two semiloops 1.5 inches in diameter. The
size of the loop was chosen from Fig. 4. The circuit arrangement is
shown in Fig. 1(b), except the top points of two loops were not con-
nected.

4.3.1 45° Orientation

A double orthogonal semiloop was tested at an orientation of 45° to
the line between the two transmitting antennas. Fig. 6 shows the two
components of H field: H1 and H2. The two H components should be
equal since the two loops were oriented 45° to the axis. However, the
two loops, due to the fact they were roughly hand -made, were not
precisely 45° to the axis. They were also not connected at the top
points. So the fact that H2 was higher from loop 2 than H1 was from
loop 1 was not a surprise. Fig. 6 also shows the E fields from the
two loops, and we note that the nulls of the E field from loop 2 were
lower than loop 1. The difference between the two loops was that
loop 2 had more cross section area than loop 1.

4.3.2 90° Orientation

A double orthogonal semiloop was oriented at 90° to the line be-
tween the two transmitting antennas. In this case, H2 should equal
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Fig. 5-Standing waves of E and H fields along the slot by using a semiloop
as a receiving probe.

the H field and H1 should read zero output. From Fig. 7 we see that H1
is 18 dB down compared with H2, but has apparently picked up some E
field since the peaks of H1 are almost located at the nulls of H. and
vice versa. H. in Fig. 7 is almost equal to the vector sum of the two
components, H1 and II2, in Fig. 6 (45° case) as one would expect. E1
and E2 in Fig. 7 should be identical. They both represent the E field.
In an ideal situation, E1 and E. in Fig. 7 and in Fig. 6 should all be
the same. Since the two loops were not connected at the top point, the
maximum output from loop 1 was slightly lower than loop 2. Hence,
the nulls of the four E's were not the same.

4.4 Two Orthogonal Loops (connected) - Energy -Density Antenna

The two orthogonal loops (1.5 inches in dia.) were connected at the
top point of two loops, shown in Fig. 1(b).

4.4.1 45° Orientation

A double orthogonal semiloop was oriented at 45° to the two trans-
mitting antennas. Fig. 8 shows the two components H1 and IL. Since
the loops, due to the fact they were roughly hand -made, were not
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oriented precisely 45° to the axis and were not actually quite sym-
metrical to the center, the two components H1 and H2 were not equal.
There was no remarkable difference between Fig. 8 and Fig. 6. Fig. 8
shows the two E fields: E, and E2. Their peaks are almost the same,
which might be due to the fact that the two loops were connected at
the top points, but the nulls did not coincide with each other due to
the two unsymmetrical loops. Comparing Fig. 8 and Fig. 6, we found
that we had better results when there was a connection at the top
points of the two loops in that the nulls of E1 were somewhat deeper.

4.4.2 90° Orientation

A double orthogonal semiloop was oriented at 90° to the two trans-
mitting antennas. Fig. 9 shows H2 which is the amplitude of the total
H. Loop 1 picked up some E field, as H1 shows, of about the same value
as in the unconnected case. H1 was almost 20 dB down compared with
H2. There was no remarkable difference between Fig. 9 and Fig. 7
except that Ill in Fig. 9 picked up more like a pure E field although
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Fig. 6 - Standing waves of H fields and E fields along the slot by using a
double orthogonal semiloop antenna unconnected at the top point (oriented
at 45°).
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it has small field strength. Fig. 9 shows that El and E2 almost coin-
cided, but in Fig. 7 they did not. Hence, it is better when the two loops
connect at the top points than when they do not.

V. ENERGY -DENSITY COMPUTATION

We used the H and E components of two connected orthogonal loops
oriented at 45° (Fig. 8) and 90° (Fig. 9) to compute two sets of
energy density from the measurements made in the free -space environ-
ment. Since both E and H were measured in volts, the energy density
we computed from (1) is

w = (E2 (I2E)H2)

=
2
-e- [E2(volts2/m2) (377 ohm)2 X H2(amp2/m2)]
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Fig. 7 - Standing waves of H fields and E fields along the slot by using a
double orthogonal semiloop antenna unconnected at the top point (oriented
at 90° ) .
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Fig. 8 - Standing waves of II fields and E fields along the slot by using a
double orthogonal semiloop antenna connected at the top point-an energy-
density antenna (oriented at 45°).

= [E2(volts/m)2 112(volts/m)2]

= - (tV), (2)

where

H2 = a211 ,

E2 = E2, or g ,

a = a weighting factor (a factor relating the level of average peak
values of Hl and H2 components to the E field), and

w' = the energy density in our calculation.

From Fig. 8 we found that. the maximum value of H1 was about
1 dB less than 112. Also from Fig. 9 we found that the maximum value
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Fig. 9 - Standing waves of II fields and E fields along the slot by using a
double orthogonal semiloop antenna connected at the top point-an energy -
density antenna (oriented at 90°) .

of either of two E fields was about 2 dB less than H.). Hence, we might
suggest the following equation representing the energy density obtained
from this particular antenna:

w' = (1.122H1)2 + H22 + (1.26E2)2

= (1.26)2[(0.89H1)2 (0.795H2)2 (3)

where al = 0.89 and ap, = 0.795. From (3) we can calculate two energy -
density curves, one shown in Fig. 10 for the orientation of antenna at
45° and another also shown in Fig. 10 for the orientation of antenna at
90°. From both curves, the maximum -to -minimum range was only
about 2.4 dB, compared to 18-20 dB in Fig. 8 and 9 for the E and II
fields alone.
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Fig. 10 - The energy -density calculation of an energy -density antenna (oriented
at 45° and 90°).

VI. CONCLUSION AND COMMENTS

An energy -density antenna with loops of 1.5 inches in diameter was
selected from the measurements as the one to test in the mobile radio
field. The connected orthogonal loops were somewhat better than un-
connected ones. For two orientations of the loop in the standing wave
field in the test environment, the computed energy density varied
much less than any of the field components. The configuration of the
energy -density antenna could be used at other frequency ranges by
scaling the diameter of the loops. After an energy -density antenna was
made, a calibration to obtain the weighting factors al and ce, was
needed to set up a proper energy -density equation for this particular
antenna.

I wish to take this opportunity to thank W. C. Jakes, Jr., for his
advice and suggestions.
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Error Probability for Binary Signaling
Through a Multipath Channel
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Error probability is considered for binary signaling through a multipath
channel in which (i) the receiver observes a waveform comprising white
Gaussian noise and the sum of (perhaps several) time -delayed, frequency-
shif ted, Rayleigh -faded versions of the transmitted waveform, (ii) the
receiver decides with minimum error probability which of the two possible
transmissions was sent. Results given herein for the exact minimum error
probability necessarily depend upon a number of parameters and are
cumbersome to use. By introducing bounds on the error probability, de-
pending upon bounds on spectra of certain matrices, the number of param-
eters is reduced and the less cumbersome results become applicable to any
one of a set of channels rather than to just one channel. The error -prob-
ability bounds are presented in terms of values of the distribution function,
derived herein, of the difference of two chi-square random variables. The
bounds are sharp when the spectra are narrow. For the case of widely
orthogonal signals, any version of one possible transmission being orthogonal
to any version of the other transmission, the bounds are given as a set
of universal curves plotted versus signal-to-noise ratio for various values
of the number of paths and of the spectral width of certain matrices. Spectral
bounds can easily be computed when the versions for each transmission
are nearly orthogonal. Returning to the general case, another bound is
derived, by a technique due to Chernoff, which does not explicitly require
spectral bounds which may neither be readily available nor be accurate
approximations of eigenvalues. This bound is not as sharp as the previous
bound for the case of small spectral width, but has promise for the large -
width case.

I. INTRODUCTION

This paper considers error probability for the optimum reception
of binary signals transmitted through a multipath channel having

1601
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P paths. * One of two possible signals is transmitted; the received
waveform is the sum of P Rayleigh -faded, time -delayed, frequency -
shifted versions of the transmitted signal, plus white Gaussian noise.
That is to say, if the complex signal ViET x.(t) is transmitted, m = 1, 2,
the contribution to the received waveform from the pth path is

y,(t; p) = -V2E, apxm(t - r,) exp [i(2iript v)],
where a, vp, 7,, and fp are the Rayleigh -distributed amplitude, the
uniformly -distributed phase, the fixed time delay, and the fixed fre-
quency shift associated with the pth path. The received waveform is

z,(t) = 7,(t; p) n(t),
v-i

where n(t) is white Gaussian noise.
The above multipath situation is a special case of a more general

communications situation in which a receiver observes a sample z (t)
of a zero -mean complex Gaussian process on the time interval [0, T],
the covariance function (z (s)z*(t)), having been selected from a set
of two distinct functions by chance according to the prior probabil-
ities (am), m = 1, 2, and the other second -moment function (z (s)z(t)),
being zero. The receiver is to be designed so that its decision
upon one of the two possible hypotheses is made with mini-
mum average error probability Pe, where P = (m) and
Pe(m) is the probability, when covariance indexed in is true, of
deciding otherwise.

The receiver -design problem has been treated in Ref. 1, rigorously
demonstrating that optimum processing involves quadratic filtering.
However, the filter kernels, being the solutions of integral equations,
are difficult to determine in general; moreover, the error probability
is not evaluated. For the multipath channel, the first difficulty is over-
come in Ref. 2 and the evaluation of binary error probability is
considered in the present paper.

Section II presents the theory of a method that can be used to
calculate error probability exactly. However, it is quickly appreciated
that error probability depends in a cumbersome fashion upon a
large number of parameters including the path strengths and the
scalar products of the versions. To simplify this situation, this paper
introduces bounds on the error probability which depend upon bounds
on the spectra of certain matrices, the eigenvalues of which determine

* Each path could comprise a multitude of randomly phased subpaths having
essentially the same delay and frequency -shift parameters.
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error probability exactly. Thus, the bounds are applicable to any one
of a set of channels rather than to just one channel.

Section III presents these error -probability bounds in terms of
values of the distribution function of the difference of two chi-square
random variables and then derives this distribution function. More
specific results are obtained in Section IV for the case of widely
orthogonal signals, any path's version of one of the two possible trans-
mitted waveforms being orthogonal to any path's version of the other
waveform. Here, easily computed spectral bounds can be given for
the case in which the versions under each hypothesis are nearly
orthogonal. Section V considers the case of well -resolved paths, making
contact with diversity theory (Ref. 3, Chap. 7), and the case of on -off
keying.

The error -probability bounds considered above require spectral
bounds which may not always be easily computed and which may not
be accurate approximations of the eigenvalues. A bound that circum-
vents these difficulties is obtained in Section VI with a technique due
to Chernoff. Comparison of this bound with previous bounds is car-
ried out analytically only for the case of well -resolved paths, but
qualitative comparison is made for more general cases.

IT. PROCEDURE TO OBTAIN ERROR PROBABILITY IN THE GENERAL CASE

2.1 Notation

The binary situation is a specialization of the case of M-ary
signaling through the multipath channel in which the received process
z(t) can have one of M possible covariance functions, (z (s) z*(t)),,
ni = 1, 2, . . . M, of the form

P

2E, E apb(s, m)bt(t, fl?) Aro(5(s - t),

a degenerate kernel plus a white -noise kernel (Ref. 2). Here bp(t, m) =
exp (i2rfOx,(t - 79) is a time-doppler-shifted normalized version of
the transmitted signal Var, x,(t); the path with index p has an
average cross section of 0-7, units, a delay of 7, seconds, and a doppler-
shift of fp Hz. We put

fdt I x,(t) 12 = f dt I bp(t, m) 12 = 1,

so that the average energy received from the medium is



1604 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

2' f dt 2E, E 0-, I bp(t, m) 12 = Em E cri, = Em ,

since we put E 0- = 1.

The above covariance function can be written

2E,b(s, m)o-b*(t, m) N0 (s - t),
where b(t, m) is a vector with pth component bp(t, m) and cr is the diagonal
matrix with pth entry Gr,, , with tr = 1.

The optimum receiver decides according to the value of m that
corresponds to the largest of M test statistics computed as follows.
For each value of m, the receiver first generates the column vector
Z(m) = No f dt z(t)b*(t, m) and then evaluates a test statistic com-
prising a Hermitian form in Z(m) plus a bias constant. This test statistic
is

[(N0/2E,)1Z(m)]*(2E,/No)H(9n)[(11ro/2E,)4Z(m)] (N0/2E,) ,

where the Hermitian combining matrix is

(2Em/No)H(m) = (2Em/No)[(2Em/No)B(m) (7-1]-1,

the bias is given by,

d [(2E,IN0)B(1)0(m) = log
al detet [(2Eni/No)B(m) (7-1 '

B(m) is the correlation -function matrix f dt b*(t, m)b(t, m), and the
hypotheses are ordered so that E1 = max Em . The above test statistic
is obtained from that given in Ref. 2 by subtracting log [a, (let' o-
ctet' H'(1)] and multiplying all resulting terms by No/2E1 

The above test statistic has a certain intuitive appeal. The components
of the vector Z(m) are the correlations of the received signal against
the noise -free versions of the transmitted signal that would occur
when message m is sent. That is to say, Z(m) provides a measure
of the projection of z(t) on the P -dimensional subspace spanned by
these versions. Moreover, the test statistic is a measure of the likelihood
that this P -dimensional subspace is in fact the correct subspace. Then
the optimum receiver strategy is decision according to the most likely
of the M possible subspaces. Also, since P dimensions are involved,
it might be anticipated that the results are related to the case of P -fold
diversity, cf. Section 5.1.

Henceforth, only the binary case, ill = 2, is considered. In this
case, decision according to the larger of two test statistics is equivalent
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to decision according to the sign of their difference. The decision events
can then be written in terms of one Hermitian form in a composite
Gaussian vector

as follows. Let

Q

Z = (No/2E01(z(c2))

-2E, H(1)
No

OpxP

OPXP

2E2
-K H(2)

where Opp is the p X p zero matrix. Then the receiver decides upon
m = 2 when ZtQZ is less than (N0/2E,)0(2), and decides upon m = 1
otherwise.

The conditional error probabilities are thus

P.(1) = Pr {ZtQZ < (AT 0/2E)0 1} = F,[(NF°)0 ,

P0(2) = Pr {ZtQZ > (N0/2E) 0 I 2} = 1 - (-)-1\-)0] ,

where E = E1 0 = 0(2), and F ,n(x) is the distribution function of
ZtQZ conditioned upon the mth hypothesis.

2.2 The Fundamental Matrices

Since ZtQZ is a function of a Gaussian vector, the distribution
function F,(x) is determined by the conditional mean, (Z), , which is
the zero vector, and by the conditional covariance L(m) = (ZZt), ,

the other second -moment matrix (ZZ), being the 2P X 2P zero matrix.
The conditional covariance matrix L(m) is evaluated as follows. Let

L(m) =
L21(m)

L12(in))

L22(in)

where L'(m) = (N0/2E1)(Z(j)Zt(k)), . Then, by the definition of Z(j)
and interchange of operations, we obtain

(zort(o), =
No

ffds dt b*(s, j)(z(s)z*(0),r)(t, k)
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=
N0

I f ds dt b*(s, j)2E,6(s, m)o-b*(t, m)6(t, k)

cis dt b*(s , j) 5(s - t)6(t, k)

= 2E "' B(j' m)crB(m, B(j, k),
No

where B(j, m) = f ds b*(s, j)6(s, m) is a cross -correlation matrix.
Hence,

Lik(m) = (E./E1)13(j, m)013(m, k) (N 0/2.E i)B(j, k).

Similarly, it is found that (a), is the 2P X 2P zero matrix.
For future computations, it is convenient to write

where

Q=
1Q11 0 \

O Q") '

Q" = B -1(1)1I (N0/2ED[B(1)6]-' -1,
Q22 (152/ A-1(2) I (EilEi)/ + (N0/2E1)[B(2)0]-1) -1

2.3 The Characteristic -Function Method

To obtain the distribution, consider the conditional characteristic
function

cp,(t) = (exp (itZtQZ)), .

It is well known, e.g., Ref. 4, that

9,(t) = det' [I - itL(m)Q] = 11 [1 - itx,(70]-,

where { Xk(m) } is the set of eigenvalues of the matrix L(m)Q. The
eigenvalues are real, since L(m)Q is similar to the Hermitian matrix
Li (m)QL4 (m).

The distribution function can now be obtained from the characteristic
function. As a preliminary, it is noted that the characteristic function
(1 - itX)-n corresponds to one of two distribution functions, according
to the sign of X. When X is positive, the distribution function is

dx U(x) nexP (-x/X) ii(Y/X' n - 1) (y > 0),
X (n - 1)!

0 (y < 0),

= U(Y)I(11/X, n - 1),
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where U(x) is the unit step function (unity for x > 0, zero for .r < 0,
one-half for x = 0) and where

n k

I(y, = 1 f dx xne-x = 1 - k!n! kao

is the incomplete gamma function. Similarly, when X is negative, the
distribution function is

f: dx U(-x) ( -x)n-1 exp (x X.1 )
A r (n - 1)!

1 (y > 0),

1 - I(-y I X n - 1) (J<0),
= 1 - U(-y)I(y/X,n - 1).

To obtain the distribution function of Zi-QZ, the characteristic func-
tion is expanded into its partial fractions. Each term will be propor-
tional to (1 - itX)-" for some n, and corresponds to a term in the expan-
sion of the distribution function. For example, when all eigenvalues
are distinct, the expansion of the characteristic function is

so,(t) = E dk(m)
k 1 - iak(m)

where

dk(m) =
Xk(m)

(1 - Xi(1-1

The expansion of the distribution function F,n(x) is then

dk(m)UWI(YAk(m), 0)
1k :Xk(m) >01

2 dk(m)[1 - U(-x)I(y/Xk(rn), 0]
Ak(m) <0)

Iii the case of a degenerate spectrum, an eigenvalue X with multiplicity
r contributes the sum En_, An(1 - itX)-n to the expansion of the
characteristic function, and the corresponding part of the distribution
function involves I(, n) for n = 0, 1, 2, , r - 1.

It should be observed that the general approach of summing distribu-
tion functions corresponding to partial fractions is fully equivalent to
inverting the characteristic function by contour integration, the ap-
proach used by Turin' for a similar problem. (When all poles are simple,
the expansion coefficients {dk(m) are residues of the poles.)
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III. UPPER AND LOWER BOUNDS ON THE ERROR PROBABILITY

3.1 Error -probability Bounds from Degenerate -spectrum Variables

Exact computation of error probability involves considerable nu-
merical work in computing eigenvalues followed by evaluation of cum-
bersome formulas. Moreover, an often inordinately large number of
independent parameters must be specified. To simplify this situation,
we consider bounds on the spectrum of L(m)Q rather than the spectrum
itself. With a technique suggested in Ref. 6, we can obtain error -
probability bounds. Although we do not obtain the error probability
itself, the error -probability bounds apply to not just one channel but
rather to any channel for which the spectral bounds are met.

Observe that the characteristic function is precisely specified by
the spectrum of L(m)Q. This spectrum is the same as the spectrum
of I diag [X1(m), , X2p(m)], where I plays the role of a covariance
matrix and the diagonal matrix plays the role of a matrix of a Hermitian
form. Hence, the distribution of ZtQZ is the same as the distribution of

2P

q(m) = E xk(9n) 2, 12,
k=1

where {zk } are complex zero -mean Gaussian variates with covariance
matrix (zizt) = SJk, (ZiZk) being zero.

Suppose bounds on the eigenvalues are available. That is to say,
suppose it is known that the positive eigenvalues satisfy

Xk(M) (1a)

and that the negative eigenvalues satisfy

-17 Xk(772,) -v, (1b)

where the ,u's and v's are positive numbers that depend on m. Then,
a lower bound on q(m) is the degenerate -spectrum random variable
q(m), defined by

P 2P

q(m) = E I zk 12 P E I Zk I2

k=1 k -P+1

Note that we have used the fact that the number of positive eigenvalues
and the number of negative eigenvalues are the same, see Appendix A.
Similarly, an upper bound on q(m) is provided by the random variable

2P

q(111)= FIE121,12 E 1 zk 12*
k=1 k -P+1
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Since 9(m) < q(m) < q(m), it follows that

Pr q(m) 6 y} < F ,(y) = Pr q(m) < y} < Pr {9(m) < y}

Evaluation of these bounds requires the distribution function
G(y; P, a) of the degenerate -spectrum random variable

2P

E I Z. 12 - E zk
k=1 k=P+1

which is the difference of two chi-square variables each with an even
number of degrees of freedom. The bounds become

GRAY1Y; P L'(7)-1] ,,,(Y) GUAY1Y P P0.0-1],

where we use y = (No/2E)0 and reiterate that the ifs and P's depend
on m.

It is anticipated that these bounds are sharp when the spectrum
is narrow, the spread of the positive spectrum being much less than
any positive eigenvalue and similarly for the negative spectrum. Also,
when 0 itself is not precisely known, but bounds 0 < 0 < 8 are available,
the distribution function is bounded by

GRAY1Y; P P(FL)- 1] ,n(Y) G[0.0 -19,P,

where y = (Na/2E) B and y = (No/2E)Ti.

3.2 Distribution of a Degenerate -Spectrum Variable

It will be demonstrated that G(y; P, a) equals

a jP (1 +1 ay

when y < 0, and equals

(2)

1 - I(I
'
P - 1 - Ic)] (3a)

a

(P- 1 + 7e)( 1 yr( )-± ak

k=0 k 1\1 + a/ L\1 + 011 (1 + a)P
1(y, P - 1 - k)] (3b)

when y > 0.
Before doing so, note that when y < 0, the parameter a serves as

a scale size for y in the argument of /(x, n), but that this is not true
when y > 0. Nevertheless, a does act as a scale size in the following
way. A power -series expansion of /(x, n) yields

ak 1(y, P - 1 - k)
(1 + a)P

/ \p/op-k
1 (-1)n P - k

1+a) cte) (P - k)! n! P -k+nY'
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and when a << 1, the factor (y/a)P-k determines the small -y behavior.
Also, this result exhibits [a/(1 a)]" as a factor for the case y > 0,
in agreement with the expression for y < 0.

To find G(y; P, a), we consider its characteristic function

(1 - it) -1)(1 ita)-P.

Let the partial -fraction expansion of this characteristic function be
p-i p-iE AP -,,,(1/3,(1 - it) -(P -m) E ,-(1 ita)-(P-n)
m-0

To evaluate A p_ multiply by (1 - it)P and let 1 - it = T to obtain
P-1 P-1

(1 + a - ar)-P = E + TP E Bp_n(1 a - ar) P -n)

m -o

Since the second sum is analytic at T = 0, we have exhibited the Taylor
expansion with remainder. But

a )-P
(1 + a - ar)-P = (1 + a) -P(1 1 + a )

= 1 )1D P k 1)( a )krk
ai o= ai

where we have used (7) on page 2 of Ref. 7. IIence,

A P = (1 (P - 1) (1

Similarly, to obtain Bp_ , multiply by (1 + ita)P and let 1 + ita = T
to obtain

A
T

P-1 P-1 -(p-m)
(1 + - - = E B p_Tn + TP E Ap_,(1 + 1 T- -

a a n=0 n, -0 a a

Reasoning as before, it is seen that

± al k
( a )1 1P ±

n i \
n - 1)

(1 + al
)"kl.

Collecting these results, it is seen that the characteristic function is

(/' kk - 1)(1 +1 JIG y(1 + ita)-(P-k)

ak tr P "1
(1 + a)P

This immediately establishes the distribution function G(y; P, a).
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IV. WIDELY ORTHOGONAL SIGNALS

4.1 Matrices for the Two Hypotheses

We consider the special case in which the signals are widely orthogonal,
B(1, 2) = B(2, 1) = Opxp . That is to say, all time-doppler shifted
versions of one signal are orthogonal to all such versions of the other
signal, a situation that would prevail in frequency -shift keying with
widely separated frequencies. In this case,

V(n) = (5;k[-Ln B(j, m)o-(m, k)
2E,

B(), k)]E,

The "diagonal" form of the covariance matrix L(m) and of the matrix Q
implies that the spectrum of L(m)Q comprises the specturm of Lil(m)Q11
together with the spectrum of L22(m)Q22. This can be seen by employing
the formulas of Schur (Ref. 8, pp. 45-46) to reduce the determinantal
equation det [L(m)Q - XI] = 0 from order 2P to order P. For m = 1,

L11(1)211 = B(1)0,

L22(1)(2" = -(N0/2Ei)(E2/EI)RE2/E1)/ (No/2E1)[B(2)cd

For in = 2,

L"(2)Q" = (N0/2E1)1/ + / 2 EI)[B(1)0]-1

L22 (2)Q22 = - (E2/E i)B(2)c r

It should be observed that the spectra of the above matrices are
simply related to the spectra of B(1)o and of B(2)u. When E2 = El = E,
the spectrum of L22(1)Q22 is { - (N 0/2E) (1 (N 0/2E) GT I , where

ok) is the spectrum of B(2)o. Similarly, the spectrum of L11(2)(211
is (No/2E) (1 + (No/2E)cok-1)-11, where (cok) is the spectrum of B (1) a

Second, it should be observed that when E2 = E1 E, the forms
of the matrices for the cases m = 1 and m = 2 are the same, with the
roles of positive and negative matrices interchanged. To compute
error probability for m = 1, we use the distribution function FI(x);
for m = 2, we use the conjugate distribution 1 - F2(x) which can be
expressed as Pi - ZtQZ < -x J 2}, the distribution function of the
negative of the original variable evaluated at -x. Introduction of this
random variable for the case m = 2 reverses the roles of positive and
negative matrices, the net effect being that for both m = 1 and m = 2
the positive and negative matrices have the same forms.
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4.2 Bounds on Spectra, 0, and Error Probability

It is clear that spectral bounds on L(1)Q can be obtained from spectral
bounds on B(m)o, m = 1, 2, and similarly for L(2)Q. Consider the
bounds on L(1)Q when E, = E2 = E. The positive spectrum is bounded
as follows:

µ=w <mincok <X(1) <maxwk :5- (7) =µ,

and the negative spectrum is bounded as follows:

= -(No/2E)[1 (N,,/2E)(8)-1]-1 X(1)

X(1) -(No/2E)[1 (N0/2E)(b)-1]-1 = -v,

where 6 < min ak C- max Ok < S.

Moreover, bounds on 0 can also be obtained. When E, = E2 = E
and ai = a2 = z (equilikely signals),

det [B(1)0 + (N0/2E)1].
y = (N0/2E)0 = (N0/2E) log det [B(2)o- (N0/2E)I]

Since a determinant is the product of the eigenvalues of the matrix,
we have

Ti -'T wk.

+
(No /2E)

(N 0/2E) 0 = (N,,/2E) log
k=1 Ok (N0/2E)

Thus, an upper bound is

(N0/2E) B = (Nol2E)P log (1)

(N°/2E)
+ (No/2E) '

and a lower bound is

(No/2E)0 = (N012E)P log `il± (No/2E)
5 + (N0/2E) 

Recall that the distribution function 17,[(N0/2E)0] is bounded from
above by GRE)-1(N0/2E)o; P, v(E)-1]. Further, suppose that the
spectra of B(1)0 and B(2)a are narrow about the nominal value
(1/P) tr B(m)o- = (1/P) tr v = (1; P). We can put

1 + 1
6.) - - (4)

° P

where 13 is the fractional spectral half width. Then, the parameters
required to compute the upper bound on the distribution function are
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Oar' (No/2E)9 = 1 (NoP/2E)P log
1 + /3 (N°P/2E)

1 - 1 - + (NoP /2E)
(5a)

--1

POLY' =
1

(NoP/2E)[1 + (NoP/2E)1 (5b)

Similarly, the distribution function FAN0/2E)01 is bounded from below
by MAY' (No/ 2B)B; P, -vv(p)-']. The parameters required for this bound
are

(P) -' (N o/2E)0 =
1

(NoP/2E)P log 1 ± (N°13/2E) (5c)
1 -I- 13 1 + + (NoP /2E) '

-1

1 +E(P) - (N oP /2E)[1.
1

1

13
(NoP/2E)1 . (5c1)-

Having considered the case m = 1, the bounds for the case m = 2
are apparent. Considering the random variable -ZtQZ with 0 assumed
known, the positive and negative spectral bounds are precisely the
same as for the case m = 1, and the upper bound is

G[-(g)-1(No/2E)0; P, v(u)-1]

whereas the lower bound is G[- (.7)'(N0/2E)0; P, v(17)1. But 0 is
unknown, and the upper bound is given by replacing -0 by B, and the
same result is obtained as previously; similarly, the lower bound is
given by replacing -0 by O. In short, the bounds apply to both cases,
m = 1 and 2.

The numerical values of these bounds are given in Figs. 1 to 3 as
functions of 2E/NoP (the signal-to-noise ratio per path) for various
fixed values of (the fractional spectral half -width) and P (the number
of paths). The curves are nested with respect to values of the fractional
spectral half -width 0; an increase of 13 always yields an increase of the
upper bound and a decrease of the lower bound. A measure of the sharp-
ness of the bounds (given a nominal value of error probability P,)
is provided by the difference of the upper -bound and lower -bound
values of 2E/NoP (in dB) for given values of 13 and P. For P. = 10'
and P = 4, the sharpness is 14 dB for a = 0.05 and 2/ dB for /3 = 0.1.
This measure of sharpness appears to be relatively insensitive to the
value of P. An alternate measure would be the difference in error
probability for a given value of 2E/NoP, and this measure is indeed
markedly sensitive to P.

In the region of the curves corresponding to high signal-to-noise
ratio, there is an improvement in error probability associated with
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Fig. 1- Error -probability bounds for widely -orthogonal signaling, P = 2.

larger P; the curves become straight lines since P. becomes proportional
to (2E/NoP)-P. However, this improvement is in part attributable
to choosing 2E/N0P, the average per -path signal-to-noise ratio, as
the abscissa rather than 2E/No, the total signal-to-noise ratio. To
obtain plots vs 2E/No , one moves the P = 2' curves to the right
by 3n dB; then, the improvement with increased P is less dramatic
in this region of high signal-to-noise ratio.

4.3 Computing Spectral Bounds

It has been observed that bounds on the error probability for the
case of widely orthogonal signals can be obtained from bounds on the
spectrum of B(m)a, m = 1, 2. We now give several easily computed
formulas for these bounds.

Recall that B(m) is defined to be f dt b*(t, m)6(t, m), a matrix of
scalar products or a Gram matrix. In general, this is uninformative,
since a matrix is a Gram matrix if and only if the matrix is positive
semidefinite. However, we will shortly use the fact that in our case
the diagonal entries of B(m) are unity because of the normalization.
Next, note that B(m)a is similar to a/B(m)d, a hermitian matrix
which has real roots (since o- is a real diagonal matrix with positive
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entries, the matrices o and a-1 exist; then al[B(m)a]a-i = al./3(m)03).
When B(m) is diagonal or nearly so, the roots of B(m)o- should be
close to the entries of a; this is justified by the following theorem.'
The characteristic roots of any matrix A lie in the closed region of
the z -plane consisting of all the disks {z: J z -A Ei,, I A
i = 1, 2, , P} . In our case, the region must be on the real line,
and we obtain a set of not necessarily nonoverlapping intervals centered
about { I , the half -widths being {E,,, J B ,;(m) I a when we take
A = B(m)o. The spectral bounds are then the rightmost right -end point

max [A;; E I A lb

and the leftmost left -end point

Min [A;; - E I Aii I]

(when it is positive).
A family of spectral bounds is obtainable from this theorem by apply-

ing it to B(m)o. and to matrices similar to B(m)a, e.g., Cji B (M) CJ1 CI B(m),
and more generally o -aB(m)o-' , 0 < a < 1. Thus, we have the family

to-,

to -2

to -3

to -4

10-5

I0 6

UPPER BOUNDS

---13 = 0.2

,__/3= 0.05

LOWER BOUNDS

/3= 0.2 -
13= 0.1 -
i= 0.05-

-5 0 5 10 15 20
2E/NoP SIGNAL-TO-NOISE RATIO PER PATH IN DECIBELS

Fig. 2 - Error -probability bounds for widely -orthogonal signaling, P = 4.
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= 0.2 - -
)9 = 0 . - -
/3 = 0.05 --
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Fig. 3 - Error -probability bounds for widely -orthogonal signaling, P = 8.

of upper spectral bounds

max to-, E c ia I B ii(m) o -Y } , 0 a 1. (6)

The question arises: which is the smallest upper bound? It is not true
in general that a bound is attained for the value of i that maximizes
c , but suppose this is the case when a = 0. That is to say, suppose
CI; = maxk ark and that

E 13 ) I = max ak[1 E I Bki(m) I 51i,j.
j,4 vk

Then it follows that this is the smallest bound in the family, for o-dai:5_ 1
implies that

Bii(n) I °Li- E Bii(n)

/
,

and hence

Gri[1 E Biion) + E BiiOn) I (°4
jid i

1-a

max {crk[l E I Bki(m) I (`',.) 1/.
k ilk -k
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Similarly, we have the family of lower spectral bounds

min {,, - E 0-7 I Bii(m) I 0-1--}, 0 < a < 1. (7)

The largest lower bound is obtained when a = 1 provided that vi =
mink 0k and that

cri[1. - E B,;(no I] = min t0,[1 - E I nki(m) 1]).
,,d, k irk

To see this, observe that ado-, -- 1 implies

E I Bia(m) I (cr-l-a E /3,,(//i)I,
isi iii

and hence

cri[1. - E /3,;(7/0 1] - E Biion) (72)1 a]
0-,

min {0-11 - E I Bki(m) i()
It should be noted that less sharp bounds are easily obtained. For

example, the matrix aB(m) yields the upper hound

max tai[1 E I Bii(m) I]) < max vi max [1 + E Bii(m) 1],
Joi

and the right-hand side is easily computed. The corresponding lower
bound is

min 10-D -E I B,;(n) [min cral - max E I n,i(n)
Joe,

These less sharp bounds are easier to compute than those obtained in
a similar fashion from B(m)cr or from craB(m)cr'.

Also, it should be noted that sharper bounds can be obtained by
employing a sharper theorem of matrix theory:9 The characteristic
roots of any matrix A lie in the closed region of the z -plane consisting
of all the ovals I z - Aii I I z -21;11 < (Ekoi Aik)(Ekor A,k), i 9.
We do not pursue these bounds, but note that simple formulas are
obtained only when all paths have equal strength, = 1/P.

It is now clear that when B(m) is essentially diagonal, with
E;o, I Bii(m) I << 1 for all i, the path gains a, are good nominal values
for the characteristic roots of B(m)cr. If, moreover, these path gains
are equal, or approximately equal, then the upper and lower spectral
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bounds are close to one another. When this narrow -spectrum condition
prevails, the positive and negative portions of the spectrum of L(m)Q
are also narrow, and the bounds on error probability are sharp.

V. OTHER SPECIAL CASES

5.1 Well -resolved Paths and the Theory of Diversity

We consider the case in which the signals are resolvable, B(1) =
B(2) = I, i.e., the paths are well separated in time and frequency
so that any time -Doppler shifted version of a signal is orthogonal to
any other version of itself. Moreover, we also assume that B(1, 2) =
f dt b*(t, 1)&(t, 2) becomes a diagonal matrix, B(1, 2) = pI where
p = f ell xp(t)x2(t), i.e., the paths are sufficiently separated so that
any version of one signal is orthogonal to all but the same-path version
of the other signal.

It is then easily seen that the covariance matrix is comprised of
diagonal submatrices. For m = 1,

L"(l) = a + (N0/2E,)I L12(1) = p[cr (N0/2 E,)1]

L21(1)
= p*[c (N0/2E1)11 L22(1) = I p 12 a + (N0/2E1)I.

For in = 2, assuming E2 > 0,

L"(2) = (E2/EI)[l P a + (N0/2E2)I]
-,"(z) = p(E2/E,)[o (No/2E2)I]

21
1-, (2) = P* (E 2 / E 0[0" + (No/2E2)I]
L22(2) = (E2/E1)[0. (N0/2E2)I].

Moreover, the matrix Q is diagonal, being related to

(2E,./NOH(m) = (2E,/N0)[(2E,/NOI = o[o (N012E,)1]-1.

It then follows that L(m)Q is comprised of diagonal submatrices.
To find the spectrum, the order of the determinantal equation can be
reduced from 2P to P. Then the argument of the determinant is quad-
ratic in X. For the case E1 = E2 , a method of Turin [(22)-(23) in Ref. 5]
can be used relating the Xk to the eigenvalues (elements) of a..

The above example brings the present analysis in contact with the
theory of diversity combining, see e.g., Ref. 3, Sec. 7.4. Turin,' for
example, considered the case in which separate waveforms are available
and the fading is nonindependent in general. In our analysis, only one
waveform is in general available. But in the case of well -separated paths,
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we may assume P separate signal waveforms have been observed.
However, these separate waveforms must fade independently in keeping
with our general discrete -path model, and the on -diagonal component
matrices of L(m), viz., L11(m) = (N0/2E,)(Z,Z1), and L22(m) =
(N0/2E1)(Z24).. , are themselves diagonal matrices. It is still entirely
possible that L12(m), the off -diagonal component matrix of L(m), is
not a diagonal matrix; e.g., when x2(t) is a delayed version of xi(t),
then time overlap may preclude B(1, 2) being diagonal even though
B(1) and B(2) are diagonal. But when we assume that B(1, 2) is also
diagonal, then we obtain the form for L(m) exhibited above. It can be
observed that this is precisely the result Turin obtained for the case
of optimum diversity combining, where his not necessarily diagonal A
becomes our diagaonal a. When B(1, 2) is not diagonal, then our
results do not specialize to the form given by Turin, a reflection of
the fact that the multipath channel is not in general fully equivalent
to a diversity channel.

5.2 On -Off Keying

Another example is the case of on -off keying in which E2 = 0. The
test statistic ZtQZ becomes

[(N0/2E1)1Z(1)] t(2EI/N0)1/(1)[(N0/2Ei)iZ(1)], since Q22 0.

Thus, the distribution is determined by the spectrum of the matrix
L11(m)Q11, where

L11(m) = oB(1, m)o-B(m, 1) + (N0/2E1)B(1),
Qii B-1(1) (No/2E,)[B(1)cr]-11-1.

Observe that we no longer have the difference of positive -definite
forms, the test statistic now being a positive random variable. The
threshold (N0/2E00(2) is

(No/2E,) log det [(--2E,)13(1)(7N.

which is positive since the eigenvalues of (2E,/No)B(1)0- + I are
greater than unity.

Assuming that the spectrum of L11(m)(2Ei/No)H(1) lies in the
interval (A, pc), whereµ and p are functions of m, the bounds on the dis-
tribution function are

GRA.)-1(N0/2E)0;P, 0] F.,[P)0 G[(1)-1(N0/2E)0;P, 0].
2E
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Recall that G(x; P, 0) is related to the incomplete gamma function,

G(x; P, 0) = 1(x, P - 1).

The spectral bounds must exhibit two forms of (2E1/No)-dependence.
When m = 1, L11(1)(211 = B(1)a, and bounds on B(1)o- become µ and p.

When m = 2, L"(2)Q" = (N0/2E1) {I + (N0/2E0[B(1)0]-1r1, so that

= (No/2E1)[1 + (N0/2E1)(w)-1]-1,

A = (No/2E0[1 + (3/0/2E0W-1]-1,

where the spectrum of B(1)0- is confined to (w, Co).
Collecting our results, when m = 1,

F1[(N0/2E)0] < 1 f (co)'(N0/2E)P log [(2E/N0)(0 + 1]; P - 1)

F i[(No/2E)0] I f (Cy) -1 (A r o/2E)P log [(2E/No)cs + 1] ; P - 11 .

Similarly, when m = 2

F,[(N0/2E)0] < If [1 + (N0/2E)(0-1P log [(2E/No)Co + 1] ; P - 1)

F,[(N0/2E)0] I { [1 + (N0/2E)(C0)-1P log [(2E/No)fs 1];P - 11.

These results permit the computation of error -probability -bound curves
that would be universal in the same sense as the curves for widely -

orthogonal signaling, i.e., the curves would apply to any element of

the set of channels for which the spectral bounds are met.

VI. CHERNOFF BOUNDS

6.1 General Case
Up to this point, consideration of spectral bounds has lead to error -

probability bounds which are sharp when the spectrum comprises

narrow positive and negative portions. These bounds are easy to employ
when B(1, 2) = 0 and B(1), B(2) are nearly diagonal matrices. But
in more general cases, the estimation of spectral bounds may be difficult
and bounds may be poor approximations of eigenvalues. We turn to

another technique of bounding error probability which does not ex-
plicitly require spectral bounds.

Consider the error probability when hypothesis m = 2 is true,
P0(2) = Pr IZI.QZ > (N0/2E)0 12}. Recall that the unit step function
U(x) is unity for x > 0, zero for x < 0, and one-half for x = 0. Then
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P.(2) = Pr { U[ZtQZ - (N0/2E) 0] = 1 1 2)

= 62 { U[ZtQZ - (N0/2E)0]),

where 62 denotes expectation under hypothesis m = 2. But since
U(s) 5 exp (.42x) for any /12 > 0, we have

P.(2) -5 g2 exp tiatQZ - (No/2E)
This average can readily be computed, since ZtQZ has the same dis-
tribution as E xk(2) I zk 12, where {Xk(2)} is the spectrum of L(2)Q.
Since Szk = 0, 6zizt = oak , and Szizk = 0, the Gaussian variables
{Re zi }, {Im zi } are independent with zero mean and variance equal
to 1. Thus, P.(2) is bounded from above by

2

exp [--122(No/2E)0][fl 8 exp (1.12Xk(2) I Re zk 12)
k=i

where the outer square appears because the product involving {Im
has been suppressed. But a standard calculation shows,

exp (A2Xk(2) I Re Zk 12) = [1 A2Xk(2)]-1, when m2Xk(2) < 1,

and our bound is

exp [-A2(No/2E)0] fJ [1 - A2x,c(2),-1 

Thus,

P.(2) < exp [- th(N0/2E)0] (let' [I - 112L(2)0,
which holds for all 11,2 such that 0 < p.2 < [max Ak (2) ]-1.

The above procedure is adopted from the technique due to Cher-
noff (see Ref. 3, Sec. 2.5 and 7.4). Here, we do not have identically
distributed variables; indeed, half are positive and half are negative
random variables.

To find the best value of /12, we write the bound as
2P

exp /12 ,544) 0 - In 11 - Adkk(2)]}

and differentiate the argument of the exponential. A necessary con-
dition for an extremum is that the derivative be zero, and this yields

(N0/2E)0 =(No/2L') E -i.2k(2)
2P=

( 3)

1
- tr {[(L(2)(2)-1 - 11211-1E -

(8)
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If the value of p.2 that satisfies this equation lies within the allow-
able interval [0, max-lXk (2)], then this value of p.2 minimizes the
upper bound. A minimum occurs because the second derivative of the
argument of the exponential is positive, being

2P
Xk(2)

2

, - ihxk(2)]
In a similar fashion, the error probability for m = 1 can be over -

bounded.

Pe(1) = Pr -ZtQZ > - (No/2E) 0 11)

Si iexp ZtQZ (N -0/2E)611

Pe(1) < exp [u1(No/2E)0] clet-1 [I t1L(1)(2]

The best value of /Li satisfies

(No/2E)0 = tr L(1)Q[I i.tiL(1)(2]-11,

provided this value lies in the allowable interval [0, max -1 ( (1 ) )1.

6.2 Widely -orthogonal Signals

Consider the case in which the signals are widely orthogonal,
B (1, 2) = 0, but have equal energy, E1 = E2 = E, and are equilikely,
at = a2 = 1. The overbound on Pe (1) is obtained from the spectrum
of L (1)Q which comprises the spectrum of L" (1)Q11 together with
the spectrum of L22 (1) Q22. Thus,

P.(1) 5 exp [i.ii(N0/2E)0] det-1 [I + ii1L11(1)(211] det-1 [I + 1211,22(1)(222]

But the matrices used here were related in Paragraph 4.1 to B (1)ff and
B (2) a, and our bound becomes

exp [,u,(No/2E)0] det-1 [I + yiB(1)(7-]

det-1 [I - 1.1,(N0/2E)[/ (N0/2E)(B(2)(7)-1-' .

A f ter some manipulation, this bound becomes

)-P2N0 2E{exp [11' (jr(.))

det 1B(2)a. + (2Ev) I]

det[2th
2E

(YIP) B(1)6
E

(-9 I clef{2[1 - pi MB(2)o-
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where

fdet [B(1)0- (N 0 / 2E)Dy (N *12 E)exp [121(N0/2E) = idet [B(2)0- 0/2E).1]

The maximum allowable value of kti is determined by the largest
eigenvalue of L22 (1)Q22 which in turn is determined by the largest
eigenvalue of B (2) u:

2E0 < <
NO

max' (SO,

where {8k} is the spectrum of B (2) .

The best value of is found from the relation

(N 0/2E)0 = E 1 ±%(1x)k(i)

= tr + µ,L,' (1)Q]-,

tr 1L22(1)Q"[/ ii1L22(1)Q"]-, I ,

where we again have exploited the decomposition of the spectrum of
L (1)Q. After some manipulation, we find

(N0/2E)0 = tr IB(1)0-[/ 12 IB (1) a] -I

2;- tr {B(2)01/ + (iv° - p,)/3(2)0- }.

An approximate solution can be obtained for the case of high signal-
to-noise ratio. Let pi = rii(2E/No); the relation becomes

(N0/2E) 8 = - 1 + (2E/No)µiwk 1 + (2E / No)( 1 - bk.

cok 4: 5 k

Suppose rti(2E/No)cok > 1 and (1 - ill)(2E/N0)Ok > 1. Then the
right side becomes approximately

P P
(2E/N0)P' - (2E/N0)(1 - PI)

Equating this to (N o/2E)0 and solving the resulting quadratic for the
root applicable for the case 0 = 0 yields

= [(1 + 45) ± +
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When 0 / 2P is small, this value of m is approximately

1 [ 01 - ,

and the corresponding value of Ai is (E/NO[1 - (0/P)] which is ap-
proximately at the midpoint of the allowable interval.

In a similar fashion, the overbound on P.(2) is

122L11(2)Q11] det-1_ A21,22(2)(221exp [-AAA/0/2E)0] det [I -
which becomes

exp [-122(N0/2E) 0] det-1 I/ - 1e2(N0/2E)[/ (N0/2E)(B(1)a)-1]-1)

det-1 + 122B(2)01,

or

(2No )-P {exp
(-A2 60)}

det [B(1)o -I- (N2E) /1

det {2[1 - /22 (21).8(1)0- (-.731)) (let [2m2 ("12,) B (2) a + (NA

where

{det [B(2)u (N 0 /2EVAPI(Ne/2E)
exp [-AAN0/2E) 0] = det [B(1)o- (Ar0/2E)fli

The maximum allowable value of /22 is determined by the largest eigen-
value of L11 (2)(211 in turn determined by the largest eigenvalue of
B(1)r:

2E0 < 122 < -N + max ((AO,
o

where I cokl is the spectrum of B(1)cr . The best value of /12 satisfies

(N 0/2E)0 = tr {L11(2)Q11[I - A2L11(2)(2111-1

tr {L22(2)(222[1
A21,22(2)(222]-11

2E
(N 0/2E)0 = tr {B(1)01(. - /12)/3(1)er + I

- tr {B(2)u[/ A2B(2)0]-11

Let A2=172(2E/NO and suppose /72 (2E/N0)6k>>1, (1-F42)(2E/No)wk>>1.
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Then the right side becomes

P P
(2E/No)(1 - (2E/No)µ2 '

and the approximation of the best value of P2 is

6

Ti2 = [(1 27i) -I- P11-1
which is approximately 1[1 - (0/4P)] when (0/2P) << 1.

The foregoing results can be specialized to the case in which the
paths are resolvable, B(1) = B(2) = I. Then 0 = 0, and it is easily
seen that the best value of p, is Z. Both overbounds become

p det [a (Ard2E)I](E/2N0)
det2 (No/E)11'

and this agrees with equation 7.134 in Ref. 3.
It should be noted that p, = is always an allowed value of p.

For the case of resolvable paths, it is the best value, and whenever
0/P << 1 and 2E/No is sufficiently large, it is close to the best value.
Using = 1, we can obtain an overbound for both error probabilities,
i.e., for P.(m), m = 1, 2. This overbound is

(E/2N0)-P exP

The factor exp
When det [B(1)a
we have

det [B(3 - m)u (N0/2E)11
I 0det [B(1)o (No/E)11 det [B(2)o (No/E)/]

(9a)

(1 I 0 I) can also be written in terms of determinants.
(N0/2E)I] is larger than det [B(2)0. + (N0/2E)I],

{det [B(1)0. + (N0/2E)./IV
exp (1

I I) = det [B(2)o (9b)
(N0/2E)11i

and when the reverse inequality holds, exp (1 I 0 I) is the reciprocal
of the above.

For the case in which the spectrum of B(m)cr lies in the interval
(1-/3/P, 1+13/P) where ft < 1, the overbound can be further over -
bounded. The factor involving determinants is less than

jp[i +0+ (2f)ir
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and 01/2 is less than
P 1 + Q + (NOP /2E)

log . - (N oP /2E)

It follows that the Chernoff bound is less than

(N oP/2E)P{
4[1 + # (N oP 12E)]1

IP.(NoP/2E)PR + 2(N oP /2E)r
(10)

Numerical values of this bound are given in Fig. 4, and it has the
same general character as the spectral-related bounds. Rather than
sharpness given a nominal value of error probability P., we consider
the sensitivity measured by the change in 2E /N0P (in dB) vs p;
for P. = 10-4 and P = 4, the sensitivity is 2 dB for /3 = 0.1. The
sensitivity does not markedly increase with an increase in P, in agree-
ment with the behavior of the sharpness of the previous bounds.

Comparison of the Chernoff bound with the previous bounds is
conveniently done for the case /3 = 0 (cf. Sec. 7.4 of Ref. 3). The
Chernoff bound does not specify a signal-to-noise ratio (required to
achieve a nominal Pe) excessively greater than the previous value;
for P = 4, less than 2.2 dB difference is observed. This excess does
decrease with increasing P. Moreover, it is entirely conceivable that in
a broad-spectrum case with a large number of paths, an exact value of
the Chernoff bound would be better than the spectral -bound result.
Of course, our inexact (overbounded) Chernoff bound is poor in the

i0-1

m

O

a_
CC 10-2

Lx
O
Lx
Lx

10-3
O
0
0
0in 10 4

10-5
0 5 10 15 20

2E/NoP SIGNAL-TO-NOISE RATIO PER PATH IN DECIBELS

25

Fig. 4 - Overbounded Chernoff bounds for widely -orthogonal signaling.
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broad-spectrum case, but a Chernoff bound using the proper values
of the determinants should be good for two reasons. (i) Such a bound
reflects the precise values of the eigenvalues of the matrix L (m)Q.
(ii) When P is large, the probability density function is bell shaped
with the probability "mass" being concentrated near the mean and
most of the tail mass being at the leading portion of the tail; then
the tail mass can be weighted by the exponential function with little
error. On the other hand, the spectral -bound approach suffers in the
broad -band case since the spectral bounds are not meaningful approxi-
mations of all the eigenvalues.

VII. DISCUSSION

Having observed that exact computation of error probability is
cumbersome and depends upon an often inordinately large number of
parameters, we considered error -probability bounds (2) that are uni-
versal in the sense that they apply to any one of a set of channels
satisfying spectral bounds (1). Our bounds employ (3), the distribu-
tion function of the difference of chi-square variables. For the special
case of widely orthogonal signals, we obtained bounds employing
parameters (5) in terms of the spectral width /3, see (4), of the
matrices B(m)cr. Plots of these bounds showed that sharpness meas-
ured in dB change of 2E/N0P with respect to /3 for a fixed value of
error probability is not sensitive to the value of P. We presented a
technique for obtaining spectral bounds for B (m) a when it is nearly
diagonal, representative results being (6) and (7). This technique can
also be applied to L (m)Q for the more general case in which the
signals are not widely orthogonal.

The case of resolvable signals (B (m) = I) made contact with the
theory of diversity; we found that for the multipath channel to be a

.diversity channel, B (1, 2) must also be a diagonal matrix. Of course,
the previous results also were in contact with diversity theory. With
B (1, 2) = 0 (a diagonal matrix) but B (m) not necessarily diagonal,
our results generalize those of diversity theory in the following sense.
The special case /3 = 0 corresponds to a diversity channel with equal
link gains, but the general case 13 0 can arise in the nondiversity
situation when the matrix B (m) is not diagonal. (If B (m) were
diagonal, B (m) = I and the diversity case prevails.)

We then turned to the Chernoff bound (8) which does not ex-
plicitly employ spectral bounds. The overbounded form (10) for the
case of widely orthogonal signals was poorer than the previous bound
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when = 0. Nevertheless, there is promise that in a broad-spectrum
case, the original form (9) would be better than the spectral -related
bounds. A further advantage is that once the determinants are eval-
uated, perhaps on an electronic computer, the error -probability bound
is immediately obtained. In contrast, the spectral -related bounds
require a certain amount of computation involving incomplete gamma
functions even after spectral bounds are obtained.

VIII. ACKNOWLEDGMENT

The author is indebted to Ira Jacobs, M. I. Schwartz, and B. H.
Bharucha for stimulating discussion and constructive comment. Miss
J. Hoffspiegel wrote the computer programs to obtain the numerical
results.

APPENDIX A

Here we show that the number of positive eigenvalues of LQ
equals the number of negative eigenvalues.* Recall that L is positive
definite and that Q can be written in the partitioned form

Q
0

0

Q22

where Q1' and -Q22 are positive definite. Clearly, the number of positive
eigenvalues of Q equals the number of negative eigenvalues. We can
construct a family of positive definite matrices L, , 0 < t < 1, such
that Lo = I, Li = L, and L, is continuous in t. For example, let Lt =
(1 - t)/ tL; L, has positive eigenvalues 1(1 - t) t-yk), where
{7k} are the eigenvalues of L. Now the eigenvalues of L,Q are real,
for L,Q is similar to the Hermitian matrix LtQLt = L-,1(L,Q)Lt, where
Lt and LT1 exist since L, is positive definite, Moreover, the eigenvalues
of L,Q are continuous in t, since Le is continuous in t. But L,Q never
has a zero eigenvalue, for L, is positive definite and (L,Q)-1 =
always exists. Since the eigenvalues are real, continuous in t, and never
zero, it follows that no positive eigenvalue of LoQ can become negative
as t varies on [0, 1], and no negative eigenvalue of LoQ can become
positive. The conclusion is established.

APPENDIX B

This appendix presents another derivation of the distribution func-
tion of Er J zk J2 - a Ev., zk 12. This derivation makes contact with

* We are indebted to B. H. Bharucha for the conception of this proof.
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the special functions that have appeared in analyses of diversity chan-
nels; also, this derivation appears to admit generalization to the case
Zk = Re Zk with (zizk) = S,k . (An odd number of variables in the real
case corresponds to half -integer P in the complex case.)

The density function of EP, zk 12 is

sP-le-z

aP(P - 1)!

The density of the sum is the convolution of the densities,

(a; > 0),(P - 1)!
f(x)

0 (x < 0),

and the density function of -a E2/1+,
I

zk 12 iS

g (x) =
0 (x > 0),

(- x)P-lex a < 0)

h(x) = f dy f(y)g(x - y),
max(0..)

where the first argument of max ( ,  ) arises from the truncated form
of f and the second argument arises from the truncated form of g.
It follows that

exp (x/a)
h(x) = dy(y - exp [ - 1)yi

a (P - 1)!(P 1)!

For the case x > 0, the lower limit is x. For the case x < 0, the integral
can be cast into the form of the integral for the case x > 0 by a change
of variable. The result differs only in the exponential factor, i.e.,

exp (-x)
h(x) =

aP(P - 1)!(P - 1)!
1f dy(y - x 1)P-1yr «-I exp [ -( 1)y ,

1.1
x <0.

The integral can be evaluated with the aid of relation (12) on page 202,
Vol. II of Ref. 10, and the common result for the cases x < 0 and x > 0 is

x ell'
_2

1) Kp_i(1 + a x I)
V7ra (1 ± a) i(/' - 1)!

where K,,_i(z) is the modified Bessel function of the third kind.
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The above expression for the density is valid for all P, noninteger
as well as integer. But in our application, P is an integer; a relation
on page 80 of Ref. 11 yields

\I, (P - 1 + k)!
IC p _ i(Z) = C- E

2z k- 0 k !(P - 1 - k)!(2z)k.

The density is then

( a
11(x) + exp

[(1a- a) 1 a+ a I

I'-1 (P - 1 + lc)! ( 1 Y 1 (
(P 1)!M(P - 1 - k)! \1 ai a \ a I

When x < 0, the exponential becomes exp (x/a), and when x > 0,
it becomes exp (-x).

Observe that when a = 1, the density is symmetric. When a < 1,
the factor exp [(1 - a/a)x/2] shifts the mass to the right. When a -4 0,
it can be shown that h(x) f(x).

To obtain the distribution function G(y; P, a), consider first the
case y < 0. Since f dx h(x) equals f 1 dx h(-x), the following integral
arises in each term of the sum,

f dx e-r/arxl 0P -1-k 1 - MI11 - /(1 y I/a, P - - k)].

The case y > 0 is treated by considering ft. dx h(x) dx h(x).
The integral that arises is just (P - 1 - k)!I(y, P - 1 - k). These
steps establish our final result, quoted above.

Our result could also have been obtained from the Fourier transform
of the characteristic function (1 - it) -P(1 lia)-'. The Fourier
transform of (a + it) -2"($ - /t)-' is given by relation (12) on page 119,
Vol. I of Ref. 10 in terms of Whittaker functions that reduce to Bessel
functions for the case µ = v = P/2 in view of relation (14) on page 265,
Ref. 12. The density function can thus be obtained.

REFERENCES

1. Kadota, T. T., Optimum Reception of M-ary Gaussian Signals in Gaussian
Noise, B.S.T.J., 44, November, 1965, pp. 2187-2197.

2. Aiken, R. T., Communication over the Discrete -Path Fading Channel, IEEE
Trans. Inform. Theory, IT -13, April 1967, pp. 346-347.

3. Wozencraft, J. M. and Jacobs, I. M., Principles of Communication Engineer-
ing, John Wiley and Sons, Inc., New York, 1965.

4. Turin, G. L., The Characteristic Function of Hermitian Quadratic Forms in
Complex Normal Variables, Biometrika, 47, June, 1960, pp. 199-201.



ERROR PROBABILITY 1631

5. Turin, G. L., On Optimal Diversity Reception, II, IRE Trans. Commun. Sys.,
CS -10, March, 1962, pp. 22-31.

6. Grenander, U., Pollak, H. 0., and Slepian, D., Distribution of Quadratic Forms
in Normal Variables, J. SIAM, 7, December, 1959, pp. 374-401.

7. Dwight, H. B., Tables of Integrals and Other Mathematical Data, third edi-
tion, The Macmillan Company, New York, 1957.

8. Gantmacher, F. R., The Theory of Matrices, Vol. I, Chelsea Publishing Com-
pany, New York, 1959.

9. Marcus, M. and Mine, H., Survey of Matrix Theory and Matrix Inequalities,
Allyn and Bacon, Inc., 1964.

10. Erdelyi, A., et al., Tables of Integral Transforms, McGraw-Hill Book Co.,
Inc., New York, 1954.

11. Watson, G. N., A Treatise on the Theory of Bessel Functions, Second edi-
tion, Cambridge University Press, 1958.

12. Erdelyi, A., et al., Higher Transcendental Functions, Vol. I, McGraw-Hill
Book Co., Inc., New York, 1953.





Preeoding for Multiple -Speed
Data Transmission

By ROBERT W. CHANG
(Manuscript received April 24, 1967)

In certain applications, because of noise, compatibility, or other con-
siderations, it is desirable that a data transmission system have the flexibility
to operate at multiple speeds. In this paper, a precoding scheme for multiple -
speed digital or analog data transmission is presented. The scheme has a
flexibility which allows the data rate and overall channel characteristics
to be changed simultaneously by simply changing the data format and some
resistive elements. There is no change in the filters, the equalization, the
transmitter signaling interval, or the receiver sampling time. By using
partial response channels, a number of commonly used data rates are
easily obtained, using a physically realizable precoder and correlator. With
correct timing and the use of orthonormal siginals, the signal-to-noise ratio
is maximized at each data rate for bandlimited white noise under the con-
straints of fixed line signal power and no intersymbol interference. Timing
error is considered in a two -speed transmission scheme, and the selection of a
precoding matrix using eye opening as the criterion is studied. This study
clearly demonstrates the advantage of changing the overall channel char-
acteristics when changing the data rate. Eye openings obtained are equal to
or larger than those of two conventional schemes transmitting at the same
data rates.

I. INTRODUCTION

In conventional pulse amplitude modulation (PAM) data transmis-
sion systems (digital or analog), the signal at the receiver input
takes the form

S(t) = E akf(t - kTo), (1)

where {ax} are the information symbols, To is the signaling interval,
and the signals f (t - kT0), k = 1, , N, are time translates of each

1633
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other. It is well knownl that in order for these systems to meet the
criterion "Maximize the signal-to-noise ratio in the presence of band -
limited white noise under the constraints of fixed line signal power and
no intersymbol interference," the signals should be designed so that
the overall channel characteristics are in the Nyquist I class and the
overall amplitude characteristics are divided equally between the trans-
mitting and the receiving side. Such a signal design scheme (hereafter
referred to as Scheme I) is popular and is used even if the system de-
signer is aware that the channel noise may not be white over the fre-
quency band of interest. This is because the practical determination
of the noise statistics and the realization of the corresponding optimum
filters for a general communication complex are nearly impossible. A
block diagram of Scheme I is shown in Fig. 1.

In this paper, a precoding signaling scheme (Scheme II) is presented
for multiple -speed analog or digital data transmission. Scheme II also
meets the signal-to-noise ratio criterion above. The very distinctive
difference between Schemes I and II is that in I the signals f (t - kT0)
are time translates, but in II the. signals are not necessarily so. This
property allows the data rate and overall channel characteristics (such
as represented by the eye opening) of Scheme II to be changed simul-
taneously without changing the filters, the equalization, the signaling
interval at the transmitter, or the sampling time at the receiver.

In Scheme II, a sequence of information symbols is divided into
blocks and the blocks are transmitted sequentially. For clarity, we
first consider in Section II the transmission of a single block at a fixed
data rate and the precoder and the receiver structure. Multiple block
multispeed transmission and the use of partial response channels are
considered in Section III. A two -speed transmission scheme, sampling
time error, and eye patterns are considered in Section IV.

II. TRANSMISSION OF A SINGLE BLOCK AT A FIXED DATA RATE

A block diagram of Scheme II is shown in Fig. 2. The quantities
H ( jw) and h (t) are, respectively, the transfer function and the impulse

{an}
TRANSMITTING

FILTER
TRANSMISSION

MEDIUM

NOISE

RECEIVING
FILTER

Fig. 1- Block diagram of Scheme I.

DECISION
CIRCUIT
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DECISION
CIRCUIT

NOISE

Fig. 2-Block diagram of Scheme II.

response of the transmission medium. We shall consider H(j6)) to be
bandlimited, and

The time interval

H(jw) 0, I w I 5 2711,

= 0, otherwise.

1T = - seconds
21,

(2)

(3)

is the Nyquist interval.

Consider the transmission of a block of symbols al , , aN . Each
symbol can be an m-ary digit (m > 2) or a real number. The precoder
converts a, , , aN into a sequence of numbers bi , , bN , and the
number bk , k = 1, , N, is transmitted at t = kT. This produces
a signal at the input to the receiver given by

s(t) = E bkh(t - kT). (4)
k-i

From (2), the impulse responses h(t - kT) are infinitely linearly
independent, i.e.,

bkh(t - kT) = 0 for all I bk = 0 for all k, (5)
k-i

where N can approach infinity. Equation (5) can be proven by noting
that the equality

'Er bkh(t - VT) =0 for all t
k-i

and (2) together imply that

= 0 for
= 1

I 0.) I
< 277-f, . (6)

Equation (6) then implies that bk = 0 for all k.
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As is well known, a bandlimited signal, say g(t), can be represented
by its time samples. The vector whose elements are the time samples of
g(t) will be referred to as the time sample vector of g(t). For convenience,
we shall use time sample vectors in discussing the precoder and receiver
structures, and use the signals themselves in analyzing the overall
channel characteristics.

Let hk , a M X 1 vector, be the time sample vector of h(t - kT), where
the value of 111 will be considered later. Then (4) is equivalent to the
vector equation

S = E bklik (7)

The N vectors hk , k = 1, , N, are linearly independent since
the impulse responses h(t - kT) are. Hence, the N vectors hk , k =
1, , N, generate a real Euclidean vector space 8N of N dimensions.
If the precoder were not used, we would have bk = ak and S = akhk

and the information symbols ak would be transmitted as coordinates
of the basis vectors hk of 8N . It is well known that the basis can be
changed by a linear transformation. A precoder can be used for this pur-
pose so that a suitable set of basis vectors can be chosen for each trans-
mission rate of a multi -speed system based on considerations such as
signal-to-noise ratio and the effect of timing error.

Define
_ _ _

bi h; V;

A = B= H'= V'= , (8)

_bN_ _VAC_

where V represents a set of basis vectors for 8N and the prime notation
represents transpose. Since h, , k = 1, , N, generate 8N , V is related
to H by

V = HA, (9)

where A = [X0] is an N X N nonsingular matrix. If ak is transmitted
as a coordinate of V k , then

S = E akVk = VA = HAA.
k=1

But, from (7)

(10)

S = HB. (11)
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From (10) and (11), the precoder structure is

B = AA. (12)

Since the noise statistics and the statistics of the customer's data
are usually unavailable, we choose here not to carry out a usual optimiza-
tion study on the choice of V using such statistics. In the sequel, V is
chosen to be a set of orthonormal basis vectors. This enables the pre -
coding signaling scheme (Scheme II) to meet the following requirements:

(i) The performance is optimum in the same sense as the popular
Scheme I described in Section I.

(ii) The overall channel characteristics are controlled by the precoding
matrix A and hence by resistive elements. (In Scheme I the overall
channel characteristics are controlled by the transmitting and receiving
filters.)

These requirements are met with a simple receiver structure. The
noisy signal at the input of the receiver is

X=S+N= akV, + N, (13)
k-i

where N is the noise vector. A correlator at the receiver computes
the decision statistics X'V1 , X'V2 , , X'VN . Since V1, V2 , , VN
are orthonormal, we have

X'Vk = ak N'Vk . (14)

Because of orthonormality the decision statistic X'Vk depends only
on ak and there is no intersymbol interference. A decision on the symbol
ak can be made from the decision statistic X'Vk by a simple, standard
decision rule.

A basic difference between Schemes I and II is that in I the signals
f(t - kTo) are time translates of each other, but in II the orthogonal
signals Vk are not necessarily time translates. A difference in operation
between the two schemes is seen in the second requirement. In Scheme I
the overall channel characteristics are controlled by the transmitting
and receiving filters. But, in Scheme II, they are controlled by the
precoding matrix. To illustrate this and also for use in Section IV,
we derive the impulse responses of Scheme II. As shown in Fig. 3,
the correlator can be implemented with a tapped delay line and N
sets of attenuators. Only the jth set of attenuators is shown. The
attenuation ratios V , , Vim shown are the values of the elements
of Vi , and the decision statistic X'Vi is obtained by sampling the output
of the jth summing circuit. For analytical purposes, the tapped delay
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x (t)
DELAY LINE TH

V M Vj2

iTH
SUMMING
CIRCUIT

Fig. 3 - Diagram defining lt,) (t).

line, the jth set of attenuators, and the jth summing circuit together
are equivalent to a matched filter having impulse response V, (to - 1),
where to is the sampling instant and V; (t) is a signal whose time sample
vector is Vi . Now define

110) = output of the jth summing circuit when
a, = 1 is applied to the precoder. (15)

Since ai is transmitted by the signal V. or V, (t), we have

From (8) and (9)

i(t) =
-

Vito T OTT i(T) dT .

co

N

= E xikhk 
k=1

(16)

(17)

From (16) and (17)
N N co

h 1(0 = E E xikxii -
h(to + T t - kT)h(r - 1T) dr. (18)

1 1  .1 co

It is seen from (18) that, for a given transmission medium, h;; (t) is

controlled by the elements Xii of the precoding matrix. Since changing
the precoding matrix requires only changing attenuation ratios in the
precoder and the correlator, the overall channel characteristics are con-
trolled by resistive elements.

III. PRECODING FOR MULTIPLE -SPEED TRANSMISSION

The transmission of a single block has been considered in Section II.
Now consider the transmission of an infinite sequence of symbols.
In Scheme II, a symbol sequence is divided into blocks with N symbols
in each block. If the vectors h1, , hN are M X 1 as assumed in
Section II, the blocks can be transmitted sequentially at MT seconds
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intervals without interference between each other and the data rate is

R = -N Rm" bauds, (19)

where R.x is the Nyquist rate.
Theoretically there is no limit on the block length N; however,

we shall restrict N to be small number such as 3 so that the precoder
and the correlator can be easily implemented. The parameter M must
be restricted accordingly so that R [see (19)] can be a commonly used
data rate such as 3/4 of the Nyquist rate. These requirements are
satisfied by using the popular partial response channels."

Table I of Ref. 3 illustrated five classes of partial response channels.
From the table, it is clear that if h(t) is in Class 1, then a set of sampling
instants can be chosen (sampling time error will be considered later) such
that h(t - T), , h(t - NT) are simultaneously zero at all except
N 1 adjacent sampling points. This means that the vectors h, , ,

h, are each (N 1) X 1 so that

M = N 1

R - R bauds.N+ 1 "'"`

If h(t) is in Class 2, or 3, or 4, sampling instants can be chosen such
that M = N + 2. The rule can be easily extended to other classes.

Consider now multiple -speed operation. As will be shown it is de-
sirable to change the overall channel characteristics when changing the
data rate. To make these changes, it is necessary to change the data
format; however, it is desired that the system not be altered signifi-
cantly otherwise (such as changing the filters, the equalization, the
signaling interval, the receiver sampling time, etc.).

The scheme developed allows the data rate and overall channel
characteristics to be changed simultaneously by changing only the
data format and some resistive elements. When the system operates
as above, the data rate is (N/M)R. bauds and the sequence of symbols

aia2 a.vaN.1

(20)

is transmitted. If the particular channel is noisy, one may wish to reduce
the baud rate so that signal energy per baud can be increased to combat
noise (an adaptive technique). The data rate can be changed to

R = M m"R bauds, (21)
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where r can be any integer from 1 to N, by inserting N - r zero digits
into each block as follows

a, a, 0 "  0 ar+, a2, 0 0 a2,-.-1

and transmitting this sequence instead of the original symbol sequence.
The r information symbols in each block are transmitted to the first
r summing circuits of the correlator at the receiver, while the N - r
zero digits in each block are transmitted to the other summing circuits.
For convenience, let us refer to the transmission path from the precoder
to the jth summing circuit as the jth subchannel. Since there is no
information transmission through the last N - r subchannels, it is
no longer necessary to consider their performances. The precoding
matrix A can be changed to improve the performance of the first r
subchannels (such as reducing the effect of timing error). This can be
done by changing the resistive elements in the precoder and correlator.

To summarize, the multiple -speed transmission scheme has the
following properties :

(i) Changing data rate and overall channel characteristics requires
only changing the data format and some resistive elements. There is
no change to the filters, the equalization, the signaling interval T,
or the receiver sampling time.

(ii) With correct timing and the use of orthonormal signals, signal-
to-noise ratio is maximized at each data rate for band -limited white
noise under the constraints of fixed line signal power and no inter -
symbol interference.

(iii) By using partial response channels, commonly used data rates
are easily obtained, using a physically realizable precoder and correlator.

The discussions so far are general. To show how the method can be
applied, and, more important, to demonstrate the advantage of changing
the overall channel characteristics when changing the data rate, we
consider in detail a two -speed transmission scheme in Section IV.

IV. TWO -SPEED TRANSMISSION AND EYE PATTERNS

Consider the following problem: The transmission medium is equalized
for transmission at half the Nyquist rate and

H(jco) = square root of full -cosine rolloff characteristic

if= k cos f-

'
!col 274, (22)

= 0, otherwise,
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where k is a gain factor and fc is the bandwidth. It is recognized that,
if Scheme I is used, the system is simply the popular full -cosine rolloff
system transmitting at half the Nyquist rate.

The channel can be utilized more efficiently if the transmission rate
can be changed according to the noise level. To compromise between
efficiency and equipment complexity we choose to consider here two -
speed transmission and two common data rates, a and I of the Nyquist
rate.

We consider in detail how Scheme II can be used for this purpose.
Note that H(jw) in (22) is the Class 1 partial response system function.
Therefore, from (20) and (21)

R - N ±r 1Rmnzbauds,
(23)

where r can be any integer from 1 to N. To obtain z R, and I R.
from (23), N can be 3, 7, etc. We choose N = 3 so that the precoder
and correlator can be easily implemented.

To obtain the higher data rate, the sequence of information symbols
is divided into blocks with three digits in each block, where the nth
block contains the symbols a3.+1 a3n+2 y and a3n+3 The blocks are
applied to the precoder sequentially at 4T intervals. The precoder
converts the symbols a3n+1 , a3"2 , and a33 in the nth block into
numbers b3n+1 b3n+2 and b3n+3 and transmits b3n+i at t = (4n i)T.

Consider the block containing a1, a, , and a3 . The precoder converts
a1, a, and a3 into b, b, , and b3 , and transmits b, , b, , and b3 se-
quentially at t = T, 2T, 3T. This produces, as discussed in the previous
section, a signal at the receiver input as

X = b2h2 b,h3 N (24)

where the time sample vectors h, , h2 , and h3 can be written as (omitting
a gain factor and the common zero samples)

h, =

1

1

0

_0_

h,

ro

1

1

h3 =

0

0

1

1

(25)

Equation (25) shows that if sampling time is correct (timing error
will be considered later), h, , h, , and h3 are limited to a 4T time interval.
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Since each block is transmitted in a 4T time interval, there is no inter-
ference between adjacent blocks.

The vectors h1 , h2 , and h3 generate a three-dimensional real Euclidean
vector space &, . Let

[V11 V21

V1 = V12 V2 = V22

V13 V23

- V14- V24_

V3 =

r- V31

V32

V33

_V34_

(26)

be a set of orthonormal basis vectors for 83 and let a1, a2 , and a3
be transmitted as coordinates of V1, V2 and V, , respectively. Then
the signal X at the input of the receiver must also be

X = a2V2 a3 V, -I- N. (27)

The precoder structure then is

bl

b2

Lb3_

All A21 A31 [al

X12 X22 X32 a2

-X13 X23 A33_1 1-613]

(28)

where the X if's can be easily determined from (24), (25), (26), and (27).
This precoder structure can be easily realized (Fig. 4).

The correlator at the receiver which computes the decision statistics
, X'V2 , and X'V3 can also be easily realized (Fig. 3, j = 1, 2, 3 ;

M = 4).
It is clear from Figs. 3 and 4 that the precoding matrix can be changed

by simply changing the resistive elements (the attenuators) in the
precoder and the correlator.

The transmission rate is 3/4 R. when the system operates as above.
To change the transmission rate to 1/2 Rmax , zero digits are inserted
into the original data sequence as follows

a, a2 0 a3 a4 0 a5 a, 0 ,

and this new sequence is transmitted instead of the original sequence.
Making use of the reduced baud rate to improve system performance, the
overall channel characteristic is adjusted simultaneously by changing
the precoding matrix. This is the subject of the following section.

4.1 Timing Error and Eye Opening

So far we have not specified which set of orthonormal basis vectors
should be used. This is because with perfect timing the system meets
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X11

a2 a3

21 (ITI)X31

(111)X22 $(1-.)1X32

X13 X 23(111) JCI X33

- b3

Fig. 4- Precoder for two -speed transmission where Xi), i, j = 1, 2, 3, are at-
tenuators.

the signal-to-noise ratio criterion in Section III regardless of which
set of orthonormal basis vectors is chosen.

However, in practice, it is impossible to achieve zero sampling time
error. In general, the receiver will sample the summing circuit outputs
at t = to + 8 instead of the correct time to , where (3 is a random timing
error. Then the system's performance depends on the choice of V1 , V2 )

and V3 i.e., depends on the choice of A. To determine which A should
be used, it is necessary to specify the type of transmission and choose
a performance criterion accordingly.

In the sequel, we consider digital data transmission. Eye opening
is adopted as the criterion since it is a widely accepted, practical one4
(although considering eye openings in the presence of timing error
leads to a difficult nonlinear mathematical problem):

Let ri(t) be the output of the ith summing circuit when an infinite
sequence of digits is transmitted at the higher data rate 3/4 Rma . Then

ri(t) = E a3,h,i(t 4nT) E E a3+ ;hi i(t - 4nT), (29)
n--oo jOi n=-.0

where hi; (t), as defined in (15), is the output of the jth summing circuit
when cti = 1 is transmitted alone. From (18) and (22) it can be shown
that

hii(t) = Xi3XidI(t) Xi3Xi2]gt - T)

Xi2Xiat T)

xi3X11gt - 2T) + X11Xi3.1(t + 2T) , (30)
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where

I(t) = 1 sin 27rfe(t - to)
27r(t - to)[1 - 41:(t - to)21

(31)

To evaluate eye opening of r; (t) at to ± 6, we assume that the in-
formation digits la, are binary and that each can be z or -1 (so that
full eye opening = 1). Then

E;(6) --= Eye opening of r; (t) at to +

ce)

= hii(to ± o) I - E I hi M. ± a- 4nT)
1

n= ±1

E E I h; ;(to ± a - 4nT)
jai n=-oo

j = 1, 2, 3. (32)

Similarly, let 7.:(t) be the output of the ith summing circuit when
an infinite sequence of digits is transmitted at the lower data rate
1/2 Rmax . Since zeros are inserted and no information digit is received
at the third summing circuit, we need to consider only the eye openings
Ef(o) and E4(6) of rf (t) and r2 (t), respectively.

4.2 Selection of Precoding Matrix

It is seen that at the higher data rate, we must consider simultaneously
E,(6), E2(6), and E3(a), while at the lower data rate we need only to
consider Ef (6) and E4(5). This suggests that a different precoding matrix
should be selected for each data rate.

The steps in selection of the precoding matrix are lengthy and are
outlined in the Appendix. The results are summarized here.

The precoding matrix selected for the higher data rate is

Ai, = 0.21, Al2 = 0.62, A13 = -0.5

A21 = -0.68, A22 = 0.48, A23 = -0.68 (33)

A31 = -0.5, A32 = 0.62, A33 = 0.21.

Eye openings obtained with this precoding matrix are given in Table I
for S = 0, ±0.1T, ±0.2T, ±0.3T (it is a reasonable expectation that
the timing error (5 will amount to no more than ±0.2T). Also given
in Table I is the eye opening E(3) of the popular "raised cosine" rolloff
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TABLE I-COMPARISON OF EYE OPENINGS
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Timing Error I Ei(3) E2(5) Es(8) E(3)

-0.3T 0.312 0.418 0.351 0.312
-0.2T 0.559 0.625 0.575 0.551
-0.1T 0.790 0.821 0.793 0.783

0 1.000 1.000 1.000 1.000
0.1T 0.793 0.821 0.790 0.783
0.2T 0.575 0.625 0.559 0.551
0.3T 0.351 0.418 0.312 0.312

system' which transmits at the same data rate 3/4 R. (i.e., which
utilizes a 33.3 percent rolloff band). A glance shows that the eye openings
E,(3), E2(5), and E3(15) are equal to or larger than the eye opening
E(5) of the conventional system.

The precoding matrix selected for the lower data rate is

X12 = 0, X13 = 0

1

X23 -

where X31 , X32 and X33 can be arbitrary since no information digit
is transmitted through the third subchannel. With this precoding
matrix, the system is identical with the popular "full cosine" rolloff
system at the lower data rate, and the eye openings E; (6) and E(5)
are both 1.00, 0.955, 0.896, and 0.823, respectively, for S equal to
0, ±0.1T, ±0.2T, and ±0.3 T. These eye openings are much larger
than Ei(0) and E2(5) in Table I. This clearly demonstrates the advantage
of changing the precoding matrix when changing the transmission rate.

X = 0,

V. CONCLUSIONS

A precoding scheme is presented for multiple -speed digital or analog
data transmission. The scheme has the following properties

(i) Changing data rate and overall channel characteristics requires
only changing the data format and some resistive elements. There is
no change to the filters, the equalization, the transmitter signaling
interval, or the receiver sampling time.

(ii) With correct timing and the use of orthonormal signals, the signal-
to-noise ratio is maximized at each data rate for band -limited white
noise under the constraints of fixed line signal power and no intersymbol
interference.
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(iii) By using partial response channels, a number of commonly used
data rates are easily obtained using a physically realizable precoder and
correlator.

Timing error is considered in a two -speed transmission scheme. Eye
openings are used as the criterion in selecting the precoding matrix.
Eye openings obtained are equal to or larger than those of two conven-
tional schemes transmitting at the same data rates. The study clearly
demonstrates the advantage of changing the overall channel charac-
teristics when changing the data rate.

APPENDIX

Selection of Precoding Matrix

As can be seen from (32), (30), and (31), the problem of finding a
precoding matrix for maximizing the eye openings in some joint sense
over a certain range of the random variable (5 is nonlinear and mathe-
matically intractable. In the following, we reduce the dimension and
range of the precoding-matrix space S = A} to a minimum by using
constraints and properties of 5, then derive a guide for searching the
reduced space. Eye openings are obtained equal to or larger than those
of two conventional schemes transmitting at the same data rates.

Consider the higher data rate. The eye openings E,(6), .E2(6), and
E3(6) are determined by the nine parameters X;; , i, j = 1, 2, 3. We
have from orthogonality of V V2 , and V3

hij(tO) = 0, i, j = 1, 2, 3; i j. (34)

Define for i = 1, 2, 3
X 11 1 X 1

TV = C. = + - (35)
X;2 2 '

s Xi2 2

It can be shown from (30), (31), and (35) that (34) is equivalent to
the constraints

CiCi = -
Equation (36) is satisfied if and
tions holds

w,w2

wiw2
wiw2 -1,
Wiw2

j = 1, 2, 3; i j. (36)

only if one of the following condi-

W2 W3 < -
W2W3

W2W3 -1;
W2W3

W3 W, --

W3TV,

TV3TV,

(37)

(38)

(39)

(40)
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Each of the four conditions specifies a subspace of S. Equation (37)
corresponds to a null space because its requirements are conflicting.
Equations (39) and (40) can be obtained from (38) by rotating the
indexes of W; hence, for every point P in the subspace of (39) or (40),
there is a point Q in the subspace of (38) such that P and Q produce
eye openings differing only in indexes (for instance, P produces E,(8) =
a(5), E2(0) = #(6), and E3(8) = 7(6); Q produces EI(0) = E2(0) =
a(6), and E3(a) = XS)). Since they are the same set of eye openings,
we need only to cover the subspace of (38) in searching for A.

The subspace of (38) can be further narrowed. It can be shown that
(38) holds if and only if

11-11172 W211-3 > 0, W3W, < 0 (41)

or

1'T11V2 1172TV3 < 0, W3W, > 0. (42)

Equation (42) can be obtained from (41) by exchanging W, and W2
Thus, for the reason just cited, we need to search only the subspace
of (41) instead of that of (38).

To further reduce 8, we divide the subspace of (41) into two subspaces

(i) W, W2 T1'2 TV3 > 0, -1 < W3W, LC. -1 (43)

(ii) W,W2 1172W3 > 0, W3W, < 0. (44)

From (36), (44) can be written as

C,C3 CiC2 0, -1 < Cie3 (44a)

It can be shown from (32), (30), and (35) that simultaneously exchanging
W, and C, , W2 and C2 , and W3 and C3 does not change the eye openings.
From this it can be shown that for every point P in the subspace of
(43), there is a point Q in the subspace of (44a) such that P and Q
have eye openings differing only in indexes. Since (44a) is equivalent
to (44), this implies that only the subspace of (44) needs to be searched
instead of that of (41).

The space 8 to be searched has been reduced to only that of (44).
The W2 - 1V3 plane is reduced to a narrow strip for all W, 0. For
instance, for W, = -1, W3 is bounded between 0 and I, and W2 and
TV3 are bounded in the very narrow strip shown in Fig. 5.

Each point (W W2 , TV3) in the subspace of (44) determines a
precoding matrix through (36), (35), and the orthonormality condi-
tion h;; (to) = 1.
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w3

Fig. 5 - Region of Ii'_ and IVa (shaded) when = -1.

Usually it is desirable that the three eye openings EI(0), E2(6),
and E3(a) be approximately equal. It can be shown from (32), (30),
and (31) that E1(d) and E3(5) are approximately equal if

W1 = C3 y W2 = C2 , and W3 = C1 . (45)

Equation (45) defines the following region in the subspace of (44)

1 2 Wi 1

I W1 ' ' W2= -41/17- 1 '
1473

4W1.
= ---- (46)

E2(5) is larger than E1(S) and E3 (0) at one extreme of the range I WI I >
and is smaller at the other extreme. Therefore, in the region of (46),
there are points at which E1(6), E2(6), and E3(5) are approximately
equal. A simple search of this one-dimensional region gives one of such
points as

W1 = 0.84, W2 = -0.92, 11'3 = -0.3.

This point gives the precoding matrix in (33). Table I in Section IV
shows that by using this precoding matrix for the higher data rate,
the system has eye openings equal to or larger than the eye openings
of a "raised cosine" rolloff system transmitting at the same data rate.

After the precoding matrix in (33) was obtained from the region of
(46), the rest of the subspace of (44) was searched. About 5000 points
were covered. It was found that no point had eye openings Ei(a), E2(o),
and E3(6) simultaneously larger than those in Table I.

A similar study for the lower data rate produced the result in Sec-
tion IV.
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B. S. T. J. BRIEFS

Axis -Crossing Intervals of Sine Wave Plus Noise
By A. J. RAINAL

I. INTRODUCTION

Let /(t, a) denote the stationary random process consisting of a
sinusoidal signal of amplitude V2a and angular frequency q plus
Gaussian noise, IN(t), of zero mean and unit variance. Thus,

1(1, a) = V2ci cos (qt 00) + 1,(t). (1)

0 denotes a random phase angle which is distributed uniformly in the
interval (- r, r). "a" denotes the signal-to-noise power ratio. When
a = 0 Rice' presented some theoretical results which are very useful
for studying statistical properties of the axis -crossing intervals and the
axis -crossing points of /(t, 0) at an arbitrary level I. The axis -crossing
intervals and the axis -crossing points of /(t, a) are defined in Fig. 1.
In recent work Cobb' presented some theoretical results concerning the
zero -crossing intervals, the axis -crossing intervals defined by the level
I = 0, of /(t, a). Some experimental and theoretical results concerning
the zero -crossing intervals of /(t, a) were reported by Rainal.3 For the
case when the power spectral density of IN(t) is narrow -band and
symmetrical about the sine wave frequency, Blachman4 presented some

t

0

k AND OL ARE AXIS- CROSSING INTERVALS

81 k951 82

AXIS - CROSSING POINTS

Fig. 1- The level I defines the axis -crossing points and the axis -crossing
intervals of /(t, a) = V2a cos (qt 00) + Ib(t).
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theoretical results concerning the zero -crossing points, the axis -crossing
points defined by the level I = 0, of /(t, a).

The purpose of this brief is to present some theoretical results which
are useful for studying statistical properties of the axis -crossing intervals
and the axis -crossing points of /(t, a) at an arbitrary level I. These
results stem from a straightforward extension of Rice's' analysis.

II. THEORETICAL RESULTS

Using a notation consistent with Refs. 5 and 6 we define the following
probability functions at an arbitrary level I and arbitrary signal-to-
noise power ratio "a":

(i) Q24 -(T, I, a)dr, the conditional probability that a downward axis -
crossing occurs between t T and t T dT given an upward axis -
crossing at t.

Q; (r, I, a)dr, the conditional probability that an upward axis -
crossing occurs between t r and t r dr given a downward axis -
crossing at t.

[U,(r, I, a) - Q2(T, I, a)Jdr, the conditional probability that
an upward axis -crossing occurs between t r and t r + dr given
an upward axis -crossing at t.

This latter conditional probability is also equal to the conditional
probability that a downward axis -crossing occurs between t r and
t r dr given a downward axis -crossing at 1.

The reader should refer to Rice' for the definition of all notation
which is not defined in this brief. When a > 0, Rice's' (38) becomes

rQ.;"(r, I, a) = f de °dIf I; , I; , I), (2)f foo

where N1 = Rice's' equation (2.6) or (2.7)

p(I, If , I; , I) = (270-2.111-1

exP2111 [3/22(/C 2/1/22ri/f/; 2Dilf 2E,I1 + F11}

M23 Q =
- M22

DI = MI2 [/ Q cos 0] + 3113[Q cos (qr + -
M22Qq sin 0 + 21/23(24 sin (qr 0)
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= 31,4Q cos (qr + 0) - I] + 31,3[I -Q cos 0]

M22Qq sin (qr + 0) + 11123Qq sin 0

F, = M{212-2(2/[cos 0+ cos (qr+ 0)]+Q2[cos2 0+ cost (qT-1-0)])

+ 2M 12(24{[I -Q cos 0] sin 0 + [Q cos (qr + 0) - sin (qr 0)1

 2111-,2Qq{[I -Q cos 0] sin (qr 0) [Q cos (qr + 0) - I] sin 01

 2M,4{I[I -Q cos 0] Q[Q cos 0 - I] cos (qr + 0)1

22(Qq)2[sin2 0 + sin2 (qr + 0)] + 2M 23(Qq)2 sin 0 sin (qr + 0) .

The M's are given in Rice's' Appendix I with

m(T) = f W(f) cos 2rfr df, (3)
0

where W(f) = one-sided power spectral density of IN(t). When I = 0,
N,Q+2(7, I, a) is equivalent to (9) of Cobb's2 recent work.

Equation (2) can be put in a form analogous to Rice's' equation (47):

Q.:(T, I , a) = [47r2N/]-1/1/22(1 - m2)-4

1
ex (-Gi/211/)J(r, , )a, , k2) de, (4)

where

,l(r 112 , 27 V1 - r2
f

dx 1:: dli(x - la )(Y- k,)ez

x2 + y2 - 2r,xyz -
2(1 - 7.2;)

/1, = - r;211D1 - riEi][1 ji-27211

/22-m1k2 = - rr[Fii - r,D,]
1/

[1

= 31221[1 - rr[2r,D,E, - Di - +
(T, I, a) is obtained from (2) by changing the signs of the 00's in

the limits of integration. We find that Q;.(T, I, a) is equal to the right-
hand side of (4) with h2 , k2 replaced by -h2 , .

[U2(T, I, a) - Q2(r, I, a)] is obtained from (2) by changing the lower
limit of integration of 4 to co . We find that [U2(r, I, a) - Q2(r, I, a)1



1658 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

is equal to the right-hand side of (4) with the function .1(r h, , kz

replaced by the function .11(r, , h2 , k2), where

1
Ji(n. , h2 , k2)

271-1/1 - r1
dx dy(x - 112)(Y - k2)ez. (5)f

The functions J(r1 , h2 , k2) and .1 i(r1 , h2 , k2) are expressed in terms
of Karl Pearson's well-known tabulated function (d/N) in Ref. 5.
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