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The function of the angle-error detector is to provide pointing-error
signals to the ground antenna control system, which allows operation in
the autotrack mode once the satellite beacon has been acquired. The limita-
tions on the accuracy of this system imposed by noise, phase jitter and
Doppler effects are evaluated and the optimum design in terms of minimun
mean-square error is developed. Design examples are given for both the horn-
reflector antenna autotrack system and the precision tracker antenna system.

I. INTRODUCTION AND SUMMARY

To insure the acquisition and aceurate tracking of the Telstar com-
munication satellites, a sequence of tracking modes is provided at
the ground stations in Andover, Maine and Pleumeur-Bodou, I'rance.!

Initial pointing directions to hoth the precision tracker* and the
horn-reflector antennas are provided from orbital data appropriately
processed and up-dated for each satellite pass. Once the precision tracker
acquires and tracks the satellite, the horn-reflector antenna can use the
pointing directions received from the precision tracker control system
to acquire the satellite beacon signal in its narrow beamwidth. Iinally,
the autotrack system?® provides closed-loop automatic control of the
horn-reflector antenna using error signals derived from the satellite
beacon.*

* After orbital data becomes sufficiently aceurate, it is possible for the horn

antenna to acquire the satellite from initial pointing directions and then go
directly into the autotrack mode without using the precision tracker.
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The detection of these error signals is accomplished in the system
described in this paper. The inputs to this system are obtained by
means of a mode separation technique® in the waveguide of the horn
antenna, one mode having a peak amplitude on target, the other having
a null, similar to the sum and difference signals in conventional mono-
pulse tracking systems. The characteristics of these input signals and
noise are discussed in Section II. An analysis of the phase-lock de-
tection scheme which converts these inputs into the desired antenna
pointing-error signals is given in Section III. The accuracy of these
pointing-error signals is shown to be critically dependent upon the
degree of phase coherence achieved by the phase-lock loop, which is
discussed in Section IV. The design of the phase-lock loop to minimize
the mean-square phase error in the output signals is considered in
Section V.

In Section VI a numerical example is given for the optimum design
of the phase-lock detector in the vernier autotrack system. Since the
precision tracker also uses essentially the same angle-error detection
scheme, a parallel design of this system is included for comparison.

1I, INPUT SIGNAL AND NOISE CHARACTERISTICS

The funection of the angle error detector is to develop electrical error
signals proportional to the pointing angle error, 8, between the antenna
boresight and the actual satellite position. The expressions for the
desired output error signals are

ez = B cose
(1)

& = fsing

where 2 and y are Cartesian coordinates in the plane normal to the
antenna boresight (electrical) and ¢ is the angle which the projection
on the z-y plane of the radius vector, R, to the satellite makes with the
z-axis, (see Fig. 1).

The information on the parameters 8 and ¢ necessary for the error
signals (1) is contained in the amplitude and phase, respectively, of
the difference channel received signal relative to the sum channel*
received signal. For a pointing error, 8, which is within the beamwidth

* The designations ‘‘difference’” and “sum’’ channels are carried over from
conventional monopulse usage. For the autotrack system, these terms should be
“TMyo"" and “TEn" channels, respectively. This analysis is applicable to a single
plane in conventional (linearly polarized) monopulse if the angle ¢ is taken to be
0 or 180 degrees.
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Tig. 1 — Pointing error, 8, and the angle ¢ in the z-y plane which determine
the orthogona] error signals: e; = fcos ¢; ¢ = B sin ¢.

of the sum pattern (the TE; mode pattern in the horn-reflector an-
tenna), the received signals in the sum and difference channels can be
expressed as®

gs(t') EJ(R!IB) cos ((ﬂbt + Hl(t)) + Nu(t)
ea(D) = nBE(RB) cos (wt + 0:(t) + @) + Na(t)

where

wp = 2r X frequency of satellite beacon transmitter,
R = range of the satellite,

E.(R,8) = sum channel signal amplitude,
n = difference channel relative sensitivity,

AB

E,

=0
and
0; = 0,(t) + 0.(t), is the signal phase relative to a reference phase,

6, = 0, plus a random phase fluctuation, 6,(t), discussed
below.
N.(t) and Nu(t) are the thermal noise components at the inputs of
the sum and difference channels, respectively, whose one-sided power-
spectral densities are assumed identical and equal to

$y = kT,, watts/cps (3)
where

k= 1.38 X 107" watt-sec/°K
T., = equivalent receiver noise temperature, °K.
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The random phase fluctuation, 6,(t), results from the frequency
instability of the various oscillators in the system, principally the
beacon oscillator in the satellite, since elaborate frequency stabilizing
techniques are not feasible from weight and space considerations. The
one-sided spectral density of the resultant phase fluctuation can be
expressed as

By = rad’/cps (4)

Toat®

where

7. = equivalent coherence time of the system oscillators.*
For the purpose of this analysis, the thermal noise terms in (2) will
be represented by the usual in-phase and quadrature notation®*

N(t) = X(t) cos (wpt + 8:) + Y (1) sin (wpt + 8;)

where X(¢), Y(t) = independent Gaussian random voltages with one-
sided power spectral density, 2&y , with ®y given in (3).*

With identical receivers in the sum and difference channels which
amplify the signals (2) by a factor K, and reduce the center frequency
from wy, to an intermediate frequency, w; = 27 X 60 me, the input to
the sum and difference channels of the coherent angle-error detector
can be represented by

e, (t) = KoE.(R,8) cos (wi + 6:(t))

+ X,(t) cos (wit + 6:1))

+ Y,(0) sin (wit + 0:1))]
ea;(t) = Ko[nBE,(R,B) cos (wid + o + 0,(t))

+ Xu(t) cos (wit + 0,(t))

+ Ya(t) sin (wit + 0:(1))]

where X, (t), Xa(t), Y,(t), Ya(t) have identical one-sided power density
spectra 2¢y band-limited by the IF bandwidth, By , hence have mean-
square expected values, X2 = ¥? = &yBy .

III. LINEAR ANALYSIS OF COHERENT ANGLE-BRROR DETECTION SYSTEM
A block diagram of the coherent angle-error detection system is
given in Fig. 2. The coherence hetween the input error signal and the

* The fluetuation of #; due to Doppler and random phase effects is assumed to
have negligible effect on the power spectral densities of X (¢) and Y (2).
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Fig. 2 — Coherent angle-error detection system block diagram.

local reference signal is achieved through the action of the phase-lock
loop. The mixers and detectors indieated by circles in Fig. 2 are assumed
to be ideal multipliers with unity gain. The AGC action is assumed to
respond perfectly to variations in the sum channel signal level, so the
gain of the 60-me IF amplifiers in both channels ean be expressed as
Kile) = —i—, E = constant. (6)
' E(R,B)
Using (5) and (6), the input to the mixers in each channel in Fig. 2
can be written

e,(1) = KoF [cos (wit + 6:) + )EE cos (wit + 6;)
' (Ta)

Vi ‘ _
+ E.&m (wit + 6.)]
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ea, (1) = Kol [nﬁ cos (wit + ¢ + 6:) + gﬁ cos (wit + 6;)
- ' (7b)
c ;—f sin (wit + Bi):,

where the dependence of E, on R and 8 and the time dependence of
8;, X, and Y is understood, but not indicated explicitly in (7) and the
subsequent analysis, to simplify the equations.

The other input to the mixers is the output of the voltage-controlled
oscillator (VCO) in the phase-lock loop, which has the form

e.(t) = E, cos (wit + 6,) (8)

where w, = 27 X 65 me and 6, = 6,(t) is the instantaneous phase of
the VCO output, determined by the operation of the feedback loop in
the sum channel, which is discussed in the next section. Multiplying
(7) and (8) and taking only the low-frequency (5-me) components
gives at the outputs of the 5-me IF amplifier in the sum and difference
channels (see Fig. 2)

e, (1) = Ea[cos (wot — 0; + 6,) + % cos (wot — 0 + 6,)

- %,'sin (wot — 8; + Gv):l

(9)
eda(t) = E;;l:qﬁ cos (wt — ¢ — 6; + 6,)
+ %cns (wot — 8; + 8,) — %sin (wot — 8; + 9,,)]

where
By = § KJGKLEE, K, = mixer gain, (volts)™!
wp = wy, — w; = 27 X 5 me.
The difference channel voltage, e, (), is applied to the coherent

detectors. The other input to these detectors comes from the 5-me
reference oscillator which produces signals
e, = B, cos wt

(10)

er, = E, sin w

for the detection of the desired z and y error components given in (1).
The phase of these signals is the reference phase, 6, = 0.
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The low-pass filters following the coherent detectors pass only the
baseband components of the products (ea,-e.) and (es-e,,). Using
(9) and (10) these baseband components are

[ A[ﬂﬁ cos ({9 =+ 6; — 017) + %dcos (81 = 9»)

Ya .
+ . sin (6; — Bv)]
(11)
. Xa .
ey = A[nﬁ sin (¢ + 6, — 6,) + 7 sin (6: — 6,)

~ cos (0; 61,)]

where
A = 1K,E;E, = channel amplification factor
K, = detector gain, (volts)™.
If the phase-lock loop is tracking properly, the phase of the VCO
output, 6,, will follow closely the phase of the input, 6;. Assuming

that the rms value of (8; — 6,) is small compared to 1 radian, then the
following approximations hold with high probability*

sin (8; — 6,)= (6; — 6,) <1
cos (6; — 6,) =1

and the coherent detector outputs (11) can be expressed in the approxi-
mate form

X

iz = Anp cos ¢ — A(nﬁ sin ¢ — E)(ﬂf —6) + A T

En
(12)

ey = Ang sin ¢ + A(nﬂ cos ¢ + %‘)(B,— —6,) — A %—d.

The first term in each of the expressions in (12) is the desired error
component, given in (1), amplified by the total difference channel
gain, Ag. The second term represents the perturbation due to the lack
of perfect phase coherence, while the third term represents the contri-
bution of thermal noise in the net noise bandwidth of the difference
channel.

* The validity of these assumptions is discussed in the next section.
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The achievement of good phase coherence in the detector outputs (12)
over the expected range of satellite tracking conditions is the ohjective
of the phase-lock loop analysis and design deseribed in the following
sections.

1V. PHASE-LOCK LOOP ANALYSIS

The coherent detection of the control error signals depends on the
performance of the phase-lock loop in the sum channel (see I'ig. 2).
The loop must be capable of following the change of phase of the input
signal due to frequency instability of the source and Doppler shift and
also discriminate against random phase fluctuations eaused by thermal
noise. These requirements are somewhat contradictory, the former
requiring a wide loop bandwidth and the latter requiring a narrow
loop bandwidth. Proper design of the phase-lock loop must therefore
be based on the best compromise of these requirements consistent with
the expected variation of the signal phase and the expected random
phase fluctuation.

The sum channel voltage, e,,(¢) at the input to the bandpass limiter
is given in (9). The effect of the limiter can be closely approximated as
multiplying this voltage by a limiter suppression factor, @, which
increases from 0 to 1 as the signal-to-noise ratio at the limiter input
increases from 0 to . This limiter action is discussed in Appendix A.

The limiter output voltage, e,,({) = ae,,(t) is applied to the phase
detector in the sum channel, together with the reference signal, e, ,
given in (10). The baseband component of the phase detector output
is therefore

Gb(” = (Erv'aen)bnnehn.ml

or, from (9) and (10)
X‘ 51 —— —_— ]'R 4 s
e(t) = aAI:(l + Tﬂ:) sin (6; — 6,) 7 cos (6; &.):I . (13)

To develop an approximate linear model for the phase-lock loop, the
following two assumptions are made:

(7) the phase error (6; — 6,) is sufficiently small to permit the approxi-
mations sin (8; — 6,) = 6; — 6, , cos (6; — 0,) = 1, and

(#7) the noise component, X (¢), is assumed small in the rms sense com-
pared to the signal amplitude, E. .
Using these assumptions, the phase detector output (13) ean be written
in the approximate form

olt) = aA[e.-(o — (1) — ’}5‘)]. (14)
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The low-pass filter passes the baseband component e,(t), producing
a voltage es(¢) which eauses the frequency of the VCO to vary from
the center frequency, «, = 27 X 65 me, with a proportionality constant,
K, radians per second per volt. The instantaneous phase of the VCO
output is therefore

8,(t) = I(..fcf(t) dt, radians.

The transfer funetion of the VCO over the range in which this pro-
portionality holds is then

0.(s) _ K,

er(s) s

(15)

I'or a phase-lock loop which is stable over a large range of loop gain
variations and which has zero steady-state phase error for a phase
ramp input (step frequency change) the low-pass filter should have a
transfer function of the form

(16)

This transfer function has been shown® to yield optimum loop per-
formance for phase ramp inputs in the presence of white noise, where
the performance measure is the mean-square error caused by noise
plus the integrated-squared transient error to the ramp input.

The transfer function (16) can be closely approximated by the
operational amplifier circuit shown in Fig. 3, which has the transfer
function

F@) = T uRCs

(17)

where —pu is the amplifier gain under load without feedback. The

g Ra
1t 4A"A%
RI
=AM ™ o
Z; _ >
—
o —
Zi>»R, , m>> :

Fig. 3 — Operational amplifier low-pass filter circuit,
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assumptions made in deriving (17) are that the input impedance, Z;,
of the amplifier is very large compared to R; and that p >> 1 (typically
10°%) in the low-frequency range. With R,C = 1 second and p of the order
of 10°, the transfer function (17) reduces to

1+ RCs

F(s) = -

(18)
which is the desired form (16), with Ry’ = 7. The negative sign in
(18) is incidental provided the sign of the total gain around the loop
gives negative feedback.

Using (14), (15), and (16), the linear equivalent block diagram for
the phase-lock loop is shown in Fig. 4. The objective of the design is to
minimize the mean-square value of the random phase error, 6,(t) =
0:(1) — 8,(t), consistent with the requirements on the dynamic tracking
capability of the loop.

VOLTAGE—

CONTROLLED

OSCILLATOR FILTER
Ky 1+7s

s S ep
8y
- aA
65 8, e
+ + S + |
+ —
6n(t) Ys(t)/Es

Fig. 4 — Block diagram of phase-lock loop based on linear analysis.

The total transfer function around the loop is

0.(s) . 14 78
G(s) = ) aKT (19)
where K = AK,. [If R\C is not unity, as was assumed in (18), then
K = AK,/R,C.]
For the analysis of the phase error, 8,, due to the noise sources
6.(t) and Y,(t), we let the signal phase 6, be zero and obtain from
Tig. 4 the transfer function for 6, in terms of G(s) in (19)

b.(s) = [ﬁ] u(s) + [1 ﬁ(g)(s)] L6 )
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Since the one-sided power density spectrum of 6,(f) is &, given in
(4), and that of Y,(t)/E, is 2by/E,* where & is given in (3), and since
they are uncorrelated random variables, the one-sided power density
spectrum of the random phase error, 6., is

1 G (jw)
1+ G(jw) 1 + G(w)

The mean-square value of this random phase error is then, from
(19), (21) and integral tables’

2 [Tg do _ 1/ 1 20y (aKr | 1 2
o, —j; @9,:}”—1_“ (2&1&'7)+E.2 (T-l_l})’md' (22)

This expression for the mean-square phase error can be written in
terms of the undamped natural frequency, w, , and the damping ratio,
¢, of the phase-lock loop, as

) 1 + 2By (1 + 4;”)

= w" —_—
4{”7& Tee Eaz

8¢

o

0%,
Ez "’

F

By, =

(21)

Tee W

Te (23)
since w, = VakK, and 2 = 7V aKk.

The proper operation of the phase-lock loop depends upon the magni-
tude of the phase error remaining less than «/2 radians. For the phase
error due to random fluctuations we can require only that the proba-
bility of its magnitude exceeding /2 radians he very small. A eriterion
for this which has been chosen"® as a realistic measure of the threshold
of the phase-lock loop is that the mean-square value of the total phase
error be restricted by

o, =} rad”. (24)

For a normally distributed random phase error with zero mean and
variance o, this criterion implies that the probability of exceeding /2
is exceedingly small (about 107°). This criterion also gives validity to
the first assumption made above in obtaining the linear model of the
phase-lock loop, namely that sin 8, = 6, and cos 6, = 1. The error in these
approximations is quite small provided

| 8, | = 0.57 radian

which holds with approximately 90 per cent probability when the
condition (24) is satisfied.

The second assumption made above for the linear model is not strietly
justified in the region of threshold, where the signal-to-noise ratio in the
3-ke bandwidth at the phase detector input will typically be less than
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unity. However, comparison studies with a digital computer simulation®
which was implemented for the angle-error detector in the precision
tracker system have indicated that the linear model estimate of the
mean-square phase error (23) is sufficiently accurate even in the vicinity
of threshold to justify its use for the analytical design optimization of
the phase-lock loop. The digital computer baseband model of the phase-
lock loop includes the in-phase noise term as well as the quadrature noise
term in (13), and the sine and cosine operations of the phase detector
(see Ref. 9). A comparison of the computer simulation data with the
linear analysis data for the design examples considered in Section VI is
given at the end of that section.

An important parameter in the phase-lock loop analysis is the effective
noise bandwidth, B, , of the loop, defined by

_[7] G [
B:.—f” 1+ G(s)

The loop noise bandwidth for the system under consideration has
already been evaluated in the second terms of (22) and (23), namely

_aKr |1 1+ 4¢°

which increases with the limiter suppression factor « and hence in-
creases with the signal-to-noise power ratio at the limiter input. This is
the desired adaptive feature which the limiter provides in the phase-lock
loop operation, since for small S/N (long-range condition) the loop
bandwidth is small, decreasing the mean-square error due to thermal
noise, while for large S/N (short-range condition) the loop band-
width is large, providing improved phase tracking accuracy for the
greater Doppler frequency rate of change occurring at short range.

The Doppler frequency variation as a function of time is approxi-
mated by a frequeney “ramp” input having a constant slope of magni-
tude & for a duration 7'y, as indicated in I"ig. 5. Since this approximate
function represents a somewhat more difficult variation for the loop to
track than the actual Doppler variation, the evaluation of the loop
tracking accuracy and transient behavior based on the approximate
input should serve as a conservative basis for design.

Neglecting the thermal noise terms in (13), the phase detector
output reduces to

es(t) = ad sin [8:(t) — 6,(1)] volts (26)

df.

where 6,(1) = }at® is the phase input corresponding to the frequency
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Fig. 5 — Typieal Doppler frequency variation and piecewise linear approximation.

“pamp”’ input discussed above. Since this output is bounded in magni-
tude by ==A volts, the low-pass filter which follows the phase detector
should have a linear input dynamic range of at least this magnitude.
In addition, the voltage-controlled oscillator should have a linear
frequency range at least as large as the expected maximum Doppler
shift. With these two design requirements satisfied, the only essentially
nonlinear element in the phase-lock loop cireuit is the phase detector
(see I'ig. 6a).

An analysis of the response of this nonlinear cireuit to a frequency
“ramp’ input is given in Appendix B. I'rom this analysis it is concluded
that for adequate phase-lock tracking of the Doppler shift, the loop
gain should satisfy the condition

aK > 260max (27)

where @ma is the maximum Doppler rate in rad/sec’.

When condition (27) is satisfied, the steady-state phase error due to
this Doppler rate will not exceed 7/6 radian (see Appendix B), and the
loop response will closely approximate that of the linear second-order
circuit, shown in Fig. 6(b). For this circuit with the input 8:(¢) = 1ot
the Laplace transform of the phase error is

w
s[s? 4+ 2fw.s + wa?
where, as before, w, = VoK, 2f = rVaK, and K = AK, . The time

response of this type of linear second-order system is thoroughly dis-
cussed in elementary texts on linear circuits or control system theory.*

Be(s) =

* Qee, for example, Rel. 10,
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Fig. 6 — Phase-lock loop circuits for Doppler-shift analysis: (a) equivalent
cireuit ineluding nonlinearity of phase detector; (b) approximate linear cireuit,
valid for | 8, | = =/6 radian.

The two per cent settling time* for the transient of the phase error is
approximately
T, = X 47 seconds (2R)
wﬂ.
for the overdamped case (¢ > 1). This also serves as a good approxi-
mation of the duration of the transient for the underdamped case in
the range 0.7 < ¢ < 1.

V. PHASE-LOCK LOOP DESIGN

The design procedure which will be followed is first to ascertain the
system requirements necessary for minimum acceptable performance
and second to optimize the performance within the range of parameter
adjustment available to the designer.

* Defined as the time required for the transient response to settle down to
within two per cent of the steady-state value. See Ref. 10.
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The primary factors external to the phase-lock loop which affect its
performance capability are:

(1) The equivalent coherence time, 7., of the input signal, which
characterizes the random frequency fluctuations of the various system
oscillators which affect the instantaneous frequency of the signal into
the phase-lock loop. The coherence time should be made as large as
possible, but is primarily limited by the frequency stability achievable
in the small satellite transmitter and hence will be considered a fixed
parameter not available for phase-lock loop design adjustment.

(#2) The noise-to-signal power ratio at the input to the phase-lock
loop. Since this ratio varies with the range of the satellite and with the
IF bandwidth preceding the loop, it is desirable to characterize the
relative “noisiness” of the system independent of range and bandwidth
variations. The thermal noise power is given by

N = q))vB[p = kT;qB):p watts

while the average signal power is'***

. _E! PG4,
=5 = LR watts
where
Py = transmitter power, watts,
G'r = transmitter antenna gain,
R = transmitter to receiver range, and
A, = effective area of receiving antenna (same units as R°).
The noise-to-signal power ratio can then be expressed as
N 2‘13;; -]:ka 2
N =g ea Bw.
Y 2 = (prkle) BB (20)

The factors in parenthesis in (29) are constant® characteristics of
the satellite-ground system and will be represented by a single constant
called the “receiver noise index,” denoted by the symbol k., and
having the units of seconds/ (distance)®. Then,

N _ 28y
S EF

The noise index, k,, is taken as the second fixed parameterf of the

BIF = krRzBlp. (30)

* The transmitter antenna gain, Gr , will not actually be constant unless the
radiation pattern is uniform or the satellite is properly attitude controlled. It is
assumed essentially constant in this study.

t From (30) it is apparent that the receiver noise index, k. , corresponds to
the unit bandwidth noise-to-signal power ratio in the receiver when the satellite
is at unit distance from the receiver.
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external system affecting loop design.

(#42) The salellite orbil characleristics.* The orbit characteristics
affect. the performance capability of the phase-lock loop as follows:
I'irst, the maximum and minimum communication range will determine
the variation of the noise-to-signal ratio as shown in (30). Second, the
maximum range rate, Rua.c, will determine the maximum Doppler
shift

lAw] max — QJb'R#]m“x l'ﬁd/sec (31 )
where
wy = 27 X satellite beacon frequency, and
¢ = velocity of light.

Tinally, the maximum range acceleration, R,.., will determine the
maximum Doppler rate

wmeux

G = rad/sec’ . (32)

Since the maximum @ occurs at the range of closest approach for all
possible satellite passes, the limiter suppression factor « will be at its
maximum value, giving the largest loop gain, am../K. I'rom (27), the
basic lower limit on the fixed loop gain constant, K, is then

K > Zomx ot (33)

amux

The total mean-square error due to random fluctuations in the system
is given by (22) or (23). Using (25) and (30), the mean-square error
can be expressed as

(2
o = 1+ (/47 + kR'By, rad®. (34)
STCEBL

The second term in (34), due to thermal noise in the system charac-
terized by k., increases with the square of the range. This increase is
somewhat offset by the reduction of the loop bandwidth, B, , which
decreases approximately as the first power of the range. This reduction
of B, , however, increases the mean-square error due to random phase
fluctuations of the signal, given by the first term in (34). Hence, the
total mean-square error will be maximum at the longest range condition.

* Derivation of pertinent orbit characteristies is given in Appendix C.
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From (24), a requirement which the loop design must satisfy is there-
fore given by

2

(Uez)??=f|‘mu = % rad”. (35)
As a function of B, , the minimum possible value of oo is, from (34)
min ¢, = R [L (1 + L T (36)
7 = 2T e 4¢2 '
when
_ _1(1+4 (1/45“"))*
It is apparent from (36) that unless
Il'rRmnxﬂ 1 ‘
= <33 (38)

the condition (35) cannot be satisfied for any values of loop bandwidth
and damping ratio, or equivalently for any values of loop gain, aK,
and time constant, . This corresponds to the minimum signal power
condition given by Develet."

The two basie design requirements which the external system imposes
upon the phase-lock loop design are given by the inequalities (33) and
(38). The first requirement. does not appear critical, since for satellite
communication systems the value of @u.x is unlikely to exceed about
2 % 10" rad/sec® (see Appendix C). Since apex = 1, condition (33)
requires that

K >4 X 10" sec™

while values of K on the order of ten times this lower limit are achievable
in present phase-lock loop designs.

The second requirement, (38), is more ecritical, since it depends
entirely upon the fixed parameters of the external system. If the in-
equality (38) is not satisfied, either the system noise index must Le
decreased or the coherence time of the satellite transmitter must be
increased before satisfactory operation of the phase-lock loop can be
achieved at maximum range. When this requirement is satisfied, the
optimum loop design with respect of the total mean-square error is
achieved by making the loop bandwidth equal to the optimum value,
given by (37), and by making the damping ratio, {, as large as is con-
sistent with satisfactory transient response of the loop.

Tig. 7 depicts in graphical form the design requirements discussed
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above. For a given value of

r Tee .
T T (14 9
the contour of ¢,' = % rad’ is given as a function of k.R* and the loop

bandwidth B, . Within this contour the mean-square error is less than
the threshold value of } rad’® and has its minimum possible value for a
given kR’ on the dashed line associated with each contour. The vertical
line defined by kR® = kRumsx must intersect the contour for the ap-
propriate value of ../ in order for satisfactory loop design to be achieved.
If this eritical requirement is satisfied, then the optimum design is
given by adjusting the loop bandwidth, B, , to equal the value obtained
froT the dashed line within the contour at the particular value of
kR

The input-adaptive adjustment of B, by means of the limiter sup-

4000~ !
= Tce( T )
14+ —
4¢2
n 2000
o = EQUIV. COHERENCE TIME
(9]
p = LOOP DAMPING RATIO
= 1000
z =
ks N
$ 6cof-
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Fig. 7 — Phase-lock loop threshold contours. Inside the eontour for a par-
ticular r.,” the mean-square phase error, o2, is less than the threshold value of
0.125 rad?, and has its minimum value for a given k,R! on the dashed line as-
sociated with the contour. Indicated on the abscissa are the expected maximum
values of k.R? for the autotrack and the precision tracker.
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pression factor, @, can approximate this optimum adjustment of B .
The optimum B, , given by (37), varies inversely with the range, R.
The actual value of By, given by (25), varies directly with &, but o
itself varies inversely with R, as shown in Appendix A.

Before the optimum bandwidth can be determined from (37) or
Fig. 7, the value of { at maximum range must be chosen. As was pointed
out at the end of Section IV, the settling time of the loop is approxi-
mately 47 seconds. If Ty denotes the maximum tolerable settling time,
then this requires that 4r = T . This also places an upper limit on {
when the loop bandwidth, B, , is fixed at the optimum value (37),
since, from (25), B, and ¢ are related to 7 as follows

1 0
B, = — (4 +1).
4r
To satisfy the maximum settling time restriction, then
441
_i =
T B,

which implies that { cannot be arbitrarily increased while holding B
fixed at the optimum B, . Using (37), (39) and (40), the upper bound
on ¢ when B, = opt B, can be expressed in terms of 75 and the external
system parameters as

C St = ll:(—qi—kl)"—l]. (41)
= ne 81 \or k. R?

The lower bound on ¢ when B; = opt B follows from the require-
ment that min ¢,” < } rad®. Using (36) and some algebraic manipulation
8k, R’

Tee — 32k R2’

< Tw (40)

Pt = (42)
which is a finite real lower bound on { only when the basic requirement
(38) is satisfied.

Since ¢ varies with range, the upper and lower bounds given above
should be evaluated at the same range, R. It is apparent from (41)
and (42) that the least upper bound and the greatest lower bound on {
both oceur at B = Ruax , and that the bounds constrict the range of ¢
as the noise index, k,, increases. As k, decreases, the limits separate,
allowing a wide range of {. However, from the point of view of relative
stability and fast transient response, { should not be less than 0.7 nor
greater than about two; also, from the point of view of minimizing oo,
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it ecan be seen from (36) that there is negligible improvement in in-
creasing ¢ beyond about two. These restrictions on the range of { in
the optimum design of the phase-lock loop can be summarized by

max (0.7, {m) < ¢ = min (2.0, {u) (43)

where ¢y and {. are the upper and lower bounds defined in (41) and
(42), respectively.

Assuming that the set of positive real values of { satisfying (43) is
not empty, the optimum choice of ¢ (with respect to minimizing the
mean-square phase error) is the least upper bound value given in (43).
Using this value, the optimum value of the loop noise bandwidth, B, ,
at maximum range is determined from (37) or Fig. 7.

The selection of the optimum ¢ and B, at maximum range fixes the
value of the loop filter time constant, + = R.(', as

‘-’fgdc:pr.2 4 1 — ITM/']: 3 ,("n||t = fu

T T A(Bom 1 4.25 ) (44)
(BL)upt ’ Sopr = 2
and the value of loop gain at maximum range as:
2
ity I o= B (45)
T

When the IF bandwidth is specified, @min is determined from Fig.
11 in Appendix A, with R = R,..« . Knowing amin , the loop gain constant,
K, is then determined from (45). Since K has the lower bound given by
(33) and certainly an upper bound dictated by practical equipment
considerations, the range of « may have to be controlled through the
selection of By to give a value of K which is compatible with these
bounds.

VI. TELSTAR SYSTEM DESIGN EXAMPLES

To illustrate this design approach, sample designs will be considered
for both the precision tracker and the autotrack systems for the Telstar
experimental program. Based on analysis of the expected orbit (see Ap-
pendix C), and on preliminary system data, the system parameters as-
sumed for the design examples are given in Table I. While the IF band-
width values are not necessarily fixed, the 200-ke bandwidth given in
Table I for the 5-me channels (see Fig, 2) is desirable from practical
considerations.

Considering first the dynamic tracking capability in the absence of
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TABLE I— AsSUMED SYSTEM PARAMETERS FOR DESIGN EXAMPLES

Equivalent eoherence time, r., = 0.02 sec
Receiver noise index (see Section V)

PT system...... kr = 1.5 X 10~% see/knm (kilo-nautical miles)
AT system...... kEr = 2.0 X 1076 see/knm
Orbital data:

Maximum range, Rumax = 5 knm

Minimum range, Rain = 0.5 knm

Maximum Deoppler shift, | Af | = 100 ke

Maximum rate of shift, |& | = 5620 rad/sec?, at 0.5 knm
IF bandwidth preceding limiter, By = 200 ke (both systems)
Nominal range of loop gain constant, K = 105 to 108 see™*
Maximum tolerable settling time, Ta = 0.1 see

noise, the dynamic range of the voltage-controlled oscillator in the
phase-lock loop should be about 150 ke to avoid saturation effects
when the maximum Doppler shift is 22100 ke, and to allow for some
drift of the center frequency during operation.

The range of variation of the limiter suppression factor, @, can be
determined from Tig. 11 in Appendix A, using the values of k., R,
and B;r in Table I

Precision Auto-
Tracker track
Max. range, @ = @min: 0.10 0.28
Min. range, @ = apax: 0.79 0.97

Sinee the maximum Doppler rate oceurs at minimum range, the con-
dition (33) that the maximum steady-state error be less than /6
radian requires that the loop gain constant, K, satisfy

Precision
Tracker Autotrack
g (0
K> 225920 _ 40 % 100 115 X 10+

amnx

Both of these lower limits are well below the lower nominal value of
10° sec * given in Table 1. Using this lower nominal value the maxi-
mum steady-state error in tracking the Doppler shift will be less than
0.08 radian for hoth systems [see (50), Appendix B].

The upper and lower bounds on { at maximum range condition, using
(43) and Table I, are

Precision l

Tracker Autotrack

0.61) 1.76 | 0.15 (2.95
< <
0.0 <§ = {2.0 ‘ 0.70} <{ =490,
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Taking the least upper bound as the optimum value gives at B = R

Precision |

Tracker Autotrack

foot = 176 | fope = 2.0

The min ¢," and optimum B, at maximum range, using (36) and (37)
and the above values of {op , are

min ¢,” = 0.036 rad’
opt B,= 364 cps.

min ¢,” = 0.1 rad’
opt B,= 135 eps

Finally, using (44) and (45) and the values of anin given above for the
200-ke IF bandwidth, the optimum values for the phase-lock loop
constants 7 and K are

0.012 sec
4 % 10° sec™>,

Il

r = 0.025 sec T
K =2 X 10° sec”? K

Since both values of K are greater than the lower bounds given above
and are within the nominal range given in Table I, the desired 200-ke
bandwidth need not be changed.

The performance of the systems as a function of the range, R, using
these design parameters, is summarized by the curves shown in Iigs. 8
and 9. These curves show how the input adaptive loop gain, «K, helps
provide near-optimum design at ranges other than the maximum range
where the optimum design was accomplished.

The mean-square phase error obtained from this linear analysis was
compared with values obtained from the more accurate digital computer
simulation of the phase-lock loop deseribed in a separate paper.? Results
for the two design examples considered above, which are shown in Fig.
10, demonstrate that although the error in the linear model estimate in-
creased somewhat as the signal-to-noise ratio decreases, there is no
drastic breakdown in the accuracy of the linear model. For these and
two other designs tested, the linear analysis estimate of the threshold
signal-to-noise ratio was within 1.5 db of the digital computer results,

VII. CONCLUDING REMARKS

The material presented in this paper was part of a design study
conducted during the initial construction of the ground station tracking
systems for the Telstar program. At that time there was some concern
about the capability of the angle-error detector to maintain phase-lock
at the longer satellite ranges, due to the small beacon signal power
available and the uncertainty about the coherence time of the 4080-me
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Fig. 8 — Performance curves for precision tracker (PT) optimum design
example: (a) phase-lock loop parameter variations with range from ground
station to satellite; (b) phase-lock loop performance measures as a funetion of
range.

beacon signal. This was particularly critical in the detection system for
the precision tracker because of the significantly lower gain of the
precision tracker antenna compared to the horn-reflector antenna. For
this reason, the means for achieving optimum design of the phase-lock
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Fig. 9 — Performance curves for autotrack optimum design example: (a) phase-
lock loop parameter variations with range from ground station to satellite; (b)
phase-lock loop performance measures as a funetion of range.
loop at maximum range was a crucial consideration in the initial design.
One of the fortunate results contributing to the highly successful
operation of the first Telstar satellite experiment was the excellent
phase stability achieved in the satellite beacon transmitter. Measure-
ments of the mean-square phase error under strong-signal conditions
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Fig. 10 — Comparison of mean-square error predicted by linear analysis with
results from digital computer simulation of phase-lock loop, using design values
from the two examples in Section VI.

(where the major contribution to the error is due to phase jitter in the
beacon signal) indicated an effective coherence time of about 0.1 second
instead of the 0.02-second value assumed for the design examples
above. This higher coherence time makes the noise handwidth and
damping ratio adjustment in the phase-lock loop much less critical, as
can be seen from the threshold contours in I'ig. 7,
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More detailed descriptions of the final design and the performance of
the tracking systems in the first Telstar experiments are given in a
series of papers 1'*3 appearing in an earlier issue of this journal.

APPENDIX A

Effective Gain of Bandpass Limiter

Two factors which characterize the operation of an ideal bandpass

limiter are:
(?) The total power output of the limiter remains constant,! i.e.

So+ No=C (46)

where S, = output signal power, Ny = output noise power.

(#4) When a sinusoidal signal and narrow-band Gaussian noise are
applied to the input of a bandpass limiter, the output signal to noise
ratio is related to the input signal to noise ratio by'?

So 8;

N A v, (47)
where the factor A, given in Fig. 5 of Ref. 13, varies from 7/4 to 2 as
the input signal to noise ratio varies from zero to infinity.

When no noise is present, we assume that the output signal power
equals the input signal power (any fixed gain in the bandpass limiter is
absorbed into the loop gain constant, K). Then, from (46), when
No=20

So = C = S,‘
so that, when noise is present

Sﬂ+Nﬂ= S,‘.

A little algebraic manipulation of this expression gives

SJ
S_ W
S: So

1+'N‘0

Using (47), we obtain
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S;
1 A_
:_;_9-_ NIS Ea‘_’, (48)
1+>‘ﬁ

where « is called the limiter suppression factor.!t

Thus, the limiter has the effect of reducing the signal power from S
to &’S, and as a consequence the effective loop gain is reduced from K
to aK. The factor « defined in (48) varies from 0 to 1 as the input
signal-to-noise ratio varies from 0 to «. From (30) in Section V, the
input signal-to-noise ratio can be expressed as

S;
AT
Using this expression in (48) gives

2
[1 n k. RABIF] ,

which shows the inverse dependence of @ on the satellite range, R.
With values of \ obtained from Fig. 5 of Ref. 13, the limiter suppression
factor, a, is plotted as a function of the input signal-to-noise ratio in
Fig. 11.
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Fig. 11 — Limiter suppression factor, «, as a function limiter input signal-to-
noise ratio.
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APPENDIX B

Nonlinear Analysis of the Phase-Lock Loop

The phase-lock loop equivalent circuit, which includes the sine-
function nonlinearity of the phase detector, is shown in Fig. 6(a). In
terms of the phase error, 6, , and its time derivative, w, , the differential
equations governing the response of this eireuit to the frequency-ramp
input, w; = ol are

@ b —t

a

; (49)
% = o — 2fw,w, cos 6, — w,” sin 6,

where, as in Section IV, we define w, = aK , 20 = 1w, .
The values of 8, and w, which satisfy the equilibrium condition that
the right-hand side of (49) vanish are

(8,)eq = sin™ (O%) , (@)e = 0. (50)

If the phase-lock loop “locks-on’ to the frequency ramp input, the
frequency error is zero, but there is a steady-state phase error given by
equilibrium value in (50). A necessary condition for the existence of
this phase-locked response is that

aK > o

i.e., the total loop gain must exceed the input frequency rate.

To analyze further the response of this ecircuit, it is convenient to
normalize (49) in time and frequency with respect to the parameter
w, . Defining the symbols

T = w,l

¥ = we/wn

r=d/w’ = a/aK
the differential equation (49) can be written.

df
dx

dv
dz

where § = 6,(t) is assumed in the remainder of Appendix B.

=y
(51)

=7r — 2vecosf — sinf
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The solutions of these equations for given initial conditions and
given value of normalized input rate, r, describe trajectories in the
normalized (6, ») state space. The slope of these trajectories in this
state space is, from (51)

% - ”;:_‘5‘_’ — 2¢ cos 0. (52)

TFor initial conditions 8 = 0, » = 0 (corresponding to the circuit
being in steady-state phase lock with constant frequency input prior
to the onset of the frequenecy-ramp input), two sets of trajectories
obtained from numerical integration of (52) are shown in Fig. 12. In
Fig. 12(a) a value of » = 0.966 is chosen to illustrate the response when
the loop gain exceeds the frequency rate only slightly. It can be seen
that for ¢ = 1, the phase error tends to the steady-state value of 1.31
radians (= sin~' 0.966) with only small overshoot. For { = 0.707,
however, there is a large overshoot which actually exceeds =/2 radians,
but eventually returns to the steady-state value; for { < 0.707 the
phase error does not reach the steady-state: i.e., the circuit is unable to
“lock-on.”
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Fig. 12 — Trajectories of the phase-lock loop response to frequency ramp
input for various values of the damping ratio: (a) input {requency rate, &, nearly
equal to the loop gain, af; (b) input frequency rate, &, equal to one-half the
loop guin, ak.
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To avoid large steady-state phase errors and large peak phase errors
with the attendant likelihood of random perturbations causing the
circuit to fall out of phase lock, the following conditions should be
imposed

aK = 26

¢>07).

(53)

Fig. 12(b) shows a set of trajectories with conditions (53) satisfied.
The response closely approximates that of the linear second-order
system obtained by letting sin # = 8, cos @ = 1 in (51).

APPENDIX C

Satellite Orbit Characteristics

The parameters of the satellite orbit which affect the design of the
phase-lock loop are evaluated in this appendix. The effect of the oblate-
ness of the earth and other perturbations upon the satellite orbit is
neglected in this analysis. However, since this effect does cause rotation
of the perigee, the maximum range, minimum range and maximum
Doppler effects are derived considering all possible locations of the
perigee relative to the ground station.

The geometry and terminology of the analysis is shown in Fig. 13(a).
It is sufficient to consider only the condition when the ground station
is in the plane of the orbit in order to derive all the parameters needed.

() Mintmum and Maximum Communicaling Range. It is obvious that
the minimum possible range occurs when the satellite passes overhead
at perigee. Therefore

Rumin = R, = perigee altitude. (54)

From the point of view of the satellite, the maximum possible range
to any visible point on earth occurs when the satellite is at apogee and
the range is taken along the tangent to the earth’s surface. The satellite
would then appear on the horizon at maximum range to a tracking
station anywhere along the locus of these points of tangency.

Since, however, the satellite must be at a small angle, ¢, above the
horizon before communication is feasible at maximum range, the
conditions at the maximum possible communication range are as shown
in Fig. 13(b). In terms of the angle ¢. in Fig. 13(b)

2 2 2
Ruux = 1o + ro — 2rar €OS @
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where

I

ro = radius of earth

re = Ra + 10, R. = apogee altitude.

1971

Now for ¢, small (less than about 10°), the angle ¢ is very closely given

SATELLITE

Fig. 13 — Satellite orbit diagrams: (a) geometry and terminology for satellite

orbit; (b) conditions for maximum communication range.
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by

. -1 {To
P = Pt — Eh, @ = COS — ]

Therefore, in terms of known parameters and a given horizon angle
@n , the maximum possible communiecation range is

Rmux = [Tu2 + Tﬂz - 27’4”0 cos (Sat - ‘f"l)]i (55)
where
o1 = cos " (ro/Ta).

(77) Maximum Doppler Shift and Rate. The orbit parameters needed
to determine these Doppler effects are the maximum range rate, Ryax ,
and the maximum range acceleration, Bn.. . The parametric equation
of the satellite orbit in polar form corresponding to the choice of coor-
dinates in Fig. 13(a) is

r= ﬁ; (56)
where
e =12 "7 _ eceentricity of orbit
i Tn
Te = Ra + 10
rp = By =+ ro.

Furthermore, from the “law of areas” for motion in a central foree field
o=k 5
= e rad/sec (57)

where
= GMrn = gro'rm
G = universal gravitational constant
M = mass of earth

g = acceleration due to gravity at surface of earth.

TFrom Fig. 13(a), the range, R, for a tracker at angle ¢ is related to
the orbit variables, » and 6, by
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R =/ -} T — 2ror cos (6 — ). (58)

Differentiating this expression and using (57) gives for the range rate R

; P kro .
R=;—a[r—rucos (ﬂ—go]-l—Riﬁsm (6 — o) (59)

and for the range acceleration, R

- .2 52 2
R =I—;Ir — rpcos (8 — o)l +T—R—R+%’cos(9 — ). (60)
These expressions depend upon r, #, and #, which are determined as a
function of @ by the orbit equations (56) and (57). The evaluation of
Ruax is rather tedious and is most easily obtained for a given orbit by
machine or graphical computation. It was evaluated for the expected
Telstar satellite orbit using a part graphical and part analytical com-
putation, with the results given at the end of this appendix.

The evaluation of Rmax is quite easily obtained, however, since it
oceurs for the conditions # = ¢ = 0; i.e., when the satellite passes over-
head at perigee. The maximum range acceleration is given by

Eb rug Tm
RBux=¢g————l5—1 61
=0 i (1) T
which occurs when B = Ry = Ry .
The maximum Doppler rate varies directly with the maximum range
acceleration

_2mhg o ﬂ[_;f__(f_nl_ )] 2
& Boux -d'ﬂ'fh P (Rp s T'u)2 RP 1 ((}d)

f-“’mnx
where
J» = satellite beacon frequency
¢ = veloeity of light.

To estimate the maximum Doppler rate which might be expected for
practical communication satellite systems, we take the following
conditions as representing practical extremes from the point of view of
good communication and satellite lifetime

maximum f = 5 X 10" eye/sec
minimum perigee, B, = 0.2 knm

maximum apogee, B, = 5.0 knm.
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Using these values in (62) gives as an estimate for the maximum
expected Doppler rate

max (@max) =~ 2 X 10* rad/sec’.

(422) Numerical Values for the Expected Telstar Satellite. The constants
needed for the range and Doppler ealculations are:

R, = 0.5 knm (perigee)

R, = 3.0 knm (apogee)
7o = 3.44 knm
rm = 4.88 knm

gle = 327 X 10°sec™’; ¢ = 162 knm/sec
fo = 4.08 X 10° cyc/sec

en = 7.5° (acquisition angle above horizon).

Using these numerical constants in (54), (55), and (62) gives for
Rumin , Bmax , and @pax the values:

Ruin = 0.5 knm
Rowx = 5.0 knm
@max = 5.62 X 10° rad/sec”.

The maximum value of £ in (59) for the Telstar satellite orbit was
found to oceur when 6§ = 340° ¢ = 10° and has a magnitude

IR Imax =4 X 10_3 kl'ln]/SE‘(‘.
The maximum Doppler shift is then given by

|Aflmmr. z'glleax = 100}{(3.
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Estimates of Error Rates for Codes
on Burst-Noise Channels

By E. O. ELLIOTT
(Manuseript received April 8, 1963)

The error structure on communicalion channels used for data transmission
may be so complex as lo preclude the feasibilily of accuralely predicting the
performance of given codes when employed on these channels. Use of an
approximale error rale as an estimale of performance allows the complex
statistics of errors lo be reduced lo a manageable table of parameters and
used in an economical evaluation of large collections of error detecting codes.
Exemplary evaluations of error detecting codes on the switched lelephone
nelwork are included in this paper.

On channels which may be represented by Gilbert’s model of a burst-
notse channel, the probabilities of error or af relransmission may be calcu-
lated withou! approximations for both error correcting and error detecting
codes.

I. INTRODUCTION

The structure in bursts of noise on real communieation channels is
usually very difficult to deseribe. As a consequence, no general procedure
exists for predicting the performance of error detecting or error correcting
codes, and no basie set of parameters exists for deseribing the channel.
Giilbert! has shown that a simple Markov model with three parameters
provides a close approximation to certain telephone circuits used for
the transmission of binary data. When such an approximation is pos-
sible, the error rates for codes may be easily calculated from these
channel parameters and properties of the code. (See Section V.)

To provide a means for estimating error rates for binary block codes
in more general eircumstances, a table of probabilities P(m,n) may be
employed. P(m,n) is the probability that m bit errors oceur in a trans-
mitted block of n bits. It was speculated and later corroborated (as we
will show) that equivalent error detecting codes would have rather com-
parable error rates when employed on the same channel. (T'wo codes are
equivalent if one may be obtained from the other by a permutation of
bit positions.) Thus the average error rate for all codes equivalent to a

1977
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given code may be used as an estimate of the true error rate. This average
probability of an undetected error in a single transmission of a word
is given by

P, = mZ=1 t—éfﬁ) P(m,n)

where code word usage is assumed uniform, w(m) is the average number
of code words at distance m from a typical code word, and n is the block
length of the code.

No definitive statement regarding the accuracy of this estimate can
be made at this point. A limited investigation, however, suggests that it
will ordinarily be a reasonable estimate.

As an example of the use of this method, a collection of 29 interesting
error detecting codes is evaluated, using the recorded error data of the
field testing program conducted by the data transmission evaluation task
force of the Bell System.2 The Bose-Chaudhuri (31, 21) code is included
in this collection and is analyzed in considerable detail to illustrate the
full potentials and limitations inherent in the method.

In the interest of simplicity, the discussion to follow will be limited to
binary block codes with particular interest in error detection. The meth-
ods employed, however, are not limited to these particular applications,
and are open to obvious generalizations.

II. PRELIMINARY DEFINITIONS AND OBSERVATIONS

A binary block code C, hereinafter referred to as a “code,” is a collec-
tion of binary words of 0’s and 1’s of length n. N will be used to denote
the total number of words in €. The distance é(z,y) between two binary
words z and y of length n is the number of bit positions in which = and
y differ. The weight | z | of z is the distance (6,2) between z and the
all-zero word 8. The number of ordered pairs of code words z, y such
that () = m is denoted by W(m), and w(m) = W(m)/N.

The communication channel is deseribed by a collection of conditional
probabilities of the form P(z — y), which give the probability that the
word y will be received when z is transmitted. A channel is called metric
whenever P(x — y) is a function only of &(a,y): ie., Pz — y) =
F(m,n), where m = 8(x,) and n is the block length. A channel is called
symmetric whenever P(z — y) is a function only of z = y — 2 (mod 2).

It should be noted that a metric channel is symmetric and that a
symmetric memoryless channel is metric. The Gilbert burst-noise
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channel' is an example of a symmetric channel which, because of its
memory (i.e., interdependence of error probabilities of neighboring bits),
is not metric.

When a code is used for error detection, it will be assumed that error
correction is accomplished by retransmissions of any received words
which are detected to be in error. The specific manner in which the re-
ceiver signals to the transmitter for a retransmission will not be con-
sidered. It will be assumed, however, that this backward signaling is
error-free, that each retransmission consists of a single word, and that
repeated retransmissions of a word are possible. Since very little infor-
mation is required for the backward signaling for retransmissions, it is
not too unrealistic to assume that it is error-free. Most retransmission
systems will, however, probably involve delays in retransmissions, and
the retransmitted data may consist of a block of several words. Because
of the burst nature of noise on many channels, the effect of these re-
transmission delays is improvement of the channel, and we can then
expect codes to perform better than our model indicates.

Thus, for an error detecting code, an (undetected) error occurs if a
received word is a code word different from the transmitted word. If z
is the transmitted word, then the probabilities of an undetected error, of a
word retransmission, and of acceptance of a correct word are, respec-
tively

SumecP(x = y)  DucP(x—y) and Pz —z).

Now, if we assume that the words of the code are used with equal fre-
quencies, then the averages of the above probabilities are, respectively

1

P, = -N' Ezcc Zy(#z)tc Pz — ?I) (1)
P, = = T Lo Plz— 1) (2)
and
— 1 —
Py =& Dz Pz — ). (3)

These probabilities are of some interest in themselves, but for sym-
metric communication channels the probability Py that a word is re-
ceived in error after possible retransmissions is given by

P3= . (4:)
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This result follows from the definitional equation
Py = Prob (undetected error | received word is accepted)

the definition of conditional probability, and the observations that an
undetected error implies acceptance of the received word and that the
probability of a received word being accepted is 1 — P,.

Suppose the channel is metrie, so that P(z — y) = F( m,n) where
m = 8(z,y) and n is the length of = and y. Then, from (1), (3) and (2)

n

P. = 2, w(m)F(mmn), (5)
m=1
PU = F{O,'ﬂ.),
and
P, = 1— (Py+ P.). (6)

It is evident from (5) that on a metrie channel equivalent codes
have identical values of P, , sinece w is invariant under a permutation
of the bit positions in a code.
mur. P, ON SYMMETRIC CHANNELS

Let P, denote the average value of P, over all bit-position permuta-
tions of the code. If P(m,n) is the total probability of m errors in a block
of length n, i.e.

P('m':n) = Z!rl:mP(a =¥ ?!) (7)
then

P, S ulen om0 8)

B

This result may be seen as follows: consider a particular code C' and
channel X. Corresponding to each permutation = of the n bit positions
is a permutation of ' which we will call =C'. Now, using (1)

. 1 1
P,= E Zr N errc Zy{#)wc Pz —y) (9)

1 1
N E!w Zyt#:)cc P Er P(xz — my).

Tor a symmetric channel there is a function f such that P(x —y) =
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f(2) where z = y — a (mod 2). Then, if z contains m ones
1 1
= > e Plaz — wy) = - >ox f(m2).

Now any n-place binary sequence having exactly m ones is left invariant
by m!(n-m)! permutations of its digits. The sum just written is there-
fore equal to

m!(n — m)! 5% fu) = P(m, n)

TEG

where the sum is over all distinet n-place binary sequences u having
exactly m ones. Equation (8) follows by inserting this result in (9).

Now that P, has been obtained, it is an easy matter to obtain P,,
the average probability of a retransmission for all permutations of the
code. Since Py = P(0,n) and Py + P, + P, = 1, it follows that

P, =1—- P, — P(0On).

Our P, estimate is exactly equal to P, whenever the code in question
is invariant under all permutations of bit positions. Thus, accurate re-
sults are obtained on symmetric channels for single parity check codes,
constant weight codes, ete.

It is of interest to note that in the case of group codes of given block
length and redundancy, w(m) has an unevenly weighted average value
which may be used to estimate P, in terms of the code’s minimum dis-
tance D. Consider group codes of block length n and dimension k. For
such group codes there are 2 ways of assigning the k information posi-
tions to the check positions of the ¢ = n — k check bits, but for such
assignments the resulting codes are not necesearily distinet. Of these,
however, it is known (Ref. 3, p. 54) that in 27" cases a given binary
word z will belong to the resulting code, provided the information por-
tion of z does not contain only 0’s. Now, there are [(:1) - (;1)]
binary words of weight m having nonzero information parts whenever

n
0 < m = ¢, and there are such words whenever ¢ < m = n. Asa
$ m

consequence, the “average” number #(m) of code words of weight m is
| 2

. 1 - c —1)e
w(m) = o [(::1) — (m)] g1 when0 < m = ¢

and
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wim) = 51:.2- (:’1) gti-e whene < m = n

wherein the average is over the multiplicity of group codes of the speci-
fied block length and dimension which result from these assignments of
information bit positions to check bit positions.

Let
5 i n
C(im) = w(m)/(m)
then
()
_ m
C(m) = 27°¢1 — 7N when0 <m =< ¢
4
and

C(m) =2°° whene < m £ n.

This result may be of use as follows. Suppose we have knowledge only
of the minimum distance D of a given group code that we wish to evalu-
ate on some channel. Let us make the bold assumption that the big
difference between the given code and the “average” of all codes is the
fact that the given code contains no words of weight 1, ---, D — 1.
Then (8) yields

P, ~ iﬂé(m)P(m,ﬂ). (10)

When the dimension of a code is large, it may be unfeasible to ascer-
tain w(m) because of the immense amount of computation required.
It is in such cases that (10) may prove to be a useful approximation.

1v. P, ON ASYMMETRIC CHANNELS

We propose the following reasonably general model of an asymmetric
channel. Two channel states are hypothecated: a “good” state in which
noerrors oceur, and a “bad” state in which 0 — 1 errors occur with proba-
bility po and 1 — 0 errors oceur with probability p, . The manner in
which good and bad states oceur will not be specified beyond knowledge
of the total probability S(s,n) of being in the bad state for some s bits
of the n bits of a block. Particular arrangements of these s bad bits
need not be equiprobable.
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Let o = 1 — poand ¢; = 1 — p,, and make the following definitions
when x and y are binary words of length n:

A(zyy) = the number of bit positions where x is 0 and y is 1,

A'(z,y) = the number of bit positions where both x and y are 0,

B(a,y) = the number of bit positions where x is 1 and y is 0,

B'(x,y) = the number of bit positions where both x and y are 1.

Let the state sequence of the channel be deseribed by a binary word v,
in which each digit is ¢ or B according as the state of the channel at
that digit’s position is good or bad. Now define

A*(z,y,v) = the number of bit positions in which 2 and ¥ are 0 and
v is B, and

B*(z,y,v) = the number of bit positions in which = and y are 1 and
vis B.

The error probabilities for this channel, conditional on the state sequence
v, may now be given as follows:

0 if at some bit position » is ¢ and
Pla—ylv) = x and y are different (11)
P pritq?” otherwise (12)

where the values of the previously defined functions are
a=A(zy) o = A'(zy)
B = B(zy) V' = B'(zy)
and
a* = A*(zyvp),
b* = B¥*(ay,v).
Define
P(m—>y|v)=$E,P(m:—>1ry|v) (13)
wherein 7 is the arbitrary permutation of bit positions that we have
used before. Notice that by (11), (12) and (13)
Pz —y|v) = Plx —y|m) (14)

and therefore that P(x — y |») depends only on how many B’s are
in » and not on their positions in v. Suppose v contains s B’s. We can
now say, using (13) and writing P,(x — y) for P(x — y | v), that

B(z—y) = i—' >« Plx—y|m) (15)
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and from (11) we know P(x — y|xv) = 0 whenever xv has s in
positions where & and y differ.

We will use (12) in evaluating (15) by first finding the number of
permutations = for which P(x — y | mv) has a fixed value. Suppose a*
and b* are such numbers that a* + b* = s — (a + b), with 0 < a* =

! ’
@ and 0 £ b* = V. Then there are (a." i a*) = (Z*) arrange-
ments of @’ — a* (s among the a’ bit positions where x and y are 0,

/ ’
and there are (h" I_) b*) = (;;*) arrangements of &’ — o* (s among the

r ’
b’ bit positions where x and y are 1. Hence there are a total of (z*) (g*)
arrangements of the n — s G’s among the a’ + b’ bit positions where
« and y are the same. For each such arrangement there are sli{n — s)!
permutations « under which the arrangement is invariant. Consequently,
the total number of permutations = for which P(x —y|m) =

r r
Pl it is given by sl(n — s)! (a ) (b*) . Hence, they contribute

ﬂ.*
7 !
“(2:)Gr)
n
s
to the sum in (15). We conclude then that

’ !
() 2 )
_ min(a’, t) G* I — a*
P(z—y) = A =2
( - y) a*=mu§, t—b’) (ﬂ)

§

a b bt
PaGo P11

Puaplb%".m"“. (16)

where t = s — (a + ). }
If we set » = | x|, then P,(x — y) may be expressed in terms of b,
a, r and s as

H(b,a,r,s)
a b min (n—(a+r), s—(a+b)
—3 EE El: ’
(Q‘l) (9‘1) B a*=mux<§s—(a+r))
(n—(a-{—r))( r—b
(@)“* a* s— (a4 b4 a*)
(n
S

T
which is just another form of (16). This asymmetric channel may now
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be compactly deseribed by a function J which gives the probability,
averaged over all permutations 7 of the bit positions, of making b 1 —
errors and a 0 — 1 errors in a transmitted word of weight »

n

J(bar) = 2 H(banrs)S(sn).

s=a+b

For a code C, let us define I(b,a,r) to be 1/N times the number of
ordered code-word pairs (a,y) for which A(x,y) = @, B(x,y) = b, and

|| =r. Th_on finally the asymmetric analogue of (8) for the average
probability P, of an undetected error may be written as
P, = Z Ie(bya,r) J(b,a,r). (17)

(b, a, r:b<r<na<n—r

V. ERROR PROBABILITIES ON GILBERT BURST-NOISE CHANNELS

Gilbert’s model' of a burst-noise channel is a binary symmetric chan-
nel (with memory) determined by an elementary Markov chain. As in
the preceding model for an asymmetric channel, a good (@) and bad (B)
state are assumed of the channel. No errors occur in the & state, but in
the B state, the probability of a bit error is (1 — h). With the trans-
mission of each bit, the channel has opportunity to change states. The
transitions ¢ — B and B — (7 have probabilities P and p, respectively,
while the transitions ¢ — ( and B — B have probabilities ¢ = 1 — P
and ¢ = 1 — p. When @ and ¢ are large, the states (¢ and B tend to
persist, simulating features of o burst-noise channel. Gilbert (Ref. 1,
p. 1262) has shown how this model approximates the burst noise on two
of the ealls from the field testing program of the data transmission evalu-
ation task force of the Bell System.

Using conditional probabilities determined by the parameters P,p,h,
it is a simple matter to ealeulate the probability that a transmitted word
x be received as y on a Gilbert ehannel. This probability depends on the
modulo 2 difference z = ¥y — z of y and @.

Suppose a is the number of 0’s in z which precede the first 1 in z,
¢ is the number of 0’s following the last 1, and b; (¢ = 1,--+, | 2| —1)
are the number of 0’s between consecutive 1’s in z. Then, if z # 0

Ple—y) = P(z) = w(a) {H,'-‘;ll_' v(b,-)}u.(c} (18)
where w, » and w are functions such that w(k) = P(0"1), »(k) =
PO [ 1), and w(k) = PO 1) (k= 0,1, ---). Here 0* denotes I
consecutive zeros. Also, if z = 8 then

n—1

Plr—x) = P(8) =1 — 2 wi). (19)

=0
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Using generating functions, Gilbert has shown that u, v and w satisfy
the following recurrence equations

w(0) = 1, w(1) = p + hg;

u(k) = (Q+ hg)u(k — 1) — (@ —p)u(k —2), k=2,3,--- (20)
v(k) = u(k) — u(k + 1), E=0,1, -

w(k) = pa(l — h)u(k).

Equation (18) results from the obvious composition of the conditional
probabilities in the » and u terms. Equation (19) results from the fact
that the event not 0" is the union of the events 1, 01, 0°1, ---, 0" 'L
Since these events are disjoint,

n—1

P(0") =1 — P(not0") = 1 — Zo P(0'1).

In the interest of completeness, we shall sketch a proof that u, » and
w satisfy the recurrence equation (20).
To see that

vk — 1) = u(k — 1) — u(k), k=12 ---

note that the event 10" is the union of 1071 and 10* and that the
latter two events are disjoint. Hence

Prob (07| 1) = Prob (0°'1| 1) + Prob (0| 1)
and therefore
ulk — 1) = v(k — 1) + u(k).

We define u(0) = 1. That u(1) = p + ¢h is obvious. To establish that
u(k + 1) = (@ + hg)u(k) — h(Q — plu(k — 1), k=1,2.--
we shall need to introduce

ue(k) = Prob (0°7'G|1) and  wa(k) = Prob (0°704|1)
wherein 0z denotes a zero in the bad state. Clearly
u(k) = welk) + us(l)

and

h
up(k) = 1 — hu(k — 1).

Now, considering transitions, we see that
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u(k + 1)

(@ + Ph)ug(k) + (p + qh)us(k)

(Q + Ph){u(k) — ua(k)} + (p + qh)us(k)
(Q + Ph)u(k) — (@ + Ph — p — qh)us(k)
(@ + Ph)u(k) — (@ — p)(1 — h)us(k)

= (Q+ Ph)u(k) — (Q — p)hlu(k — 1) — u(k)}.

Tinally, it is evident that if 2’ is obtained from z by inverting the order
of the bits, then P(z’) = P(z). This results from the fact that the for-
ward and backward state transition probabilities are identical. As a
consequence,

w(k) = Prob (0*1) = Prob (10%)
= pu(1 — 1) Prob (0°| 1) = ps(l — R)u(k)

and the proof is complete.

The performance of error detecting codes on Gilbert channels can
now be calculated using (18)-(20) in (1)—(4). For an error correcting
group code using coset decoding,® the probability of incorrect decoding
is given by

P,=1— Y Pla)
i=1

where the «; are the coset leaders for the code. These coset leaders
would presumably be chosen so as to minimize P, and therefore may
not necessarily be the minimal weight elements of cosets.

It is interesting to note that if a Gilbert channel with parameters
(P,p,h) is sampled at every kth bit, then the string of bits obtained
has the same strueture as the bits on a Gilbert channel with parameters
(P'p",h) where

B

P
P+p

{1 —(Q - p)f}
and

P’ =,%pll - (@ — »Y.

The proof of this assertation is given in Ref. 5, p. 383. This result is
useful for analysis when time division multiplex encoding is employed.
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vi. P(m,n) FOR GENERALIZED GILBERT CHANNELS

The probabilities P(m,n) for a Gilbert burst-noise channel are readily
computed by recursive methods. However, it is just as easy to obtain
P(myn) for a slightly more general symmetric channel. In the Gilbert
model, an error bit ean occur only when the channel is in the bad state.
In the model proposed here, an error bit ean occur in either the good or
the bad state but with different probabilities. Transitions between the
good and bad states are the same as in the Gilbert model.

Let k denote the probability of correct reception of a bit when the
channel is in the good state, andlet i’ = 1 — hand k' =1 — k.

Let G(mm) = Prob (m errors in a block of length n | the channel
is in the good state at the first bit) and B(m,n) = Prob (m errors
in a block of length = | the channel is in the bad state at the first bit).
Then

and G(m,n) and B{m,n) may be found recursively from

B(m,n)

G(mmn) = G(mmn — 1)Qk + B(mn — 1)Pk + G(m — 1,n — 1)QF
+ B(m — 1,0 — 1)PK/,
B(m;n) = B(mn — 1)gh + G(mn — 1)ph + B(m — 1,;n — 1)gh’
+ Gim — 1L,n — 1)ph/,
G0,1) =&k B(0,1) = h,
G(1,1) =¥ and B(1,1) = i'.
We must also assign the values G(m,n) = B(m,n) = 0 when m < 0
orm > n.
VII. THE BOSE-CHAUDHURI (31, 21) CODE ON THE TELEPHONE NETWORK

As an illustration of the use of the P, estimate for P, , the performance
of a Bose-Chaudhuri (31, 21) code (Ref. 3, p. 166) on the switched
telephone network is analyzed. As a source of error statistics for the
channels of the telephone network, the records of the field testing
program described by Alexander, Gryb and Nast® are employed. These
give in sequence the numbers of correct bits and error bits for 1010
calls of 10 and 30 minutes’ duration over a variety of facilities in the
switched telephone network. A detailed summary of the number of
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TaBLE I — NuMmBER oF CALLS

1200 bps .
Type of Call ??Jumﬁas.
30 min. ‘ 10 min.
Long haul 181 34 229
Short haul 102 20 151
Exchange 108 28 157

calls of each type made at 600-bps and 1200-bps transmission rates
with the M digital subset appears in Table 1.*

For each call in this program, the probability P(m,31) that m bit-
errors oceur in a block of length 31 for m = 0, 1, --- | 31 has been
determined. In doing this, each call is divided into consecutive blocks
31 bits long starting at the 7th bit in the call (z = 1, ---, 31) and
the number N;(m) of blocks containing m bit-errors is noted. This
corresponds to viewing each call as, in some sense, 31 different calls,
depending on the phase with which we enter the call (i.e., which of the
first 31 bits we take as first in governing the subdivision). We thus
obtain, for each ¢ = 1, --- | 31, a probability P;(m,31) = N(m)/N
that a block in the subdivision contains m bit-errors. (N is the total
number of blocks in the subdivision.) We now average over the possible
entry phases and take the probability P(m,31) that m errors oceur in
a block of length 31 to be (1/31) D24 Py(m,31).

Examination of the P(m,31) values obtained reveals some interesting
facts. For example, on some calls the probability of having numerous
errors in a block greatly exceeds the probability of having only a few
errors. For many calls, however, P(m,31) is maximum at m = 1, de-
creases with increasing m, and is often zero for m greater than 2 or 3.
On still others, P(m,31) is maximum at m = 1, decreases for the next
few values of m, and then increases to some smaller relative maximum
around m = 15 to 17 before its final descent to zero. To illustrate this
variability among calls, we present in Table IT the P(m,31) values for
four calls. In Table II, the P, entry under the call’s number is the
over-all bit-error rate for the call.

Properties of the burst nature of errors on calls like No. 1167 are
responsible for P(m,31) having its maximum value midway in the
range m = 1, ---, 31. On such calls there are long bursts of errors.
When the burst length is shorter, P(m,31) may more closely resemble
that for call No. 1641. These effects can be noted also in Table III,

* Consult Refs. 2 and 6 for a deseription of call types and for further details
regarding the field testing program.
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TasLe IT—SampLE P(m,31) VALUES

Call Type.......... LH/600/10 SH/1200/30 EX/600/10 LH/1200/30
Call No............ 1167 1641 2058 2250
Prscvomuasenss 22,50 X 1074 2,70 X 1074 0.22 X 107 0.03 X 1074
m =0 0.99587 0.99276 0.99972 0.99995

1 0.14 X 107+ 63.20 X 107! 1.83 X 1074 0.18 X 10

2 0.22 8.32 0.08 0.16

3 0.14 0.69 0.06 0.12

4 0.20 0.06 0.08 0.0

5 0.14 0.05 0.11

6 0.25 0.02 0.64

7 0.14 0.0 0.0

8 0.14

9 0.50

10 0.92

11 1.00

12 0.75

13 1.20

14 3.18

15 4.29

16 4.46

17 4.88

18 3.84

19 4.12

20 3.51

21 2.54

22 2.17

23 1.78

24 0.78

225 0.0

which gives the average P(m,n) values for all calls of the field test
program.

The quantities w(m) = 0, 1, - - - , 31 for the Bose-Chaudhuri (31, 21)
code are presented in the Table IV. Since each check bit of this code
applies to an odd number of information bits, w(m) is symmetric: i.e.,
w(m) = w(31 — m), and therefore w(m) is tabulated only for m = 0,

, 15.

Using the above w(m) values and the P(m,31) tables in (8) gives a
P, estimate for the undetected error rate on each call.

The smoothed cumulative distributions of the percentage of calls
over particular facilities having an estimated undetected error rate not
exceeding specified values are shown in Figs. 1 and 2 for the two trans-
mission rates used. We have excluded the 10-minute calls at 1200 bps
from this summary of the data because of the small size of the sample.

The approximate retransmission probabilities were generally less than
0.1 per cent. On some 7 per cent of the calls, the rate was between 0.1
and 1 per cent. On only three calls did it exceed one per cent.

It is impossible to obtain exaet values of P, for this code on the tele-
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TasLe IV—w(m) For THE Bose-Cuauvpnurr (31, 21) Cobe
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Tig. 1 — Percentage of 10-minute calls at 600 bps with undetected error prob-
abilities not exceeding P, .

phone network, since it was not measured during the actual field test
program. The records of that program do not allow accurate caleulation
of it for a variety of reasons.” We can, however, think of the recorded
bit-error data from the field test program as representing the additive
noise of a class of hypothetical channels, and then ask the question,
“How well does P, estimate P, for these hypothetical channels?” To
do this, a computer program was written to reconstruet the sequences
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Fig. 2 — Percentage of 30-minute calls at 1200 bps with undetected error prob-
abilities not exceeding P, .

of 1’s and 0’s from the sequential numbers of correct bits and error
bits of the task forece records. The resulting sequences are then divided
into blocks of length 31, and each block is tested to determine if it is
the zero word, a code word, or a noncode word. Again each call is treated
as 31 calls, according to which of the first 31 bits is chosen first in de-
termining the subdivision into blocks, and the average undetected and
detected error rates are calculated.

Of the 1010 test ealls in the program, only 10 contained undetected
errors. The total number of word-errors was 37 out of a total of 1.06 X
10" words. This corresponds to an over-all undetected word-error rate
of 3.5 X 107%.

To compare the estimates of P, with the values of P, obtained from
the simulation, we note first that P, = 0 for 1000 calls, whereas P,
on these ealls varied over a considerable range. On the 10 calls with
undetected word-errors the ratios of P,/P, ranged from 0.83 to 24.8,
with an average value of 7.4. On 7 out of the 10 calls, P./P, was less
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than 10. The average value of P, over all calls was 2.8 X 10™°, which
is indeed a good approximation to the over-all error rate noted above for
the simulation.

The foregoing example suggests that order-of-magnitude accuracy
may be obtained using the P, estimate for P, in ordinary circumstances.
To investigate the question of accuracy further, 35 different codes with
block lengths less than 25 bits were analyzed on a variety of Gilbert
channels. The exact P,, values and P, estimates were compared and found
generally to agree within an order of magnitude except in some extreme
cases. In these extreme cases, both P, and P, are practically zero, yet
their ratio is large.

Tt should be noted that, whereas no definitive statement about the
accuracy of P, is presently possible, there are practical advantages
associated with its use. First, the analysis of the code and channel are
separated so that, once the channel has been analyzed for a given block
length, many codes of that block length may be evaluated and compared.
Secondly, the amount of computation required is significantly less than
that required using various simulation techniques. There is one notable
limitation imposed on its use. When the code is very large, the amount
of computation required to obtain w(m) may be prohibitive. In such
cases the approximation offered by (10) may be useful.

VIII. A SAMPLE SURVEY OF CODES ok L/

e

To further illustrate the sort of code evaluation programs that the
P. estimate may be employed in, a collection of 29 codes of various
block lengths and redundancy were evaluated using the P(m,n) data
from the field tests as summarized in Table ITI. The codes are all cyclic
codes with exception of the constant-weight 4-out-of-8 code, and they
have, for their given block length and redundancy, the largest minimum
distance attainable with eyclic codes. They are designated in Table V
by the number pair (n,k), where n is block-length and % is the dimension
of the code. In most cases, when there are two codes with the same
(n,k) but with different w(m) values, both codes are included in the
evaluation. The difference between the evaluation of these codes and
the previous evaluation of the Bose-Chaudhuri (31, 21) code is that
here the average undetected error-rate over all calls is calculated instead
of an individual rate for each call. The distribution of call types in the
field test program is not ideal for taking such an average as a figure of
merit, yet the average does provide a convenient single number for
each code, and, moreover, a considerable delineation of requirements
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would be necessary to devise an improved set of weighting factors. There
is the further consideration that, when ranked according to error rates,
the relative positions of codes would remain almost unchanged by such
a refinement,

The probability P, of retransmission is given as a funection of code
block length in Fig. 3. The slight differences in P, between different
codes of the same block length are too small to be noted at three-decimal
accuracy. Also plotted in I'ig. 3 are the retransmission rates for a
memoryless binary symmetric channel having the same average prob-
ahility P, = 3.2 X 107" of a bit being in error. This second curve is
above the first, since errors are more broadly scattered on the memoryless
channel and consequently cause more retransmissions.

IX. CONCLUSIONS

In the search for suitable codes for a given data transmission service,
the problem of predicting or evaluating performance is encountered.
Several mathematical models of ecommunieation channels exist for which
the calculation of error rates may be easily performed using parameters
associated with the channel. Of such models, we note particularly that
Gilbert’s burst-noise channel is to be included, and we have outlined the
appropriate methods for these caleulations. Not all channels, however,
admit to a representation by such reasonable models. At this point,
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models could be abandoned completely and recourse could be taken to
actual field testing of a complete system or to the simulation of a com-
plete system using data obtained in field testing. Short of such complete
abandonment of models is the method of approximation of code perform-
ance factors which has been presented here. Useful mostly for error
detecting codes, the method separates the analysis of performance into
two parts. The channel is characterized by the probabilities of various
numbers of bit errors oceurring in a block of given length. A code is
characterized by the average number of code words at specified distances
from other code words. A simple combination of these two types of
quantities gives a useful and economieal indieation of code performance
applicable to general binary block codes and to asymmetrie channels
with memory. The numbers resulting from such analysis are probably
more valuable for a relative indication of performance than they are
for an absolute indieation. In this connection, it is well to note that when
error rates are very low, small differences are operationally of little
significance.

As an exemplary application of this method, a collection of 29 codes
was evaluated for use on the switched telephone network as error-de-
tecting codes, in conjunction with retransmission as a means of error-
correction. The codes in this collection present a wide range in reliability
and indicate that it would not be difficult to select appropriate codes for
specific data transmission services by suitably enlarging the class of
codes examined.
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Speech Volumes on Bell System
Message Circuits—1960 Survey

By KATHRYN L. MC ADOO
(Manuscript received November 7, 1962)

Speech volumes of customers on Bell System message circuits have been
measured at class & offices. Dala are presented for intrabuilding, inter-
building, tandem and toll connections. Average speech volumes are lowest for
tntrabuilding calls and increase in level for the other types of connections,
with volumes on toll calls being the highest. In general, volumes on business
calls are higher than those on social calls, and men speak louder than women.
Speech volumes remain substantially the same in localions comparable to
those in a survey made in 1950.

I. INTRODUCTION

The volume of message signals at various points in the telephone net-
work is of importance to those who design and engineer telephone
systems and equipment, and ultimately, of course, to the listener at the
far end of the connection. This volume is influenced not only by the
speech pressure produced by the talker and by his habits in using the
telephone set, but also by the characteristics of the set, the battery
supply and loop resistance, and the electrical loss (or gain) between the
set and the point at which knowledge of the level is desired.

Speech signals are very complex quantities varying in amplitude from
instant to instant. They are measured in a preseribed manner on a
standardized meter known as a volume indicator. Data obtained using
this technique are called speech volumes and are expressed as volume
units (VU) on a db scale. Such measurements are of value to engineers
who design equipment, determine crosstalk objectives and permissible
noise levels, and otherwise engineer the telephone network.

Since changes in the telephone plant affect transmission performance
of the lines, and consequently may affect the customers’ habits in the
use of the telephone set, up-to-date information on customer speech
volumes is necessary. When the last general survey of speech volumes on
Bell System message circuits was made in 1950-1951,! a large percentage

1999
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of telephone sets were 200 and 300 types.? It is now estimated that 65
per cent of the telephone sets are 500 type;® finer-gauge conductors are
used in the loop plant; and interoffice trunk and toll cireuit losses have
been reduced.

This paper presents the results of speech volume measurements made
in 1959 and 1961. Observations were made in 1959 in cities larger than
10,000 population, and observations were made in 1961 in smaller com-
munities. The aggregate results of the two groups are referred to as the
1960 survey. The particular cities and offices in which speech volumes
were measured were selected as representative of the range of offices in
the Bell System, but no rigorous sampling procedure was used. It is be-
lieved that the conclusions drawn from the data are sufficiently accurate
to serve as a guide for plant design. The measurements were made at
class 5 (local or end) offices and were limited to the speech volumes of
customers connected directly to that office (near-end talker).

II. SUMMARY

More than 14,000 speech volumes were measured in 30 central offices
in 23 cities located throughout the United States. These cities varied in
size from single-office cities to large metropolitan centers and their
suburban areas. Observations were made on intrabuilding, interbuilding,
tandem and toll connections (I'ig. 1) in crossbar, step-by-step, panel and
Community Dial Offices (CDOQ’s). The locations and office designations
are shown in Table I. Some observations were also made in the private
branch exchange (PBX) in the Murray Hill, New Jersey, location of
Bell Telephone Laboratories. These latter measurements were taken in
1959 when the Murray Hill PBX was of the step-by-step type.

The weighted average speech volumes derived in the 1960 survey are
shown in Table I1I. These averages and all others are obtained by weight-
ing the data according to the population represented by each city unless
specifically stated otherwise.

Thirty per cent of the intrabuilding calls and 52 per cent of the inter-
building ealls were of a business nature. Fifty-eight and 80 per cent of
tandem and toll calls, respectively, were of a business nature.

Averages derived in individual class 5 offices are shown in Figs. 2
and 3.

The large spread or variation in speech volume, as shown by standard
deviations of 5.9 to 7.3 db, is caused only in small part by differences in
transmission losses of various loop lengths and by different telephone set
supply currents. This is supported by consideration of the results ob-
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Fig. 1 — Average speeeh volumes on typieal telephone connections (1960
survey).

tained for the PBX at the Murray Hill Bell Telephone Laboratories. In
Murray Hill, all extensions had short loops, few of which exceeded 2000
feet. On intra-PBX calls the standard deviation was 5.5 db, indicating
that the spread is largely a result of differences in levels and habits of
individual speakers,

The variation in the average speech volumes among offices (Fig. 2)
is substantial. Examination of the data reveals that speech volumes in
New York City average 2 to 3 db higher than in other locations where
similar loop plants exist. In general, the higher speech volumes are associ-
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TasLe I — SumMARY oF SPEECH VOLUME DATA

Avg.
. Year Off Area of No. of Luop.
Location S;:‘é“' Pop{?lﬂion Dtsign‘::.ion Type of Office ngﬁ: Stnotio{;m I"‘("aﬁh
X 10%)
Atlanta, Ga. 1959 487,455| JA 345 SXS 313,000 8
CE7 8X8 8
Auburn, N.Y. 1961 35,249 AL 23 NOSXBR | 126.56 20,880, 8
Austin, Tex. 1959 186,545 GR 37 SXS 26.3 77,000, 6
HO 5 SXS 49.3 8
Boone, Ia. 1961 12,468| GE 2 NOS5SXBR | 238.0 7,482| 10
Cleveland, Miss. 1961 10,249 VI3 SXS 180.0 4,501| 10
Cortland, N.Y. 1959 19,181| 36 S5X8S 159.4 13,000{ 10
Drew, Miss. 1961 2.143| 745 335 CDO | 35.0 724| 7
Enid, Okla. 1961 38,859 AD 47 NO5XBR | 150.0 19,731 9
Ithaca, N.Y. 1959 28,799| 234 SXS 134.4 24,000( 11
Liberty, Mo. 1961 8,909 STI, THI | NO5XBR | 180.0 5,206| 7
Medford, N.J. 1961 4,356| OL 4 335 CDO 48.0 4,356| 7
Moss Point, Miss. | 1961 8,510 GR 5 SX8S 195.0 3,972| 8
Mount Holly, N.J. | 1961 13,271| AM 7 NOSXBR | 54.8 6,686] 8
New York, N.Y. 1959 7,810,000 WO 4 NO1XBR 4,204,000{ 3
SWS8, LO5 | NO1XBR 4.5
WA 378 PAN 4.5
Pascagoula, Miss. | 1961 17,139] 80 2 NOS5SXBR | 72.0 8,361 8
Plainfield, N.J. 1959 45,330| PL 4567 NO1XBR | 49.4 49,660 6
Ridgewood, N.J. 1959 25,391 GI 43 NO5SXBR 18.3 34,780 8
San Francisco, 1959 742,855 Main EX7 | NO1XBR 4.8 519,000| 4
Cal. Main YU7 | PAN 4.8 4
MO 4, LO4| NO1XBR 8.2 8
Sioux City, Ia. 1959 89,159 Main 2578 | 8XS 41,000 8.5
Morn 6 SXS 7
Skaneateles, N.Y. | 1961 2,921 OV 5 SX8S 58.0 3,569 9
Trenton, N.J. 1961 | 114,015 OW 5 SXS 60,000| 10
Waukomis, Okla. 1961 516| PL 8 350 CDO 140.0 4371 9
Woodland, Cal. 1959 13,524| MO 2 SXS 210.0 8,000] 11

* Lstimate— except Plainfield and Ridgewood.

ated with the larger cities. Differences in the percentage of business calls
are one contributing factor. Others may be talking habits, ambient noise
and average length or loss of loops.

As observed in the 1950 survey, speech volumes on long-distance calls
increase approximately 1 db for every 1,000 miles.

There is a 4-db variation in the average speech volume of males, de-
pending on the sex of the far-end talker and whether the call is of a
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TaBLE I — SuMMaRY or SeeecH VoLuME Data (Cont.)

Near-End Speech Volumes

X Intrabuilding Interbuilding Tandem Toll
Location
; Std. Trunk Avg. Std. Trunk Avg. Std. V2. Std.
VE Dev. | Loss-db | VO | D&Y | Losdn| VO | Dev. V8 ey,
Atlanta, Ga. —22.6| 6.2 4.0 |—20.9| 6.1 —15.4| 5.2
8.0-9.0 [—20.1] 5.9
—23.2| 5.5 5.2 |—21.5 6.0 4.6 |—21.7| 5.0 |—16.8] 5.1
8.7 |—21.4| 5.4
Auburn, N.Y. —27.3| 8.1 3.9 [—23.3]| 6.5 —23.1| 5.7
Austin, Tex. —24.9/ 6.2 4.7-5.5 |—23.8| 6.0 —16.4| 5.2
—26.7| 6.3
Boone, Ia. —27.3| 7.7 —21.0| 5.8
Cleveland, Miss. —26.4| 7.4 —20.4| 6.5
Cortland, N.Y. —23.5| 6.0
Drew, Miss. —27.6| 8.1
Enid, Okla. —28.4| 7.0 —20.4| 7.5
Ithaca, N.Y. —25.4| 6.7 |5.0-6.0 [—21.2]| 6.5 —15.6| 4.9
5.0-6.0 |—23.1] 6.4
Liberty, Mo, —27.4| 8.5 [3.3-5.7 |—27.3| 6.5 2.5 [—23.2| 6.1 |—19.6] 6.6
Medford, N.J. —27.6| 5.6 5.5 |—25.6/ 7.3
Moss Point, Miss. |—27.6| 6.9 1.2 |—26.8| 6.3 —21.3| 5.1
Mount Holly, N.J. |—26.6] 6.3 5.6 [—24.1/ 7.2
New York, N.Y. —18.9] 5.6 |6.5-8.0 |—16.2| 5.0 [1.8-3.4/—17.4| 5.3 |—11.0| 5.2
8.6 |—17.6] 4.9
—17.7] 6.2 |6.9-8.8 [—16.4| 4.9 4.0 |—18.1 5.4 |-14.2| 5.8
7.7-9.0/—16.4| 5.4
—18.8| 5.8
Pascagoula, Miss, |—26.0| 7.3 1.2 |—25.8] 6.9
Plainfield, N.J. —22.0] 6.2 4.7 |—20.1| 5.6 3.9 [—19.9 4.8 |—-16.9| 5.3
11.0 [—19.2| 5.0 | 10.5 |—17.0| 5.8
Ridgewood, N.J. —22.1| 5.6 5.0 (—21.0/ 6.2 [3.6-4.0|—18.6/ 5.8 |—15.0| 5.1
9.3-10.0/—19.8| 5.4 | 10.1 |[—18.0/ 4.8
Han Francisco, —21.8| 5.4 6.6 [—19.4/ 5.9 (3.3-4.9|—19.1| 4.9 |—14.4| 4.8
Cal. —20.0| 5.9 |6.6-6.7 |—20.2| 6.2 [7.6-7.8/—18.2| 5.9 |—14.7| 4.9
—24.9| 6.7 6.6 |[—20.2| 5.1 3.0 [—20.7| 5.4 |—17.8| 4.7
Nioux City, Ta. —23.8 6.9 3.9 [—22.3/ 5.9 —14.9/ 5.9
—24.5/ 6.6
Skaneateles, N.Y., [—24.7| 7.2 3.9 |—24.6] 6.4
Trenton, N.J. —25.4] 6.3
Waukomis, Olkla. —25.0) 6.7
Woodland, Cal. —23.9( 6.3 —55.8/ 5.7
TABLE IT — SumMARY oF NEAr-ExD Srercn VoLuMES
Type of Connection A"ﬂ?ge Eﬁﬂgﬁ?}a g)lbasxelrr{"ggl gl;:é:lv“e?
v VU
Intrabuilding —24.8 7.3 —-2.1 ‘ <—=50.0
Interbuilding —23.1 7.3 —~2.6 —46.0
Tandem —19.6 5.9 —3.0 —40.4
Toll —16.8 6.4 +5.3 —39.8
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STANDARD
DEVIATION AVERAGE SPEECH

IN DECIBELS CITY-AREA-C.O. VOLUME IN VU
10 8 6 4 2 =30 -28 -26 -24 -22 -20 -18 -16 -14

NEW YORK-R*-XBRI
NEW YORK-R-PAN
- NEW YORK-B-XBRI1 -
SAN FRANCISCO-B-PAN
. SAN FRANCISCO-B-XBRI
PLAINFIELD-BR-XBR1
RIDGEWOOD-BR-XBR5
ATLANTA-B-5X5S —e
. ATLANTA-R-SXS
CORTLAND-BR-5XS
. SIOUX CITY-B-5X5
WOODLAND -BR-SXS
. SIOUX CITY-R-SXS
SKANEATELES -BR-5XS
INTRA- AUSTIN-B-5XS
BUILDING - SAN FRANCISCO=-R-XBRI
WAUKOMIS -BR-5XS (CDO)
. ITHACA-BR-5X5
TRENTON-BR-5SXS .
PASCAGOULA -BR-XBRS
- CLEVELAND -BR-5XS
MOUNT HOLLY-BR-XBR5
AUSTIN-R-SXS
AUBURN-BR-XBR5
BOONE-BR-XRB5S
- LIBERTY-BR-XBR5
DREW -BR-5XS (CDO)
MEDFORD-BR-5X5 (CDO)
° MOSS POINT-BR-5XS(CDO)
ENID-BR-XBR5

y

< —AVERAGE

'LHH

i

AVERAGE

. NEW YORK-B-XBRI
. NEW YORK-R-XBRI
RIDGEWOOD- BR - XBR5 P

Pk IR . SAN FRANCISCO-B-XBR! .
S el | PLAINFIELD-BR-XBR!
. SAN FRANCISCO-R-XBRI -

[ . ATLANTA-R-SXS

. LIBERTY-BR-XBRS

AVERAGE

s - NEW YORK-R-XBRI
TANDEM PLAINFIELD -BR-XBRI ™

7.7 TO10.5DB . NEW YORK-B-XBRI
TRUNKS RIDGEWOOD -BR-XBR5

SAN FRANCISCO-B-PAN ™

*B DOWNTOWN BUSINESS AREA
R OUTLYING RESIDENTIAL AREA
BR SINGLE-OFFICE CITY

Tig. 2 — Average intrabuilding and tandem speech volumes,

social or business nature. The variation in the average speech volume of
females is smaller.

Speech volumes on business calls average slightly higher than those on
social calls, partially because business talkers are predominantly men
and business calls tend to be over longer distances.

Speech volumes measured in the 1960 survey appear at first glance
to be lower than those measured in the 1950 survey, with decreases
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STANDARD
DEVIATION AVERAGE SPEECH
IN DECIBELS CITY-AREA-C.O. VOLUME IN VU

8 6 4 2 ~-28 -26 -24 -22 -20 -18 -16 -14 -12 -10

- PLAINFIELD-BR* -XBR1
ATLANTA-B-5XS
RIDGEWOOD -BR-XBR5 -
C ITHACA -BR-5XS v
ATLANTA-R-SXS
SIOUX CITY-B-5XS s

GUNIER. | - ITHACA-BR-SXS
.2 To 6.008| *® AUBURN-BR-XBR5

TRUNKS AUSTIN-B-SXS
. MOUNT HOLLY-BR-XBRS

SKANEATELES-BR-5XS
. MEDFORD-BR-5XS (CDO)

. PASCAGOULA-BR-XBR5
MOSS POINT -BR-5X5 (CDO)
. LIBERTY -BR-XBRS5

F-—AVERAGE

J\L[

AVERA
- NEW YORK-B-XBRI RRAGE
- NEW YORK-R-XBRI -
- PLAINFIELD-BR-XBR1
at':Tngfd; SAN FRANCISCO-B-XBRI .
6.5 TO 11.00B [ RIDGEWOOD-BR~-XBRS
% TRUNKS ATLANTA-B-SXS
- SAN FRANCISCO-R-XBRI
SAN FRANCISCO-B-PAN
g ATLANTA-R-SXS .

]
AVERAGE
- NEW YORK-B-XBRI| .
NEW YORK-R-XBR1
SAN FRANCISCO-B-XBR1
SAN FRANCISCO-B-PAN
SI0UX CITY-B-5XS
- RIDGEWOOD-BR-XBR5
. ATLANTA-B-5XS
- ITHACA-BR-SXS
WOODLAND -BR-SX5
TOLL . AUSTIN=-B=SXS .
. ATLANTA-R-SXS
- PLAINFIELD-BR-XBRI

- SAN FRANCISCO-R-XBRI

L LIBERTY-BR-XBR5 ]
. ENID-BR-XBRS
CLEVELAND-BR-5XS -
BOONE -BR-XBRS -
MOSS POINT -BR - 5XS (CDO) ad
AUBURN -BR-XBR5 -

* . b o |

*B DOWNTOWN BUSINESS AREA
R OUTLYING RESIDENTIAL AREA
BR SINGLE-OFFICE CITY

Fig. 3 — Average interbuilding and toll speech volumes.

varying from 2.2 db on tandem ecalls to 5.8 db on loeal or intrabuilding
calls. However, this is largely due to the fact that New York speech
volumes, which are higher than average, comprised more than one-
third of the measurements made in 1950. In the wider sample in the
present survey, New York City speech volumes account for less than 10
per cent of the total number. I'or comparable locations, the data of the
two surveys are in substantial agreement.
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III. DESCRIPTION OF TESTS

Near-end talker volumes were measured in 30 central offices located
in 23 cities throughout the United States. Detailed information on the
cities and central offices is given in Table I. The communities range in
size from 516 people in Waukomis, Oklahoma, to nearly eight million
in New York City. The offices included No. 1 crossbar, No. 5 crossbar,
step-by-step and panel offices; 350A and 355A Community Dial Offices
(CDO’s). In larger cities data were obtained in offices in both business
and residential areas.

Measurements were made on intrabuilding, interbuilding, tandem and
toll connections. The types of connections are illustrated by simple
schematies in Fig. 1. In many of the smaller central offices there were
neither interbuilding connections nor tandem switching. Toll observations
were not made in some locations where the traffic was too slow to war-
rant spending the amount of time necessary to obtain a complement of
measurements.

Records were kept of the sex of the near-end and far-end talker and
the nature of the call, whether social or business. Additional information
was obtained on loop lengths, trunk losses, and station sets. Most ob-
servations were made during the day; however, some observations on toll
calls were made in the evening when a greater possibility of obtaining
social calls existed.

IV. TEST EQUIPMENT

Measurements were made at convenient circuit locations in each
office, using a high-impedance standard volume indicator.* Two different
models were used, both with a nominal input impedance of 12,500 ohms
and a response essentially flat from 50 to 15,000 cps. On one volume
indicator the range of volumes which can be read in accordance with the
method deseribed helow is —32 VU to +30 VU. Speech volumes a few
db lower than —32 VU can, however, be estimated with reasonable
accuracy. The other instrument has a range of —42 to 420 VU, thus
allowing for greater accuracy in reading the low speech volumes. It also
has an optional 60-cps elimination filter, the loss of which is not de-
tectable above 300 cps.

Volume indicators are calibrated to read voltage across 600 ohms.
However, the impedances of most exchange telephone circuits generally
differ substantially from 600 ohms, thereby causing appreciable errors
in volume indicator readings. Corrections were computed from the
formula
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C + 10 lﬂgm (—F%OI)

where | Z | is the magnitude of the impedance of the cireuit into which
speech volumes are measured, derived from knowledge of the average
gauge, length, loading, and termination of the circuit for the type of
call being measured. Trunk and loop data were supplied by operating
company personnel. The final correction was a weighted average of the
corrections at four or five important frequencies in the speech band.

V. TEST PROCEDURE

At the beginning of an observation, the observers waited for the con-
nection to be established and thereby distinguished the near- and far-end
talkers by their salutations. In no case was volume used as the sole
criterion in identifying the parties, for difference in volume in many
cases exceeded the transmission differences between customers.

The standard procedure for measuring speech volumes on telephone
message circuits requires taking the arithmetic average of a series of
individual volume measurements on each customer. An individual
volume measurement is defined as the visual average of five to six of
the highest meter deflections over a 3- to 10-second interval. In so doing,
the oceasional high peaks and the series of low peaks are ignored. An
input attenuator, adjustable in 2-db increments, is set to allow the peaks
used in determining the average to fall in the region from 0 to —2 VU
on the meter scale. About ten individual measurements were averaged
to obtain the speech volume of the customer.

T'or each type of call at a location, speech volumes of 120 to 160 cus-
tomers were measured by two observers. Preliminary training of all
observers consisted of practice in reading volumes from recordings of
the 1939 World’s Fair telephone exhibit. Throughout the survey the
observers rechecked their methods of reading the volume indieator in
order to eliminate the possibility of developing poor habits,

VI. METHOD OF COMBINING DATA

The principal objective of these speech volume measurements was to
derive a system-wide average and standard deviation for each of the
four types of calls. This involves first assuming that the values obtained
for an office are representative of similarly located offices throughout the
United States, and then combining the data in accordance with the
calling rate in the different kinds of areas. Neither of these factors is
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Tasre I1I — U. 8. PoruraTion StarisTics 1960: METHOD OF
DeTERMINING WEIGHTING FACTORS

i N ol Total Population i Weighting % :

Zopsien, | Nugherof | Tou Eapuadon n | VSPSE | iy sampie
>1000 5 17,290,300 9.6 New York, N. Y.
500-1000 15 10,442,300 5.8 San Franeisco, Cal.

250-500 31 11,078,300 6.2 Atlanta, Ga.
100-250 76 11,078,500 6.2 Austin, Tex.
Trenton, N. J.
50-100 178 12,369,300 6.9 Plainfield, N. J.
Ridgewood, N. J.
Sioux City, 1.
25-50 403 14,815,500 8.3 Auburn, N. Y.
Enid, Okla.
Ithaea, N. Y.
10-25 1000 17,052,500 9.5 Boone, Ia.
Cleveland, Miss.
Cortland, N. Y.
Mount Holly, N. J.
Pascagoula, Miss.
Woodland, Cal.
5-10 1381 9,697,300 5.4 Liberty, Mo.
Moss Point, Miss.
<5 * 75,498,100 42.1 Drew, Miss.
Medford, N. J.
Skaneateles, N. Y.
Waukomis, Okla.
Total 179,322,100 100.0

* No estimate available. This eategory includes unincorporated places less
than 1000 population and other rural population not included in other categories.

accurately known, but useful values can be obtained by accepting the
measured speech volumes as representative and weighting them in
accordance with population.

The population statisties and the weighting factors used to obtain the
composite averages are given in Table III. The population statisties
are taken from the 1960 Census of Population — Advance Reporls distrib-
uted by the U. S. Department of Commerce.

VII. OBSERVATIONS ON INTRABUILDING, INTERBUILDING, TANDEM AND
TOLL CONNECTIONS

Average speech volumes obtained in each office are shown in Figs. 2
and 3 for the four types of calls, These averages, when combined using
the weighting factors given in Section VI, yield the Bell System aver-
ages. These are shown in Table II.

The data for interbuilding and tandem calls shown in Figs. 2 and 3 are
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separated into two groups according to trunk losses. This illustrates the
effect of trunk loss on speech volume. On the average there is a 1-db
increase in speech volume for every 3-db increase in trunk loss.

Loeations with high speech volumes on intrabuilding ealls have con-
sistently high speech volumes on the other types of calls. Conversely,
locations with low speech volumes on intrabuilding ealls have low speech
volumes on other types of calls. The high speech volumes are, with few
exceptions, found in the larger cities. Lower-loss loops and a greater
incidence of business calls may be contributing factors. Regional speech
characteristics and other factors which cannot be ascertained by meas-
urement (for example, some hypothesis has naturally heen made on the
effect of the faster pace of urban living than rural living on speech
volumes) may contribute to the differences in speech volumes from
office to office.

The standard deviation associated with the average tandem speech
volume is considerably smaller than the standard deviations for the
other kinds of calls. This is probably because tandem switching is largely
confined to metropolitan areas and the calling population is more homo-
geneous than if it were scattered throughout the country. This same
factor may account for the high average level of this type of call.

VIII. SPEECH VOLUMES OF MALES AND FEMALES ON SOCIAL AND
BUSINESS CALLS

The speech volumes of male and female talkers on social and business
calls are interesting to note and may be of use in the design of some
special systems. The intrabuilding, interbuilding, tandem and toll
speech volumes have been combined without any weighting to give an
indication of the relative difference in speech volumes as illustrated in
Fig. 4. These are averages for all types of connections and therefore do
not indicate the actual levels of measured volumes.

The average speech volume of the female talker remains within a
1-db range, whereas that of the male talker drops as much as 4 db when
the far-end changes from male to female. Over-all, men tend to talk
slightly louder than women, and business conversations are louder than
social ones.

Approximately 73 per cent of the husiness calls observed were made
by male speakers, whereas females made 81 per cent of the social calls,
The majority of the tandem and toll ealls were made by men, and most
of the local telephone calls were made by women.
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NEAR | FAR |TYPE
END | END |CALL
M B
M s
F B
F s
F B
— F S
P M B
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FEMALE |
= SOCIAL
ey BUSINESS
-18 =19 -20 -21 —-22 -23

SPEECH VOLUME IN VU
Fig. 4 — Speech volumes of males and females, social and business calls.

1X. DISTANCE EFFECT

In New York special observations were made in several toll centers on
circuits to Philadelphia, Chicago and Mexico City. These data are not
included in the previously discussed averages. They are summarized in
Table IV.

These data illustrate the distance effect observed by V. Subrizi in
the 1950 survey. In spite of the lower circuit losses on the long connec-
tions, there is an increase in near-end speech volume of approximately
1 db per 1000 miles. This increase may be caused by increased noise and
distortion on longer toll conneetions or may be psychological.

X. PBX OBSERVATIONS

Some preliminary speech volume measurements were made in the
701A PBX at Murray Hill Bell Telephone Laboratories on intra-PBX
calls and on tie lines to the West Street, New York, and Whippany,
New Jersey, Laboratories. Tie line losses to New York varied from 3.9
to 7.5 db and those to Whippany from 4.0 to 5.0 db. The average speech
volumes obtained are shown in Table V.

These volumes are generally higher than the composite averages for
local offices. Contributing factors are short loops and the fact that the
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calls are predominantly made by men talking business. The effect of
variation in loop loss on the standard deviation is virtually eliminated in
these PBX observations, and variations due to station sets are greatly
reduced because their current supply is at a uniformly high level. The
standard deviation is still large, indicating that the spread in speech
volumes is largely a result of variation in individual habits and speaking
levels rather than in loop and station charaeteristics.

XI. COMPARISON WITH 1950 SPEECH VOLUME SURVEY

One of the interesting questions posed hy the surveys in 1950 and
1960 is whether speech volumes are increasing or decreasing. This is a

TasLe IV — Long DisTanNckE OBSERVATIONS AT NEW YORK
Torr. CENTERS AT ZERO LEVEL PoinT

Terminal Specchvﬁvemgc anumlfhsigma Circ\::‘illJ Loss Air Miles
Philadelphia -15.3 4.8 7.8 80
Chieago —14.3 4.0 6.0 850
Mexieo City -12.7 4.4 5.0 2094

Tapre V— SpEEcH VorLuME OBSERVATIONS AT THE MURRAY
Hirn LasoraToriEs PBX

Standard

Avvei}lgc De:x':riluﬂr:n
[ntra-PBX —17.8 5.5
Tie line to Whippany, N. J. Laboratories —-17.7 4.7
Tie line to West Street, N. Y. C. Laboratories —16.7 4.9

TasLe VI — CoMmpARISON oF SpEEcH VoLuMmEs IN 1950 anxp 1960

1950 Survey 1960 Survey
Speech Volume Speech Volume
Connection Connection
Avg, Std, Dev. Avg. Std. Dev.
\v’Ug db VI? db
Local —19.0 8.7 intrabuilding —24.8 7.3
interbuilding —23.1 7.3
Tandem —17.0 5.8 tandem —19.2 5.9
Toll 12.0* 5.3* toll —16.8 6.4

* Measured at toll office, but eorrected back to loeal office by toll connecting
trunk loss.
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difficult question to answer, since the two surveys varied widely in
scope and since some of the office areas measured in both surveys have
changed considerably. A summary of both surveys is shown on Table VI.

The averages for 1950 were obtained in Atlanta, Ga.; Cleveland, O.;
and New York, N. Y. Local calls as defined in the 1950 survey include
intrabuilding calls and short (or with low-loss trunks) interbuilding and
tandem calls.

For locations comparable to the three cities observed in 1950, speech
volumes now average 0.5 db lower on local calls and vary from a few
tenths of a db to 2 db lower on toll ealls. These differences are too small
to be considered significant.

XII. LIMITATIONS OF SURVEY

Caution is advised against using these data for engineering systems
used by private, military or air control personnel. These data apply
only to Bell System customers working into the switched Bell System
network. Very much higher talker volumes have been observed in limited
measurements of military and private-line networks.
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A Self-Steering Array Repeater

By C. C. CUTLER, R. KOMPFNER and L. C. TILLOTSON
(Manuscript received February 8, 1963)

A scheme s disclosed whereby an antenna array is automatically directed
by a simple intermodulation of signal components. In receplion, each array
element feeds a pilot signal and the modulated signal to a third-order mixer
wherein the phase associaled with the signal in that element is aulomatically
cancelled. This allows in-phase addition of the contributions from the many
elements irrespective of the array shape or the direction of the incoming
stgnal. For transmission, a pilot signal recewved from the distant receiver
location provides by intermodulation a phase compensation lo the signal
radiated from each transmitling element so as to automatically direct the
radiated signal to the distant receiver. There are no significant restrictions
as lo the shape of the array or the frequencies used.

The scheme lends ilself lo mulliple-element, low-power circuilry and
may be used in either space or lerrestrial systems lo give a high repeater
directivity withoul requiring stabilized plaiforms or control of antenna
orientation. An experimental verification of the basic principle is described.

I. INTRODUCTION

Antenna directivity has become widely used to provide a high effective
radiated power with only modest transmitted power, particularly at
microwave frequencies where antennas having apertures of many wave-
lengths are of reasonable size. The precise aiming of the antennas made
necessary by this high directivity requires the use of sturdy towers in
terrestrial systems, and the proposed use of stabilized platforms for
space applications.

A number of methods of avoiding the requirement of aceurate orienta-
tion and stabilization based upon the Van Atta array concept! have
been proposed,?#4.5 but each puts strict requirements upon the array
shape, and none provides a common intermediate terminal where one
may drop and/or add channels. Another method® uses a phase-locked
loop or servo control to automatically phase the reception from each
element for in-phase addition.

2013
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The scheme proposed herein avoids many of the limitations of the
earlier ones, puts no restrictions on the shape of the array, and does not
involve servo control or feedback — either electrical or mechanical.
The new scheme compensates for the relative phase of each array ele-
ment by an intermodulation (frequency mixing) process like that used in
some radio diversity?® receivers.

An experimental cireuit has been constructed from available hardware
to demonstrate in its simplest form the basic principle — coherent
addition of microwave signals regardless of relative phase at the input.
In-phase addition was obtained as predicted.

Since state-of-the-art microwave solid-state devices provide low
power but at relatively high efficiency (i.e., Esaki diodes, varactor
multipliers, and microwave transistors), paralleling the power output
from many such units in an array provides four distinet advantages:*
(7) efficient addition of the power from many repeaters, (i) steerability
of the beam, (##7) high directivity and antenna gain, and (7v) reliability—
failure of individual units is of little consequence.

Thus it is expected that by the use of modern solid-state devices and
micro transmission line techniques, a very simple lightweight self-steer-
ing repeater can be built requiring only a fraction of the power of more
conventional repeaters with no necessity for orientation control and
with the inherently increased reliability provided by a multiplicity of
independent parallel eircuits.

1I. A SELF-STEERING ARRAY REPEATER — BASIC IDEAS

The pointing angle of a steerable array is determined by the relative
phasing of the individual elements. Signals received from a distant
transmitter by elements of an array differ in phase by an amount which
depends upon the geometry of the array, and the relative phases are
distributed in a manner exactly opposite to that required for retrans-
mission back toward the source. Van Atta used this fact to show that
by suitable interconnection of the elements of a regular linear array,
the phase differences ean be canceled out, resulting in a return charac-
teristic from an array much like that of a corner reflector! 2+ (see Fig. 1).

An alternative which avoids many of the limitations and difficulties
encountered when the basic Van Atta array is used in an actual repeater
can be explained with reference to a satellite whose orientation is un-
controlled, as shown schematieally in Fig. 2. This figure shows an array

* These advantages were pointed out by R. C. Hanson in Ref. 3 for the case of
the conventional active Van Atta array.
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Iig. 1 — An active Van Atta array.

in which the signal received by an element is heterodyned with a locally
generated beating oscillator, and the difference frequency is connected
back to the same antenna element. All elements are treated alike, and
all are excited from a common local oscillator supply. Let the signal
received by the ith element be of the form:

ei(t) = exp j(wat + ¢i) (1)

where ¢; is the phase of ¢;(¢) relative to an arbitrary reference plane
normal to the transmission path. The output of the mixer will be:

E(t) = exp jl(ws — wr)t — @i (2)

If the local oscillator, which is common to all elements of the array, is
adjusted to a frequency larger than wg , then (ws — wg) is positive, and
the phase ¢; will be reversed in sign with respect to that of the received
signal, as shown® in (2). If, further, w; is adjusted to be about twice ws

(wa - wx) = Wg (3)

and the resultant can be diplexed onto the same array element. The ex-
cess phase on transmission just cancels that on reception. This is true
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RECEIVED WAVE wg
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RETRANSMITTED WAVE
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MIXERS

LOCAL OSCILLATOR
wp =y 2wn

NOTE:
1. THE FORM OF THE ARRAY IS NOT CRITICAL
2. SPACING NEED NOT BE UNIFORM

Fig. 2 — An elementary form of active converting array.

for all array elements and their associated circuits. Hence the retrans-
mitted signals are phased just right to form a beam directed back to-
ward the distant transmitter. Note that the foregoing is true regardless
of the position of the 7th element or the shape of the array, and that no
interconnection of array elements is necessary except for the common
local oscillator.

This cancellation of phase by mixing is basie to all of the systems de-
seribed herein. In case it is desired to receive independently, the phase
mixing can be accomplished as shown in Fig. 3 (see Ref. 8). The received
signal is first divided into two parts in a branching filter, and the carrier
or a separate pilot frequency is amplified and further separated from the
modulation produets in a narrow-band amplifier. The three frequencies
— i.e., carrier or pilot, modulation, and local oseillator — are then mixed
in a third-order mixer (or two separate more conventional mixers) and
the third-order product is selected for subsequent demodulation. The
phase of the incoming waves (¢;) is relative to a plane perpendicular to
the incoming wave normal, and will be different for each element.
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Fig. 3 — An active converting array receiver.

The third-order product is:
Eit = expjl(ws — we + wp)l — @i + @] = expjlws — we + wp)  (4)

where w, is the local oscillator (radian) frequency, we the received car-
rier, or a separate pilot frequency, and wp the rest of the received signal.
Since (4) contains no phase term, evidently the voltages from several
sueh channels ean be added.

For transmission of a loeally generated modulation, it is evident that
modulation applied to the loeal oseillator of Fig. 2 will be contained in
the retransmitted signal. In such a case, the incoming signal acts as a
pilot to direct the transmission.

IIT. ARRAY STEERING BY PILOT FREQUENCY CONTROL

In many applications it is not desired to retransmit in the direction
of the received signal. In such a case, a separate pilot signal sent from
the distant receiving terminal can serve to define the direction for
retransmission, and by the described frequency mixing operation, this
an be accomplished automatically. Sinee the antenna beam is directed
or steered toward the distant receiver regardless of its location, the
antenna gain can be as large as desired, independent of the changing
satellite orientation in space systems or of movement of towers in ter-
restrial systems.
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The advantages of a satellite repeater which does not require orienta-
tion control are quite apparent; the advantages to be gained in the
application of this scheme to a terrestrial system are also worth noting.
Since changes in pointing angles in terrestrial relay systems will be
small, the elemental antennas of the array can be relatively high gain,
and thus relatively few elements are required to implement a steerable
array (STAR) repeater. Hence the advantages of reliability and self-
steering can be obtained in terrestrial systems with only small increase
in the amount of repeater electronics.

IV. SELF-STEERING SATELLITE REPEATER

Before going into detail, we will deseribe a prototype repeater em-
bodying the principles described. Since we are interested in partially
oriented terrestrial as well as nonoriented satellite repeaters, we will
attempt to generalize the discussion to cover both situations. In the
terrestrial case, the array elements can profitably use area directivity,
and it is desirable to interconnect two separate arrays with elementary
repeaters, as shown in Tig. 4. In the satellite case it is more desirable to
combine the functions in a single array, or to separate transmitting and
receiving functions. The satellite repeater is visualized as spherical and
entirely covered with elemental antennas, as shown in Iig. 5.

To insure that all of the antenna elements act in concert as a phased
array, and hence as an antenna having an aperture nearly equal to the
projected area of the array, it is necessary to combine in-phase the re-

REPEATER

ELEMENTARY
\ )\ ELEhrlENT (// MG
AV o 01
\ (o,
% W-E MODULATION
=7
%
0
o/
EAST+PILOT
E-W MODULATION
WEST EAST
TERMINAL TERMINAL

Fig. 4 — A possible two-way terrestrial repeater configuration.
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Fig. 5 — A possible two-way satellite repeater configuration.

ceived signals from all the elements. As received from the west terminal,
the signals have relative phase shifts
211'];

h 3

Oy 05,05« 0;, where 8; =

and [; is the variable distance between the ith element and a reference
plane normal to the radius vector to the western terminal, as shown in
Iigs. 4 and 5. This distance, and hence the phase shift, depends upon the
orientation of the array and changes when the array moves relative to the
fixed terminals. In-phase addition of the received signals can be accom-
plished by the use of the pilot beam as follows: Consider first the left-
hand part of the two-way repeater shown schematically in Iigs. 6 or 7.
Signals received from the west terminal by the ith elemental antenna
are: (a) the pilot, exp jlwet + 8;,], and (b) the modulation,

exp jlwwew-mt + eov-mt + 8i ).

These are passed by the transmit-receive filter and are converted in an
intermediate frequency eircuit by mixing with a local oseillator in a
square-law mixer. The results are

fl(t.) = exp J‘[w‘,glt =4 wp(w)t ==, 9,-,;:] (D)
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Tig. 7 — Basic elements of a two-way repeater [one of several sections joined
by a eommon loeal oscillator and diplexed into a common reeeiving-transmitting
array suitable for unstabilized satellite repeater use].

and

B(t) = exp jlwwo,t — waw-mt — @ow-w(8) — 0i] (6)
where
wro, = radian frequency of common receiving local oscillator,

wpewy = radian frequency of pilot received from west terminal.

6;. 3 and 8; p are the phases relative to the common reference plane, which
is equal to 2xl;/\, where A is the appropriate wavelength and [; is the dis-
tance between ¢th antenna element and the reference plane. wywe)y =
the radian frequency of the west-east modulation channel carrier and
eww-ry (1) = the angle modulation of the west-east carrier.* These are
amplified and put into a third-order mixer along with II local oscillator
signal exp j(wro,l) = C(¢). From the many modulation products gener-
ated in this mixer, two are selected by filtering. The first is

* While the repeater is described in terms of the commonly used frequency
modulation, the basic scheme can be used with any modulation technique.
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A.C/B = exp j[wLoat + wwlt =] u.'p(w)l‘- — 3,‘,}: = wmlt + wM(w_E)t
+ eow-m (1) + i m] (7)
= exp jlwro, — wrep + @nowm)t + ewm(t) + (Bin — 8ip)].

This is a carrier angle-modulated by ¢w.g)(f) and having the residual
relative phase angle ( 8; y — 6;¢). If the pilot frequency is chosen nearly
equal to the modulation frequency, (8;, s — 8; »)* will be very small, and
the W-E modulation received by the zth antenna will be in phase with
that received by all of the other antennas. This completes the receiving
functions; the remaining problem is to derive steering information for
the outgoing beam. To this end we select the modulation product

AC = exp jl(wro; + wro, — wrew) )t — 0;.p) (8)

where the symbols are defined above. Now the relative phase of this
wave, —#;p, is just right for retransmission toward the west terminal
near the frequeney wp(w), using the same antenna element as for receiving.
By mixing this steering signal with the modulation ¢.w)(¢) derived in a
similar faghion from the right-half of the repeater, together with a micro-
wave local oscillator L0Os , the retransmission function is complete.

The optional interconnection among amplifying elements, shown by
dashed lines on Fig. 7, provides for the situation encountered with low-
altitude satellites serving widely separated earth stations. In this case,
the body of the satellite “shadows” some of the elements, and the part
of the satellite surface seen by both earth stations is a small part of the
total. Sinee it requires a signal from each earth terminal to generate the
retransmitted signal, without interconnection only a small number of
elements are effective. With interconneetion, all satellite elements visible
from the transmitting earth station will receive the modulated signal;
the contributions from the various elements will then be added in phase
at I and the sum impressed on the outgoing carrier. All satellite ele-
ments visible from a receiving earth station will then emit information-
bearing waves which will add in-phase in the direction of this earth sta-
tion receiver. Also, it should be noted that since not all branches receive
the same signal levels, some weighting®® of voltage levels must be ac-
complished before combining the outputs or there will be a loss in signal-
to-noise ratio. This may be acecomplished by operation of mixers in a
strictly square law region or by auxiliary means beyond the scope of
this paper.

* The magnitude of this residual is also affected by the size of the satellite.
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The satellite repeater can have an arbitrarily large antenna array
gain for transmitting or receiving or both, regardless of satellite altitude
or orientation and independent of earth terminal separation. This is
not true for any other scheme of which the authors are aware.

There is another factor which should be mentioned at this point. It
is important that the pilot frequency be filtered from the surrounding
noise or modulation and desirable that it be enhanced to a level well
above that of the modulated signal before the second mixer shown in
Iig. 6. This is to keep the pilot from bringing noise into the final modula-
tion band and to assure that the desired products predominate over
higher-order products.

V. ARRAY SCALING AND FREQUENCY MULTIPLICATION

In the foregoing scheme, it is phase rather than time delay that is
compensated by the frequency conversion operation. If the application
permits the receive and transmit frequencies to be nearly the same, as
was assumed in discussing Fig. 2, a single array of antennas can be used
for both transmitting and receiving. However, if a rather large change in
frequency is required between repeater input and output, as is frequently
the case in both terrestrial and space systems, additional phase compensa-
tion must be provided. One possibility is to use a different array for
transmitting than for receiving, the arrays to be similar but scaled in
proportion to the wavelength. Alternatively, one may compensate by
using a step of frequency (and phase) multiplication, as we shall see. Let
us eonsider the four waves associated with reception of information from
one distant terminal and retransmitted to the other. The total phase
shift ¢; of a signal wave in passing from a reference wave front (Fig. 8a),
through the 7th branch of the circuit and to a reference plane perpendicu-
lar to the path to the other distant terminal is:

S; S;:I [ d; d‘-:l
‘p i |:)\R Apl + T XPg + }\T ( )

(receiving) (transmitting)

where

2w 8Si/Ar = phase shift of the received modulated signal caused by
delay between a reference plane wave front and the ith
receiving element,

278:/Ap, = phase shift of the pilot associated with the above signal
and path,
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Fig. 8 — Methods of compensating for frequency change in the repeater:
(a) reference diagram, (b) array scaling, (c¢) frequency (and phase) multiplica-

tion.
2wd;/Ap, = phase shift of the received pilot signal from the outgoing
path, caused by delay between a reference plane wave
front of this wave and the 7th antenna element, and
2rd;/Ay = phase shift of the retransmitted signal between the as-

sociated reference plane and element.
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There are a number of possible ways to make ¢; = 0. Let us suppose that
all of the waves received are near the same frequency; then

AR ~ ?\pl ~ Apg

and the first term in (9) is very small. The transmitter in many applica-
tions will be considerably removed from the reeceiving band, in which
case Ap, # Ar. To make ¢, = 0, we may scale the transmitting array as
in Fig. 8(b), in proportion to the wavelength. Then, letting the primes
indicate the scaled dimensions.

d!  d:

R by
and

¥, = 0.

It may not be convenient to scale the array. As an alternative, we can
operate on the pilot signal before mixing. Suppose that after the second
step of frequency conversion we pass the pilot signal through a frequency
multiplier, as shown in IFig. 8(¢). This multiplies the pilot frequency
term, including phase, by a factor k. The signal out of the multiplier is
of the form [from (8)]

exp jlk(wro, + @wro, — M — wpewy ki p + 2mnk]. (10)

Now, adding the phase contributions through the repeater we get

Yi — 2mnk =‘_":r‘:"'."—-:L":I-l—‘_’w[—lci +{-{1—j| (11)

AH A Py Pa T
(receiving) (transmitting)

and k can be chosen to make ; = 0. In general, however, k will not be an
integral and there is a phase ambiguity. A possible way of removing this
ambiguity is to lightly couple the frequency multipliers in adjacent
channels, so that they prefer to be nearly in phase, and limit the array
design so that adjacent elements are not more than A/2 apart in the di-
rection of transmission*® at both the transmitting and receiving frequen-
cies.

Of course, combinations of array scaling, phase shift multiplication
and a judicious choice of pilot, transmitting, mixing and receiving fre-
quencies will be important and interrelated parts of the design of a
practical system.

* [ilements need not be physically less than A/2 apart, but the distance along
the direction of propagation should not differ by more than A/2 when the line of
sight is within the beamwidth of the element.
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VI. ARRAY GAIN

Up to this point no limits have been placed on the form of the antenna
array. The elements do not have to be arranged with any particular
form or symmetry. However, the presence of the satellite itself, in the
case of satellite repeaters, and mutual coupling between array elements
and bandwidth considerations in either space or terrestrial systems,
provide some limits to the form of the array. Since the phase between
elements varies, strong coupling between elements would have serious
consequences in impedance mismatch. However, element directivity
and separation ean be used to reduce coupling and also to reduce the
shadowing of elements one by another. If array elements are mounted
on a conducting surface, an element gain of two is inherent in that the
element can only radiate into a hemisphere. A gain of three to five is
more practical, can be obtained from small elements, and results in
relatively small coupling between elements.

In the ease of a satellite without orientation control, elements must
point in all directions; but an element having a gain (g) can illuminate
only 1/gth of the total solid angle. Thus, if N elements are distributed
more or less uniformly over the surface of a spherical satellite, only
(1/¢g)N will contribute to the received (or transmitted) signal. Also,
of the total power radiated, only a fraction (1/g) is delivered to the array
elements forming the beam. The remainder is not utilized. Net effective
array gain for transmission is the product of element gain and the number
of elements effective and the fraction of the total power which is useful,

ie.,
G =g (N/g (1/g) = (N/g). (12)

Thus the net array gain for transmission is equal to the number of ele-
ments in the array divided by the element gain. Evidently one should
use little element gain on nonoriented satellite repeaters. In the case of
terrestrial repeaters and oriented satellites:

G = Ng (13)

and element gain is limited by more customary factors. In other cirecum-
stances which we will not elaborate, G = N.

One would like to get equivalent performance in all directions from
an unstabilized satellite. This can be accomplished with the present
scheme by covering the outside of a sphere or polyhedron with small
radiators. It is best that the radiators be close together to reduce side
lobes and possible interference.
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If each element is assigned one square wavelength, the satellite diam-
eter must be

D 2 \WN/x (14)

Alternatively, the elements can be grouped in a ring on a great circle
around the satellite, each element having a fan beam with a maximum
in a radial direction and radiating with a gain of (1/g) in a direction 90°
from the plane of the array. All of the elements of such an array would
contribute in the polar direction with an array gain of (N/g). In the
equatorial plane, even though only a fraction of the elements contribute,
the gain is also (N/g) by the argument used in deriving (14). In inter-
mediate directions, the gain depends upon the detailed characteristics
of the elements, but it should be possible to keep it very near (N/g) in
all directions.

One should not confuse the round-trip performance of the array with
the radiation pattern obtained with a fixed excitation. The former can
be truly isotropic but the latter cannot be, and may be a multilobe affair.
If the elements are in a ring, as deseribed above, the re-radiation will in
general have two large lobes, one above and one below the plane of the
array; and if the elements are widely spaced, some minor lobes may be
as large as the major. This is of little consequence to the transmission
performance of a satellite system, however, because the phasing of the
elements automatically assures that a maximum is always directed
toward the appropriate earth terminal. The shape of the pattern depends
drastically upon the distribution of elements, but to a first order the
strength of the major lobe does not. In any case, spacing between array
elements and the element gain should be chosen to minimize side lobes
in order to lessen the likelihood of interference.

VII. NUMBER OF ARRAY ELEMENTS

How many array elements is it practical to consider for a repeater
of the type proposed herein? As has been shown, the directivity gain for
a nonoriented repeater for reception and transmission is equal to the
number of elements used divided by the element gain, thus the effective
radiated power (ERP) or the power which an isotropic source would
have to radiate to produce the same received signal is

ERP = (N/g)Px (15)

where N = number of elements in array,
g = gain of individual elements,
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Pr = total power radiated = NP., and
P, = power radiated per element.

The power P; which must be radiated by each element to provide a given
ERP is, from (15)

P, = Px/N = ERP(g/N*). (16)

Thus there appears to be an advantage in using a large number of ele-
ments. However, there will be a component of the de input power used
for local oscillators, low-level amplifiers, ete., which is directly propor-
tional to the number of elements and is nearly independent of the RIF
power output per element. Hopefully, this can be made small through
development of suitable solid-state devices. For the minimum de power
consumption consistent with a given repeater performance, there is evi-
dently an optimum number of array elements. If the low-level mixing
and amplifying operations can be accomplished with a power consump-
tion p, watts per element, and if a high-frequency output power P; watts
per element can be obtained with a power amplifier efficiency of #, then
the de input power required to radiate a beam having a stated ERP is

Py = piN + (Pe/n)N = pN + (g/N)ERP/q (17)
where the symbols are as defined above. This has a minimum when

3

aN 0 (18)

[pN + (g/N)ERP /4]

p — (9/N")ERP/q = 0 (18a)
or
N = v/ (¢/p) ERP/n. (19)
We note that from (18a) and (16)
» = g/N*(ERP/%) = P»/n (20)

which says that the minimum de power will be required when the number
of elements is chosen to make the power supplied to the output ampli-
fiers equal to that consumed by the low-level devices.

If, in the case of a nonoriented satellite repeater, it is possible to
miniaturize the eircuitry enough so that the power supply is the prinecipal
source of weight, then this is a real optimum. Otherwise, it represents a
sort of design objective, and minimizing satellite weight and complexity
will require a smaller number of elements. In any case, it is clear that
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the practicality of the scheme depends heavily upon the degree of
miniaturization and power efficiency which can be achieved with solid-
state devices and circuits.

VIII. EXPERIMENTAL VERIFICATION

The basic principle upon which the self-steering array depends is the
coherent in-phase addition of randomly phased inputs. The principle
has been demonstrated by the simple laboratory experiment shown in
I"ig. 9. The outputs of two oscillators at 6200 and 6034 me, which may
be thought of as representing the received modulation and pilot signals,
are combined and fed together to two receiving circuits, and an adjusta-
ble phase shifter or line stretcher is inserted in one branch. Each receiving
circuit separates the incoming frequencies, heterodynes the 6200 me
with a 6274-mc local oscillator which is common to the two receiving
cireuits, to produce a 74-me intermediate frequency, which in turn is
amplified and recombined with the 6034-me signal in a second mixer to
produce a 6108-me output. Now, it is asserted that the phase of the

INPUT SECTION [ WORKING SECTION ‘ PHASE MEASURING SECTION
‘ 74MC
‘ 68034MC lPFH MaH M“l_
| I :
74 MC Isloamc
| 6200MC
W, v [= ‘ < 1MC
F
wpl | ! My ‘ 8182MC
6034 szoo ‘ |
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LO |s27aMC l | Lo V4
“p “m CRO
ezoorc [@ot-awut-¢]
— 74 MC  [KIMC
i |
wyt+e '
A¢| C ] 74MC |o}oemc g
8034MC + ¥
BPF — M M
| [wpt+e] L[M2] | il ]

l | 74MC

Fig. 9 — Experimental arrangement for testing the prineiple of phase compen-
sation.
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6108-me wave should be to first order independent of the phase of the
combined signals at the input to the branching filter. To check this,
the signals from the two branches are compared in the circuit shown to
the right of Tig. 9. If the idea is sound, the phase of the output should
change very little with movement of the piston in the input section.

The degree of phase change correction or cancellation was observed
visually by noting the stability of a Lissajous figure formed by the output
sine waves as received over the two branch paths of the test circuit, and
was measured using a phase meter. Some change in the phase between
the two output branch signals was to be expected because of the differ-
ence in frequeney between the pilot and the signal. Tig. 10 shows the
measured and ealeulated phase change in the output produced by large
changes of phase in the lower branch of the circuit. It will be noticed
that the resultant measured output phase change, Ad, is not exactly a
linear function of changes in input phase. These variations from linearity
were shown to be caused by mismatehes in impedance and leakage
between various parts of the cireuit and were partially corrected with
isolators. Caleulation of the ratio of wavelengths for WR159 rectangular
waveguide for the two frequencies 6200 and 6034 me gives a value of
1.04 or a difference of 15° for each wavelength, which is in very good
agreement, with the average measured value. The difference frequency
was later reduced to 40 me, and the output phase variation was reduced
proportionally.

Most of the tests deseribed were made under a condition of large
signal-to-noise ratio and low gain. The phase correction was found to be
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Fig. 10 — Comparison of calculated and measured phase compensation.
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very stable with change in time, level and frequency. In order to deter-
mine how the scheme would operate for low values of signal-to-noise and
with over-all gain typical of an actual repeater, attenuation was added
in the lower branch of the circuit to reduce the level of wy . This loss
was then compensated by adding about 100 db of IF amplification to
bring the level back to its former value. When the signal-to-noise ratio
was measured at 2 db, the pattern on the scope was much more ragged
due to the large random noise present, but it was still stable and indi-
cated the desired cancellation of phase.

IX. CONCLUSIONS

An antenna beam-steering scheme using a pilot tone and phase inver-
sion makes possible large antenna gain even for nonoriented satellite
repeaters or movable terrestrial repeaters. A large number of low-power,
elemental repeater amplifiers with inputs and outputs connected to
like elements in similar arrays, or diplexed onto common elements in a
single array, are used. The scheme is particularly suited for use with
solid-state devices since the (low) power output of many units is effec-
tively added in-phase. Reliability is provided by the many parallel
paths through the repeater; failure of individual units will only slightly
degrade performance. Although the radiation is not isotropie, the radia-
tion or sensitivity toward distant terminals can be independent of array
orientation, and thus the idea is well suited for use with unoriented
satellites. A simple experiment has been performed to demonstrate the
basic steering property of the phase inversion scheme.
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On the Properties of Some Systems
that Distort Signals—I

By I. W. SANDBERG
(Manuseript received March 20, 1963)

This is the first part of a two-part paper concerned with some generaliza-
lions and cxlensions of the Beurling-Landau-M7iranker-Zames theory of
recovery of distorted bandlimited signals. We present a uniqueness proof
that cxtends Bewrling's rvesult and study a class of functional mappings
defined on Hilbert space. As an application, we show thal the recovery re-
sulls ean be extended to cases in which a known square-integrable corrupling
signal is added lo the inpul signal and the result applied to a time-variable
device which may be nonlinear. Il is proved that an asswmplion made by
the earlier writers is in fact necessary in order that stable recovery be possi-
ble. Part I1 will consider the more complicaled silualion in which a single
lime-variable nonlinear element is imbedded in a general linear system.

I. INTRODUCTION

A signal transmission system is a realization of an operator that maps
input signals in one domain into output signals in a second domain.
When the system contains energy-storage devices as well as time-
variable or nonlinear elements, the mapping is usually quite complicated.
Very little in the way of a general theory is known concerning the
mathematical properties of such mappings.

Of course one of the important properties of a mapping is its inverta-
bility or lack of invertability. Some particularly interesting results re-
lating to the existence of the inverse of a special mapping have been
obtained by Beurling, Landau, Miranker, and Zames. They consider
the situation in which a square-integrable bandlimited signal is passed
through a monotonie nonlinear device. Beurling showed, by means of a
nonconstructive proof,t that a knowledge of the Fourier transform of
the distorted signal on the interval where the transform of the input
signal does not vanish is sufficient to uniquely determine the input

T Beurling’s proofl is given in Refs. 1 and 3.
2033
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signal. Landau and Miranker! have considered a stable iteration scheme
for obtaining the input signal from the bandlimited version of the dis-
torted signal. They assume that the distortion characteristic possesses
a derivative bounded above and below by positive constants. A solu-
tion of this type was found independently by G. D. Zames.* Some ma-
terial associated with the stability of the iteration scheme and an im-
pressive recovery experiment are discussed by Landau.?

This paper is concerned with some generalizations and extensions of
the results mentioned above. Our primary objective is to show that the
results in Refs. 1 and 2 are special cases of a quite general theory.

Section II considers some mathematical preliminaries. In Seetion III
we discuss the solution of a class of functional equations defined on an
arbitrary Hilbert space, and give a uniqueness proof that extends Beurl-
ing’s result. In the next section two general signal-theoretic applica-
tions of the results in Section III are discussed. Theorem IV implies,
among other things, that the recovery theory of the earlier writers can
be extended to cases in which a known square-integrable corrupting
signal is added to the bandlimited input signal and the result applied
to a time-variable device which may be nonlinear. Section V concludes
Part I with some specialized results that contribute to a deeper under-
standing of the character of the previous material. In particular it is
proved that an assumption made by the earlier writers is in fact neces-
sary in order that stable recovery be possible.

Part II will consider the more complicated situation in which a single
time-variable nonlinear element is imbedded in a general linear system.
We treat a recovery problem of the type considered by the earlier writers
and prove that recovery is possible under quite general conditions. This
study may have applications in improving the quality of distorted data
obtained, for example, from a malfunctioning transmitter in a space
satellite.

1I. PRELIMINARIES

Let ® = [6,p] be an arbitrary metric space. A mapping A of the space
@ into itself is said to be a contraction if there exists a number a < 1
such that

p(Az,Ay) = ap(z,y)

for any two elements z,y ¢ ©. The contraction-mapping fixed-point
theorem® is basic to much of the subsequent discussion. It states that
every contraction-mapping defined in a complete metric space ® has
one and only one fixed point (i.e., there exists a unique element z £ ©
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such that Az = z). Furthermore z = lim A"x,, where g is an arbitrary
element of O, e

Throughout the discussion 3¢ denotes a real or complex Hilbert space,
If f,g € 3¢, then (f,9), |/ || = (f./)% and || f — g ||, respectively, denote
the inner product of f with g, the norm of f, and the distance between
fand g. It is not assumed that 3¢ is separable or that it is of infinite
dimension.

The space of complex-valued square-integrable functions with inner
product

Go) = [ g,

where ¢ is the complex conjugate of g, is denoted by £, and £2y denotes

the intersection of the space £. with the set of real-valued functions.
We take as the definition of the Fourier transform of f(¢) £ £. :

) = [ e a
and consequently
1
2

With this definition, the Plancherel identity reads:

flt) = f"’ F(w)(e'l"” dw.

o [ rogat = [ Fw)6(a) do

Except when indicated otherwise, a function and its Fourier transform
are denoted, respectively, by lower and upper case versions of the same
symbol.

The symbol X denotes an arbitrary subspace of 3¢. Hence 3¢ = X
X', the direct sum of X and X', where X’ is the orthogonal complement
of X with respect to 3¢. The operator that projects an arbitrary element
of 3C onto X is denoted by P. The subspaces of £:5 of principal interest
to us aref

®(Q) = {f() | (1) & Loy ; Flw) =0, weQ}
and
D(Z) = {f(t) |f() e Ler; flt) =0,i£3),

T It is a simple matter to verify that the linear manifold ®(2) is in fact a sub-
space. An obvious modification of the proof in Ref. 1 for the case in which Q is a
single interval suffices.
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where @ and 2 are each the union of disjoint intervals. It is hardly
necessary to mention that the class of electrical signals belonging to
®(2) or D(Z) is of considerable importance in the theory of electrical
communication systems.

We shall use the fact that any projection operator defined on a Hilbert
space is self adjoint [i.e., that (f,Pg) = (Pf,g) for any f,g € 3c].

The symbol I is used throughout to denote the identity transforma-
tion.

III. INVERSION OF A CLASS OF OPERATORS DEFINED ON AN ARBITRARY
HILBERT SPACE

As we have said earlier, a signal transmission system is a realization
of an operator that maps input signals in one domain into output signals
in a second domain. The following theorem relates to the existence of
the inverse of a particularly relevant type of nonlinear mapping defined
on an arbitrary Hilbert space.

Theorem I: Let Q be a mapping of X into 3¢ such that for all f,g € X:

Re(Qf —Qof — @) 2 k[ S =g’
I PQf — PQg ||* < ke[| — gl
where ky and ks are positive constants. Then for each h ¢ K, the equation

h = PQf possesses a unique solution (PQ)™'h ¢ K given by (PQ)™'h =
lim f. where

n->w

Jann = ;:Ll

o

(h — PQfs) + fa
and fy is an arbitrary element of K. Purthermore, for all hy hz & X
= X 1
| (PQ) "k — (PQ) 'he| = = [[hs — he]l.
1

Proaof:

Let A = PQ and note first that
Re(Af — Ag,f — g) = Re(Qf — Qg,Pf — Py)

= Re(Qf = Q¢f —¢9) Z ka[lF — g

for all f,g € & since P is a self-adjoint transformation.

The equation & = Af is equivalent to f = Af, where Af = ch + f —
cAf and ¢ is any nonzero constant. The following caleulation shows that
A, a mapping of X into X, is a contraction when ¢ = ki(ka) ™"
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|Af —Rg || * = ||f — g — cAf + cAg || *
= [|f =g " —2cRe(Af — Ag,f — g) + " || Af — Ag || ®
S(l=2k+ck)|f—gll®, e>0.

Since (1 — 2ck; + ¢’ks) = 0 for all ¢ > 0, it follows thatt k'’ < k.
Hence

1% =Bt s (1= ) -or, 0s(1-8) <1

The last inequality stated in the theorem follows from an application
of the Schwarz inequality. For all f,g ¢ &

|Af — Agll-lIf—gllz|(Af—Agf—g) |2kl f—gl®

Thus

|Af — Agll 2 k[l f— gl -
In particular, with f = A™'hy and g = A s,
Nk = haf| = ko || A7 — A7Ro || .

3.1 Uniqueness Theorem

We show here that the uniqueness property of solutions to equations
of the type considered in Theorem I is implied by much weaker hy-
potheses than those stated in the theorem.

Theorem II: Let f,ge X and let Q be a mapping of & inlo 3C such that
(Qf — Qg.f — ¢) vanishes only if f = g. Then if the equation h = PQz
has a solution z ¢ X, it is unique.
Proof:

Assume that PQz; = PQz, where 2, , 2. ¢ K. Since P is self-adjoint,

(Qzi — Q2,20 — 22) = (Qz — Qz, Pzy — Pzy)
= (PQZI - PQZL 2 — 23)
= 0.

Hence z; = z».
Theorem II is a generalization of the uniqueness theorem due to A.
Beurling.!

. hf\ltern:lti\*ely, the hypotheses and an application of the Schwarz inequality
yields:

k2l f—gllt =1 AfF—Agf—P=sIAf—Ag|*F—gl*P Sk |lf— 0"
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IV. APPLICATIONS

We present two theorems that have specific signal-theoretic interpre-

tations.
Theorem III: Let 3 = £, and let

Lf = f: Wt — 1) f(s) dr

where I(t) £ £, and f & K. Suppose that

sup | L(w) | < o, Re L(w) 2 —a
where « < 1. Then for any he X, h = f + PLf has a unique solution
fe X, Suppose alternatively that

sup | L(w) | < =, Re L(w) > 0 a.e.

Then PL is a mapping of X into itself such that the equation
h=PLf, heXR
possesses at most one solution f& X.

Proof:
Let Q = I + L and let ze¢ K. Using the Plancherel identity

Re(Qzz) = || z|° + Re(Lzz)

I

el + o Re f._,, L(w) | Z(w) [ do

(1 —a)|z]*.

IV

Also,
IPQz|* = | 2]* + 2 Re(Lzz) + [| Lz ||’
<(1+24+8)]=]°
where § = SBp | L(w) | . Hence the hypotheses of Theorem I are satis-

fied. This establishes the first part of Theorem III. The second part is a
direct application of Theorem II since,t in view of the Plancherel iden-
tity, it is clear that here Re(Lz,z) vanishes only if z = 0.

If % = D(Z), Theorem III implies that under either of the stated
conditions only a knowledge of the output for t& = of a known linear
filter is necessary to completely determine the input to the filter, if it is
known that the input vanished for ¢ # Z. In addition, if k(¢) is any ele-

 The boundedness of | L(w) | is required in order that Lf ¢ £ whenever [ ¢ K.
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ment of DH(Z), there exists in the first case a unique input signal in
D(Z) such that the projection of the output signal is h(¢), and this
input signal, which ean be computed in accordance with Theorem I,
depends continuously on A(¢). Some related results are discussed in the
Appendix,

Definition I: It is assumed throughout that ¢(x) = e(x,t) s a real-valued
function of the real variables x and t.

Theorem IV: Let 3¢ = X 4+ X' be a real Hilbert space in which | f(t) | =
| g(t) | for all { implies that ||f|| = || ¢ whenever f,ge3C. Let o(x,t)
satisfy

m(e — y) = e(xd) —e(y,t) = M(x — y) when x = y

where m and M are positive constants. Let o[f] ¢ 3¢, f & 3C. Then for any
u(t) e &, v(t) ¢ X', there exvsts a unique w(t) € X such that

Pefw(t) + o()] = u(t).

In fact, w(t) = lim w, where

n—+w

Weyr = ;—; fu — Polv 4+ wa]} + wn

and wy 18 an arbitrary element of X. In addition,
| Pelv + /1 — Pelo + gl | 2 m | f—gll; fgeX, vex

and if Pelve + wa = ua, Polvy + wy] = wy, where w, wy s uy € X and
v W& &,

IIA

1 M
s = w]] < = e = wll + 25 oa = w ]

1A

Mve — vl + M| we — wy.

(KT

Proof:
We first show that the hypotheses of Theorem I are satisfied when Q
is defined by Qu = ¢lw + v]. Let § = (9 — m) where
elv +71 —olv + gl _ |
=mn;
IT—y9
Observe that an application of a well known identity yields (with z =

J =g

fgeX.

(n2,2) — m(zz) = (%2,2)
g+ Dz||* =3 (- 1z|?
0.

v
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Hence (olv + f1 — oo + gl,f —g) =2 m[f — gl ®, Since, in addition,
| Pelv + /1 — Pelo + gl || = [l oo + f1 — ¢lv + g1 ||

the hypotheses are satisfied. The bound on || w, — w || is obtained from
the inequality:

e — woll < 3. || Polen + v = Polus + va] I
Specifically, the right-hand side is equal to

% || Pelwa + va] — Pelws + vs] + Pelws + v] — Pelws + vl ||

IIA

L e = wll + > I Polus + ul = Pelus + v |

< 2w — wll + ol = wll

With 3¢ = £op and X = ®(2), Theorem IV implies that if a function
of time w(¢) having frequency components which vanish outside @ is
added to a second funetion v(¢) with frequency components which vanish
inside ©, and if the result is applied to a quite general type of time-
variable nonlinear amplifier in cascade with an ideal linear filter having
only passbands coincident with the intervals contained in €, then the
output is sufficient to uniquely determine the signal w(¢), assuming of
course that »(t), @, and the function ¢(z,t) are known. Furthermore, for
each signal »(¢) £ &', there exists a unique input w(¢) € X such that the
output is any prescribed element of X. In particular, w() depends
continuously on the prescribed output and v(¢).

If 5¢ is the usual space of real-valued periodic functions of ¢, and
o(z,t) is similarly periodic in ¢, the theorem possesses a similar interpreta-
tion. Of course, all of the results are valid for the interesting special case
in which ¢(z,t) = ze(1,t) (i.e., when the physical operation correspond-
ing to this function is product modulation).

The inequality: || Pelv + f1 — Pelr + gl || = m || f — g || in the con-
clusion of Theorem IV is quite interesting from an engineering view-
point. For example, let 3¢ = £ap , X = ®($), and suppose that f e B(Q)
is the input to a time-variable nonlinear amplifier with transfer charac-
teristic ¢(z,t) which satisfies the assumptions stated and for simplicity
¢(0,t) = 0. Then || Pglf] || = m || f ]|, a lower bound on that part of the
energy of the output signal which is associated with the frequency bands
occupied by the input signal.
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Remark: Tt can be shown that Theorem IV remains valid if the words
“Hilbert space” are replaced with ‘“Banach space’” (and X denotes an
arbitrary subspace of the Banach space with P the corresponding projec-
tion operator). In particular, the existenee and uniqueness of the func-
tion w(t) follows from an application of the econtraction-mapping
fixed-point theorem to the equation w = (P — ¢PQ)w 4+ cu in which
Q is defined by Quw = ¢[w + »] and ¢ is a real constant. Using the
fact that || P || < 1, it is not difficult to show that there exists a ¢ for
which (P — ¢PQ) is a contraction.

V. SBOME SPECIAL RESULTS

In this section we present some results that contribute to a deeper
understanding of the character of the material already described. We
shall be concerned throughout with the space £,.

In the proof of Theorem IV the hypotheses concerning ¢(x,t) is used
to establish the applicability of Theorem I. The following theorem
asserts that, for this purpose, the hypotheses can be relaxed somewhat
if 3¢ = Lo and X = ®, where @ denotes ®(Q) when @ is a single fixed
finite interval centered at the origin. The orthogonal complement of &
is denoted by ®*.

Theorem V: Let 3¢ = Ly and X = ®. Let f &£ @, ve ®*. The operator Q
defined by Qf = [f + v] satisfies the hypotheses of Theorem I assuming
that

m(x —y) £ plat) — o{yt) £ Mz — y) when 2 Z y

Jor all t £ I, where m and M are positive consiants, 11 73 a subset of the real
line, and

m[1 — A(D)]

6 < X (1)
in which
§ = sup ‘P(I!t) — <P(.U,t)‘
tell r—1y
e
and

[P a

AT = sup L ——.
P ST
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Proof:

Clearly, || Pelf + 1] — Pelg + ol || = llolf + 0] — olg + o] || =
max (,M) || f — g

Let IT* be the complement of I with respect to the real line. Observe
that

(olf + 1) = olg + 11,7 = ) = [ (7 + 1) = olg + DG = g) at
tm [ Gt [ i+ - dg+ DG - 0)

—nfg-graza -9 - m+o) [ 7-ore

= [m — (m 4+ NI [[f — g]*

When II is any set of finite measure, A(II) is less than unity.f{

At this point it is convenient to introduce
Definition I11: An operator A defined on a Banach space is said to be
bounded if there exists a constant k such that || Af — Ag|| = k| f — ¢/
for all f,g in the domain of A.
This definition obviously reduces to the usual one in the event that A
is a linear operator. From the viewpoint of implementing a signal re-
covery scheme (i.e., of constructing a device that reverses the effect
of some known operator), it is highly desirable that the inverse operator
be known to be bounded, since this situation guarantees that an error
in the input signal to the recovery device would produce at most a
proportional error in the recovered signal, assuming that the device
functions as an ideal realization of the inverse operator. We shall con-
sider the existence of two situations in which a mapping of the type
considered earlier does not possess a bounded inverse.
Theorem VI: Let m(z — y) < e(at) — e(yt) < M(z — y) for x
> ywhente Il and o(x,t) = 0 when t I, where m and M are positive
constants and 11 is a set of finite measure. Let A be the mapping of ® inio
® defined by Af = Pelf], f ¢ ®. Then A does not possess a bounded inverse.
Proof:

If A" existed and satisfied |A™f — A7 | = k| f — ¢ for all
f.g € ®, it would follow that | A7 — Ag |l = (k)" || f — ¢ |. However,
since for any ¢ > 0 there exists a z ¢ ® such that

t This is proved in Ref. 5 for the case in which II is a single interval. H. J.
Landau has pointed out to the writer in a private conversation that the published
argument can be extended to apply to an arbitrary set of finite measure.
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[[z]] =1 and fzzdt<£,
n

the following calculation shows that the inequality eannot hold for any
finite k:

1Pels] = Pegl I = I1lr) — Al = [ (olr) = lg))*

IA

A

Mafﬂ (f — g)* dt.

Recall that the mapping described in Theorem I'V possesses a bounded
inverse and that o(x,f) is assumed to satisfy the Lipschitz condition:
m(x — y) £ elat) — o(y,t) when @ = y, where m is a positive constant.
The assumption that m does not vanish is essential; the result is obviously
not valid if ¢(x) vanishes throughout a neighborhood of the origin of the
z-axis for all . The following theorem focuses attention on some restrie-
tions imposed on the derivative of ¢(x) by the requirement that the
mapping possess a bounded inverse.

Theorem VII: Let ¢(x,) be independent of { and continuously differ-
entiable with respect to x on the interval Z. Let |p(at) — o(y,t) | <
M|z —y|and

dw(z)

inf = (.

ze =

Then the mapping A, of ® into ®, defined by Af = Pg[f], f&¢ ® does not
possess a bounded inverse.

Proof:
As in the proof of Theorem VI it suffices to show that for any ¢ > 0
there exist functions f,ge ® such that ||f — ¢ | = 1 and || Pg[f] —

Pylg] | < e. We need the following result.
Lemma I: Let r and ¢ be posilive constants and let k be a real number.
Then there exists a function g ¢ & such that

lgt) — k| <e |t <

The proof of the lemma is very simple. Let §(¢) ¢ B such that §(0) = 0.
Sinee §(t) is continuous, | aj({) — k| < ¢ || < br for some constants
aand b where b > 0. If b < 1, set g(¢) = ag(bt). This proves the lemma.

I'rom the hypotheses there exists for any ¢ > 0 an 2,¢ = such that

de()
dr

< e, |z — zo| < &
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where &, is a positive constant that depends on ¢ . Chooset h such that}
he®, || h] = 1,and | h(t) | < %3; ; and then, for any e > 0, determine
T such that

f B dt = ezg.
[>T
Through Lemma I, choose g ¢ ® such that | g — 7o | < 36 when [ | < T,

and set f = g + h. Observe that || Pe[f] — Pelg] || * = [l ¢lf] — ¢lg] || *
and that the right-hand side is equal to

fi!lsr felg + Al — olgl}* dt + j;ew lelg + k1 — olgl}” at

rp[9+h]—¢[g]2f hzdt
[tsT

h
s M’f Rdl < & + Me'.

|ti>T

= sup
[e]=7

Since ¢” and e are arbitrary positive constants, our proof is complete.
Remark: The proof can easily be extended to cover some situations in
which the variation of ¢(x,t) with ¢ plays an important role. One such
situation is that in which
()
dx

=10
z=£(t)

where ¢(¢) is continuous for all finite ¢ and de/dx is uniformly continuous
in a neighborhood of the curve x = {(i).
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APPENDIX
Some Results Related to the Previously Mentioned Application of the First
Part of Theorem 11T
Suppose that L is redefined by

Lf = L Uty) 1) dr, feD(2)

t The writer is indebted to H. J. Landau for suggesting this approach.
I The funetion (sin kt)/\/krt satisfies the unit norm condition and for suffi-
ciently small k satisfies the other two requirements.
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where

j;_fz | 1/(t,r) |2 dr dt < 1.

Then PL is a mapping of ©(ZX) into itself such that for any h ¢ D(Z),
the equation h = f 4+ PLf possesses a unique solution f ¢ ©(Z). The
proof of this result follows from Theorem I, a two-fold application of
the Schwarz inequality which shows that

Re(Leg) | < |20 [ [ 1160) [ dr a

for all z ¢ D(Z), and a similar calculation using the Schwarz inequality
which establishes that Lz £ £, whenever z ¢ ©(2) and that there exists
a constant k such that || P(I + L)z || < k| 2| forall ze D(Z).

The result mentioned above can be obtained also from a direct con-
sideration of the pertinent IFredholm integral equation:’

W) = 1) + [ e0) ) 12 di, (1)
where
e(t) =1, L3,
= 0, te Z.

In addition when
(t,r) = 0, t<r
li.e., when I(t,7) is a Volterra kernel], it is known® that (1) possesses a
solution [ if
sup [I(t,r) | < e, f [h() | di < e,
t,r 2

and = is a bounded set.
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A Radiometer for a Space
Communications Receiver

By E. A. OHM and W. W. SNELL
(Manuseript received March 28, 1963)

By adding a square wave of noise lo the input of an ultra-low-noise re-
ceiver via a directional coupler, a radiometer with a sensitivity greater than
a Dicke type can be achieved when the basic system temperature s less than
18°K. A mnoise-adding radiomeler is compatible with a communications
recetver and has been used (i) lo measure and monitor the absolule system
temperature and (i1) to check the boresighting of a space communications
antenna by detecting and tracking radio stars.

1. INTRODUCTION

A noise-adding radiometer, unlike the Dicke type, does not require
the input to be switched to a reference temperature. Since a typical
good switch adds 7°K or more to the system temperature, it can cause a
relatively large increase in the temperature of an ultra-low-noise receiver,
and this in turn will cause a significant decrease in the radiometer and/or
communications sensitivity. The use of an input switeh can be avoided
by using a noise-adding radiometer which, for an ultra-low-noise system
temperature, is just as sensitive as a Dicke radiometer. A unique feature
is that it can be added to an ultra-low-noise communications receiver
without causing a large increase in the system temperature. Thus a
sensitive tracking receiver, designed primarily to handle eommunica-
tions,! can also be used to monitor, measure, and map the system en-
vironment temperature including radio stars. Conversely, the radio
stars with known positions can be used to check the boresighting of the
antenna.

The major hardware components required for a noise-adding radiome-
ter are readily available; the excess noise temperature, mismateh, and
instability problems normally associated with a mechaniecal or ferrite
switch are avoided; and the fluetuations due to imperfect eircuit com-
ponents can be reduced to an acceptable value by using a new high-

2047
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Fig. 1 — Block diagram of a noise-adding radiometer.

output-level square-law detector in combination with an improved
noise lamp pulse circuit. In particular, a threshold of AT = 0.04°K
(2% times theoretical) has been achieved for periods of 10 seconds when
the post-detection time constant is 1 second. For 30-minute periods, a
long-term threshold of AT = 0.12°K (10 times theoretical) has been
achieved when the time constant is 15 seconds. Due to the rather small
aperture of the Crawford Hill horn-reflector antenna, 26.8 square meters,
the corresponding long-term flux or power density threshold is 1.2 X
1025 watts meter—2 eps—, but this is sufficiently sensitive to detect and
track 30 or more radio stars ag well as Venus near inferior conjunction.
Cassiopeia A and Virgo A have been measured and found to have flux
densities of 1.47 X 10~% and 1.48 X 10~ watts meter—* cps™, respec-
tively, at 2390 me. The uncertainty of measurement is less than 15 per
cent. Since absolute system temperatures can be rapidly and precisely
recorded for many hours at a time, it was also practical to obtain data
for, and prepare, an accurate environment temperature map of the horn
antenna site at Crawford Hill, New Jersey.

A block diagram of the noise-adding radiometer is shown in Fig. 1.
In the manual mode of operation, a known amount of excess noise from
an argon noise lamp is added to the input cireuit via a waveguide direc-
tional coupler. This gives a ratio, ¥, of the system input temperature
with the noise added, T's + T., to the system input temperature, T's .

TS+TA (1)

Y = —
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therefore

; (2)

To determine T's, ¥ can be measured by noting the change in IT at-
tenuation required to keep the II' output power constant when the
noise lamp is turned on. Alternatively, since the detector is square-law
and the II" amplifier is linear, Y is also given by the ratio of the output
voltages of the square-law detector. Since the first method is more
accurate, it serves as a calibration check for the second, which is more
suitable for a continuous measurement.

The ratio of output voltage, Y, is generated a thousand times per
second by pulsing the noise lamp at a 1-ke (50 per cent duty cycle)
rate. This produces a rectangular wave at the output of the square-law
detector as shown in Fig. 2. The rectangular wave is then passed through
a solid-state single-pole, double-throw switeh, also operated at 1 ke,
where the voltage proportional to 7's + T4 is always switched to channel
1, and the voltage proportional to T's is always switched to channel 2.
The two waveforms are filtered to obtain the fundamental 1-ke compo-
nents and are then connected in-phase to a ratio-meter. The ratio, Y,
is continuously indicated on a calibrated meter, and also by the output
voltage of the ratio-meter. Since T’ is a function of ¥ and the known
constant 7', , (2), the continuous outputs ean be readily calibrated in
terms of the absolute system temperature.

A small change in input temperature can be measured with good
accuracy by using observed values of ¥ and AY. Differentiating (2)

0.25

B2
n
o

VOLTAGE
o
o

o 500 1000 1500 2000 2500
TIME IN MICROSECONDS

THE VOLTAGE UNDER THE CLEAR AREA IS SWITCHED
TO CHANNEL | AND THAT OF THE SHADED AREA IS
SWITCHED TO CHANNEL 2

Fig. 2 — Output voltage of a square-law detector.
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als _ _ __Ta _
dy (Y — 1)
Substituting 7's of (2) for T4/(Y — 1)
ATs = — 35— AY (3)

where Ts, Y, and AY can be found from the output voltages of the
ratio-meter.

II. MINIMUM DETECTABLE CHANGE OF INPUT TEMPERATURE

It is shown in Appendix A that the theoretical minimum change of
input temperature which causes the output voltage, V, to change the
same amount as the rms value of the noise fluctuation is

ATy (theoretical) = T's (1 + é,—j) g \/I—B—; (4)
where: T's = the total system temperature referred to the waveguide
input
T, = the temperature added when the noise lamp is on
B = the II' (predetection) bandwidth
= the RC time constant of the output (post-detection)
filter.

Although it may appear anomalous that AT is reduced as T, is in-
creased, this can be explained in terms of the relative amplitude of the
1-ke rectangular wave in channel 1 compared to that in channel 2.
Referring now to Fig. 2, an increase in system temperature will increase
the amplitude of each 1-ke component the same amount. If one is much
larger than the other, however, the percentage decrease in ratio, Y, will
be larger, and this in turn will cause a larger change in the output voltage
of the ratio-meter. At the same time, the theory of a square-law detector
shows that the fluctuation in each channel due to noise power is pro-
portional to the 1-ke signal power. Thus the signal-to-noise ratio in each
channel is independent of the amplitude of the 1-ke rectangular wave.
It follows that the signal-to-noise ratio at the output of the ratio-meter
is also independent of the input amplitudes. Since the output signal
voltage due to a change in system temperature has been enhanced, and
the output signal-to-noise ratio is unchanged, it is thus possible to de-
tect a smaller signal when the 1-ke rectangular waves have a larger
difference in amplitude. In this application, the difference is achieved
by adding noise T, to channel 1.

...
|
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In the limit, 7', and the amplitude of channel 1 are infinite. In this
case a change in system temperature cannot affect the amplitude of
channel 1, and it can be considered as a reference. Since the radiometer
is now insensitive to the system temperature for half the time, it operates
in the limit as a Dicke radiometer. For comparison, the sensitivity of a
Dicke radiometer is discussed later in connection with (15). A tentative
comparison of (15) to (4) with T4y — o shows that if the system tem-
peratures could be made equal, the sensitivities would also be equal.

Sinee 7', cannot be made infinite, its value must be taken into account
when caleulating the sensitivity of a noise-adding radiometer. In particu-
lar, T, can be altered over a wide range by changing the coupling, L,
of the directional coupler, i.e.,

T,{ = L' Tﬂ' (5)
where Ty is the excess noise available from the noise lamp. When the

noise lamp is off, the coupling L also adds room temperature noise from
the noise lamp termination to the basic system temperature

Ts = Touwie + Troom I = Tonsic + 290L. (6)

Thus T's will also be altered over a wide range. Upon substitution of (5)
and (6) into (4)

AT ¢(theoretical) = {(Thm.iﬂ + 2907)
(7)

(Tl;luuio + QQOL)Q E 1
LTy 2VBr’

By differentiating (7) with respect to L and setting the result equal to
zero, it can be shown that (7) has an optimum minimum when L has

the value

.+.

Tbnuin

L(optimum) = (@90) (T & 200)1" (8)

Substituting back into (7)
] 290 290 290\ 7 Thusi
s totmany = [1+2(29) 1 5 (29) 4 (290 ]z T
s(optimum) [ 4 + T, -+ T 3 VBe (9)
For a practieal value of Ty, 10,200°K,” (9) reduces to

ATs(optimum) = 1.4 T Zbusic Thasie (10}

2N
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For a communications receiver, it is desirable to minimize L of (6)
and have T as close as practical to Thasic . Using (6) and (8):

Ts _ 200L L 200 '\
R e )

Tvasic T'hasic L (optimum)

For L = L(optimum) and 7% = 10,200°K, Ts is 16.6 per cent larger
than Thuwic . For L = * X L(optimum) this can be reduced to a more
acceptable 4.2 per cent. By substituting L = § X L(optimum) into (7)
and eomparing the result with that of (9), it can be shown that ATs-
(theoretical ) is increased 35 per cent. Since AT's(theoretical) is equiva-
lent to the theoretical rms value of noise fluctuation, and since it has
been found that other practical sources of fluctuation add 13 times as
much to this value, the percentage increase in ATs(total) due to an
increase in ATs(theoretical) is reduced by a factor of 23. Thus, i
practice, the total fluctuation is increased only about 14 per cent. Smce
this is an acceptable penalty, the recommended value of L is

(11)

L(for communications receiver) = 1 X L(optimum).

For the nonoptimum values of T'» and L used here, along with the
values of other parameters encountered in the experiment, i.e., for

Ty = 6190°K*

L = 0.0153(—18.15 db)

T, = LTy =96K

Ty = 21.0°K (at the zenith)
200L = 4.45°K
Thasie = Ts — 290L = 16.55°K

Il

I

B = 7.75 me
r = 1 sec.
The nonoptimum theoretical value of AT's can be found by inserting the

values of T's and T in (4) which, for convenience, can be written

. T T'imau. -['bnuu:
AT s(theoretical) = T (1 + ) VB 1.55 7 5 \/- (12)

Comparison of (12) and (10) shows that the theoretical threshold

* T, was relatively small since it eame from a coaxial noise lamp and was
further reduced by a coaxial line loss. See p. 1087 of Ref. 1.
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sensitivity with the above experimental parameters is only 10 per cent
less than optimum.* By inserting experimental values for T and B in
(12), the eorresponding numerical value of AT is

ATs(theoretical) = 0.015°K (13)

when the post-detection time constant, =, is one second.

IIl. COMPARISON WITH A DICKE RADIOMETER

An expression for the threshold sensitivity of a Dicke® radiometer in
which only one RF sideband is contributing to the receiver output has
been worked out in similar terms hy Selove.! His analysis assumes that
the switched reference temperature is small compared to the over-all
system temperature. To be valid for an ultra-low-noise receiver, it must
be assumed that the switched reference temperature is very low and
about equal to the antenna-plus-sky temperature. It is not at room
temperature as in the original Dicke radiometer. Thus, from the first
two paragraphs of Selove’s Appendix,

ATy JF

=Y 3 {4
where: b = the output low-pass-filter (post-detection) bandwidth, and
B = the IF (pre-detection) bandwidth. On writing b = iRC = 1/4r,

Le., in terms of the time constant of an equivalent noise bandwidth, the
threshold temperature is

1
Br

ATy(Dicke) = Ts % (15)
where Ty, in this case, is composed of the basic system temperature
plus the temperature added by the required input switch.

Ts = Tl)usic + Tswitrh .

The effect of Tiwien on the sensitivity can be seen by putting (15) in
the form
m Tlmsir

. _ Tswin:h
AT&(DICE{G) = (] '+' T,,“s;(.)g '\/E—‘r.

From comparison with the threshold temperature of an optimized
noise-adding radiometer, (10),
* For the value of Ty used here and the observed value of Thusic, L is very

close to the optimum value called for by (8). Thus nearly all the reduction in
sensitivity is due to the relatively small value of Ty .
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AT(Dicke) (1 + (Tawiian/ Tmi“)) . (16)

ATs(noise-adding) 14

Thus, when Tewiten << Tousic, the threshold temperature of a noise-
adding radiometer is 40 per cent greater than that of the Dicke radiome-
ter. However, the threshold temperature will be less; i.e., the noise-adding
radiometer will be more sensitive, if Thasic < 2.5Tswiten - Since a practical
input waveguide switch has an insertion loss of 0.1 db or more, a typical
value of Taviten is at least 7°K. Thus, if the basie system temperature is
18°K or less, an optimized noise-adding radiometer ean be more sensi-
tive than a Dicke radiometer. Since the over-all sensitivity in each case
is determined largely by fluctuations added by the required practical
circuits, and since the cireuits for each radiometer are different, the
theoretical comparison at this time merely indicates that the over-all
sensitivities are similar.

1V. MINIMUM DETECTABLE POWER DENSITY

Although the sensitivity of a radiometer can be conveniently expressed
in terms of AT's, the more important system parameter is the minimum
detectable change of power density per eycle of bandwidth. It will now
be shown how these are related by the effective area of the antenna. To
start,

Preucivml = %‘ X P X A

where: P = the incident power flow in watts per square meter, and A =
the effective antenna area in square meters. The factor 3 allows for the
fact that the receiver is sensitive to only a single polarization. Solving
for P,

2 2

K X Precei\'ed = Z‘ KTSB

where: K = Boltzmann’s constant, B = the bandwidth in eycles per
second, and T's = the equivalent input temperature. The incident power
flow per eycle of bandwidth is therefore

P 2K

E = T Ts. (17)
In the radio astronomy literature, the quantity P/B is often called
the flux density, S. Small changes in flux density, AS, are proportional

to changes in the input temperature, AT, and therefore,

. (P\ _2K
AS = A(ﬁ) = 5 ATs. (18)

P:
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Upon substitution of numerical values for K, 1.380 X 107* joules/
degree, and A, 26.8 square meters at 2390 me,’

AS = 1.02 X 107 X ATs. (19)

Upon further substitution of the minimum detectable change of input
temperature, 0.015°K from (13), the minimum detectable change in
flux density, for + = 1 second, is

AS(theoretical) = 1.53 X 107*" watts meter ™ (eps)™  (20)

The experimental value of AS is somewhat larger, and the increase is
due to other sources of system temperature fluctuation, which will be
identified and discussed in the following deseription of the radiometer
parts.

V. COMMUNICATIONS RECEIVER

The Echo receiver had an over-all system temperature of 21.0°K}
and its steerable horn-reflector antenna provided an effective area of
26.8 square meters.” The area is rather small for observing point-
source radio stars, but the disadvantage is compensated, in part, by the
small contribution to the system temperature by the far-side and back
lobes of a horn-reflector antenna. This minimizes the random change in
system temperature as the antenna beam is moved, and this in turn al-
lows (7) tracking to achieve a longer observation time and (i7) lobing
to obtain a more accurate position measurement.

The antenna is connected to the maser package with about 5 feet of
assorted waveguide. Included is a rotating joint for mechanically de-
coupling the antenna from the receiver and a 18.15-db directional
coupler for adding noise from a noise lamp. Of the 21.0°K system tem-
perature, about 2.5°K is due to the loss and temperature of the wave-
guide and 4.5°K is due to the room temperature termination of the
directional coupler. Of the 8°K added by the maser package, about 7°K
is believed due to the near-room-temperature insertion loss of the input
coaxial line.® Thus, about 14°K of the system temperature is propor-
tional to room temperature and as such is a source of long-term fluctua-
tion.

AT (room)

Algp = 14 X - —2,
T'sn 14 X T (room)

(21)
TFor T' = 290°K and an observed value of AT(room) = +1°K, due to
air conditioner cyecling, the caleulated rms value of ATsg is 0.034°K.
However, the waveguide and coaxial lines have a poor thermal contact
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with the air and thus a long thermal time constant. Although the
period of air conditioner eycling depends on the weather, it is usually
relatively short, and therefore the actual value of ATse, in general,
will be somewhat less. A typical value is probably about 0.02°K.

In regard to the rotating joint, a gap of 20 mils or less, and an offset
error of 15 mils or less,' were sufficient to reduce this source of tempera-
ture fluctuation to a trivial amount.

A balanced diode econverter follows the maser amplifier and contrib-
utes a small amount of noise, T's¢, to the system temperature

Tuunvnrtnr = 270001(*
Gmnser 4000 (36 db)

Tse will change, however, if either the maser gain or the converter
temperature changes. Taking the total differential

¢ A m
ATsc = Tse (%) - Tsc ((;i)

where: AT./T. = the estimated change in normalized converter tem-
perature in 30 minutes = +£0.01
AG,/G = the measured change in normalized maser gain in
30 minutes = ==0.045.
Assuming that AT, and AG,, are statistically independent

AR E
o[ -]

Upon substitution of the numerical values, ATs¢ (rms value) = 0.022°K.
This source of fluctuation can be nearly eliminated, i.e., Tsc can be
reduced toward zero, by using a maser with a larger gain or by using
two masers in series.

A net gain of 116 db is provided to drive the high-level square-law
detector with an II' noise power of +6 dbm when the noise lamp is on.
This is 12 db under the maximum linear IF output power and provides
a safe margin for the higher noise peaks. The predetection bandwidth,
B, of the radiometer is limited by the converter preamplifier to 7.75 me.
If this is increased to 16 me, the maser bandwidth, the theoretical sensi-
tivity, from (4), could be increased by a factor of 13.

Tse = = 0.68°K. (22)

VI. HIGH-OUTPUT-LEVEL SQUARE-LAW DETECTOR

By detecting a high-output level of voltage, the separate channel
gains which follow the 1-ke switch can be reduced to a minimum. Since

* The interconnecting cable loss, 2.3 db, is included as part of this temperature.
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the gains can vary independently and thus increase the system fluctua-
tion, they can and should he reduced to a minimum. The square-law
characteristic is needed to convert the IF power, which is proportional
to the input temperature, to a linear output voltage. The combination
of high-output level and square-law is usually difficult to obtain, but
has been achieved with the circuit shown in Fig. 3. As indicated, a
relatively high output voltage, 0.5 volt, can be generated by a network
of series-parallel diodes when the available input power is +7.5 dbm.
For expediency, the detector assembly was matched to the output im-

HUGHES IN100 o

AN ‘|_=
- A
Poiope, avaiL, max. = *+7.50BM \ X e
ZgengraTor =330 T | ?4 ARG
\ Tkl 4
A \ /
25
( R
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. " f
IN, AVAIL, MAX, 7 001 1 I
=+13508BM — 502 upre Y= 0% 600> Vour, wax. =025V
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Fig. 3 — Characteristies of a high-output-level square-law detector.
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pedance of the IF amplifier, and the required low impedance for driving
the diode network was obtained, by using a resistive matching network.
The measured characteristic is shown by the lower curve of Fig. 3. It
was experimentally verified that the output voltage can be doubled for
a given available diode drive power by placing a second diode network
of reversed polarity in parallel with the first. Since the insertion loss of
the resistive matching network is 6 db, and it can be replaced by a lossless
reactive network with the same generator impedance, the doubled out-
put voltage can be achieved with a 6-db reduction in the available input
power. The anticipated characteristic is indicated by the upper curve
of Iig. 3. For a precision square-law application, the output voltage of
a single-ended diode network should not exeeed 0.125 volt, and that of a
push-pull diode network should not exceed 0.25 volt. The corresponding
available input power, from the upper curve of Fig. 3, can then be as
low as +4 dbm. Since the maximum linear IF noise power output is +6
dbm, and the circuit of Fig. 3 was used in the experimental radiometer,
the corresponding output voltage, from the lower curve of Fig. 3, was
on the order of 0.05 volt.

VII. DIODE SWITCH ASSEMBLY

The diode switch assembly consists of two clusters of Hughes 1N100
diodes, each forming a bridge network as shown in Fig. 4. The two
bridge networks are energized 180° out of phase and receive a 1-ke
switching voltage, a 15-volt, peak-to-peak square wave, from the noise
lamp pulse circuit. The switching voltage is isolated from the input and
output eircuits by the balance resistors Ry, R. and capacitors C,; , C,.
Since the isolation tuning is a funetion of particular diode impedances
and driving transformer capacitances (to ground), the values shown are
nominal. By potting the diodes in an insulating compound, it has been
possible to reduce the system fluctuation due to thermal changes to a
negligible amount. *

VIII. RATIO-METER

A ratio-meter (Hewlett Packard 416A) is used to measure the ratio
of the sinusoidal voltage amplitudes supplied by the 1-ke switch as-
sembly. One output for indicating the ratio, ¥, is a meter on the front

* The diodes are switched continuously, even when the noise lamp is off, in
order to provide 1-ke reference signals for the ratio-meter when ¥ = 1. This also
improves the long-term stability since possible diode heating, due to switching
power, is held constant.
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panel. From the theory of operation,” the differential voltage across the
meter is

Viaeter = € X tan™" (1/7). (24)

To take nonlinearities into account, the meter face must be calibrated,
and one of the factory calibrated scales, Percent Reflection, is equal to
100 +/1/Y. Thus, in principle, ¥ can be derived from this scale. In
practice, however, the ratio indicated by the meter may be somewhat
less than the true value due to ignition and deionization times associated
with the noise lamp. Therefore, the meter was recalibrated, as discussed
in Appendix B, for measured values of Y, and a typical result is shown
in Fig. 5.

The other output for indicating ¥ is a single-ended voltage similar in
form to (24)

Voue ™ 6 X tan™ ' (1/Y). (25)

In order to reduce error due to loading by the measuring and recording
cireuit, a cathode follower was added as shown in I'ig. 6, and its output,
V, was used as the ratio-meter output voltage. V was calibrated for
measured values of ¥, as discussed in Appendix B, and a typical result
is shown by the upper left-hand curve of Fig. 7. The corresponding locus
of Ts was ealeulated from (2) for the experimental value of T, , ie.,
94.6°K.

Thus, from Fig. 7, the absolute system temperature, T's , can be found
by measuring the ratio-meter output voltage. In addition, small changes
in system temperature, ATs, can be found by measuring ¥V and AV
and using these in connection with (3)
=1 —Ts AY

where T's, Y, and AY/AV are functions of V and can be found from
Tig. 7. For T's = 21.0°K, (26) reduces to

ATs = 125 X AV. (27)

The ratio-meter offers good diserimination against a change in RF
or II' gain. From the accuracy specification, it ean be shown that a
change of 1 db will change the output voltage about 0.00001 volt. Upon
substitution in (27), the apparent change in system temperature (rms
value) is ATss = 0.001°I. Since this is an order of magnitude less
than the minimum detectable signal given by (13), this source of flue-
tuation can be neglected. Other sources affected the ratio-meter, how-
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Fig. 7 — Typical ratio-meter voltage calibrations.

ever, and generated relatively large fluctuations, equivalent to 0.5°K.
These were traced to changes in line voltage, vibration, and changes in
room temperature, and were reduced by (i) regulating the line voltage
and supplying the filaments with a regulated de voltage, (#2) substitut-
ing premium tubes for the standard factory-supplied tubes, and (#4%)
placing the ratio-meter in an oven with a controlled temperature of
105°F. With these modifications, the fluctuations coming from the ratio-
meter were reduced to

AT gy

0.015°K (short-term)
0.04°K (long-term).

The short-term fluctuation is an rms value observed over periods of 10
seconds, and the long-term fluctuation is an additional rms value ob-
served over periods of 30 minutes. Separate channel gains are built into
a commerical ratio-meter to allow for low input voltages and to provide
for a large dynamic range. Since large voltages are available from a
square-law detector, and since the dynamie range required in this
application is relatively small, the separate channel gains are not needed
and should be reduced and/or eliminated. It is believed that this modi-
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fication will cause a further significant decrease in the long- and short-
term fluctuations contributed by the ratio-meter.

IX. MEASURING AND RECORDING CIRCUIT

The voltage range to be measured and recorded is indicated by the
abscissa of Fig. 7. To estimate the required order of stability, the value
of AV which corresponds to the threshold value of ATy can be found
from (26). Solving for AV

Y — 1AV

Ts AY
Upon substitution of ATs = 0.015°K from (13), Ts = 21.0°K, and
the values of ¥ and AV/AY from Fig. 7 which correspond to 7's = 21.0°K,
the threshold value of AV is 0.0012 volt. In order to measure this change
in voltage, a back-bias cireuit is needed to buck out the 5 to 9 volts de;
a sensitive de meter is needed; and the utmost stability is required. These
objectives were met by combining a constant impedance back-bias
circuit with a precision high-impedance voltmeter (Hewlett-Packard
412A), as shown in Fig. 6.

In regard to the back-bias cireuit, note that V, in contrast to AV, can
be readily measured with the precision voltmeter by turning off the
back-bias switch. When this is done, the series impedance (7250 ohms)
and the battery drain (1 ma) are both held constant to maintain good
stability.

The voltage finally recorded is generated by the precision voltmeter.
Since it varies from 0 to 1 volt for any full-scale meter deflection, a
low-gain and therefore stable recorder can be used. Since the precision
voltmeter drift is less than 0.1 per cent on any scale, and since the drift
in back-bias voltage is less than 0.0001 volt, the total fluctuation due
to the measuring and recording eireuit is negligible.

AV = — AT . (28)

X. NOISE LAMP PULSE CIRCUIT

The circuit outlined in Figs. 8 and 9 ean be used to operate a fluores-
cent or argon gas discharge tube with a near 50 per cent duty cycle and
a repetition frequency from 40 to 2000 cps. The excess noise is very
stable; the on current can be varied over a wide range; and the filament
is expected to last as long as it would in continuous service. In this
application the repetition frequency was adjusted to coincide with the
1-ke center frequency of the ratio-meter.

The key to a stable pulsed noise output is that the high-voltage igni-
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Fig. 8 — Block diagram of an improved noise lamp pulse ecircuit.

tion spike is generated in parallel with, rather than in series with, the
main current path, and it is applied to the noise lamp via a large series
resistance. Referring to Fig. 9, the sequence of operation is: (¢) Vs is
initially condueting and its eurrent stores magnetic energy in the indue-
tance, L. V, is cut-off, (7) To achieve ignition, Vi is now eut-off and
Vi is biased into conduction. The slow collapse of the magnetic field
maintains a near-constant current, which, since Vi is cut-off, increases

D;=WE 426 .
Jail.

T

o Bt =328y

D> =WE 4264

r
CURRENT /
CONTROL |
TUBE, V} \,

Fig. 9 — Critical parts of an improved noise lamp pulse circuit.
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the voltage across C; towards a very large value. C,, incidentally, is
due primarily to the stray capacitance associated with L. Since the
deionized noise lamp has an infinite resistance and since its anode is
isolated from B+ by diode D, , the rising voltage of C; is also applied
across the noise lamp. (442) When sufficient voltage is developed, the
noise lamp is ionized and its resistance falls abruptly to 375 ohms. In a
conventional eircuit in which the anode of the noise lamp is connected
to the junetion of L; and C,, the charge stored in C, is discharged di-
rectly through the noise lamp via Vi . This causes an undesirable high-
power transient, which in turn causes severe ionic bombardment of the
noise lamp filament. In the circuit of Fig. 9, however, the charge stored
in C is largely dissipated in the current-limiting resistor, R, . (iv) After
ionization, the current control tube, Vi, allows an adjustable amount
of eurrent to flow for the rest of the on period via the diode Dy . (2)
At the beginning of the off period, V; is again biased beyond cut-off
and V; is biased into conduction. This is the initial condition and the
sequence is repeated at the start of the next on period.

By accounting for all other output voltage variations, it was estimated
that the short-term (10-second) fluctuation at the ratio-meter output
due to the noise lamp and its pulse circuit was AV = 0.0008 volt (rms),
and the additional long-term (30-minute) variation was AV = 0.0020
volt (rms). The equivalent rms changes in system temperature, from
(27), are

AT, = 0.010°K (short-term)

= 0.025°K (long-term).

Incidentally, the corresponding change in noise lamp temperature,
ATy , can be found by substituting (1's 4 7'4)/7's for ¥ in (25), and then
differentiating with respect to T, . After rearranging,

_(Tu+ Ts)' + T
T AV,

AT’A =

Since AT, is attenuated from ATy by the waveguide directional cou-
pling, L, and by the transmission coefficient, K, of the coaxial line con-
necting the noise lamp to the directional coupler,

(T4 Ts)' 4+ T8

ATw = 6TKL

AV. (29)

For K = 0.73 and the experimental values of T4, T's and L, the change
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in noise lamp temperature is
ATy = 9900 AV,

I'or the estimated total value of AV, 0.0028 volt (rms), the apparent
value of ATy, (rms) is only 28°K, i.e., very small compared to Ty =
6190°K.

It is shown by (36) of Appendix A that the ratio-meter, to a first
order, responds to only the in-phase component of the 1-ke input volt-
ages. By assuming a model of flat-topped and delayed excess noise, it
can further be shown, using Fourier analysis, that the difference between
the experimental and theoretical calibration curves, Fig. 5, can be ex-
plained by an ionization delay of 160 microseconds and a deionization
lag of 64 microseconds. For comparison, the desired excess noise interval
iz 500 microseconds. The calculated delays are similar to those reported
by Kuhn and Negrete.® Thus the excess noise is apparently delayed into
the off time interval and, in addition, it is on for only 404 microseconds.
By delaying the 1-ke switching voltage of Fig. 8 about 110 microseconds,
T4 can be centered in the on time slot with a guard time of 50 micro-
seconds on either edge. An analysis of this shows that the experimental
calibration curve, Fig. 5, will then be within § division of the theoretical.
The improvement in timing is highly recommended since it will probably
eliminate most of the fluctuations attributed to the noise lamp pulse
eircuit.

XI. SUMMARY OF FLUCTUATIONS

The system fluctuations, in terms of rms changes in system tempera-
ture, are summarized in Table I. The first item is a natural fluctuation
which is due to an intrinsic property of the input temperature 7’5, as
deseribed by (4). It is assumed here that 7's is due to a steady contribu-
tion from the atmosphere, antenna, waveguide, maser, and 1F converter.
In contrast to this, all other fluctuations are due to imperfections in the
radiometer parts. Ttems 1 through 4 are short-term variations which
oceur in less than 10 seconds, and items 5 through 9 are additional long-
term variations which oceur in periods of 30 minutes. The post-detection
time constant, 7, in each case is one second. Some promising means for
decreasing the fluctuations are also indicated. As can be seen, the ob-
served short-term fluctuation, item 4, is about 2% times greater than
theoretical, item 1, and the total long-term fluctuation is about 10 times
greater than theoretical. By inereasing r to 15 seconds, item 4 can be
reduced to 0.01°K. This, however, does not greatly reduce the slow
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TasrLe I —SysTEM FLucTruAaTIONS, 7 = 1 sec

Source Amplitude (rms) Recommended Improvements
1. Thermal noise 0.015°K Increase the IF bandwidth to coincide
(caleulated) with the maser bandwidth
2. Ratio-meter 0.015°K Eliminate separate channel gains
(measured)
3. Noise lamp 0.010°K Synchronize 1-ke switeh interval with on
(estimated) exeess noise
4. Subtotal of short- 0.040°K Increase the post-detection time constant
term fluctuations (measured)
5. Input waveguide 0.022°K Insulate, and reduee changes in ambient
and coaxial line (estimated) temperature
6. IF converter 0.022°K Use a maser with inereased gain, or two
(calculated) masers in series
7. IF gain change 0.001°K Improve B* regulation
(caleulated)
8. Ratio-meter 0.040°K Eliminate separate channel gains, and
(estimated) improve B* regulation
9. Noise lamp pulse 0.025°IC Synchronize 1-ke switeh interval with on
cireuit (estimated) excess noise, and improve B* regulation
Total long-term flue- 0.150°K

tuation (sum of

items 4 through 9) (measured)

fluctuations, items 5 through 9. Thus, for a reasonably long time con-
stant, the total long-term fluctuation will not be reduced much below
0.12°K. The corresponding measured flux density threshold, from (19),
for r = 15 seconds, is

AS(measured) = 1.2 X 1072% watts meter— (eps)—.

With the alterations recommended in Table I, and 7 retained at 1
second, it is estimated that the total long-term fluctuation of Table 1
can be reduced by a factor of 3, to 0.05°K. Using (19)

AS(predicted) = 5 X 10-2% watts meter—* (eps)—.

XII. EXPERIMENTAL RESULTS

A Crawford Hill sky-plus-environment temperature map was con-
structed from data taken during an 8-hour period when the sun and
moon were below the horizon on Feb. 15, 16, 1961. By avoiding sun and
moon temperature anomalies (the sun can add 20°K via side lobes and
the moon has been observed to add 16°K via the main beam), it was
possible to identify weaker radio sources, including the center of the
galaxy, which adds 4.5°K, and delete these from the temperature map.



RADIOMETER 2069

The raw data consisted of seventeen constant-elevation scans, taken in
elevation increments of 1° between —1° and +10° plus seans at 12°,
15°, 20°, 25° and 30°. A typical scan is shown in Fig. 10. The data were
first replotted in terms of system temperature versus elevation for every
two degrees of azimuth. With these curves, it was possible to construct
a detailed contour map, of which two sample parts are shown in Fig. 11.
The absolute accuracy is 415 per cent, of which 45 per cent is due to
the data-reducing technique and =10 per cent is due to the temperature
calibration accuracy. The latter is discussed in Appendix B.

An elevation sean was made at an azimuth angle of minimum ob-
served temperature, and the results are plotted in Fig. 12, With this
curve, it was possible to calculate the absolute value of the zenith sky
temperature with good accuracy (see Ref. 1, pages 1088 and 1089), and
the result is 2.3 £ 0.2°K. The theoretical value® is also plotted and
shows good agreement down to an elevation of 1° where the near-side-
lobes of the antenna began to intercept the hot earth.

A drift pass of Virgo A, Fig. 13, was obtained by positioning the
antenna so the radio source, due to the earth’s rotation, would pass
through the antenna beam. This, of eourse, stabilized the side-lobe
temperature contributions. At 2390 me the value of AT¢ was found to be
1.44°K, and the corresponding flux density, from (19), is 1.48 X 10—
watts meter—? (eps)~'. The value of AT for Cassiopeia A, from a similar
measurement, was found to be 14.3°K, and the corresponding flux density
is 1.47 X 1072 watts meter—? (cps)™'. No effort was made to correct
these numbers for other weak, but possibly significant, sources in the
antenna beam. The flux density measurement aceuracy is limited to 415
per cent, of which 410 per cent is due to a possible error in the tem-
perature calibration, Appendix B, and +5 per cent is due to an un-
certainty in the antenna gain measurement.

X111, CONCLUSIONS

A noise-adding radiometer has been found to be a convenient practical
tool for measuring small absolute system temperatures over long periods
of time. It is compatible with an ultra-low-noise communications re-
ceiver, and can be used to check the boresighting of a satellite communi-
cations antenna by tracking radio stars.® Although the short-term (10-
second) system fluctuation is larger than theory by a factor of only
21 when » = 1 second, the long-term (30-minute) fluctuation, which
limits the minimum detectable power density, is larger than theory by a
factor of 10. The sources of excess fluetuation have been identified, and
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Fig. 13 — Drift pass of Virgo A.

with the suggested alterations, it is believed that the total long-term
fluetuation, for » = 1 second and B = 16 me, can be reduced to 0.05°K,
which is larger than theory by a factor of 5.
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APPENDIX A

The Minimum Detectable Change in Input Temperature

In the system of Fig. 1, the 1-ke input voltages required by the ratio-
meter are derived from the waveforms shown in Fig. 2. From inspection,
the voltage switched to each channel has a strong 1-ke component of
different amplitude and a small fluctuation due to the input temperature.
It is also apparent, but not shown, that a small increase in the system
temperature, ATs , will increase each 1-ke component the same amount.

With these inputs, the output of the ratio-meter is a de voltage on
which is superimposed a small fluctuation due to noise. In addition, a
slow variation in the de voltage will occur as in Fig. 13 when noise power
received by the antenna increases the system temperature. The theoreti-
cal threshold sensitivity will be found by calculating the change of input
temperature which causes the dc output voltage to change the same
amount as the rms value of the output noise fluctuation.

An examination of the ratio-meter theory of operation’ shows that the
output voltage, Vou , is & linear function of the phase angles, ¢’, which
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E, +E,

Fig. 14 — Typical ratio-meter input voltages.

result from the vector addition of the input voltages at and around 1 ke.
In particular

Vour = K 2(901’ + ¢P2’)

where K is an arbitrary constant and ¢ and ¢’ are shown in Fig. 14.
Note from the geometry that ¢" + ¢ = @1 + @2, and therefore Vou
can also be written

Veur = K2 ‘(gﬂl -+ <p2). (30)

As shown in Tlig. 14, ¢ and ¢ are functions of the input voltages,
E, and E., each of which consists of three parts.

E, = esy + Aes + en
E: = eeo + Aes + €,

where: eq; = the 1-ke component in channel 1 due to on-off modulation
of the input temperature, T's + T, .
¢ss = the 1-ke component in channel 2 due to on-off modulation
of the input temperature, T .
Aes = an in-phase change in the 1-ke components due to a change
in input temperature, AT .

e,; = a random fluctuation in channel 1 due to the input tem-
perature, T's + T, .

e.: = a random fluctuation in channel 2 due to the input tem-
perature, T's .
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From Fig. 14 it can also be seen that

— tan~! (& + Aes + eqo sin B2 + e, sin 81)
o es1 + Aeg + €.0 €08 0 + e cos by

_1 fess + Aeg + en2 8in By — e, sin 61)
tan™ . 32
(em + Aeg — ez €08 02 + €, cos ) (32)

(31)

©

Since Aeg, e, , and e,. are small compared to es; and eg , (31) and (32)
can be written:

e Ae Ae €n2 .
cp;=tan]—s—2l:1+ - S—i—l'—snﬁg—}——smﬂl
€351 €g2 €351 €32 (7

(33)

[ €n1
— ™ cos 0 — = cos 01]
€31 €51

—tanhl@{l+é&9—%+——sinﬂz —e—smel

€s1 €g2 €s1 €32 82

)
[

(34)
+e£cos6 - e—-cos 81}

€s1 €s1

Using the series expansion for tan™' and noting with dissimilar brackets
the differences in signs of (33) and (34)

¢1=2ﬂ1+-~1—;(“ﬁ[1+ T+ (“ﬁ[1+ SRR

3
er =2 {1 4 -} _1(‘3_82) LA « oo
€s1

3 \ea1

€s1

()
Thus ¢ + ¢ for use in (30) is

¢.+m——([l wos] o fLife woe )

e a3 () @y

7

+u+-w%—§@%<n+-wﬂ+u+~4w+~-
€s1

The first term of ¢, + ¢ reduces to

€g1 €s2 €51 esz 81
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The second term reduces to

3
_2(9*"_2) (E—I-A—%—%—i-@sinﬁg—@cosﬂl).

es1 3 es es1 s €g1

The third term reduces to
5
+ 2("12) (3 4 B0 O Bt~ B B.),etc.
€s1 5 (2 €s) es2 €g1

Therefore ¢; + ¢» can be written
_ €52 _ 1 €32 : 1 €52 5 _ ]
W= 2[— 3(:1) +5(a;)
3 5
ol @ T w
€51 €351 €s1 €ga €51

[ €
4+ ™sing — ~cos 8 |.
€2 €s1

The first bracket of (35) is the series expansion of tan™ (eg/es).
Thus, it is equal to the rest angle, ¢y, which would result from (31) or
(32) if the perturbation terms were zero. The first term is accordingly
2y . The coefficient of the second term of (35) can be written

g o [1 _ (e_) 2 (c_a) _ ] __ 2(ew/en)
& €351 €51 €81 1 + (832/351)2
2(632/631) 1

N V1+ (982/331)2. V1 + (882/881)2.

Since go = tan™' (ew/es), it follows from trig identities that this is
equivalent to

2 sin ¢ €0S @0 = Sin 2¢
Thus (35) reduces to

. A A e "
¢1+¢2=2¢0+sm2¢0[0—e‘5— —Eg—l—gsmaz—ﬁcosﬂ,].

82 €51 €352 €51

Upon substitution in (30), the output voltage of the ratio-meter is given
by

€s1 €g2 s1

Vum, = K {4(,0(] + 2 sin 2@0 [

]

€y

where: gp = tan ™" (ew/eq).
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Since the detector in Fig. 1 has a square-law characteristic, the 1-ke
voltage components, es and es , at the output of the 1-ke switch assem-
bly, are proportional to the input temperatures T's + T, and Ts as indi-
cated in Fig. 2. Therefore ¢ is a function of the temperature, 7', , added
by the noise lamp

-1 € —1
122 — tan

T oo .
mT, e /r. (80

w0 = tan

Although Vg, of (36) is thus a funetion of ¢y, note that the signal com-
ponent, due to Aeg, and the noise component, due to e, and e,., are
both proportional to sin 2¢,; . Thus the theoretical signal-to-noise ratio
is independent of ¢, and a value of ¢y less than 45° (typically 12°)
merely reduces the signal and noise gain by a factor of (0.4). Incident-
ally, since only the in-phase components of the noise voltages of Fig. 16
are retained in (36), it can be seen that the output of the ratio-meter
responds only to the instantaneous in-phase components of the input
voltage amplitudes.

In order to determine the threshold sensitivity from (36), es, eq,
Aeg , €., and e, can be calculated using random noise theory. In par-
ticular, since the spectral density of the output of a square law detector
with a stationary input of white noise is known," and the correlation
time corresponding to the large predetection bandwidth is very small
compared to each switched interval, the steady and fluctuating parts of
E: can be calculated by (¢) assuming the spectral density of the square-
law detector input and output is constant with time and (é7) allowing
the output of the square-law detector to be switched on and off at a 1-ke
rate. Similarly, the steady and fluctuating parts of E; can be calculated
by assuming a larger constant spectral density, which corresponds to the
input temperature when the noise lamp is on. An important consequence
of the small correlation time is the noise components e,; and e, are
uncorrelated, and thus can be added on a power basis. A more rigorous
analysis by L. H. Enloe" proves these assumptions and arrives at the
same result.

The result of switching (or multiplying) the output of the square-
law detector with a 1-ke switch can be readily calculated, since these
functions are statistically independent, by convolving the spectra
density of the square law detector output with that of the 1-ke switch.

o0
8.0 = [ 8.0) 8.0 — 9) dv (38)
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where S.(f) = output spectral density at frequency f
Sz(f) = spectral density of the 1-ke switch = % at de, 1/x°
at +1 ke, 37 at 43 ke, o057 at +5 ke, ete.
S,(f) = spectral density of the square-law detector
output = 4a’A°B* at de + 4a°A*(B —
|f]) where 0 < |f| < B L
a = a scaling constant of the square-law de- ;From Ref. 10
tector
A = input spectral density of the square-law
detector
B = IF bandwidth.

Since (7) the IF bandwidth, B = 7.75 me, is large compared to the
switching frequency, fo = 1 ke, (#2) the switch is followed by a band-
pass filter of fzp = fy = Af/2, and (4%7) the switch has a discrete spec-
tral density, (38) reduces to one term for the signal power density

at fo = 1 ke and to a closed series for the bandpass noise power density
at fo = 1 ke.

S.(f) | =2 X % X 4a*A*B* (39)

signal

S:(fo) 1 = 2 X 4a’A’B B +%+ 2 o2 ]

| 9g2 2572
o o242 8 1 1
S:(fo) .= ZaABI:l +1_r§(1 _|_§+2_5_|_ ):'
therefore
S.(fo) | = 4a*4°RB. (40)

Sinee B 3> fy, the noise power density of a frequency near fj is equal
to that at fu, and is thus equal to that given by (40). The ratio-meter
also acts as a frequency converter in that the bandpass noise power
densities are converted to frequencies near de. For example, the noise
power density at [ = fo + fiand [ = fu — fi (where 0 < fi < Af/2)
are hoth converted to the frequeney f; . Since the noise power densities

are equal and uncorrelated, the resultant noise power density at f; is
doubled.

S.( f,)' = 28.(f) } = 8d’A’B.

converted noise
noise

(41)
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The total noise power in the converted band, when limited by the band-
pass filter bandwidth, Af, is the noise power density of (41) times the
range of f , 1.e., times Af/2.

Noise power (limited by Af) = 4a’A’BAY.

In order to reduce the output noise further, the ratio-meter is followed
by a narrow low-pass filter of bandwidth b (where b < Af/2). In this
case

Noise power (limited by b) = 8a’A’Bb
and the corresponding output noise voltage (rms value) is

en(rms) = 24/2 a AN/Bb. (42)

The signal voltage at 1 ke (peak value) is 4/2 times the square root
of the spectral density at 1 ke. Therefore, from (39),

4
es(peak) = —a AB. (43)
o
and the corresponding change in signal voltage (peak value) is

Aeg(peak) = 4 . BaA. (44)
m

The quantities required by (36) are given by (42), (43), and (44).
However, the spectral density, 4, at the input of the square-law detector
is different for each channel and is proportional to the assumed input
temperature; i.e.,

if As = CTy,
then A; = C(Ts + Ta);
therefore A4, = A4, = CATs.

Referring now to (36), the Aes terms can be written

% Ae_g AA AA _ CATS CATS

em  em As A1 CTs C(Ts+ Ta)

(45)
ATST,

~ et T Ts

Since the amplitude and phase of e.. and e, are random and uncorre-
lated, the total rms fluctuation due to the noise terms can be found by
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adding the individual rms values on a power basis:

Cpa . €n1 €n2 " €nl Ak
-'E: sin fa — ;3;*; cos 0, = {[‘\/_‘:), Gsz] [\/2 esl] }
_ [ ena(oms) T, [ em(rms) T\* _ [ /b
- {[em(peak)] H [em(peak)]} a {[\/ 2 1/1_3] k48
b
[\/2 4/ B:I} 1/ :
Inserting (45) and (46) into (36)

.Vm_u, =K {4‘PU + 2 Siﬂ 2500 [%ﬂ + ™ /‘/%]} (47)

where: ¢y = tan (ess/es) = tan™" (1/Y).

The second-from-last term is due to a change, AT's, of input tempera-
ture, and the last term is an rms variation due to noise fluctuations.
The minimum detectable change of input temperature can be found by
equating the last two terms. The result is

AT (theoretical) = T (1 + E) T b . (48)
T, B

It can be shown that the noise bandwidth, b, of an RC low-pass filter is
equal to } RC = }7 where 7 is the RC time constant. With this substi-
tution (48) becomes

T _ Ts ™ 1
ATg(theOlBtIC&l) = Tg (1 -} T—A) é \/E . (49)

APPENDIX B

Calibration

Since Y is the ratio of two noise powers, the output voltage of the ratio-
meter can be calibrated well in advance without using the antenna or
maser preamplifier. To do this, the coaxial noise lamp is connected to
the input of the II' converter via an RF level-set attenuator. Since the
converter noise temperature is about 1350°K and the excess noise
temperature of a coaxial noise lamp is about 8360°K, a value of ¥ =~
5.5 can be obtained. By adjusting the level set attenuator this can be
varied down to Y = 1. The resulting value of ¥ is measured precisely
by noting the change of II* attenuation required to keep the II' output
power constant when the noise lamp is turned on. By pulsing the lamp
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at a 1-kc rate, the corresponding ratio-meter output voltage can be
measured with the precision de voltmeter. Although the effective value
of ¥ under pulsing conditions may be somewhat less due to ionization
and deionization effects, the above method of calibration bypasses this
as a source of error. The accuracy of the resulting ¥ versus V curve,
Tig. 7, is limited by (z) the precision II" attenuator, to =4=3.0 per cent,
and (47) the precision de voltmeter, to =1.0 per cent, for a subtotal of
+4.0 per cent. Since the T's versus V curve, Fig. 7, is, in addition, a
funetion of T, (2), and the accuracy of T., for T, = 94.6°K, is lim-
ited by (#i%) the noise lamp temperature, to 2.7 per cent, and (i)
the directional coupling, to 3.6 per cent, for a subtotal of +6.3 per
cent, the total accuracy of the absolute system temperature calibration
is +10.3 per cent.
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The ALPAK System for Nonnumerical
Algebra on a Digital Computer —
I: Polynomials in Several Variables

and Truncated Power Series
with Polynomial
Coefficients

By W. S. BROWN
(Manuscript received April 17, 1963)

This 1s the first of two papers on the ALPAK system for nonnumerical
algebra on a digital computer. This paper 1s concerned with polynomials in
several vartables and truncated power series with polynomial coefficients.
The second paper will discuss rational functions of several variables,
truncated power series with rational-function coefficients, and systems of
linear equations with rational-function coefficients. The ALPAK system
has been programmed within the BE-SYS-4 monitor system on the IBM
7090 compuler, but the language and concepts are machine independent.

The available polynomial arithmetic operations are add, subtract, multiply,
divide (if divisible), substitute, differentiate, zero test, nonzero lest, and
equality test. The speed of the system is indicated by the rule of thumb
that one man-hour equals one 7090-second. The available space in core 1s
usually sufficient for approximately 8000 polynomial terms.

Section I of this paper consists of a nontechnical description of the sys-
tem and a brief glimpse into the future. Section II discusses several specific
problems to which the ALPAK system has been applied. These two parts do
not presuppose any knowledge of compulers or compuler programming.
Section III describes the use and the implementation of the algebraic
operations relating to polynomials in several variables and truncaled power
sertes with polynomial coefficients. The reader of Section III is assumed lo
be acquainled with the elements of FAP (FORTRAN Assembly Program)
programming, including the use of macros, as described in a series of IBM
publications, the latest of which 1s IBM 7090-7094 Programming Systems
MAP (Macro Assembly Program) Language (Form Number C28-6311).
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I, NONTECHNICAL DESCRIPTION

1.1 Introduction

Many theoreticians devote a substantial portion of their time to the
routine manipulation of algebraic expressions. It has long been recog-
nized that digital computers are eapable in principle of easing this bur-
den. The ALPAK system, which is described herein and in a subsequent
paper and has been programmed for the IBM 7090 computer, represents
a significant start toward the practical implementation of that capabil-
ity. It performs a limited set of operations — add, subtraet, multiply,
divide, substitute, differentiate, zero test, nonzero test, and equality
test — on a limited class of expressions: rational functions of several
variables and truncated power series with rational-function coefficients.
It can also solve (by Gaussian elimination) systems of linear equations
with rational-function coefficients. This paper is concerned with poly-
nomials in several variables and truncated power series with polynomial
coefficients. The generalizations indicated above will be discussed in a
separate paper by B. A. Tague, J. P. Hyde, and the present author,

The ALPAK system is not a “sophomore imitator” or ‘“‘elementary
mathematics system.” There are many elementary mathematical opera-
tions (e.g., the proving of trigonometric identities) which are beyond its
present capabilities. However, when faced with problems within its
range of capability, its speed (one man-hour &~ one 7090-second) and
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power (the available space in core is usually sufficient for approximately
8000 polynomial terms) are impressive.

Neither is the ALPAK system a “symbol manipulation system,” be-
cause it views a polynomial as an array of coefficients and exponents
rather than as a string of numbers, variable names, operation symbols,
parentheses, and the like. This is the key to speed and power. Poly-
nomials are stored in a nearly optimal manner, and polynomial opera-
tions are reduced to their essentials.

We have been speaking of polynomials and rational functions without
being specific about the possible coefficient rings. The coefficients may
be integers or they may be elements of any other integral domain for
which arithmetic and input-output facilities are available. All operations
on coeflicients are performed by a small set of macros (user-defined in-
structions which expand into one or more machine instructions). These
are currently defined for integers, but the user may redefine them to suit
his own needs, (Of course this requires reassembly of the ALPAK sub-
routines.) The use of floating-point coefficients is not in keeping with the
spirit of symbolic computing and should be avoided if possible. The
occurrence of roundoff error causes zero to be nonunique and gives rise
to a host of difficult problems which the author has not attempted to
solve. It is usually feasible and desirable to replace the nonrational num-
bers which oceur in an expression by literal symbols. These can be treated
by the ALPAK system as variables. The result will then involve no
roundoff error, and the dependence on these symbols will be explicitly
displayed.

To maximize speed and minimize space, the coefficients and exponents
of a polynomial are stored in a contiguous block, and the exponents are
packed as specified in a user-provided format statement. The names of
the variables are kept in the format statement and are referred to as in-
frequently as possible. Storage allocation is automatic and dynamic, so
that the programmer can refer to a polynomial by name without worry-
ing about its size, structure, or location.

In Sections 1.2 and 1.3 we shall discuss the canonical form for poly-
nomials and the implementation of the various polynomial-arithmetic
operations. Section 1.4 contains a very brief preview of the rational-
function operations and an even briefer mention of some of our hopes
for the future.

1.2 Choosing a Canonical Form

In the ALPAK system every polynomial in storage is always kept in a
unique canonical form, which we shall deseribe. Every subroutine, ex-
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cept the input and output subroutines, assumes that its inputs are in
canonical form and produces its outputs (if any) in canonical form. On
input a polynomial is put into canonical form, and on output it is left in
whatever form it is found. Barring trouble, this will always be canonical
form.

It is important to recognize that the “best canonical form” for a given
class of expressions need not be an approximation to what human beings
would call the “simplest form.” In fact, the two concepts are in some re-
spects opposite. The simplest form may be defined roughly as “that
form which requires the smallest number of symbols.” On the other
hand, an approximate definition of the best form is “that form into which
the general expression of the class can most easily be put.” This latter
definition clearly favors canonical forms in which expressions are ex-
panded over those in which they are collapsed, because the collapsing of
expressions tends to be difficult, while their expansion tends to be easy.
For example, in the ecase of polynomials in several variables we must
choose between an “‘expanded form” in which each polynomial is repre-
sented as an ordered sum of terms and a “factored form” in which each
polynomial is represented as an ordered product of irreducible factors.
In general, the factored form is more compact, but we must reject it
because the factoring algorithmf can be extremely time consuming,
while the expansion of a factored polynomial into a sum of terms is
always simple and fast.

Now a polynomial in n variables can be viewed as a finite n-dimen-
sional array of coefficients. If a majority of them are zero, it is advan-
tageous to represent the polynomial as a list of the nonzero ones together
with their coordinate labels (i.e., their exponents). Otherwise, it is
preferable to use the entire array. In many practical cases the number
of variables and the maximum exponent sizes are all of the order of 10,
so an array size as large as 10'® would not be unusual. However, it is
diffieult to imagine a practical case involving more than a few hundred
(or conceivably a few thousand) nonzero terms. For generality we are
therefore obliged to represent each polynomial as an ordered list of its
nonzero terms. It is convenient to order the terms according to the mag-
nitude of the first exponent, and to order those terms having the same
first exponent according to the magnitude of the second, ete. The order
of the variables is the order in which they appear in the format state-
ment.

t See exercise 15 on page 82 of Ref. 1.
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1.3 Polynomzal Arithmelic

In this section we shall discuss the implementation of the various poly-
nomial-arithmetic operations. Let us begin with a simple illustration of
their use. Suppose polynomials A, B, €, and D are in storage, and C is
thought to be a divisor of A*B. (The asterisk denotes multiplication.)
To compute and print

=A*B

==

+D (1)

we writef

POLMPY TFA,B

POLDIV  F,F,C,NODIV @)
POLADD  F,F,D e
POLPRT F

The first line replaces I by A*B. The second replaces # by F/C; that

is, by
AxB
- (3)

This illustrates the fact that an output may overwrite an input. The
third line replaces I by I + D; that is, by

AxB
I

+D (4)

which is the desired result. Finally, the fourth line causes this result to
be printed on the output tape. If the division in the second line is un-
suceessful, i.e., if €' is not a divisor of A*B, control will be transferred to
the location called NODIV.

A polynomial is represented on data cards as a sequence of coefficients
and exponents, each coefficient being followed by its exponents. It is
terminated by the appearance of a zero where a coefficient would other
wise be expected. I'or example the polynomial

32 4+ 2xyz — Syt (5)
might appear as

f Note the similarity to the arithmetic orders of a three-address computer.
The prefix “POL” stands for “‘polynomial.”
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3 200
2 1,11

—5 012 (©6)
0

We have chosen this type of representation primarily because of its
appeal to the computer. However, for large polynomials it is also an un-
expectedly appealing form for people. On several occasions we have
observed geometrical patterns in the computer output which would
not be apparent in a conventional human transeription.

The addition of two polynomials in canonical form is analogous to the
ordered merging of two ordered subdecks of a deck of playing cards,
except that the addition subroutine must also be on the lookout for
combinations and cancellations.

The multiplication of a polynomial by a nonzero monomial does not
disturb canonical form. When two polynomials are to be multiplied, the
longer one is multiplied by each term of the shorter one, and each of
these products is added to the sum of all the preceding ones.

The polynomial division subroutine is successful only when the divi-
dend is exactly divisible by the divisor. However, it is programmed so
that it can be used as a test for divisibility if that is desired. The divisor
and dividend are treated as polynomials in one variable with coefficients
in the ring of polynomials in all the remaining variables. Divisions in this
ring can be handled by the division subroutine itself,  and the main task
is carried out by the familiar process of “long division.”

The polynomial substitution subroutine works in the most straight-
forward possible way — substituting into one term at a time and pre-
serving only the latest partial result. This procedure may involve sub-
stantial duplication of effort, but it uses a minimum of working space
and a minimum of program, and in most practical cases the running time
is reasonable.

The polynomial differentiation subroutine differentiates term by term
with respeet to a specified variable. It is perhaps worth remarking that
this process does not upset the canonical ordering.

A truncated power series with polynomial coeflicients can be treated
as a polynomial, except that it is necessary to keep track of the order
mroutine which calls itself is called “recursive.”’” At the innermost level
it must, of course, operate by an independent mechanism. Collisions between the
different levels are prevented by saving necessary information in a push-down
list. It is perhaps worth remarking that every inductive algorithm can be pro-
grammed as a recursive subroutine. In the case of polynomial diyision the induc-

tion is on the number of variables, and the innermost level is simply coefficient
division.
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and to prevent the appearance of meaningless higher-order terms. The
ALPAK system contains only two orders (“truncate” and ‘“multiply
and truncate”) for dealing with truncated power series. These are suffi-
cient for many applications, but much remains to be done.

1.4 Rational Functions and the Future

Every rational function can be represented as the quotient of two
polynomials. The extension from polynomial operations to rational-
function operations would be trivial except for the problem of removing
all common factors from the numerator and denominator of each
rational function. This has been accomplished by means of a generalized
version of Euclid’s greatest-common-divisor algorithm. However, we
must caution the reader that Euclid’s algorithm is extremely explosive,
and the computer will not be able to handle rational functions with
numerators and denominators of high degree in many variables until
more sophisticated techniques are developed.

Aside from the difficulties mentioned above, the handling of truneated
power series with rational-function coeflicients and the solution by
Gaussian elimination of systems of linear equations with rational-fune-
tion coeflicients are straightforward.

One of the primary problems encountered in the development of the
ALPAI system is the problem of automatiec dynamic storage allocation.
Usually the inputs to a subroutine are polynomials of arbitrary size, and
in general the required working space could not be predicted even if the
sizes of the inputs were known. Therefore it is imperative to be able to
obtain blocks of space as needed and to return idle space to the system.
Our storage allocator provides these services in a manner suitable to our
current needs, but it is not general or elegant. A general purpose storage
alloeation system including tracing and other service routines has been
developed by Miss D. C. Leagus and the author, and will be deseribed
in a forthcoming paper. With this as a foundation, we hope to write a
faster and more powerful version of the present ALPAK system, and
perhaps to extend it into other areas of mathematics.

1I. APPLICATIONS

2.1 Introduction

This section is devoted to a few general remarks about the usefulness
of symbolic computing. The skeptic will protest that any symbolie
caleulation too long to be done with pencil and paper is not really worth
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doing. This sentiment might be expressed in the form of the question,
“Who wants to look at a polynomial ten pages long?”” The objection is
not without merit, but it is worth recalling that similar objections were
onece raised in connection with numerical caleulations. Furthermore it is
unmistakably clear that mathematical analyses arising in many different
contexts involve substantial amounts of routine algebra which could be
done faster and more reliably by a computer. What, then, are the types
of problems to which symbolic computing facilities are likely to be
applicable?

It often happens that a “straightforward caleulation” whose end re-
sult is concise and understandable involves many tedious manipulations
of lengthy expressions at intermediate stages. Sometimes the end result
can also be reached by a shorter route, but the result itself (and the
knowledge that it is indeed concise and understandable) may play a
decisive role in the discovery of that route.

If the desired output of a calculation is numerical or graphical, it may
nevertheless be advantageous (or even essential) to begin the calculation
symbolically and allow a numerical program to take over only during
the final stages. The problem of error analysis will not arise until these
final stages are reached.

A third type of application arises when a simple ealeulation must be
repeated many times with only minor variations, e.g., for all possible
values of some set of indices.

Other types of applications may possibly occur to the reader. In the
next five sections we shall discuss specific problems to which the ALPAK
system has been applied.

2.2 On the Zeros of Gaussian Noise

Our first significant test problem arose in a study by D. Slepian® of
the distribution of zeros of Gaussian noise. It was desired to find the
leading term in the power series expansion of the determinant

plut — vt)  p(vl) p(t —wt)  —p'(vt) p'(t — vt)
p(ut) 1 p(t) 0 p'(t)
p(t —ut)  p(t) 1 —p'(t) 0 (7)
—p'(ut) 0 —p'(1) 1 —p"(1)
pl(t —ut)  p'(d) 0 —p" (1) 1
where

¢ aff | bt et A’ el |
_ﬂ(t)=1—§I'+‘3T!'+'4—!+E+a+ﬁ+8*!+'“- (8)
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The algebra is difficult not only because of the order of the determinant,
but also because the leading term corresponds to an unexpectedly high
power of {. In the general case, a # 0, the leading term is

a7
a_gt_ (1 — u)* (3w — v — 2ww). (9)

When a = 0 but ¢ # 0, it is
2(1 — b)ct” . 2y Brey. 3 2
(1 —w) (2 — v — 4w — 2)
(5)? (10)
— 5wt (20 — u — 4) + 58 (2u — 3)).

Finally, when @ = 0 and ¢ = 0, it is

tlﬁ
144(4!)2
These results were obtained by a program written in the ALPAIKK
language by Mrs. W. L. Mammel. Although approximately 2000 poly-
nomial terms were in storage at the flooderest of the computation, the
computing time for all three cases was only 92 seconds.

(B 4+ d)(B® + d&* + F + 2bd — b (1 — w)*(1 — »)* (11)

2.3 A Queueing System with Priorilies

Another interesting problem arose in a study by J. P. Runyon’ of a
queueing system in which a group of servers handles traffic from two
sources, one of which is preferred over the other. It is desired to solve
the functional difference equation

(e — z)(B — a)""gu(x)

(12)
= a(B — 2)"guula) — (B — a)"g.a(x) n=1

where go(2) = 1, and 0 < « < B. It follows by induction that for
n = 1, g.(x) is a polynomial of degree (n — 1) in z, whose coefficients
are polynomials in @ and 8. The value of g,(a) is of particular interest.
By the time this author was ready to attack the problem, Runyon had
conjectured and J. A. Morrison' had proved that

gula) = 5 (" N 1) (”) £ (13)

= r r/n+1"

Nevertheless, a short program was written to compute as many as pos-
sible of the polynomials g, (2) and the corresponding g,(a). The program
stopped after 871 seconds because of a coefficient overflowt during the

t The largest allowed coeflicient is 235 — 1.
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caleulation of gis(x). The polynomial gs(x) has 197 terms and a maxi-
mum coefficient of several billion. If the program had been available
sooner, it would have spared Runyon the necessity of calculating the
first five of the g,.(x) by hand.

2.4 A Single-Server Queue with Feedback

Another problem from queueing theory arose in a study by L. Tak4es’
of a single-server queueing system with ‘‘feedback.” The input is a
Poisson process of density A, the service times are determined by a
distribution function with moments ez, and after being served a cus-
tomer rejoins the queue with probability p or departs with probability
g=1—np.

It is shown by Takdes that the rth moment of the total time spent in
the system is

B, = (—1)®n (14)

o[ () @) ool o

The function ®(s,t) is implicitly defined by the equation
B(st) = (¢ — M) W(s,t) + p¥(s + M)B(s,0(st)) (16)

where

wheret
= (—1)"as
vis) = 2 —
w(st) = 1 — (1 — pw(s + M) (1)
W(st) = ¢(s + M) + S(s + MAa(s,t)) T(w(s,t))
with
e (18)
T(w) = Mo(l — w)
I —w—(1—pa)y(dw)’

This last pair of equations can be rewritten in the more useful form

t For convenience we have assumed that all of the serviee moments a, are finite.
However, for the caleulation of 8, it is elearly sufficient to require only the finite-
ness of ari1 .
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0 _ r-H.a .
S(zy) = 2 (D™ e Cr(zy)

= + 1)!
s (r ) (19)
T(w) = A1 — w)
g — M1 = pw)e(Aw)
where
r1 41 T
Clzy) =% " Y > 4y*
r— 1y k=0
. , (20)
(z) = 1 — y(z) _ (—1) arux
LA x =+ !
It is now eclear that
Y(0) = ag =1
S(0,0) = —a
() = —x (21)
g — Aay
_ q
W{0,0) = T
so from (14)—(16)
Bo = Poy = @(0,0) =1 (22)

as is required by the definition of the zeroth moment.

Now suppose all of the quantities ®;; for ¢ 4+ j < r, where r is some
positive integer, have been calculated and are expressed as rational fune-
tions of X and p (or ¢) and the service moments a; . Then by differentia-
tion of (16) we can obtain a system of » 4+ 1 linear equations in the
r + 1 unknowns, ®;; with ¢ + j = r. These equations will also contain
the quantities ®;; with 7 + j < r, which can be replaced by their known
values. The solutions of this linear system will again be rational funec-
tions of A and p (or ¢) and the service moments «; . Theoretically, this
procedure permits the calculation of arbitrarily many of the moments,
but in practice the calculations are extremely lengthy.

The first moment can be calculated by hand, with the result

. 1 — Ay Aas
b= (q - xal) R T v 23)

The second moment was caleulated with the aid of an IBM 7090 com-
puter and the ALPAK system. The intermediate expressions are ex-
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tremely lengthy, but the final result is the relatively compact expression

(2qF — Q) (¢ — 2¢)

bt = Sd = 2a)F — (O F 2) F ) 24

where
F = 6?\&13 —_ ﬁaf + ﬁha},ﬂ!g + 3(!2 + hﬂ!:;

< % " (25)
G = 12" — 124" — GAayas + 2 ’ma; — N0y’

T'or a more detailed discussion of this caleulation, see the appendix in
Ref. 5.

2.6 The Triskelion Diagram

The problem to be considered in this section arose in a study by D. B.
Fairlie and the author™® of the analyticity properties of the Feynman
amplitudes corresponding to several simple vertex diagrams in quantum
field theory. One of these is the triskelion diagram, which is shown in
Fig. 1. Here the p’s and ¢’s are vectors in space-time, and

2

2 = P
a = ¢ (26)
b = (pi — @)’

for ¢ = 1, 2, 3. The corresponding Feynman amplitude is the boundary
value of an analytic function H{a,b,z) of these nine variables, analytic

Fig. 1 — The triskelion diagram.
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everywhere except on certain manifolds which can be obtained from
lower-order “contracted” diagrams, and on the manifold

V(abz) =4D*(4D 4+ A®) 4 44B*(9D 4+ 24°%) — 271B* =0 (27)
where

A=Iz+a+b) —Yr(z) + Aa) + A(D)]

B = —1det (za,b)

3 ) (28)
D= —} > (X ab + ab)) + zzla:B; + biA;)

t=1

+ zi2a:hbr + a,-kak + arb;B; + 2ba;a + b;m_-Ak + bia;A ,]!
Here (4,7,k) is a eyelic permutation of (1,2,3) and
A; =a; — Qj — O

B.- b,’ — bj — bk (29)

2 2 2
AMa) = a F 10 + a5 — 2mas — 2wy — 2903 .

It is shown in Ref. 8 that ¥ is a homogeneous twelfth-degree polynomial
in its nine arguments, and is irreducible over the rationals. Furthermore,
it is invariant under permutations of the indices, 1,2,3, permutation of
the vectors, a,b,z, and transposition of the matrix of these vectors.

It is natural to ask whether the substitution of (28) and (29) into
(27) yields a compaet expression or an unwieldy monstrosity. A short
program was written to perform the substitutions, but it stopped at an
early stage because of insufficient space. However, the polynomial
W(ay,as,as; bybabs; 0,0,z:) was easily computed (in 50 seconds)
and was found to have 2642 terms. Since ¥(a,b,z) contains all of these
terms and many more, we can safely assume that (27) is the most useful
way of writing it.

2.6 Wave Propagation in Crystals

The problem to be considered in this section arose in a study by R. N.
Thurston® of wave propagation in crystals under pressure. It is of par-
ticular interest to investigate the effect of pressure on propagation
velocity. For given temperature 7', pressure p (hydrostatic or uniaxial),
and propagation direction N (a unit vector), there are in general three
modes of propagation, corresponding to three displacement directions
which are mutually perpendicular if p = 0. In simple cases one of these
modes is longitudinal and the other two are transverse. For a given mode,
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let V(p,T) be the propagation veloeity and let py be the erystal density
at p = 0. Then define

S = m% V(5,1 pms - (30)

It ean be shown that
S = UpUgDyy, (31)

(summation convention understood), where U is a unit vector in the
direction of particle displacement in the given mode, and where

qu = N,'N;‘Fu[ﬁqujk,gT o 28qacpjtks + 2N1N:C:1jqks + ijth]- (32)

The (s are elastic constants at zero pressure. The six-index C array has
3% entries of which at most 56 are distinet, while each four-index C array
has 3* entries of which at most 21 are distinet. F,,; is a symmetric matrix
whose entries are rational functions of these elastic constants (and of the
direction of pressure in the uniaxial case). Our task is to perform the
indicated summations in special cases to get explicit expressions for §'.

The complete analysis for the case of cubic erystals is given in Ref. 9.
A program has been written by J. P. Hyde (using the ALPAK system)
to evaluate S’ and serve as a check for this analysis. In the cubic case,
the six-index €' array has only six distinet nonzero elements, which are
abbreviated as (i1, Cis, Cua, Cigs, Chzs, and Cise . The four-index €
array has only three distinet nonzero elements, abbreviated as Cu”, Ce",
and 'y, and the four-index C'° array has only three distinet nonzero
elements, abbreviated as Cy,*, (1%, and Cy . Note that C'y appears in
both arrays. The results for the case of hydrostatic pressure and wave
propagation along (1,1,0) are as follows: For longitudinal displacement
along (1,1,0)

8 = 2045 + 2C1,° + 4Cy + 3Ci + 2C1e + Cras + 2Che6 + 3Cia . (33)

IFor transverse displacement along (1,—1,0)

S = 20,°% — 20.° + 30w — 3Chs. (34)
And for transverse displacement along (0,0,1)
S' = 4C44 + 0144 + 20155 . (35)

The computing time to obtain these results was approximately 20 sec-
onds.

A modified version of this program would make possible the cor-
responding calculations for erystals of lower symmetry, including quartz.
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III. USERS’ MANUAL

3.1 Introduction

This section consists of a brief outline of Section III and a discussion
of several basic concepts. The polynomial input-output and arithmetic
operations are discussed in Sections 3.2 and 3.3, respectively. Section 3.4
consists of a brief introduction to the theory of truncated power series
and a description of the orders for dealing with them. In Section 3.5 the
rules for writing main programs (including those governing the use of
POLBEG and VARTYP) are described, and two sample programs are
presented. Loading instruetions for assembly and/or run are given in
Section 3.6. Finally, the dumping facilities and diagnostics are deseribed
in Seetion 3.7, and hints for debugging are given in Section 3.8.

3.1.1 A Polynomial in Core

A nonconstant polynomialf in core consists of a pointer, a heading, a
data block, and a format statement (see Fig. 2). The pointer is a single
word containing the heading address. The heading is a three-word block
containing the data address, the format address, and the number of
terms. The data block contains the terms, stored consecutively in a
manner determined by the format statement. The format statement con-
tains the names of the variables and the maximum exponent size in bits
associated with each. The name of a polynomial is ordinarily used for
the symbolic address of its pointer, and the name of a format statement
for its symbolie address.

3.1.2 Format Compalibility

A format statement is usually shared by many polynomials. In fact
two polynomials eannot be added, subtracted, multiplied, or divided
unless they share the same format statement.

3.1.3 More Than One Pointer lo a Heading

If two or more polynomials are equal, their pointers may point to a
common heading. This is especially convenient when arrays of poly-
nomials with many equal elements must be dealt with, but the user must
keep in mind that if one of the polynomials is changed the others will be
changed in the same way.

t A constant polynomial has only a pointer and a heading. Its value is kept in
the heading (see Section 3.2.7), and no format is needed.
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PROGRAM DATA
STORAGE BUFFER
P
DATA
BLOCK
F
FORMAT
STATEMENT HEADING

Fig. 2 — A polynomial P with format F.

3.1.4 Storage Allocation

Space for headings and data blocks is provided by the storage allo-
cator. Headings are never moved, but the storage allocator is free to
move data blocks as necessary.

Space for pointers and format statements must be provided by the
user. Each pointer must be a full word, but only its address field is used.
This must initially contain zero and will be filled in by the system. The
prefix, tag, and decrement fields will be cleared. When a polynomial is
read or computed its pointer is tested. If the address field of the pointer
contains zero, a heading is created and the pointer is filled in with the
heading address. Otherwise it is assumed that the pointer contains the
address of a heading which can be overwritten. The data block (if any)
previously attached to that heading is left “headless” and thereby
becomes “garbage.”

3.1.5 Macros and Subroutines

The polynomial portion of the ALPAK system consists of a maero
deck and two subroutine packages, ALPAKI and ALPAK2. ALPAKI
consists of input, output, and service subroutines, while ALPAK2 con-
tains the operating subroutines. Together the two packages occupy less
than 5000,y words of memory. Most of the maecros expand into ealling
sequences for subroutines of the same name. For example the macro

POLADD R,P,Q (36)

which is represented by the equation

R=P+Q (37)
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(“replace R by P + Q”), expands to

TSX POLADD 4
PZE R
P2 P 58)
PZE: Q

Here P, Q, and R are the symbolic addresses of pointers. When POLADD
is executed, the P and @ pointers must contain the addresses of poly-
nomial headings. The address field of the R pointer may contain the
address of a heading to be overwritten or it may contain zero. In the
latter case, a new heading will be ereated by the storage allocator and
the R pointer will be filled in with its address. In either case, a data
block for the sum of the polynomials P and @ will be obtained from the
storage allocator and attached to the R heading, and the sum will be
computed therein.

3.1.6 Indexing

This method of communication gives us a natural way of handling
indexed arrays of polynomials. For example the set of polynomials

Ri=Pi4+Qi; di=1-,n (39)
can be computed by writing
POLADD (R,1(P,1)(Q,1) (40)

inside a suitable loop (see Section 3.5), where index register 1 corre-
sponds to the index, 7. The expansion of this macro is simply

TSX POLADD 4
PZE R |
PZE P1 (41)
PZE Q1

Clearly, index register 4 cannot be used for this type of indexing, be-
cause it has been reserved for the subroutine linkage.

3.2 Input-Oulput

3.2.1 Summary ( See Descriptions Section 3.2.2)



2098 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963

POLRDF F read format (a)
F POLCVF (X,15,Y,21,Z,36) convert format  (b)
POLRDD P,F read data (e)
POLCVD P,F H convert data (d)
POLCLR P clear (e)
POLSTZ P store zero (f)
POLSTI P store identity (g) (42)
POLSTC P,C store constant (h)
POLSTV PX,I' store variable (i)
POLPRT P,CC,(NAME) print (i)
POLPCH P,(NAME) punch (k)
POLPRP P,CC,(NAME) print and punch (1)
POLRDP P,F,CC,(NAME) read and print  (m)

POLCVP P,F,H,CC,(NAME) convert and print (n)

C = constant (symbolic address of constant)
CC = control character for printer

I = format (symbolic address of/for format statement)

H = Hollerith data (symbolic address of data)
NAME = alternative name for polynomial (not exceeding 21 charac-
ters)
polynomial (symbolic address of pointer)
= variable (specified in the manner indicated by the last pre-

vious VARTYP declaration — see Section 3.5.2).

bl
|

3.2.2 Deseriptions (See Also Sections 3.2.3-3.2.8)
(a) POLRDF T

Read a polynomial format statement from cards into a block starting
at location I'. The length of this block must be at least (2 + 2v 4+ e)
words where » is the number of variables and e is the number of ex-
ponent words per term.

(b)y F POLCVF (X,15,Y,21,Z,36)

Assemble the parenthesized polynomial format statement and assign
the symbol T to its first location. (I' is a location-field argument of the
maero. )

(c) POLRDD P,F
Read the polynomial P from cards according to the format I and put

P into canonical form. Here, P is the address of a “pointer” for the
polynomial, and F is the address of a format statement.
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(@ POLCVD  PFH

Same as POLRDD except that the data is to be found in core in a block
of not more than 12 words of binary-coded information (BCI) starting
at location H.

(e) POLCLR P

Clear the polynomial P.

() POLSTZ P

Set P equal to zero.

(2) POLSTI P

Set, P equal to one.

(h) POLSTC P,C

Set P equal to the constant C.

(i) POLSTV PXF

Set, P equal to the variable X using the format F.
6)] POLPRT P,CC,(NAME)

Print the polynomial P using CC for the control character for the first
line of print and NAME (not more than 21 characters of BCI) for the
name. If NAME is not provided P will be used for the name, and if CC
is not provided a minus (triple space) will be used for the control char-
acter.

(k) POLPCH P,(NAME)

Punch the polynomial P on cards using NAME (not more than 21
characters of BCI) for the name. If NAME is not provided, P will be
used for the name.

)] POLPRP P,CC,(NAME)
Same as POLPRT followed by POLPCH.

(m) POLRDP P,F,CC,(NAME)
Same as POLRDD followed by POLPRT.

(n) POLCVP P,F H,CC,(NAME)
Same as POLCVD followed by POLPRT.
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3.2.3 Polynomial on Cards

A polynomial is represented on data cards as a sequence of coefficients
and exponents separated by blanks and/or commas, each coefficient
being followed by its exponents. It is terminated by the appearance of
a zero where a coefficient would otherwise be expected. It is customary
to use one card for each term and one as an end card. For example, the
polynomial

32 + 2zyz — 5yz° (43)
is usually represented as
3 200
o (44
0
or
3 200
o0 (45)
0

However, it is equally correct to put more than one term on a card

3200 21,1,

—5012 0 (46)
or to use more than one card for a term
3 2
0,0
2 1
1,1 (47)
—-b 0
1,2
0

If two commas are adjacent or separated only by blanks, a zero is under-
stood. Similarly if the first (last) character on a card is a comma, a
preceding (succeeding) zero is understood. Thus (43) can be represented
as



ALPAK SYSTEM 2101

3 2.
2 11,1 (48)
5 0,12
or
332ru2’1)131;_53:1)23 (49)

If identifying comments are desired, they may be printed on the last
card, after the blank or comma which terminates the conversion of the
final zero, and/or in columns 73-80 of any card.

The data is read from cards, converted, packed into the data buffer,
and put into eanonical form by the subroutine POLRDD (read data).
The manner of packing is determined by a format statement which must
be read first. If the polynomial has & variables, the first number in the
data sequence is interpreted as a coefficient and the next & numbers are
interpreted as exponents. This process is repeated until a zero appears in
the position of a coefficient. The reading is then terminated, and the
subroutine POLCFM (canonical form) is called to put the polynomial
into eanonieal form.

3.2.4 Format Statements

Before diseussing the operation of POLCIM it will be necessary to
consider in detail the format statements and the representation of
polynomials in core. A format statement on card(s) is an alternating
sequence of variable names and field widths, starting in column 1 and
separated by commas. Fach field width must be a positive integer not
greater than 36. It is the maximum exponent size in bits of the corre-
sponding variable. Fach variable name must be a string of not more than
six characters (usually a I'AP symbol) containing neither blanks nor
commas. It is legal to skip to the next card after any comma, and this
makes it possible to use as many continuation cards as necessary. The
format statement is terminated by a blank immediately following a
field width. Each field width specifies the number of bits to be reserved
in each term for the exponent of the corresponding variable, and thereby
determines the maximum allowable exponent for that variable. As an
example, the format statement

X,15,Y,21,Z,36 (50)

specifies three variables, X, Y and Z, with field widths of 15, 21 and 36
respectively. This means that the maximum exponent sizes are 2'° — 1,
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2" — 1 and 2 — 1 respectively. The sum of the field widths must be an
integral multiple of 36, and each smaller multiple (if any) must be in-
cluded among the partial sums. The card(s) is (are) read by the sub-
routine POLRDI" (read format), which stores the format statement in
a block provided by the user. POLRDF also counts », the number of
variables, computes e, the number of exponent words per term (the sum
of the field widths divided by 36), and constructs a mask for use in
exponent addition (see Section 3.3). The mask is a block of ¢ words
partitioned into v bit fields as indicated by the format statement with a
one at the right end of each bit field. These items are stored as part of
the format statement, whose length is 2 4+ 2v + e words. For example
the internal format statement (in octal) corresponding to (50) is

000000000002 2 exponent words per term
000000000003 3 variables

676060606060 X

000000000017 15

706060606060 Y (51)
000000000025 21

716060606060 Z

000000000044 36

000010000001

000000000001 MASK

3.2.5 Polynomial in Core

A polynomial term is stored in two or more consecutive locations in a
manner determined by the format statement. The coefficient is placed
in the first word and the exponents are packed into the remaining words,
allowing the specified number of bits for each. For example, the term

5a’y’e” (52)
in the format (50) has the octal representation

(000000000005 5
000020000007 2,7 (53)
000000000003 3

A nonconstant polynomial in core consists of a pointer, a heading, a data
block, and a format statement as explained in Section 3.1 (see Fig. 2).
The data block contains the terms as in (53) stored consecutively.
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3.2.6 Canonical Form

We are now prepared to discuss the canonical form subroutine,
POLCFM. Its task is to put any given polynomial, stored in the manner
described above, into canonical form. More precisely, it must order the
terms according to their exponent sets, combining terms with equal
exponent sets and discarding any resulting zeros. The terms are to be
arranged in increasing order of the first exponent, and terms having the
same first exponent are to be arranged in inereasing order of the second,
ete. If there is only one exponent word per term, this means that the
terms can be ordered according to the magnitude of that word treated
as an unsigned 36-bit integer. Otherwise they must be ordered according
to the magnitude of the first exponent word and subordered according
to the magnitude of the second, ete. No working space is required. The
ordering is done first, with the aid of the system sort, FAPSTL, and the
combinations and cancellations, if any, are then performed. Finally if
the result is a constant, it is stored according to the “heading conven-
tion” which we shall now deseribe.

3.2.7 Heading Convention

As we mentioned in Section 3.1, each nonconstant polynomial has a
fixed heading of three words containing the data address, the format
address, and the number of terms, respectively. Since constant poly-
nomials can usually profit from special treatment and in any case the
zero polynomial requires it, we have devised a special representation for
constants. The first word of the heading contains the code number 5,
which eannot possibly be a legal data address, and the second contains
the value of the constant. Such a heading has no associated data block,
and its third word is never consulted. The code number zero signifies an
idle heading, and the numbers one to four are reserved for rational fune-
tions.

The maero POLCLR (clear) stores zero in the first word of the head-
ing, thereby marking it as idle and destroying the attached data block
(if any). The macros POLSTZ (store zero), POLSTI (store identity),
and POLSTC (store constant) store 5 in the first word of the heading
and the specified constant in the second word.

3.2.8 Output

There is one output subroutine with three entry points — POLPRT
(print), POLPCH (punch), and POLPRP (print and punch). Each
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term of a polynomial is printed (punched) on a single line (card), ex-
cept that continuation lines (cards) will be used if necessary. All the
coefficients are right adjusted to column 22, so that they form a column
in the output. The exponents form one or more additional columns
headed by the corresponding variable names. In each line the coefficient
is separated from the first exponent by two blanks, and the exponents are
separated from each other by single blanks. Therefore the exponent col-
umns are not always straight. In printed output the first line contains the
name of the polynomial (or any comment not more than 21 characters
long) starting in column 2, and the names of the variables (separated by
single blanks) starting in ecolumn 25. In punched output the first card
contains the name or comment, the next card(s) is (are) a complete
format statement, the ensuing cards contain the data, and finally an end
card including the name is appended.

As an example, suppose the polynomial (43) is in core (in canonical
form), and its name (i.e., the symbolic address of its pointer) is P. If
P is then printed, the output will be

P X Y Z
-5 0 1 2
21 1 1 (54)
3 2 0 0
[f it is punched, the output will be
P
X,12,Y,12,%,12
-5 0 1 2
511 1 (55)
32 00

0 END P

where each line represents one card. The second card is a valid format
statement, and the last one is a valid END card. A polynomial in many
variables may require more than one line (card) for the list of variables
(format statement) and/or more than one line (card) per term.

3.3 Polynomial Arithmetic
3.3.1 Summary ( See Descriptions Below)
() Basic Operations

POLADD R,P,Q R
POLSUB R.P.Q R

add (a)
subtract (b

o R
Jl=f
QDO

(]
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POLMPY R,P,Q R = P*Q multiply (e)

POLDIV R,P,QNODIV R = P/Q divide (if divisible) (d)

POLSST G,F(LISTP) G = F(LISTV = substitute (e)

(LISTYV) LISTP)

POLDIF Q,PX Q = aP/aX differentiate (f)

POLZET P skipiff P=10 zero test (g)

POLNZT P skipiff P # 0 nonzero test (h)

POLEQT P,Q skipif P = Q equality test (i)

POLDUP Q,P Q=P duplicate i)

POLCHS P P=-P change sign (k)

(12) Alternatives for Added Convenience and/or Efficiency

POLSMP Q,C,P Q = C*P scalar multiply L

POLSMO C,P P =C*P sealar multiply and (m)
overwrite

POLOMP QM,P Q = M?P one-term multiply (n)

POLOMO M,P P = M*P one-term multiply and (o)
overwrite

POLSAD ,C,P Q=C+ P scalar add Ep)

POLSAO P P=C+P scalar add and over- (q)
write

POLADO P,% P=P4Q add and overwrite r)

POLDFO P, P = oP/0X differentiate and over- (s)
write

(viz) Explanation of Symbols

F,G,P,Q,R = polynomials (symboliec addresses of pointers)
C = scalar (symbolic address of scalar)-
M = monomial (symbolic address of pointer)?
X = variable (specified in the manner indicated by the last
previous VARTYP declaration — see Section 3.5.2)
LISTP = list of polynomials

LISTV = list of variables.

3.3.2 Descriplions
(a) POLADD R,P,Q

P and @Q are assumed to be in canonical form. The addition is analogous
to the ordered merging of two ordered subdecks of a deck of playing
cards, except that POLADD must also perform combinations and
cancellations. Suppose P has n terms and @ has m terms. Then a block
long enough for n 4+ m terms is reserved for R if space permits. Other-
wise all the remaining space is reserved for R, and the subroutine pro-
ceeds in the hope that combinations and/or cancellations will compen-
sate for the deficiency. If space runs out, the job will be dumped. The
first (next) term of R is found by comparing the exponent sets of the
first (next) term of P and the first (next) term of Q. If these differ, the
first (next) term of I is the first (next) term of P or of @, depending on
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which comes earlier in the canonical ordering. If they are the same, the
first (next) term of R is the sum of the first (next) terms of P and @,
unless the sum is zero. In that case the first (next) terms of P and @
eancel, making no eontribution to k.

(b) POLSUB  R,PQ

This uses POLCHS (twice) and POLADD. If P and @ have the same
heading, it uses POLSTZ instead.

(¢) POLMPY R,PQ

POLMPY multiplies the longer of the polynomials P and @ by each
term of the shorter using POLOMP and accumulates these products
using POLADD or POLAOE. The latter is a slightly modified version of
POLADO, not normally available to the outside world. Its mnemonic is
“Add, Overwrite the first argument, and Erase the second.”

Suppose P has m terms and @ has n terms with m =< n. Let P; be the
ith term of P, let T'; = P.Q be the 7th partial product, and let S; = z; T;

=
be the 7th partial sum.

If there is enough space for (nm -+ n) terms, then the “leapfrog
method,” a fast method involving no data moving (see Fig. 3), is em-
ployed. Imagine the space partitioned into s + 1 blocks, each n terms
long. The first partial product, T, , is placed in the mth block and the
second, T, in the (m + 1)st block. POLADD is then directed to add
these, starting the sum S; at the beginning of the (m — 1)st block. This
partial sum overwrites a portion (perhaps all) of the mth block as ex-
plained in the discussion of POLADO. The next partial product 7% is
then placed in the (m + 1)st block, and the next partial sum S; is
started at the beginning of the (m — 2)nd block, overwriting a portion
(perhaps all) of S, . This process is repeated, each partial sum overwrit-
ing a portion (perhaps all) of the preceding one, until the final result
S,. appears starting at the beginning of the first block.

If there is not enough space for this procedure, then the slower
“compact method” (see Fig. 4) is used, requiring only enough space for
the final result (or the longest partial sum) and n additional terms. The
latest partial sum always starts at the top of the available space. The
next partial product is placed immediately below it, and both are then
moved down leaving a gap n terms long above the partial sum. The
partial product is then added to the partial sum by POLAOE to produce
a new partial sum, starting at the top of the available space and over-
writing a portion (perhaps all) of the previous partial sum. This process
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[N
OTHER OTHER OTHER OTHER
DATA DATA DATA DATA
Si42=
SPACE FOR 5. o
M BLOCKS L1 L2
OF N TERMS &
L= Si+1
Sit+TL 41
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LOCK { i
OF N TERMS L+t L+1 L+2 t+2

Fia. 3 — Successive steps in multiplication by the ‘“leapfrog method.”

is repeated until the final result is achieved or the available space
exhausted.

(d) POLDIV R,P,Q,NODIV

The dividend P and the divicor @ are treated as polynomials in one vari-
able (the first variable that at least one of them depends on) with coef-
ficients in the ring of polynomials in all the remaining variables (if any).
Divisions in this ring ean be handled by ecalling POLDIV itself,{ and
the main task is carried out by the familiar process of ‘“long division.”
The fourth argument, NODIV, is an address to which control will be
transferred if Q does not divide P. If the fourth argument is omitted,
the maero will supply ENDJOB in its place.

(e) POLSST G,F(LISTP)(LISTV)

+ A subroutine which calls itself is called recursive. At the innermost level it
must, of course, operate by an independent mechanism. Collisions between the
different levels are prevented by saving neecessary information in a push-down
list. It is perhaps worth noting that every inductive algorithm can be programmed
as a reeursive subroutine. In the case of polynomial division the induction is on
the number of variables, and the innermost level is simply coefficient division.
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OTHER OTHER OTHER OTHER
DATA DATA DATA DATA

S St Si+1=
SitTis

Si

Ti+r

T4

Fig. 4 — Successive steps in multiplication by the “compact method.”

Here LISTP is a list of polynomials in a common formatf which must
include all the variables of F not being replaced, and LISTV is a list of
the variables of F which are to be replaced by the polynomials in LISTP.
Tor example if /' depends on X1, --+, X10 and we wish to replace X3
and X4 by P and @ respectively, we write

POLSST G,F(P,Q)(X3,X4)

The variables in LISTV must be specified in the manner indicated by
the last previous VARTYP declaration. If LISTV is not provided, it is
understood to be the list of all the variables in the format of F.

POLSST works in the most straightforward possible way — substitut-
ing into one term at a time and preserving only the latest partial result.
This procedure may involve substantial duplication of effort, but it uses
a minimum of working space and a minimum of program, and in most
practical cases the running time is reasonable.

(f) POLDIF Q.P,X

P is duplicated using POLDUP, and the copy is then differentiated with
respect to X using POLDI'O.

() POLZET P

t If all the polynomials in LISTP are constants (which have a universal format
— see Section 3.2.7), then the format of F is used.
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The next instruction is skipped if and only if P = 0.

(h) POLNZT P
The next instruction is skipped if and only if P # 0.
(1) POLEQT PQ

The polynomials P and @ are considered to be equal if and only if they
have the same format address, the same number of terms, and identical
data blocks.

@ POLDUP QP

() is replaced by a copy of P.

(k) POLCHS P

The signs of all the coefficients of P are reversed.
m POLSMP Q,.CPp

P is duplicated using POLDUP, and the copy is then multiplied by C
using POLSMO.

(m) POLSMO c,p
TEach coefficient of the polynomial P is multiplied by the scalar €.
(n) POLOMP  QM,P

P is duplicated using POLDUP, and the copy is then multiplied by M
using POLOMO.

(0) POLOMO M,P

Each term of the polynomial P is replaced by its product with the
monomial /. To multiply two monomials, it is necessary to multiply
their coefficients and add their exponents. In the case of integer coeffi-
cients, the coefficient multiplication macro

cMP Z,X)Y
expands to

LDQ X

MPY Y

TZE *+2

REMI1

STQ 7
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where REM1 is the REMARK macro (see Section 3.7) for coefficient
overflow. The exponent addition macro

EAD ZX,Y

adds the exponents one word at a time even though several exponents
may be packed into each word. To check for overflow, EAD uses the ap-
propriate word from the mask in the format statement. Suppose all the
exponents are packed into a single word. Then the mask is a word con-
taining a one in the low-bit position of each exponent block and zeros
elsewhere. Now EAD expands to

CAL X
ACL Y
SLW Y/

ERA X
ERA Y
ANA MASK
TZE *+2
REM?2

where REM2 is the REMARK macro (see Section 3.7) for exponent
overflow. The first three lines compute the sum correctly, provided no
overflows occur. After line 5 the low-bit positions in the AC should be
zero, since ERA is the same as addition without carry. After line 6 the
entire AC should therefore be zero. If it is not, control will pass to REM2
and the AC will contain a one-bit immediately to the left{ of each ex-
ponent block which has overflowed.

(p) POLSAD Q.CP

P is duplicated using POLDUP, and C is then added to the copy using
POLSAO.

() POLSAO c,p
The scalar (' is added (or appended) to the polynomial P.
(r) POLADO  PQ

Since P is to be replaced by the sum P + @, it is not necessary to have
space for both P and the sum. Instead it is possible to open a gap the
size of Q above P, and then to use that gap together with the block oc-
cupied by P as a block for the sum. It is easy to see that no term of P ean
be overwritten by a term of the sum before making its contribution.

+ Here we think of the AC as a circular register. An overflow in the leftmost
exponent block will leave a one-bit at the right end of the AC.
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(s) POLDFO PX

Kach coefficient of P is multiplied by the corresponding exponent of X.
If the exponent is zero the term is deleted. Otherwise the exponent is
reduced by one.

3.4 Truncated Power Series

Let x represent the k-tuple of variables (z;, -+ . 2x). A formal power
series tn x is an expression of the form

Ax) = 2 a;,...,r};rl"‘ AL (56)
igaeeig=0
where the a's are elements of any integral domain. The sum 7 = 4, +
-+« -+ 4 of the exponents in any individual term will be called the
order of the term. Letting a;(x) be the (finite) polynomial consisting of
all the terms of order 7, we have

Alz) = D Ai(x)
i=0
) ) (57)
Al('v) = E a;,.. .ik:tl” . -xk"‘.
iqeeeyig20
i i g=i
A truncated power series of order p is a formal power series from which
all terms of order higher than p have been dropped. We shall restrict
our attention to the case in which the a’s are polynomials in a set of
variables ¥, -+, 4 (I 2 0) not including any of the x’s. The sum of
two truncated power series

P

A(z) = 2 Adx);  Ay(x) #0
o, (58)
B(z) = 3. Bi(a);  By(a) %0
=1
is their polynomial sum truncated to order
min (p,g) (59)

while their product is their polynomial product truncated to order
min (p + ¢, ¢ + p'). (60)

The ALPAXK system contains two macros for dealing with truncated
power series. These are POLTRC (truncate) and POLMPT (multiply
and truncate). Addition ean be handled with POLTRC and POLADD.,
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FEach truneated power series must be stored as a polynomial in a format
whose first & variables are the a’s and whose remaining variables, if
any, are the y’s. The command

POLTRC P,ORD,K (61)

causes P to be truncated to order ORD. That is, all terms of order
greater than ORD are deleted. The command

POLMPT R,ORDR,P,ORDP,Q,0RDQ,KK (62)
is represented by the equation
R = PxQ) (63)

where P and @ are truncated power series. K is the address of the num
ber of power series variables [i.e., the a’s of (56) and (57)], ORDP and
ORDQ) are the addresses of the orders of P and @ respectively, and
ORDR is an address for the order of R, which is to be computed by the
rule (GO).

If it is desired to multiply a truncated power series by a polynomial,
the latter should be thought of as a truncated power series of order in-
finity. It is required that all finite orders be less than 2% and any num-
ber greater than or equal to 2% is treated as infinity. Thus if P is a
truncated power series of order 4 in 3 variables and we wish to multiply
it by the polynomial @, we write

POLMPT R,ORDRP,=4,Q,=—1,=3 (64)
where the order —1 of @ will be interpretedt as 2% 4 1, which is equi-
valent to infinity.

3.5 The Main Program

3.5.1. POLBEG

Every main program starts with the macro POLBEG (begin). At
assembly time, this reserves a block of storage for the “data buffer”
and at exeeution time it initializes the storage allocator. The command

POLBEG N (65)

+ In the TBM 7090 computer some operations interpret a word as a signed 35-
bit integer and others interpret it as an unsigned 36-bit integer. If a negative in-
teger is examined by one of the latter, the sign bit is assumed to represent a con-
tribution of 2% to the magnitude of the number.
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(where N is an integer — not the address of an integer) reserves an
N-word block in the “remote program,” while the command

POLBEG N,COMMON (66)

reserves an N-word block in “common storage.” If COMMON is used,
the space occupied by the loader at loading time can be a part of the
data buffer at execution time. Therefore the size of the data buffer can
be somewhat larger. However, no other program using COMMON can
be loaded at the same time without eareful use of ORIGIN cards.

3.5.2 VARTYP

Every program which uses POLSTV, POLSST, POLDIF, or POLDI'O
must contain at least one VARTYP declaration. The command

VARTYP T (67)

indicates that all subsequent references to variables (prior to the next
VARTYP declaration if any) are of type T, which may be any of the
following

NAM (name)

NUM (number) (68)
NAM# (address of name)

NUM =% (address of number)

The variables in a format statement are numbered according to the
order of their appearance.

For example, if we wish to differentiate the polynomial P with respect
to the variable X, we use NAM and write

POLDIF QrX (69)

To differentiate P with respect to the third variable we use NUM and
write

POLDIF QPr3 (70)

To differentiate P with respeet to the variable whose name is at loca-
tion LX, we use NAM=« and write

POLDIF QPLX (71)

Finally, to differentiate P with respect to the variable whose number is
at location K, we use NUM=* and write

POLDIF Q.P,K (72)
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Typically, NAM is used in main programs and NUMz= in subroutines,
since the main programmer usually knows the names of the variables
while the subroutine programmer usually knows nothing about the

format.

3.5.3 Sample Programs

The following program computes B = P + dQ/aY.

POLBEG 10000
VARTYP NAM
FMT  POLCVF  (X,12)Y,12,%,12)
POLRDP P,FMT
POLRDP QFMT
POLDIF DQDY,Q,Y
POLADD R,P,DQDY (73)
POLPRT R,—,(R = P + DQ/DY)
TRA ENDJOB
P PZE
Q PZE
R PZE
END
A slightly more complicated example illustrates the use of indexing. To
compute
Ri= P; + Q:; ?:=1:"':10 (74)
we write
POLBEG 10000,COMMON
POLDRF FMT
AXT 10,1
RD1 POLRDP (P,1),FMT
TIX RDIL,1,1
AXT 10,1
RD2 POLRDP (Q,1),FMT
TIX RD2,1,1
AXT 10,1
ADD POLADD (R,1),(P,1),(Q,1)
TIX ADD,1,1
AXT 10,1 (75)
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PRT POLPRT (R,1),—,(R(I)=PI)4+Q(I))

TIX PRT,1,1
TRA ENDJOB
FMT  BSS 20
P BES 10
Q BES 10
R BES 10
END

The storage section of a main program must contain a block for each
format statement read by POLRDI and a pointer (whose address field
initially contains zero) for each polynomial. or further discussion of
these rules see Section 3.2.

3.6 Loading Instructions

The polynomial portion of the ALPAK system consists of a macro
deck and two subroutine packages, ALPAK] and ALPAK2. Most of
the macros expand into calling sequences for subroutines of the same
name, but a few call one or more differently named subroutines and a
few others call no subroutines at all. The macro deck is available as a
symbolic deck or as a CRUNCH deck with no END eard crunched in.
ALPAKI1 and ALPAK?2 are available as binary decks and also as sym-
bolic decks or CRUNCH decks. In their present form these decks can
only be used within the BE-SYS-4 monitor system on an IBM 7090
computer.

The following example illustrates the arrangement of decks and con-
trol cards for a typical ALPAK assembly:

JOB

AP

UNLIST

MACROS (CRUNCH deck with no end card crunched in) (76)
LIST

MAIN PROGRAM (Symbolic deck with END card)

The UNLIST and LIST cards are normally included in order to sup-
press the printing of eleven pages of macro definitions. This is a FAP
assembly and may be embellished in any way that conforms to the rules
of FAP,

The next example shows a typical arrangement of decks and control
cards for assembly and run:
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JOB

FAP

UNLIST

MACROS (CRUNCH deck with no END card erunched in)

LIST

MAIN PROGRAM (Symbolic deck with END card)

LOAD BATCH 77

ALPAK1 (Binary deck, preceded by LOAD card and followed
by binary transfer card)

ALPAK2 (Binary deck, preceded by LOAD card and followed by
binary transfer card)

TRA

DATA

Our final example illustrates a run with a previously assembled main

program:

JOB

MAIN PROGRAM (Binary deck preceded by LOAD card and
followed by binary transfer card) (78)

ALPAK] (Binary deck preceded by LOAD card and followed by
binary transfer card)

ALPAK?2 (Binary deck preceded by LOAD card and followed by
binary transfer card)

TRA

DATA

3.7 Diagnostics

The ALPAK diagnostic mechanism recognizes the following ten types
of failure:

1. COEFFICIENT OVERFLOW. No coefficient or sealar can have

magnitude greater than 2 — 1.
9. EXPONENT OVERFLOW. No exponent can be greater than
2% — 1, where B is the corresponding field width (in bits).

3. INSUFFICIENT SPACE. The reporting subroutine was un-

able to obtain needed space from the storage allocator.

4. ILLEGAL SUBROUTINE ARGUMENT. One of the inputs to
the reporting subroutine failed some simple test.
INCOMPATIBLE FORMATS. See Format Compatibility in Sec-
tion 3.1.2.

6. INTERNAL INCONSISTENCY. There may be a bug in the
reporting subroutine.

[S1}
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7. POLBEG NOT CALLED. Every main program must begin with
the maero POLBEG (see Section 3.5.1).

8. ILLEGAL FORMAT CARD. See Format Statements in Section
3.24.,

9. END OF FILE. All the data cards have been read.

10. INPUT READING ERROR. An unrecoverable parity check

failure has oceurred on input.

Whenever a failure is detected, control is transferred to the REMARK
subroutine, which performs the following funetions: First it takes a
hollerith snapshot of two locations containing the words “REMARK
SNAP"” in BCD. The purpose of this is to provide a console dump at the
time of the failure. It then prints the location of the failure, the type of
failure, and the subroutine nesting list. Finally it transfers control to
the DUMP section (if any) of the first subroutine on the nesting list,
whose funection is to print the inputs and perhaps a partial result.

As an example, suppose the multiplication

POLMPY C,AB (79)
fails because of insufficient space. This might result in the output

LOCATION 1703
POLDUP REPORTS
INSUFFICIENT SPACE

SUBROUTINE NESTING LIST
NAMES AND CALLING LOCATIONS

POLMPY 00174, POLOMP 03412, POLDUP 03152
FINAL DUMPS FROM POLMPY

R = P«Q. PS = PARTIAL SUM.

P XYZ
1010
1 100
Q XY Z
1002
1020
1 200
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PS XYZ
1 012
10 0
1 210

3
and the snapshot

2175 SNAP H,2410,2411
AC..MQ..SI.EK..SW..SL..OVF..TM...
IR1..IR2..IR4...

2140 “REMARK” “SNAP.”

which will be the last snap prior to post mortems. The output indicates
that POLMPY (multiply) was called from location 174 in the main
program, POLOMP (one-term multiply) was called from location 3412
in POLMPY, POLDUP (duplicate) was called from location 3152 in
POLOMP, and the space shortage was discovered at location 1703 in
POLDUP. Furthermore, POLMPY was attempting to compute
R = PxQ where

P=X+Y7Y
Q = x? el y? + 7°
and had obtained the partial result
PS=XY+ Y+ Y2 =YV X*+ Y+ 2" (81)
which is the product of @ and the first term in the canonical ordering of
P. Note that P, Q and R in the output are dummy names, which in
this case correspond to A, B and C in the user’s program [see (79)].
The subroutine nesting list is maintained automatically by the EN-
TER and EXIT macros, which are used in all but the lowest level sub-
routines. If a failure is detected in one of these unentered subroutines,

its name will appear along with the location of the failure but not on the
nesting list.

(80)

3.8 Debugging

The normal method of debugging an ALPAI program is to run it and
see what happens. Most programming errors and all overflows will be
located and identified by the diagnostic mechanism, which is deseribed
in the preceding section. If difficulties persist, POLPRT (print) orders
can be inserted (by reassembly) into the main program, or even into
one or more of the ALPAK subroutines. Each POLPRT order is essen-
tially a symbolic snapshot. If an error is detected by POLPRT, a suitable
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remark (see below) is printed but the flow of control is not affected (un-
less it depends on the AC, the MQ, or XR4). The following remarks are
available:

1. EMPTY POINTER. The pointer contains =+0.

2. NO DATA. The number of terms is +0.

3. GARBAGE. Either the heading is idle (see Section 3.2.7), the
data address is outside the data buffer, the number of terms is <
—0, or the number of exponent words per term is =0.

4. ITLLEGAL FORMAT. Since POLRDF and POLCVT do not ac-
cept illegal format statements, this remark implies that the format
address is wrong or the format statement has been overwritten.

5. DATA OVERFLOW. The data block begins in the data buffer but
ends beyond it.

If all else fails, ordinary snaps and/or post mortems can be taken in

the usual manner. However, a snap of the data buffer is unusually dif-
ficult to comprehend and should be taken only in desperation.
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Discrete Smoothing Filters for
Correlated Noise

By J. D. MUSA
(Manuscript received April 18, 1963)

This paper discusses discrele, linear, time-tnvariani, nomrecursive,
Jinite memory, polynomial smoothing filters for noise that is correlated from
sample lo sample. The wide-sense Markov process is used as a model for
the notse. Analysis and synthesis of the aforementioned filters are discussed
in detail and several plots are furnished. A simple method for generating
discrete, wide-sense Markov noise for simulation is noted. A noise model
composed of a linear combination of wide-sense Markov processes is de-
veloped and applied for the case in which the previous model is nol suffi-
ciently accurale.

I. INTRODUCTION

A discrete polynomial smoother may be defined in the following
terms. Consider the random process B(nT'), where n is an integer and
T is the period of the samples at which the process will be of interest.*
The process will be thought of as comprising a desired component
R(nT), and a noise component B(nT). It will be assumed that R(nT)
can be satisfactorily approximated by an rth degree polynomial in nT,
R(nT). Further, assume that R(nT) is a random process that is wide-
sense stationary with respeet to the sampling instants nT. The fore-
going situation would occur, for example, in the tracking of a moving
object whose true position could be represented as an rth degree poly-
nomial in time, and whose measured position included a random error.
We will assume that

E[E(nT)] = 0 (1)

and denote var [B(nT)] = var [R(nT)] by oz", where E is the expected
value operator of probability theory and “var” indicates “variance of”.

* Symbols used throughout the paper have been collected and defined in a
glossary (Section IX) for ready reference.

2121
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Let ®,(iT) represent the autocorrelation* function of R(nT), where i
is an integer. A discrete polynomial smoother of the pth order and rth
degree is a filter which operates on R(nT) in such a fashion that the
output C(nT) and the input R(nT') are related by

E(C(nT)} = RP(nT + T) (2)

for all n.t Note that the parenthetical superseript (p) denotes “pth
derivative of the estimate with respect to nT.” The quantity I' repre-
sents prediction time; if I' is negative, the operation performed is an
interpolation.

We will consider linear, time-invariant smoothers which are nonre-
cursive and have a finite memory. These conditions may be expressed in
terms of the input-output relationship

N-1

C(nT) = 2, WET)R[(n — 971, (3)

where the function W (T is the weighting funetion or impulse response.
Note that W (:T) is defined only at a finite number of points (N points),
that it is independent of the input (hence the smoother is linear), and
that it is snvariant with the time n7T. No previous values of the output
appear in (3); hence the smoother is nonrecursive. The latter restriction
can often be circumvented, because it is frequently possible to approxi-
mate a recursive filter by a nonrecursive one.'

The quantity var [C(nT)] = oc is of interest in two respects. First,
we may wish to know its value, or better yet, the variance ratio

W= (4)

which is a figure of merit of the smoother. Note that ’ is not a function
of time, since R(nT) was assumed to be wide-sense stationary, and it
follows that C(nT) is also wide-sense stationary by the time-invariance
of the smoother. Second, we may wish to find the optimum smoother
of a class specified by p, r, I', N and T} i.e., we may want to determine

* In this paper, the term “autocovariance funetion” will be used to refer to
E[Z.Z,;.),

where Z, represents a zero-mean, wide-sense stationary random process Z evalu-
ated at time f. “‘Autocorrelation funetion’’ will be used to refer to the normalized
autocovariance function obtained by dividing the autocovariance function by its
value at r = 0.

t The Oth, 1st, and 2nd order smoothers are often referred to as position, ve-
locity, and acceleration smoothers.
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the weighting funetion W{ZT) which yields the minimum value of
oc’ (or ¢') under the preceding conditions.

If B(nT) has an autocorrelation function of arbitrary form, it may
be shown, using (1), (3), and (4), that

N—=1 N—1
p o= Zn ;) WW;@el(z — /) T1, (5)
where W, = W(iT) and W; = W(jT). In general, this is a compli-
cated expression. In previous treatments®?45 of discrete polynomial
smoothers, simplification of (5) has been achieved by assuming that
the power density spectrum of the noise component of the input is
white, so that

L (i=7)
Pal(i = DT = ®
! 0 (i#j). )
This yields the simple form
Y N—1 "
W= ;ﬂ W (7)

However, the assumption that the noise is uncorrelated from sample
to sample is not justified for many physical systems because the noise is
restricted in its rate of change. This is particularly true for mechanical
and electromechanical systems. It will be shown that correlated noise
may be represented by the wide-sense Markov process as a first-order
approximation, or by a linear combination of such processes as a better
approximation, with appreciable simplification of (5) still being obtained.
By “represent” we refer to the approximation of one autocorrelation
function or power density spectrum by another. In discussing smoothers,
our primary interest is in the behavior of the generalized second moment
of random processes, and further delineation of the character of these
processes is not necessary.

I1I. WIDE-SENSE MARKOV NOISE MODEL

A rigorous definition for the wide-sense Markov process may be found
in Doob.® It will be sufficient for our purposes to characterize the wide-
sense Markov process in an alternative fashion, which Doob? has shown
to be equivalent to the original definition. A wide-sense stationary, con-
tinuous random process will be called wide-sense Markov if it has the
autocorrelation function
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®(r) = exp(— Qr), T2 0. (8)

The quantity € will be called the “noise bandwidth.” By using the even-
ness property for autocorrelation functions of real, wide-sense stationary
random processes, (8) may be written as

®(r) = exp(— Q| 7). (9)

If a wide-sense Markov random process is real and Gaussian and has
zero mean, then it is also strict-sense Markov. The strict-sense Markov
process is defined as a random process for which

Pr{Y(t,) £ M| Y(t), ---, Y(twn)] = Pr[¥V (L) £ N V()] (10)

with probability 1 for each A, all 4 < --- < £, and all n. We may
say in an intuitive manner that a strict-sense Markov process is a proc-
ess with a structure such that any value of the process is directly related
only to the immediately preceding value.

One might consider higher-order Markov processes (‘related” to
several preceding values) as a better approximation for correlated noise,
but it appears that using a linear combination of the simple wide-sense
Markov processes gives a more manageable expression for i

For a dizerete wide-sense Markov process with equally-spaced samples,
we may write the autocorrelation function as

d(r) = exp(—Q | 7|)Cbr(71), (11)

where C'by is the comb funetion defined by

Chslr) = ij 5(r — iT). (12)

2/a

S(w)
1 e e e S =S

|

|

I

1
Qo n
w—

Fig. 1 — Baseband component of normalized power density spectrum for dis-
erete wide-sense Markov process.
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WHITE_NOISE, NOISE VAF!IEANCE NOISE VAF;IANCE
gE=1 CONTINUOUS o =0g DIGITAL =0c
" SYSTEM _ﬂsnups_o_en— " sSYSTEM g
G(s)= 7.77 (s +2)

52+ 7.775 + 15.54

Fig. 2 — Control system used in evaluation of wide-sense Markov noise model.

The normalizedi power density spectrum, obtained by Fourier trans-
formation of (11}, is

2Q
@nf): + @7
where * indicates convolution. The baseband component of this nor-
malized power density spectrum is illustrated in Fig. 1. Note that the
half-power point oceurs at f = @/2r
Use of the wide-sense Markov noise model reduces (5) to

S(f) = Cbl,'T(f) (13)

—1 N—1
Z: Z Wl (14)
where
a = exp(—QT) (15)

and iz called the “intersample correlation.” For some weighting func-
tions, (14) can be simplified much further by evaluating the sums, using
the finite difference caleulus.

As one illustration of the improvement in accuracy obtained by repre-
senting correlated noise as wide-sense Markov rather than white, con-
sider the control system of I'ig. 2. White noise is filtered by the eontinu-
ous system such that the normalized power density spectrum at the
input to the sampler becomes

S(w) = LG (16)
where
o = o [ 16Ge) e = 479, (7)

t Normalized in the sense that this is the Fourier transform of the autoeorrela-
tion function. The power density spectrum is usually defined as the Fourier trans-
form of the autocovariance funetion. The normalized power density spectrum is
equal to the power density spectrum divided by the variance,



2126 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963

1.2 /\\
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WIDE -SENSE f/\
MARKOV MODEL

1.4
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\\
02 E__
Q
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ANGULAR FREQUENCY, @, IN RADIANS PER SECOND
Fig. 3 — Normalized power density spectra.

Hence

126(0° + 4)

w' + 293w + 241.5° G

Slw) =

We can fit models to the true noise process as if all processes were con-
tinuous, and following this, introduce the sampling operation. The
output-input noise variance ratio u* of the digital system has been
computed for the case of a first-order cascaded simple averages smoothert
with the following weighting coefficients:

0.028257 (0 <i<11)
W;=< 0 (12 <4 < 23) (19)
—0.028257 (24 =i £ 35).

The true noise process has 4 = 0.0376. Use of the wide-sense Markov
model yields u* = 0.0339, while use of the white noise model yields
= 0.0192.

t See Section V for the definition of this smoother.



SMOOTHING FILTERS 2127

0.8 N
TRUE NOISE
~~~ PROCESS
0.6
N
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0.4 tr’ N s
WIDE-SENSE
MARKOYV MODEL
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\L
0
0 0.05 0.0 015 0.20 0.25 0.30

TIME, 7, IN SECONDS

Fig. 4 — Autocorrelation funections.

The normalized power density spectra and autocorrelation functions
of the true noise proeess and the wide-sense Markov model are illustrated
in Figs. 3 and 4. The parameter @ has been picked equal to the half-
power point of the power density spectrum of the true noise process,
9.68.

III. MOMENTS OF THE WEIGHTING FUNCTION

The moments of the weighting function of a smoother are important
characteristics, since the requirement (2) which specifies the desired
output of the smoother is conveniently expressed in terms of them.
The moments will be useful in comparing smoothers for equivalence as
to meeting (2), and in determining the optimum weighting function for
a class of smoothers. The gth moment 3, of the weighting function
will be defined as

N—1
M, = ) (iT)'W;. (20)
i=0

To express (2) in terms of moments, we proceed as follows. Substi-
tuting (3) and (1) in (2) we obtain

N—1

Z_jow.-R[(n —9)7T) = B'"(aT + T). (21)

Now E(t) will be approximated by R(t), which may be expressed in the
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Taylor series form

R(t) = g} E‘);_Ini"’_) (t — aT)" (22)
Substituting (22) in both sides of (21) and rearranging, we obtain

5 (CUBND ey, = 3 EAD e )

=0 p)!

Considering (23) term by term, and using (20), we obtain

0 0=g¢<p
Mq _ (—l)pp' (q = P) (24)
Sl p<gsn.

It should be noted that the weighting function obviously has moments
greater than the rth; however, the condition (2) does not fix their values.

IV, OPTIMUM SMOOTHERS

By “optimum smoother” we mean that smoother of the class specified
by p, r, T, N, and T whose weighting function yields the minimum pos-
sible value of x*. Optimum smoothers are often not implemented because
of the amount of storage and computation required. However, they
provide a standard of comparison for the systems that are implemented.

To find the weighting function of the optimum smoother of a class,
the quantity g° is minimized under the constraints (24), using La-
grange’s method of undetermined multipliers. Blackman® has carried
out the minimization in matrix form for a general input noise process
(any autocorrelation function). The optimum smoother is specified by
the matrix equation

W=P'AAP'A)'M, (25)

where ~ indicates “matrix transpose.” The variance ratio g for the
optimum smoother is given by

V(AP'A)'M. (26)
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The matrix W is a column matrix representing the weighting function
at the points ¢t = 7T, ie.,

Wo
Wi
W = : (27)
WN—l
P is the autocorrelation matrix of the input noise process,
1 Px(T) ®p(27) co @p[(N = DT
P (1) 1 (1) PR[(N — 2)T]
P = | @(20) ¥ (T) 1 e[V — 3)T] |; (28)
(N — DT] ®p[(N — 2)T] ®p[(N — 3)T] -+ 1 J

A is the “age” matrix,

10 0 e 0 "
L /i s P
127 (27)* cee (2T
A= , i (29)
1 37 (3T)° cee (3T
(1 (N =DT [N —-DTF -+ (N =17 ]

and M is the column matrix of moments,

My

AL
(30)

M.

Unfortunately, (25) and (26) are very difficult to evaluate literally
except in the simplest cases. However, they can be evaluated numerically
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by a digital computer. The inverse of the autocorrelation matrix for
wide-sense Markov noise is readily determined to be, in literal form,

1 —« 0 0 0

—a 14 a? —a 0

0 —a 1+ a? —a

1 0 0 —a 1+ a?
P-l=]_a2 . (31)
0

1+ a? —a

L 0 0 —a 1 ]

The principal operation, aside from the matrix multiplications, is the
inversion of the (r + 1) X (r + 1) matrix AP~ 4.

Blackman® has evaluated (25) and (26), assuming that the noise is
wide-sense Markov, for zero predietion time smoothers with p = 0,
r=0and p = 1,r = 1. For the former,

1 .
[m (i=0N—1) |
W;: = i (32)
- a P s PR —
N———(AT_—T)G: (i=12 N 2)
and
o e )

For the latter,

3 (14 90 + 2(N — 2)]
T (N=D{1+2N =DI2+a2(N = 1]+ [1 -7}
(i =0)
6 7 (N —1—25)
w.={ THO-D{I+2(N-DIR2+2(N-DI+0 =71} (34)
(6=12--,N—2)
3 (L + 21 + 2(N — 2)]

TTWN =D+ -DI2+ 2N - D]+ [1— 7}
| (i=N-1)
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and
s L (35)
PN =D+ 2N -DI2+2»(N -]+ [1 -]}’
where
1l —«a ’
T 1+a £69)

These optimum weighting functions and variance ratios have been
plotted in a normalized form in Figs. 5, 6, 7, and 8. The ordinates for
the 1st order, 1st degree smoother are given in terms of the smoothing
interval Ts = (N — 1)T. The curves are plotted for the parameter
B = QTs, which may be thought of as a noise-smoother “bandwidth
ratio.” The asymptotes for the above curves, as N — = (with Ty
and Q fixed ), are derived in Appendix A.

Let us consider the behavior of these curves from a physical view-
point. For wide-sense Markov noise, the noise autocorrelation function
is positive and monotonically decreasing with time. Hence, if the num-
ber of samples smoothed, N, is increased with the smoothing interval

0.85
J) B=10 l B=10
0.180
0175
0170 |— — —
wi 20 20
30 =00 30
o0 30 o0
0.165 20
0.160 =
10
m—-‘—“—*—_‘—"/-’—_‘—/‘—'m—vﬁf‘——L—"——Hﬁ
0 l A_Tv

Fig. 5 — Optimum weighting funetion: 0th arder, 0th degree smoother (T' = 0,
n = 6).
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Fig. 6 — Optimum weighting funetion: 1st order, 1st degree smoother (I' = 0,
n = 0).

Ts and the noise characteristics remaining fixed, the intersample
correlation will inerease. Although each additional sample provided to
the smoother gives additional information, the information added
eventually approaches zero due to the increasing correlation. Now a
smoother can reduce its variance ratio only by obtaining more informa-
tion about the noise or by making better use of the information it
already has. An optimum smoother makes the best use of the informa-
tion available to it. Clonsequently, the variance ratio of an optimum
smoother operating on a signal which includes wide-sense Markov
noise (or any noise whose autocorrelation function is positive and de-
creases monotonically with time) must approach a constant as N in-
creases.

V. CASCADED BIMPLE AVERAGES SMOOTHERS

Cascaded simple averages smoothers are a class of smoothers developed
by R. B. Blackman.! A cascaded simple averages smoother of sth order
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Tig. 7 — Noise variance ratio: optimum Oth order, Oth degree smoother.

approximates an optimum (with respect to white noise) sth order, sth
degree, zero prediction time smoother, It may also be used to approxi-
mate smoothers that have been optimized with respect to wide-sense
Markov noise. The approximation involves using only the values K,
— K, and 0 for the weighting eoefficients, where K is some constant. This
smoothing method reduces the amount of storage and the number of
arithmetic operations required, at the cost of a slight increase in p?
over the optimum method.

The weighting functions of cascaded simple averages smoothers of
Oth, 1st, and 2nd orders are as follows (respectively):

W= = (37)
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Fig. 9 — Weighting function for 1st order cascaded simple averages smoother.

where N is a multiple of 3 in (38) and a multiple of 6 in (39). The weight-
ing funetions for 1st and 2nd order smoothers are plotted in Figs. 9
and 10, respectively.

The variance ratios for Oth, 1st, and 2nd order cascaded simple
averages smoothers for a wide-sense Markov noise input are, respec-
tively:

. 1 N—1 N—1 L.
p= L3S e, (10)
i=0 j=0
\ C45(N — 1) 12 N—1 N—1 i
= | 2T =4 W W; 41
i T | & A sgn sgn Wi e ; (41)
and
\ “36(N _ 1)2—2 N—1 N—1 B =i
v = | e ;} ,Z; sgn Wisgn Wia'"", (42)
where

(-1 (W:<0)
sgn W{ = ‘i 0 (W‘ 0) (43)

Il

1 (W;>0).

By use of the finite difference caleulus, (40), (41), and (42) may be
simplified to
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Fig. 10 — Weighting funetion for 2nd order cascaded simple averages smoother.

2 14 a Za(a:N —-1)
S o Bl ) (44)
" 45\ (N — 1\’
-2 )
- . (45)
{ l+a _ ala" - 2o — o™ 4 2)}
3N(1 — a) [N(1 — a)]? '
and
s 36N (N = 1Y
“:BG?)(JV)
(46)

J l+e ala — 2™ — ™" 4 2™ + 30" — 3)}
3N(1 — a) N(1 — a)]? ?

respectively.

In Figs. 11, 12, and 13, the variance ratios have been plotted in
normalized form for Oth, 1st, and 2nd order cascaded simple averages
weighting functions, respectively. The ordinates are ;.:2, ng,ue, and
Ts'n®, respectively. The curves are plotted for the noise-smoother
“bandwidth ratioc” B = Q7. The asymptotes for the above smoothers
as N — o« (with Ts and Q fixed) are derived in Appendix A. Note that
the expressions simplify appreciably for larger values of B, the expo-
nential terms becoming negligible.

The behavior of these variance ratio curves is somewhat different
from those for the optimum smoother. They do not necessarily decrease
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Fig. 11 — Noise variance ratio: Oth order cascaded simple averages smoother.

monotonically with N, even though they have asymptotes similar to
the optimum curves. This is due to the fact that the smoothers are not
optimum, and therefore the information about the noise is not neces-
sarily utilized in the best manner. Consequently, as N increases, change
in variance ratio may be due to changes in the wtilization of the infor-
mation available as well as changes in the information available, and
the echange eannot be readily predicted.

Note that the curves for all three orders of smoothers (Iigs. 11, 12,
and 13) either have a minimum at some finite value of N or approach
a minimum as N — = . These minima are more or less broad. In specify-
ing a smoother, it is advantageous to choose the lowest value of N for
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which y” is reasonably close to the minimum. Note that the neighborhood
of the minimum variance ratio as a function of N is reached at lower
values of N as B decreases (intersample correlation « increases for
fixed T's). This is reasonable physically, since the value of smoothing
a larger number of samples decreases as these samples become more
highly correlated.

VI. SYNTHESIS OF POLYNOMIAL SMOOTHERS

In general, the polynomial smoothers we have been discussing are
classified by the parameters p, r, T', N, and 7.7 It would be convenient

t The optimum smoother is also classified by the parameter a.
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Fig. 13 — Normalized noise variance ratio: 2nd order caseaded simple averages
smoother.

to be able to synthesize the smoother in ferms of sth order, sth degree,
zero prediction time components, where p < s = ». Note that the com-
ponents are functions of s, N, and 7' only; hence their characteristics
could be specified fairly simply. I'urther, several smoothers with different
parameters p, r, and T but the same N and T' could be synthesized with
common components by weighting these components differently. Iinally,
the above breakdown permits any polynomial smoother of the class
considered in this paper to be econstructed from caseaded simple averages
components. The derivation and procedures discussed in this section are
valid for discrete polynomial smoothers in general and are not restricted
to optimum smoothers or to particular input noise power density spec-
tra.

Consider the linear combination of sth order, sth degree, zero predic-
tion time components shown in Fig. 14. Let W,; represent the value of
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Fig. 14 — Synthesis of pth order, rth degree smoother from sth order, sth degree
components.

the weighting function of the sth component at the sample with age
1T, Let M,, be the gth moment of the weighting function of the sth
component. I'rom Ifig. 14 it will be seen that the “over-all” weighting
funetion W; of the entire smoother is related to the component weighting
funetions by

W,= 2 KW,. (47)
d=p
Now, using (47) and (20),
N—1 r N—-1 r
My=Te Y W, =1T"Y K, 3 i"W.. = > KM,. (48)
=0 i=p =0 i=p

From (24) we obtain
(=1)%! (s = ¢

M, = (49)
0 (s > q).
Substituting (49) in (48) we get
q—1
M,= > KM, + K,(—1)%! (50)
a=p

If the linear combination of components is to be equivalent to the pth
order, rth degree smoother, then (24) must be satisfied. It follows that
we must have
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1 (s =1p)
= i—p s &—1
e " _ DS kM., (p<ssr).
(s = p)! sl u=p

Tt should be noted that a linear combination of optimum components
will not necessarily be optimum unless the outputs of the components
at a common time are uncorrelated.

The synthesis procedure proper consists of finding a smoother or set
of component smoothers which produces the desired output (2) with
the least total error ¢ compatible with a simple implementation. In the
case of recursive smoothers, stability must be considered; the latter
topic is adequately covered in standard texts on control theory.” The
total error e is given by

(51)

e = [oc + e], (52)
where er is the truncation error
er = B? (a7 +T) — B™ (T 4 I). (53)

Alternatively, using (21), we may write (53) as
N-1
er = R (nT + 1) — Y, WiR[(n — i)T). (54)
1=0

Synthesis involves the choice of type of filter (optimum, cascaded
simple averages, ete.) and the selection of 7, N and T'. For convenience,
the parameters will be selected in the alternate form r, N, and 7, .

The selection of r iz based on the requirement that » = p and the
direction of change in e as r increases. Now o’ increases and e decreases
(in general) with increasing r. The rate of increase of ac with r is such
that smoothers with » > 2 are seldom used in practice.

The selection of N and T, will be a trial-and-error process based on
achieving a near minimum in e while keeping N as small as possible
(for simpler implementation). In the case of a set of components, each
component may have a different value of T, provided the values of T'
are the same. Figs. 7, 8, 11, 12, and 13 will be useful in calculating oc”.
When caleulating the over-all output noise of a set of component smooth-
ers, it will be useful to know that the noise outputs of Oth, 1st, and 2nd
order cascaded simple averages smoothers are all mutually uncorre-
lated, though this is not true for all orders."

The problems involved in estimating truncation error have heen
discussed by Hamming" in some detail. We will make the simplifying
assumption that the truncation error er of an rth degree smoother may
be approximated by using (54) with R(t) considered as an (r 4+ 1)th
degree polynomial. Thus R(¢) may be expressed
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R(t) = 2, — nT)" (55)

=0

Substituting (55) into (54), and using (22) and (26), we obtain

r—p+1
_I‘j_ — =1 M:{ (56)
(r—p+ 1! (r+ 1)!

Blackman" has calculated the (r + 1)th moments of Oth, 1st, and
2nd order cascaded simple averages smoothers as 37, , —T,, and 37T,
respectively. Hence, the truncation errors for these smoothers may be
calculated from (56) as :T,R“ (nT).

r+1 R(q)(nT) (t
!

o = R(r+1) (TbT) [

VII. GENERATION OF DISCRETE WIDE-SENSE MARKOV NOISE FOR SIMU-
LATION

It is frequently desired to simulate the performance of discrete smooth-
ing filters and perhaps larger discrete systems of which they may be a
part. Standard techniques are available for simulating discrete white
noise by generation of a sequence of uncorrelated pseudo-random num-
bers. 1213 It is relatively easy to generate discrete wide-sense Markov
noise from such a sequence, due to the simple correlation structure of
the wide-sense Markov process. The foregoing is another advantage in
using the wide-sense Markov model to represent correlated noise.

Let {¥,) be the desired discrete wide-sense Markov noise and {X,}
be a sequence of uncorrelated random numbers of zero mean and unit
variance. Then ¥, may be generated as

Y, = oX,, (57)
Y,=a¥Y,4 + V11— a®X,, (n > 1), (58)

where &° is the variance and o the intersample correlation of the wide-
sense Markov noise,

Since ¥, is in effect a linear combination of the X, _;, 7 =0, ---,
n — 1, it follows that if the X,_; are jointly Gaussian, then the Y, are
jointly Gaussian.

VIII. DISCRETE SMOOTHING FILTERS BASED ON A MODEL USING A LINEAR
COMBINATION OF WIDE-SENSE MARKOV PROCESSES

In some cases the simple wide-sense Markov noise model may not be
a sufficiently accurate representation of a physical noise process. A
better model may be obtained by approximating the known or assumed
noise process by a linear combination of wide-sense Markov noise proc-
esses. We may approximate the autocorrelation funetion by wide-sense
Markov autocorrelation functions, or, equivalently, we may approxi-
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mate the normalized power density spectrum by wide-sense Markov
normalized power density spectra. For the purpose of making the pre-
ceding approximations, we can work with the process as though it were
continuous, later introducing the sampling operation. In a parallel to
the use of Fourier series to analyze the behavior of a complicated wave-
form in a linear system, the wide-sense Markov autocorrelation fune-
tions may be used to analyze the behavior of a complicated correlated
random noise process in a linear discrete system, by applying the prin-
ciple of superposition. It is possible to synthesize discrete smoothers
using this more complex model.

Further, discrete random noise of arbitrary power density spectrum
may be generated in an approximate manner for simulation purposes by
a suitable linear combination of wide-sense Markov noise components. In
the preceding applications, the use of the wide-sense Markov noise com-
ponents is simpler and more efficient than use of the actual noise process.

There are two types of approximations that can be made. One is a
cut-and-try type of approximation in which one tries various linear
combinations of wide-sense Markov noise components with the band-
widths of the components not necessarily being integral multiples of
some fundamental bandwidth. The other approach is to use a linear com-
bination of orthonormal funetions of wide-sense Markov components. In
the latter approach, the bandwidths of the components are integral
multiples of a fundamental component. In either case, we may write

@) = Q;:l.,em(—ﬂvlfl) (59)
or

z 29,
S() = 2 dvgrro.

Note that the sum of the coefficients A, must be equal to 1. In the ortho-
normal approximation,

(60)

Q, = vQ (61)

and the A, will have a definite form. This is shown in the following sec-
tion.

8.1 Orthonormal Approrimation

Laning and Battin'* and Lee" have developed orthonormal approxi-
mations for an arbitrary autocorrelation function and an arbitrary
normalized power density spectrum. These approximations are in terms
of components which will be recognized as wide-sense Markov auto-
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TaBLE I — VALUES oF COEFFICIENTS Cky

k Cri | Ck2 ’ Cia | Ciy Cis
1 1

2 2 -3

3 3 —-12 10

4 4 —30 60 — 35

5 5 —60 210 —280 126

correlation functions and normalized power spectra, respectively. We
shall develop the approximation in somewhat different form.
The set of functions

k
b(7) = Zl e VEQexp (=22 7|) (62)

can be made orthonormal on the interval —e < 7 < = by proper
choice of the coefficients ¢z, . These coefficients are listed in Table 1
for values of k& up to 5.

These functions may be used to form an orthogonal expansion of any
piecewise continuous even function ( and hence any piecewise continuous
autocorrelation function) on the interval —w < 7 < «. We may write

‘13(1") = gakfbk(r), (63)
where
e — [: B(r)e(r) dr. (64)

If we take z terms of the series expansion and denote the corresponding
partial sum &(7), we may group terms to obtain

z

B(r)~d(r) = EIA.,exp (=] 7)), (65)
where
_"l.. = kz Chy ’\/k_ﬂ (66)

The coefficients A, for z =
a. = 0for k > 2)

Av = Va[m +2v2 @+ 3V3a + V4 a + 5V5 a), (67)
A = =3V [V2a + V3 a + 10vV3a + 20vV5 4],  (68)

are given by (note that if z < 5, then

i §
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Ay = 10V [VB as + 674 as + 215 ag), (69)
Ay = =35V [V a, + 8V 5 ad, (70)
A = 1264/2 [V/5 as]. (71)
Now let Si(w) be the Fourier transform of ®.(7).
Then
&M"Z“V‘ﬁ%?‘ (72)

It can be shown, using Parseval’s theorem, that the set of functions
{(1/4/27)Sk(w)} is orthonormal on the interval —® < w < =. Hence
we may expand any piecewise continuous even funection (and thus any
piecewise continuous normalized power density spectrum) on this
interval. We may write

Slw) = ?;aksk(m), (73)
where
iy = %r f_ : S(w)Se(w) de. (74)

From Parseval’s theorem it will be seen that the a; in (74) are the same
as those in (G4). If we take z terms of the series expansion and denote
the corresponding partial sum S{w), we may group terms as before
to obtain

20Q
0) + o?’

where the 4, are given by (67) through (71). Note that (65) and (75)
form a Fourier transform pair. Thus, if we have approximated a noise
process in terms of normalized power density speectra or autocorrelation
funetions, the alternative approximation can be immediately obtained.
The quantity »Q represents the half-power point for each wide-sense
Markov component.

Simple rules for the selection of © for a particular expansion cannot be
established; it is a matter of judgment and perhaps trial and error. The
fact that it is the half-power point of the fundamental component of the
approximation may be of some help. Also, note that as r — =, (7)) —
Ay exp (—Q|r|). We might choose © that &(+) and ®(r) approach
zero at the same rate. However, matching autocorrelation funetions by
means of their tails is not necessarily a desirable approach.

MMNMM—ZA (75)
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8.2 System Analysis and Synthesis

The noise variance ratio of a linear discrete system for which the
input noise autocorrelation function has been approximated by a linear
combination of wide-sense Markov autocorrelation functions may be
obtained by substituting (59) in (5). We have

N—1 N—1 =
W= Zu Z;] 2; WW;A,exp (—Q,T |1 —j|). (76)
1=0 j=0 v=
Now let
a, = exp (—Q,7). (77)
Then

v=1 i=0 j=0

2=3 A“[NZ—:] 3 W;W;a“‘“]. (78)

The expression in brackets represents the noise variance ratio of the
linear discrete system when the vth wide-sense Markov component of
the noise is the input. Thus, it is clear that the principle of superposi-
tion can be used to find the total noise variance ratio. Figs. 7, 8, 11, 12,
and 13 may be applied to the wide-sense Markov components individu-
ally.

Use of the linear combination noise model will not be profitable in
determining the optimum smoother of a class. There is a matrix inver-
sion required [refer to (25)] which is more easily performed directly
with the actual autocorrelation matrix. One should keep in mind that
the noise variance ratio of a digital smoother is relatively insensitive to
departures of the weighting function from the optimum. Hence a
smoother optimized for the simple wide-sense Markov model may be
satisfactory.

The synthesis of a polynomial smoother based on the linear combina-
tion noise model follows the method of Section VI, except that calcula-
tion of e is somewhat more difficult, since o.° must be calculated using
(78) and the relevant plots. It should be noted that the estimate of e,
may not be sufficiently accurate to justify the use of the linear combina-
tion noise model. One should consider whether or not the simple wide-
sense Markov model might be satisfactory.

8.3 Noise Generation for Simulation

Discrete stationary random noise of arbitrary autocorrelation fune-
tion ®(7) and variance ¢° may be approximately generated as a linear
combination of independent, wide-sense Markov components. Let
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2: represent, the 7th sample of the approximating linear combination
Z; = Z bt.Ym' 3 (79)
r=1

where Y,; is the 7th sample of the »th wide-sense Markov component.
This vth component is generated (refer to Section VII) as

le = le; (80)
Y...‘ = a..Y.,,.'ﬁl + ‘\/1 = a,,”X,,,-, (T» = 1). (81)

Care must be taken that the normalized uncorrelated random numbers
X,; are generated in z similar but mutually uncorrelated sequences
(X0, [ X, ..., [ XL} to ensure that the sequences | Vi, [Yad, ...,
{ Y.} are mutually uncorrelated. Note that each Y,; will have zero mean
and unit variance.

To evaluate the coefficients b,, approximate the autocorrelation
function of the arbitrary random noise process by a linear combination
of wide-sense Markov components. Thus, from (59) and (77) we obtain

d(|i—j|T)rd(|i—j|T) =X A, (82)
=1
Now since the Z process is stationary
-Z [).,E cov (Yﬂ' s I"ﬂj)

Cov (Zi,Zj) _ =L
var (Z;) a?

e(|e—7|T) =
(83)

z

E b,ﬂa,l i—j|

v=1

o’

We have set var (Z;) = o sinee the arbitrary process and its approxi-
mation must be matehed in variance. Now, equating terms of (82) and

(83), we obtain
b, = oV A,. (84)
Thus,

Z‘.' = I’IZ \/-A_o }’ri . (85)
v=1

IX. GLOSSARY OF SYMBOLS

A, = Coefficient in approximation of power density speetrum or
autocorrelation function by linear combination of wide-sense
Markov components
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B = Q7T = noise-smoother bandwidth ratio for fundamental wide-
sense Markov component

¢ = output signal of smoother

E = expected value operator = [ dr

S = dF = probability density function

M = matrix of moments of weighting coefficients

N-1
M, = 2, 'T"W, = gth moment of weighting function

=0

n = present sample
= number of samples operated on by nonrecursive discrete
smoother
P = order of smoother

r = autocorrelation matrix

7 = degree of smoother

R = total input signal to smoother

R._; = total input signal evaluated at ¢t = (m — 2)T

B = desired component of input signal to smoother

R™ = pth derivative of desired component of input signal

R = polynomial approximation to desired component of input signal
i = noise component of input signal

S(w) = power density spectrum (normalized sense,

2l f Slw) dw = 1) ; Fourier transform of (7).
W Y-

t,7 = time variables (seconds)
T = sampling interval (seconds)
Ts = smoothing interval (seconds)

W; = weighting function of digital filter evaluated at { = T
X(t) = white noise process

Y (t) = wide-sense Markov noise process

Z(t) = general noise process

Z(t) = approximation to general noise process

a = exp(—QT) = intersample correlation for fundamental wide-
sense Markov component
ay, = exp(—Q,T) = intersample correlation for wsth wide-sense

Markov component
prediction time

!
I
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€ = total output error of smoother

€r = truncation error

m = o¢/or = output-input standard deviation ratio

¢ = noise variance

oce = output noise variance

oz = input noise variance

®(7) = autocorrelation function

w = angular frequency variable (radians/sec)

Q = bandwidth of fundamental wide-sense Markov power density
spectrum (radians/sec)

Q, = bandwidth of vth wide-sense Markov power density spectrum

component (radians/sec)
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APPENDIX

Asymaplolic Behavior of Smoothers

We will consider the behavior of u* as N — = with @ and T fixed.
We shall first find the limits of two expressions which will be needed in
finding the limits of the larger noise variance ratio expressions:

lim """ = lim exp [~QT(aN + b)] = lim exp [—Q—TS(QN : b)]

N T e
4]
=1 __B(aN + b)] B _
— L}_Ibg EKDI: —~N =1 |~ exp ( [LB)’
lim N(1 — «) = lim 1 —exp [I/i{(N —1)]
Norco N—-m (87)

— lm N*Bexp [—B/(N — 1)] _

B.
N (N — 1)
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A.1 Oplimum Smoother—O0th Order, Oth Degree
We have, using (33)

1+« 1+« 2

li 2 _fpn. A2V E T - .
lim = lim oo = lm = = g (89
A.2 Optimum Smoother—1st Order, 1st Degree
We have, using (35) and (36):
; . 12(1 + a)IN(1 — @) — 1 4+ al
1 =1
lim Tep = M0 g T %N — @) ¥ 1 + 3a] + 2= -
_ 24B _ 24B
T (B+2)B+4H+4 B +6B+12
A.3 Zeroth Order Cascaded Stmple Averages Smoother
Using (44) we have
. T 1+ a 2a(a” — l)}
S = {N(l — o TINAd = P
(90)
—2 4 2 (exp(=B) — 11 = 2 [exp (—B) + B — 1]
_B+BEBXP =B Xp .
A4 First Order Cascaded Simple Averages Smoother
We have, using (45),
2
lim Tl® = lim 2(45)* (N = 1)
N—a N+ N
{ l1+a ala” — 2™ — o™ 4 2)}
3N(1 — o) [N(1 — a)]?
( (91)

4_;-_;’ {—exp (—B) + 2 exp (—2B/3)

+ exp (—B/3) —|—§B —2}.

A.5 Second Order Cascaded Stmple Averages Smoather
Using (46) we have
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4

N-»oo N—x SN(I - O!)
+ a(aN _ 2(!5”!6 _ aENfﬂ + 2(!”’2 + SaN.'a _ 3)}
(N1 — a)?
5 (92)
= 2%2"’ {exp (—B) — 2exp (—5B/6) — exp (—2B/3)

+ 2exp (—B/2) + 3 exp —B/3) +%B ——3}.
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Command Guidance of Telstar
Launch Vehicle

By M. J. EVANS, G. H. MYERS and J. W. TIMKO
(Manuseript received March 22, 1963)

The Telstar I salellite was launched into orbit by a three-stage Delta launch
vehicle guided by the Bell Telephone Laboratories command guidance
system. The Delta program is a National Aeronautics and Space Adminis-
Ilralion sponsored series of missile flights designed to place various scientific
payloads into orbit around the earth. This paper discusses the theory of the
guidance equations employed by the command guidance system in the Della
program.

I. INTRODUCTION

The Telstar I satellite was launched into orbit by a three-stage Delta
vehicle on July 10, 1962, at the Atlantic Missile Range. The Bell Tele-
phone Laboratories command guidance system, developed for the Air
TForce, was employed to guide the Delta vehicle. The guidance system is
shown in Fig. 1. The missile-borne equipment, housed in the second stage
of the Delta vehicle, serves as a radar beacon to provide return pulses
to the tracking radar and as the receiving portion of the command data
link between the ground and the missile. The tracking radar functions
as the transmitting portion of the data link and also serves as a sensor
to determine the slant range, azimuth angle, and elevation angle of the
missile during its flight. The precision tracking radar and the missile-
borne guidance package were manufactured by the Western Electric
Co. The guidance computer was designed and manufactured by the
Univae Division of the Sperry Rand Corporation.

The three-stage Delta missile, designed by the Douglas Aireraft Com-
pany, consists of two liquid propellant stages and a solid propellant
third stage. The powered flight portion of the Telstar satellite trajectory
is shown in Fig. 2. The guidance system transmits corrective pitch and
yaw steering commands during first- and second-stage powered flight.
Second-stage engine cutoff is ordered by the guidance system when the
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STAGE I STAGE I STAGE II STAGE II
ENGINE CUTOFF  ENGINE CUTOFF ENGINE BURNOUT
\\ s BAL IGNITION
_____ - LI
\ - STIC Coasy pHASE N

Fig. 2 — Telstar I trajectory.

position and velocity of the missile are such that the addition of the third
stage veloeity impulse at the end of the ballistic coast phase would yield
the desired orbit. The unguided third stage is spin-stabilized to maintain
attitude control. For the Telstar satellite trajectory, the third-stage
velocity impulse was added at the perigee of the final orbit after a bal-
listic coast phase of approximately 600 seconds between second-stage
cutoff and third-stage ignition. The Telstar satellite was separated from
the third stage 120 seconds after third-stage burnout.

The guidance system steering and cutoff commands during the first
and second stage ascent are calculated in the guidance computer, using
the radar tracking data of the missile’s position as the basie input infor-
mation. The computer is programmed with a set of guidance equations
that process the radar data and compute the desired commands to the
missile.

This paper contains a deseription of the theory and design of the
guidance equations used in the Telstar satellite flight. Guidance concepts
are presented from the point of view of orbital mechanies and eontrol,
followed by a deseription of first- and second-stage guidance. The last
section summarizes the results achieved in the Telstar satellite flight,

II. GUIDANCE CONCEPTS

The Keplerian motion of an earth satellite is completely defined by
the specification of the vector position and velocity at an epoch. The
satellite coordinates at insertion into orbit can be expressed in terms of
the spherical coordinate system of I'ig. 3 as follows: V5, v;, and 3; are
are the magnitude, the elevation angle above the local horizontal, and
the azimuth from North, respectively, of the velocity vector; Rs, A;,
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Fig. 3 — Insertion coordinates.

and ¢; are the radial distance from the earth’s center, the longitude,
and geocentric latitude, respectively. The elements of the ellipse, 1.e.,
apogee and perigee distances, are determined by V3, Rs, and v; . The
orientation of the ellipse relative to the earth in terms of inclination,
argument of perigee, and longitude of the ascending node depends, in
general, on all the insertion eoordinates. It would be necessary to control
all six coordinates of the satellite as well as the time of insertion to
achieve a specified orbit in inertial space. For earth satellites the re-
quirements on the insertion time are usually not stringent and are largely
determined by launch time variations. The problem of guidance thus
consists of achieving a specified set of six insertion coordinates.
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In the case of the Telstar satellite trajectory, the unguided third
stage ignites at a predetermined time on the transfer ellipse following
the completion of guidance at second-stage cutoff. Since the charac-
teristics of the third stage are known, fixed relations exist between the
insertion coordinates and the coordinates of the missile at second-stage
cutoff. The transfer ellipse is defined by the position and velocity vectors,
R; and V: , respectively, of the missile at second-stage cutoff. The direc-
tion of the velocity impulse added by the third stage is determined by
the attitude of the missile’s roll axis (axis of thrust application) at
second stage cutoff. 1f we define g, as a unit vector lying along the roll
axis of the missile, the eight independent coordinates of the missile at
second-stage cutoff uniquely determine the six insertion coordinates.
That is,

Fv2rR2,92}_>{173}73183,123’)3)‘@!]' (1)

Also the six insertion coordinates specify any six of the cutofi coordi-
nates in terms of the remaining two.

During the first and second stages, guidance of the missile is limited to
steering in the pitch and yaw planes and cutting off the second-stage
rocket engine. The missile is constrained to fly a predetermined tra-
jectory by pitch and yaw steering during first and second stage. This
trajectory, if followed exactly, would yield the coordinates at second-
stage cutoff that would produce the desired orbit. However, propulsion
system variations, deviations in the attitude control system, and radar
noise cause dispersions in the cutoff coordinates from the expected
values.

As discussed in Section IV, |V.| and g2 can be controlled directly at
cutoff to provide direct control over three of the insertion coordinates.
Control of |Va| by cutoff of the rocket engine provides the most sensitive
control of V3. The two coordinates defining p. are controlled by pitch
and yaw steering. Steering could be based on deviations of position,
veloeity, or attitude coordinates from the desired reference trajectory.
The selection of the coordinates to be controlled by steering is deter-
mined by the steering system design, which is based on minimizing the
errors in the insertion coordinates. As demonstrated in Section 4.2,
control of the pitch and yaw attitude angle, i.e., control of g,, affords
the best control over insertion coordinates.

For the Telstar satellite trajectory, |V.| and p; were used to constrain
Vi, 3, and By at insertion to provide the desired apogee altitude and
inclination. The other orbital elements were effectively controlled by
steering the missile to the desired reference trajectory during the first-
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and second-stage powered flight. The equations relating [Vi| and g»
to the desired orbital conditions, and the equations for pitch and yaw
steering derived from the reference trajectory, were programmed into
the guidance computer. The targeting task for the Telstar satellite
mission was to determine the numerical coefficients for the equations
used in first- and second-stage guidance.

1I1. FIRST-STAGE GUIDANCE

The missile’s position as tracked by the radar in slant range, azimuth,
and elevation angle is converted to the earth-fixed Cartesian frame
shown in Fig. 4. The angle 4, is selected such that the Y-Z plane is
approximately parallel to the pitch plane of the missile and the X axis
lies in the yaw plane. The angle E, is determined by passing the ¥ axis
through the expected position of the missile at second-stage cutoff.

From approximately 90 seconds after lift-off, pitch and yaw steering
orders are transmitted to the missile. Yaw steering is based upon devia-
tions in the X velocity from a reference polynomial in Y. The poly-
nomial is selected to match the desired X component of velocity, which
is a function of the launch azimuth, the pitch and yaw programmed

ra

X

S ——

VERTICAL

LOCATION

HORIZONTAL
TANGENT
PLANE

Fig. 4 — Computational coordinate system (X axis is in the horizontal plane;
¥ axis is at azimuth angle A, from true north and at elevation angle E, above
horizontal plane; Z axis is perpendicular to X and ¥ axes, completing the right-
hand Cartesian coordinate system).
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rates in the missile, and the performance of the propulsion system. In a
similar manner, pitch steering commands are based on deviations of Z
from the reference velocity. The steering orders sent to the missile are
related to the error signals in a way that balances loop response to
missile autopilot errors, propulsion system dispersions, and radar
tracking noise. The steering commands are transmitted to the missile
via the radar data link at the pulse repetition rate of the radar.

IV. SECOND-STAGE GUIDANCE

4.1 Second-Stage Culoff

In this section the methods used for determining the required coor-
dinates at cutoff will be derived. Since the Telstar satellite was inserted
into orbit at perigee, control of apogee distance (r,) and inclination (7)
required that the following relations be satisfied.

Vo= 4/ 1’24‘1-‘{"/1%_-“ (2a)
vs =0 (2b)
By = sin™ (cos i/cos ¢s). (2¢)
As discussed in Section IT, we can write
ar =fx (Va,Ra, 02), K=1t06 (3)

where ag represents any one of the six insertion coordinates. The six
vector functions of (3) depend only on the transfer ellipse and the
characteristics of the third stage. If V., R., and . are expressed in
terms of the coordinate system of Fig. 4, (3) can be expanded in a
Taylor series about the expected cutoff coordinates. Linearity studies
on the variations in the cutoff coordinates indicate that only the first-
order terms in the expansion are significant. Equation (3) simplifies to
the form

8

g — Qag, = — g%’: (C:' = Cio) (4)
where C; for ¢ = 1 to 8 represents the 8 cutoff coordinates. The partial
derivatives in (4) are obtained by perturbing cutoff coordinates and
integrating numerically in a digital computer through third-stage burn-
out to determine the incremental changes in the insertion coordinates.
Equation (2) can also be approximated by the first-order terms of a
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Taylor expansion and combined with (4), giving three linear equations
which can be concisely expressed by the single vector equation below.

A (Vy — Vi) + As(R — Ry,) + As(o: — p2,) = 0. (5)

Ay, As, and A; are 3 X 3 matrices whose (constant) elements are
defined by the partial derivatives used in (4) and the expansion of (2).
Equation (5) can be solved for any three of the cutoff coordinates as a
function of the remaining five. The three coordinates selected are
| Vo |, the magnitude of the velocity vector at second-stage cutoff, and
the unit vector g» as defined by the pitch and yaw Euler angles, 6; and
s . The missile is cut off when the measured |V, | satisfies (5). The
attitude constraints on p, are met by comparing the values of 6; and y»
required for the solution of (5) with measured values and command-
ing the missile to turn by the differences.

4.2 Steering System Design

It was shown in the previous section that if orbital elements are to be
controlled, the relationships of (5) must be satisfied at second-stage
cutoff. Design of the steering system is based not on minimizing the
dispersions of the individual variables, R,, Vz, and g, at the end of
second stage, but rather on minimizing the orbital errors which are
caused by errors in these variables.

The pitch and yaw steering system design consists of finding a steering
transfer funetion which minimizes insertion errors due to radar tracking
noise and missile dispersions. Missile dispersions include propulsion
system variations and errors in the attitude control system of the
missile.

4.2.1 Steering System

A block diagram of the pitch steering system is shown in Fig. 5. A
similar diagram could be drawn for yaw steering.

The computer, operating on the radar data, obtains its measure of
the vehicle position in the Z direction, Z.. After steering has started,
the measured trajectory variables are compared with a reference tra-
jectory and corrective pitch turning rates, §,, are sent to the missile.
The piteh rate programmed in the missile, 6,, and the ordered turning
rates are the inputs to the autopilot’s reference integrating gyro. The
function of the autopilot is to align the direction of the acceleration
vector, 6, with the desired attitude, as indicated by the gyro output, &, .

If the missile’s roll axis is aligned with the ¥ axis of Fig. 4, a small
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Tig. 5 — Piteh steering system (a is the missile thrust acceleration; é,, is the
programmed turning rate; Ej, is the error in the programmed rate; £y is the error
in the thrust vector direction; £ is the radar error in measuring the position Z;
Z . ig the computer’s measurement of Z; and 6, is the guidance ordered turning rate).

change in pitch attitude, 8, multiplied by the thrust acceleration, a, is
the change in Z-direction acceleration, Z. Two integrations, represented
by their Laplace notation in I'ig. 5, then give the vehicle position, Z.

Some of the missile error sources are gyro input errors, propulsion
system errors, and misalignments between the direction of the vehicle
acceleration, 8, and the reference attitude, 6, . The gyro input errors are
caused by errors in the programmed rate and by eleetrical or mechanical
unbalances. Because the reference trajectory is determined by the pro-
grammed turning rates and the expected performance of the propulsion
system, propulsion system variations can be replaced in the block dia-
gram by equivalent programmed rate errors. All of the attitude errors,
including the integrated rate errors, are caused by slowly varying dis-
turbances.

The radar noise error in Z, Ez , is the product of the elevation angle
error and the distance from the radar to the missile. The radar noise
power spectrum has most of its energy at frequencies higher than those
encountered in the missile attitude disturbances—a fact important in
the steering loop optimization.
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Fig. 6 — Simplified steering loop.
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Fig. 7 — Velocity errors.

4.2.2 Steering Loop Optimization

In Fig. 6, the programmed pitch rate and the reference trajectory it
deseribes have been removed from the steering loop. All of the missile
dispersions are combined in a single attitude error source, fy . With the
reference trajectory removed, 6, Z, Z, and Z represent dispersions about
the reference values. The quantity to be minimized by steering may be a
linear combination of some of the above variables, as will now be shown.

Fig. 7 shows the effect of 6 and Z on the total insertion velocity vector
of the Delta missile with its unguided third stage (assuming 6 is small)
to be

€ = Z + Vlnﬂ. (6)

The 0 subseript in Fig. 7 indicates reference values, and Vi is the mag-
nitude of the velocity increment of the third stage. In complex frequency
notation

o(s) = 3(1 4 i) 6(s) = 6(s) Yo @)

where w; = a/Viy, and in general Y, p is the transfer funetion from b to
a. The total error in terms of the attitude and noise errors can be ex-
pressed as

e(s) = Ve, Bz + ( o8+ aY‘mz) Fy. (8)
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The total variance of the error, ¢.°, is the integral over all frequencies
of the power spectrum of the error signal. The optimization problem is
to determine the transfer function, Y g, , (whichin turn determines the
steering equation, Y, , Fig. 6) that minimizes o.”. The fact that the
spectral density of the attitude errors is concentrated at very low fre-
quencies while the radar error power contains higher frequency com-
ponents suggests that the error may be minimized by a frequency-
selective steering equation.

The attitude errors can be approximated by a Markov power spec-
trum, having a low eutoff frequency,

2 2
Pry(w) = 35—, (9)

where wy is very small. Using techniques deseribed by Bode and Shannon’
for minimizing the mean squared error, the optimum steering equation

is:
- 1
— 8 [1_-{- (ZTH- —-)s:l
YL = 2 3 (10)
2T2+2I‘+(T3_[_2T) +182
wa w2 w2
where
— 2 /6
m Z
r (E— I wg) . (11)

Tor the Delta second stage, 1/w» equals Viy/a. If typical numbers
for Vi, a,and T are inserted, then 1/w. 3> T, whichleads to the approxi-
mation:

2

—_

2
2T(1—|—Ts+%s’3)'

yLn = (12)

The two differentiations of the position data indicated in (12), together
with the division by a, Fig. 6, convert the position data to attitude data
which is in turn smoothed to give the ordered turning rates.

In the guidance equations the pitch and yaw attitude of the missile
is determined by operating on the position data of the missile. The
total acceleration of the missile is computed by taking second differences
of the position data expressed in the coordinate system of Fig. 4.
Gravity, Coriolis and eentripetal accelerations are subtracted from the
total acceleration to obtain the thrust component of acceleration. Since
the thrust acceleration vector is aligned with the missile’s roll axis and
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the missile is roll stabilized, the pitch and yaw attitude angles can be
computed. These are compared with the desired values to obtain pitch
and yaw attitude errors. The desired attitude angles are computed
from polynomials in time designed to match the programmed rates
built into the missile’s attitude control system.

In this paper, all transfer functions have been given in continuous
form (as functions of s), although the transfer functions are actually
converted to digital form (functions of z = ¢*7) before being programmed
into the digital computer. This conversion does not significantly change
any of the relations given here, because the frequency ranges important
in the above equations are much less than half of the sampling frequency.

4.2.3 Accuracy Improvement by Final Value Conirol

Equation (12) is the optimum steering equation for minimizing the
mean squared error. However, the injection errors are functions of the
error at one instant of time, second-stage cutoff. Examination of the
system’s response suggests means of improving the steering design.

The slowly varying attitude disturbances represented by a Markov
distribution may also be represented by initial attitude and velocity
errors and a constant gyro drift. The system’s response to these errors,
derived from (12), is shown in Fig. 8 as a function of time normalized
with respect to the steering parameter 7.

Since the Delta design is not restricted to a continuous control system,
velocity errors at second-stage cutoff in excess of those obtained with
the optimum continuous design can be allowed. These velocity dis-
persions can be measured and used to aim the third stage in accordance
with (5). The velocity errors shown in I'ig. 8 are either constant or
linearly inereasing with time and can be measured by filtering the posi-
tion data. The steady-state attitude error response to gyro drift is a
constant. If gyro drift is a major attitude error source, continuous closed
loop control of attitude may also be relaxed, and the constant attitude
error can be measured with a polynomial filter.? The errors ean be
corrected just prior to cutoff by turning the missile. The reason for
relaxing the attitude and velocity dynamic control [making 7' greater
than the “optimum” value in (11)] is that doing so decreases the atti-
tude error caused by the effect of radar noise on the steering system.

The outputs of the attitude and velocity filters used to measure the
dynamic residuals also have errors caused by the tracking noise. These
decrease as the filter length, T, is increased. Since the attitude error
signals involve second derivatives of tracking data, the attitude filters
require long smoothing times. However, if the filters are started too
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early in the second stage, they are subject to increased dynamic error
because the steering system has not yet settled to the steady state
(I"ig. 8). Thus, optimum filter design is dependent on the steering
parameter 7',

For the Delta missile, the eritical design eriterion was that of attitude
control. That is, for a system with optimum attitude control, the opti-
mum velocity filter has negligible error, and the measured dispersions
can be used as a basis for an attitude correction (aiming the third stage).

I'or given dynamic error sources and filter length, the total attitude
error, after correction of the measured error, is the combination of the
filter’s dynamic error and the noise error of the filter plus the steering
noise error, Fig. 9. The steering system’s noise error is a function of 7'
and decreases as T increases. The filter’s noise error is independent of
T but deecreases as the filter length, T , increases. The filter’s dynamic
error is a funetion of both 7's and the transient response of the steering
system as determined by 7. Because the steering and filter noise errors
are highly correlated, they are added together directly and root sum
squared with the filter’s dynamic error. 7" and 7T'r are chosen from I'ig. 9
to minimize the total attitude error.
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In summary, the Delta second-stage guidance equations give closed-
loop control of missile attitude. Relatively large dynamic errors in
velocity and attitude are permitted in order to decrease noise errors,
because the dynamic errors can be measured and corrected. An attitude
order to correct the measured attitude error and compensate for velocity
and position dispersions in accordance with (5) is sent to the missile
shortly before second-stage cutoff.

V. TELSTAR 1 SATELLITE FLIGHT RESULTS

The steering history of the first and second stage of the Telstar I
satellite flight is given in Figs. 10 and 11. The maximum steering orders
during first-stage guidance were 3.8 degrees in pitch and 1.6 degrees in
yaw. Steering in second-stage guidance reached a peak of 0.25 degree in
pitch and 1 degree in yaw. Corrective commands of 0.35 and 0.13 degree
were issued in pitch and yaw, respectively, just prior to second-stage
cutoff. The second-stage engine was cut off at 269.6 seconds from liftoff,
as compared to a preflight value based on average propulsion perform-
ance of 273.3 seconds. The orbital results as determined by NASA are
given in Table T with the preflight reference values.
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TasLE I —OrsrTaL REsULTS
Preflight Reference NASA Minitrack
Altitude

Apogee (nm)

Perigee (nm)
Eceentricity
Period (minutes)
Inclination (degrees)
Argument of perigee (degrees)
Right ascension of ascending

node (degrees)

3000
500
0.2407
156.47
45
166.6
203.6

3044
515
0.242
157.82
44.79
165
204
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Spin Decay, Spin-Precession Damping,
and Spin-Axis Drift of the Telstar
Satellite

By E. Y. YU
(Manuseript received March 6, 1963)

Dynamical problems of the spin-stabilized Telstar satellite, character-
tzed by spin decay, spin-precession damping, and spin-axis drifl, are ana-
lyzed in this paper. Both the eddy-current torques and the magnetic torques,
which cause the above three phenomena, are evaluated. By extrapolation from
the observed dala, the characleristic time of the nearly exponential spin decay
of the satellite is estimated lo be about 330 days. A linear analysis of the
precession damper is made, and the results are compared with experiments,
showing that the satellite precession angle will diminish by a factor of e in a
maximum time of 30 minules. A qualilative descriplion is given lo illustrale
the fundamental mechanism of spin-axis drift. Results of these analyses can
be applied to any spin-stabilized salellite.

I. INTRODUCTION

For spin stabilization of a communications satellite, it is required that
the satellite be statically and dynamieally balanced so as to make the
principal axis of maximum moment of inertia coincide with the axis of
symmetry of the antenna pattern, about which the satellite is given an
initial spin. This principal axis, referred to henceforth as the spin axis, is
in line with the invariant angular momentum vector and is thus fixed in
direction, as desired, in an inertial space, provided there are no external
torques acting on the spinning satellite. However, as the satellite is spin-
ning and traveling in the geomagnetic field, eddy-current and magnetic
torques continuously act on the satellite so that the angular momentum
changes its magnitude and direction, as characterized by spin decay and
spin precession. As a consequence of spin decay, the satellite becomes less
stable for the same external disturbing torques, and a tumbling motion
may eventually result. The precession of the spin axis about the instan-
taneous angular momentum vector will cause wobbling of the antenna

2169
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pattern, indicating that the precession should necessarily be dissipated
by means of a damping mechanism. Because of the continuous action of
the torques, the angular momentum continuously changes its direction
in the inertial space; meanwhile, the spin axis precesses about it and, due
to the precession damping, tends to align with it. Thus, there results a
gradual drift in direction of the spin axis (sometimes called long-term pre-
cession), as already observed on the Telstar satellite.

The above dynamics problems of the satellite — namely, spin decay,
spin-precession damping, and spin-axis drift — are studied in this paper.
In the discussion of spin decay, we will indicate the nature of the retard-
ing torques resulting from eddy currents and magnetic hysteresis losses,
analyze the observed spin decay phenomenon, and compute the 1/¢ char-
acteristic time of the exponential decay. For the spin precession, a linear
analysis of the precession damping mechanism will be given, and an ex-
perimental comparison of the damping time will be outlined. Only a short
descriptive analysis is given to the problem of spin-axis drift, since an
exact evaluation of the rate and pattern of drift deserves a separate com-
puter study.

It is shown in the following that whenever a spinning rigid body under-
goes energy losses (e.g., from internal friction) the axis of maximum
moment of inertia or the spin axis, £, and the angular velocity, o, will
tend to align with the angular momentum, J = @ , where

= Lit + Lgi + L2

(&, §, and # are the unit vectors along the principal axes) is the moment
of inertia dyadie. If I. of the spin axis is the minimum, the spinning mo-
tion is still stable; however, any energy dissipation will not reduce pre-
cession but make the spin axis deviate away from J. A simple proof of
the above is given in the following. The kinetic energy, £, of a spinning
satellite with precession is written as

2F = 0 @ a. (1)

By substituting J] = @« and @ = J-® ' into the above, E can be ex-
pressed in terms of the angular momentum,

J = J(cos £ + cos ni + cos 62),

where cos £, cos 1, and cos @ are the direction cosines of J in the body co-
ordinates

=Jeot]=J0 (— cos’ £+ cos n+—cos 9) (2)



SPIN DECAY 2171

or, as cos’ 8 = (1 — cos’ £ — cos’ 7)

2| 1 1 1 2 1 1 2 }
QE—"[Tﬁ(T,‘E)“’“’”(E ;—)“} @)

If there exists energy dissipation at a rate assumed to be so slow as to
produce no torque on the satellite, the torque-free rigid body motion of
the satellite will tend toward the state of minimum energy. It is observed
from (2) and (3) that the minimum kinetic energy state occurs at
g =0°(ort=n=9°) forI, > I.,I,,orat 8§ = 90° (either { =0
or g = 0) for I. < I., I,. This proves that in order to reduce the pre-
cession angle, 8, by means of energy dissipation, /. of the spin axis should
be the maximum.

1I. SPIN DECAY

Spin decay results from energy losses in the form of both eddy currents
and magnetic hysteresis when the satellite is spinning in the geomagnetic
field. Tt is shown in the following that the hysteresis losses in the magnetic
materials are much smaller than the eddy-current losses in the conducting
materials at high spin rates simply because the geomagnetic field in the
Telstar satellite orbit is relatively weak, ranging from 0.04 to 0.4 oersted.*
Magnetic materials are contained in the nickel-cadmium cells of the
hattery, the magnetic shielding on eircuit components, ete. No measure-
ment of the magnetic hysteresis loops has been made on the components
actually used in the satellite. However, measurements on similar com-
ponents contemplated for use on a proposed satellite prior to the Telstar
satellite have been made, based on which it was estimated (for different
orbit parameters and a different spin-axis attitude from those of the
Telstar satellite) that the time-average hysteresis loss is W = 1.6 ergs
per eycle of rotation. It is believed that the above value can be used
for a conservative estimate of spin-decay rate for the Telstar satellite
because it contains less magnetic materials than had been anticipated.
According to this value of T, the spin decay of the satellite due to hys-
teresis losses alone is only about 1.5 rpm per year.

Eddy currents are generated essentially in the following parts: (a) the
aluminum shell of the electronics chassis, (b) the frames of square magne-
sium tubing and equatorial antennas, and (¢) the magnesium chassis
frame assembly. An estimate of the eddy-current torque can be made if
the electronics chassis is approximated as a thin spherical shell and the

* These figures are based on a spherical harmonie representation of the geo-
magnetie field with Hensen and Cain coefficients for the Epoch, 1960.
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last two items in the above are approximated as circular loops of wire.
The eddy-eurrent torque acting on a thin spherical shell spinning at an
angular velocity o can be shown to be

Ti=pB X (B X o) (4)

where B is the geomagnetic induction and p; = (2x/3)a’s d, with a =
radius, d = thickness, and ¢ = volume conduectivity. The above expres-
sion is correct only when the square of the nondimensional quantity,
tuacwd (p = free-space permeability), is negligibly small compared to
unity, which is found to be true in the present case. The above torque
can be resolved into two components, i.e., the component parallel to o

Tn = —plBJ_zw (5)*

which tends to retard w(B, = component of B normal to ) and the
component normal to ©

TJ_ = plB”BJ_w (6)

which contributes to the precession of the satellite (B; = component of
B parallel to ). In the case of a circular loop, it can be easily shown
that the time-average eddy-current torque, acting on a circular loop
spinning about a diameter, tends only to retard o;i.e.

T, = —p:B.w (7)

where p. = A*/2R’ (A = loop area, R’ = I'/sA, = total resistance of
the loop of wire, A, = cross-sectional area of the wire, I’ = length of the
loop). The above expression is correet only when the square of the non-
dimensional quantity, «L'/R’ (L’ = inductance), is negligibly small
compared to unity, which is found to be the case here. The other com-
ponent normal to w has a zero time-average value.

In general, the eddy-current retarding torque acting on a conducting
body spinning in a magnetic field is proportional to B." and w, or can be
written approximately as

T, = —pB. e (8)

where p is a constant and is determined by the conducting material and
its geometry. Thus, for the Telstar satellite, if the electronics chassis is
approximated as a thin spherical shell (of 9.5-inch radius and 0.1-inch
thickness) and the frames are approximated as circular loops of wire,
then the retarding torque, 7', , acting on the satellite is the sum of 7' in

* This expression is the same as that given in Ref. 1, p. 417, problem 12, after
the square of the nondimensional quantity, juaswd, is neglected.
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(5) and T; in (7) or p = p1 + p». It is calculated that p1 = 684,
pa = 256, or p = 940 meter'/ohm in mks units. This value of p is of
course too low, because many small eonducting parts have not been con-
sidered in the caleulation. From the expressions of p; and p. , one notices
that p. is proportional to the fourth power of the radius of a spherical
shell and p» to the square of the loop area. For this reason, the Telstar
satellite was insulated at the equatorial antennas in such a way that the
outer shell does not constitute a large continuous surface and that the
frames do not form large continuous loops.

The magnitude of p in (8) for the Telstar satellite can be measured by
rotating a magnetic field normal to the spin axis while the angular deflec-
tion of a torsion wire, which suspends the satellite along the spin axis,
is recorded to determine the drag torque. Such an experiment has been
devised by M. S. Glass and D. P. Brady. Measurements made on the
prototype give p = 1355 meter'/ohm =+ 15 per cent. This measured
value is believed to be somewhat high, because the magnetic field applied
in the measurements was as high as 25 to 100 cersteds (at 23.4 rpm) in
order to give significant angular deflection readings of the suspension
wire; thus, the measured drag torque unavoidably includes losses due to
full hysteresis loops deseribed in the magnetic materials. In the actual
case, the magnetic field along the orbit is only 0.04-0.4 oersted, and the
Josses due to minor hysteresis loops are much smaller. Besides, since the
electromagnetic characteristics of the satellite may be different from one
model to another, the value of p measured on the prototype may not be
applied to the Telstar satellite with good accuracy. Nevertheless, it is
believed that the value of p in meter*/ohm is bounded below by 940 and
above by 1560. A later caleulation by extrapolation from the observed
data on the satellite showed that p is approximately equal to 1110. A
further refinement of the evaluation of p might have been obtained from
the instantaneous spin-decay rate which can be determined from the
telemetry solar aspect data. However, as the obtained instantaneous
spin-decay rate was too low to give any significant reading, such an at-
tempt failed to yield any results.

Because of proper functioning of the precession damper, the Telstar
satellite is now spinning nearly about its principal z-axis of maximum
moment of inertia. In this case, B, in (8) can be approximated as the
component of B normal to the z-axis. Obviously, B. is a funetion of time
due to (a) the rotation of the slightly inelined geomagnetic field about
the earth’s spin axis, (b) the anomalies of the geomagnetic field, (¢)
the gradual drift in direction of the satellite spin axis, and (d) the varia-
tion of orbital parameters due to the oblateness of the earth, notably the
apsidal advance and the nodal regression (see Fig. 1). For the same rea-
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sons, the magnetic hysteresis loss per cycle of rotation, W, is also a func-
tion of time. The decay of spin rate due to both eddy-current and hys-
teresis losses can be determined from the following equation

Io = —pB.(Dw — ;_WW(s) (9)

or, upon integration,
t
S (—f (;;/I,)Bﬁ(:)dc)
0
(10)

-[wu — n' F;:f;) exp (fot (p/I.)B.(t) dz) dz},

where wy = w(f = 0). Let us now define day-average values B,? and
W as

]

— 1 [
B’ =7_/; B, (1) dt (11)

and

= :f W(t) exp (fu (p/I.)B2(t) dt) dt. -

f exp (f (p/L)B(1) dt) dt
0 a
Then (10) can be written as

s i W(t) :l —tr _L W(t)
¢ #[ v 27 pB2(t) ‘ 27 pB.A(t)

(13)

where
r = L/pB.X(1). (14)

The time ¢ in (13) is in units of days, and B,2(t) and W(t) are functions
of . Note that if the term W/2xpB.% which is much smaller than wg
in the case of the Telstar satellite, is neglected in (13), the spin decay
is exponential with time with, however, a time-dependent r.

A plot of B,%(t) is given in Fig. 2 from the day of launch (July 10,
1962) up to December 31, 1962. The day-average B,*(f) is obtained by
taking the arithmetic mean of the time-average values of B.” per pass
for approximately nine passes a day. The latter values are computed*

* Computations were provided by J. D. Gabbe.
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Fig. 2 — Spin rate and B_? vs time.

from a spherical harmonic representation of the geomagnetic field, taking
into account the continuous variations of the spin-axis direction and of
the orbital parameters. Because of these combined effects, the variation
of B.? is sinusoidal with time with, however, variable amplitude and
period. The major contribution to this variation is believed to be due
to the apsidal advance in the orbital plane. In order to see this, let us
plot in Fig. 3 the time-average values of B.?> per pass versus the geo-
graphical longitude of the perigee in the beginning of the pass on the
days of July 15, 18 and 21, 1962. The latitudes of the perigee on those
three days were =45° within the geographical equator. It is shown on
these curves that B.? is relatively low when the perigee falls in the region
over South America where the geomagnetic field strength is depressed.
The center of this region falls at approximately 25°S latitude and 45°W
longitude. (See Ref. 2 for details.) Fig. 3 is a typical example, which
shows how the magnitude of B.* depends critically on the position of
perigee, although the variation of B.2?, which also depends on other
factors as previously stated, does not necessarily follow the same pat-
tern as in Fig. 3 when the perigee is in other positions. At any rate,
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the change of position of the perigee is a determining factor for the vari-
ation of the day-average B.? and of the observed* spin-rate curve, as
plotted in Fig. 2. The initial perigee of the Telstar satellite orbit (593
miles in altitude) was north of the geomagnetic equator on the day of
launch, as indicated in Fig. 1. The perigee advances in the direction
of the orbital motion at a rate of approximately 2° per day. When the
perigee was crossing the geomagnetic equator southward in the orbital
plane, B,? first deereased and then increased, as indicated in the initial
part of the B.? curve in Fig. 2. In the ascending part of the curve up
to September 7, 1962, ¢ = 60 days, more spin decay occeurred than would
result from an exponential decay produced by a constant B.? when the
perigee was over the equator. This is why the corresponding part of
the spin-rate plot is nearly a straight line instead of an exponential
decay curve. I'rom { = 60 days to ¢ = 100 days, while the perigee was
advancing northward toward the geomagnetic equator, B.? was level-
ing off and then declining, resulting in an exponential decay as shown
in the part of the spin-rate plot deviating from the extension of the
straight line. From ¢ = 100 days to ¢t = 140 days, the perigee was en-
tering the northern hemisphere, again getting into a stronger geomag-
netic field indicated by the increasing B,% As a result, this part of the
spin-rate curve becomes nearly a straight line again, though of a dif-

* The spin rate of the Telstar satellite was measured by J. 8. Courtney-Pratt
and his coworkers by means of the glint method (see Ref.3 for details). It was
also determined by C. C. Cutler and W. C. Jakes by way of measuring the fre-
;mency of the ripple in the amplitude of the radio signal received from the satel-
ite.
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ferent slope than the first one. Then the spin decay became exponen-
tial again when the perigee was moving southward toward the equator
from ¢ = 140 to ¢t = 190 days. All these indicate that the actual spin-
rate curve would wiggle about 2 mean exponential curve as shown in
Fig. 2. Note from Fig. 2 that B,? is lower when the perigee is in the
southern hemisphere. This is due to the zone of depressed geomagnetic
field strength previously mentioned. It is believed that, as the perigee
keeps advancing in the orbital direetion, B,2(i¢) will continue to vary
sinusoidally with time. Nevertheless, complete values of B,? cannot be
predicted for the entire useful life of the satellite because the spin axis
changes its direction continuously because of perturbation of the elec-
tromagnetic torques as well as occasional operation of the torque coil, *
and because variation of the orbital parameters cannot be predicted
accurately. Therefore, exact evaluation of the 1/e characteristic time of
the nearly exponential spin decay cannot be obtained. Nevertheless, it
may be approximately evaluated as follows.

First, let us determine the value of p of the Telstar satellite from the
observed spin-deeay rate in the first 35 days, which is practically linear
with time, with w, = 18.67 rad/sec (178.33 rpm) att = 0 and w = 16.9
rad/sec (161.2 rpm) at ¢ = 35 days. Let us take B,? and W as constants
in (13) and, as /7 is small, we may expand exp ( —{/7) up to the first-
order term in ¢/

~a(1-PBE)_ LW

w R wo (1 T, t) o T t.

Substituting into the above with w = 16.9, w, = 18.67 rad/sec, I. =
561 kg-m®, W = 1.6 X 107" joules, and ¢ = 35 days = 3.024 X 10°
sec, we find that

pB.? = 1.748 X 107" weber’/ohm.

If we take B.? to be 1.572 X 107" weber’/meter, then p = 1110 meter*/
ohm. Now, we note from Fig. 2 that B.2 varies between 0.0154 and 0.0190
gauss”. If we take the average value of B.Z for the entire useful life of the
Telstar satellite, denoted as B,?, to be 0.0177 gauss’ & 2 per cent, then
the average 1/e characteristic time of the exponential spin decay with-
out considering hysteresis losses is found to be

I;" = 330 days =+ 2 per cent (15)

pB,*

* The torque coil consists of 200 turns of 32-gauge copper wire wound around the
equator of the satellite. When current is turned on at a desired time, the magnetic
moment of the coil will interact with the geomagnetic induction to produce torque
for correction of the spin-axis direction.

r =
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for p = 1110 meter'/ohm. An exponential curve based on this mean 1 /e
time is plotted in Fig. 2; in addition, the actual spin-rate curve is also
drawn (not to seale) in order to show that the latter curve is fluctuating
about the mean exponential curve at a period of about 180 days. If the
hysteresis losses are taken into account, the 1/e characteristic time is
expressed as

o= 7In [(wo + W/2xpB.2)/(w/e + W/2xpB.t)] (16)

where W is the average value of W(t) for the entire useful life of the
satellite. Let W be 1.6 ergs per eycle of rotation for a conservative esti-
mate, then 7, = 327 days & 2 per cent.

Based on the above range of the exponential decay rate, the satellite
will spin at about 20 rpm at the end of two years from the day of launch.
If the equatorial antennas had not been insulated, a separate calculation
indicates that the spin rate after two years would be only about 3 rpm,
which seems too low to insure attitude stabilization.

III. SPIN PRECESSION AND PRECESSION DAMPING

Before analyzing precession damping, let us first consider precessional
motion of a spinning satellite produced by torques acting transversely
to the spin axis. Suppose that the satellite, assumed here to be a rigid
body, is initially spinning about its z-axis so that its initial angular
momentum is Jo = /.@ = l.wz When a transverse torque T is acting on
the satellite for a time interval At, J, changes to J by an amount AJ,
which is equal to the impulse TAf, as shown in Fig. 4(a). The satellite
will then perform precession with the spin axis, Z, and the angular
velocity, w, no longer aligned with J.

The torques causing precession consist of (a) gravitational torque,
(b) eddy-current torque, and (¢) torque of interaction between the
residual magnetic dipole moment, M, and the geomagnetic field, H.
The components of the gravitational torque, 3(gRy’/p’)s X ®-5 (p =
geocentric distance, g = gravitational acceleration at earth’s surface,
and Ry = earth’s radius) normal to the spin axis are proportional to
(I. — I,) or (I, — I,) and are found to have a maximum value of
0.65 X 107° ft-1b at perigee of the Telstar satellite orbit (based on the
measured values of I, = 3.7140, I, = 3.8252, and I. = 4.1412 slug-ft’).
The eddy-current torque given in (6) can reach a maximum value of
0.56 X 107° ft-lb (for p, = 684 meter*/ohm and | ByB.| =06 x 107"
weber’/meter). The maximum magnitude of the magnetic torque,
M X H, is as high as 13.2 X 107° ft-Ib (for H = 31.84 amp-turns/m or
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0.4 oersted and M = 0.562 X 10°° weber-meter*). Thus, both the
gravitational and eddy-current torques are at least one order of magni-
tude smaller than the magnetic dipole moment torque.

For the analysis of precession damping, let us assume that J is tem-
porarily an invariant, since T is so small (about 10" ft-lb maximum, as
given above) that it takes a minimum time of about 1.5 days for J to
change its direction by one degree, whereas the 1/e characteristic pre-
cession damping time, 7, , is only of the order of 30 minutes, as will be
shown later. Thus, within the time interval comparable to 7, the pre-
cessional motion can be treated as torque-free. Such a motion can be
pietured by Poinsot’s geometrical construction (see Ref. 4, p. 161) in
which the satellite’s inertia ellipsoid rolls without slipping on the in-
variant plane, which is a plane normal to J and tangent to the ellipsoid
at a fixed distance from the origin of the ellipsoid [see I'ig. 4(a)]. The
curve traced out by the point of contaet on the ellipsoid, known as the
polhode, is the locus of the tip of e in the body, while the eurve on the
invariant plane, known as the herpolhode, is the locus of the tip of «
in the inertial space. To simplify the analysis of the precession damping,
we further assume that the satellite is symmetric about its spin axis, or
the inertia ellipsoid is an oblate spheroid with a transverse moment of
inertia (=1, = I,) < I,.In this case, the precession motion can be
visualized, as shown in Fig. 4(b), as a body cone, z0w, rotating at an
angular velocity, Q, on an immovable space cone, JOw, which is rotating
at an angular velocity, w, along the fixed direction of J. The line of
tangency between these two cones is the instantaneous axis of rotation
of the body or the angular velocity, w, which is the sum of Q and «; .
The analytic solution of such a torque-free precession motion of an
oblate spheroidal body is obtained (see Ref. 4, p. 162) for the angular
velocity @ = wef + w,ij + w.? expressed in the body coordinates with
components

w, = wy sin U
wy = wy cos Qf (17)
w: = ».( =constant)
where
Q- (I = L) - (18)

* Measured by M. 8. Glass and D). P. Brady.
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and, as is apparent from Fig. 4(b)

w, = (w. — Q) tan § = %w_. tan § = constant. (19)
Here, it is obvious that the precession angle, 6, between the spin axis, 2,
and J is a constant, providing there exists no precession energy dissipa-
tion.

The precession energy is the difference between two energy states with
and without precession. We use the same assumption as in Section I:
that the precession energy dissipation produces negligibly small torque
to the rigid body motion. Thus, during the time interval when the
precession is substantially damped out, the angular momentum can be
treated as an invariant. The kinetic energy in the presence of precession
is

E = o, + 3w}

where w,” = w,” + w,’, and as shown in Section I the minimum energy
state oceurs when the precession is completely damped out, i.e.

2
Emin = %Izwz’
o 4 . ] 1 9
where w.’ ean be found from the invariant angular momentum
2 2 2 2 2 2 n”
J =I(.04_ +Izw: =Izwz

or
wzfﬂ = (TI;) wLE + wzﬁ.
Therefore, the precession energy is
I
B, = E — Euin =%(1 —-)qu

or, by virtue of (19)

B, = % (IT - 1) T.w.” tan® 6. (20)

Note that when I = I. for a spherical satellite there is no precession
energy.

To dissipate the precession energy, the satellite is equipped with a
pair of curved aluminum tubes filled with neon gas at one atmosphere,
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each containing a tungsten ball of radius r and mass m [see Fig. 4(c)].
The ball is slightly smaller than the inside diameter of the tube, and the
curved tubes are installed concavely towards the spin axis with their
bisecting radii of curvature, R, perpendicular to the spin axis at the
center of mass of the satellite. When the satellite is rotating precisely
about its spin axis, the balls are stationary at the middle of the tubes.
However, when precession occurs — i.e., when e is precessing along the
body cone or following the polhode in the inertia ellipsoid — the balls are
forced to move back and forth against the viscous friction of the gas as
well as the inviseid {riction between the balls and the tubes. Hence, the
precession energy is dissipated into heat through the resistances to the
motion of the balls, resulting in the attenuation of the precession angle,
8, or in the realignment of the spin axis, 2, and o with J.

To derive the equations of motion of the ball, we assume that the ball
rolls on the tube without sliding. The equation of the ball’s rotational
motion about its center of mass can be immediately written in terms of
the angle, a, from the y-axis (the tubes are assumed to lie in the yz-

plane)
2 m? (5 a) —fr—N (21)
5 .

where [ is the foree acting at the point of contact, and N the resistance
moment due to rolling friction. The position vector of the center of mass
of the ball, as shown in Fig. 4(e), is given in the body coordinates as

D = [R(1 — cos a) — b]§ + R sin a2 (22)

The equation of the translational motion of the ball is then

m %Q = —f — cRe (23)
where § = sin ay + cos a? is the tangential unit vector in the direction
of &and ¢ the coefficient of viscous friction. In performing the differentia-
tion of D with respect to time, one should be aware of the fact that the
angular velocity, o, as given in (17) in the body coordinates of a pre-
cessing body, is changing in direction in an inertial space and its time
derivative is & = o X Q, where @ = Q2. Therefore, it should be noted,
for example, that (d/dt)j = « X ¥ and (d*/di) = (0 X Q) X 7 +
© X (@ X 7). Upon differentiating D in (22) twice with respect to time,
substituting into (23), and using (21) to eliminate f, we obtain a
nonlinear second-order equation for a
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5

2 a 5 _ . 2
=g v [B(1 — cos o) — bl sina + 7 w,(w. — Q) sin” a

E[

.
- %wf sin o cos a + % wyw. + QR(1 — cos @) — bl cos @ (24)
_ _be, & 5N
m | & | 7mrR

where the sign of N has been chosen in such a way as to make the resist-
ance moment always oppose the rotational motion of the ball, and w, =
wicos U = (w, — Q) tan 6 cos Q. As the radius of curvature, B( = 15 ft),
of the tube used on the Telstar satellite is much larger than its length,
L{~1.4 ft), the maximum angle of « is very small, viz., am = L/2R =
0.0465 radian <1, where e, is the subtended half angle of the curved
tube. In order for the balls to move back and forth without bottoming
with the ends of the tubes, the precession angle, 8, should be of the same
order as a. Thus, for small & and 4, (24) can be linearized to the following

& + 2na + Pla + ﬁ K = ¢ cos Qt (25)
where 2n = 5¢/7m, P* = bbw.”/TR, K = 5N/7mrR, and ¢ = (5b/7R)-
8w — Q). Because of the presence of the rolling friction term, the
ahove equation can be solved only for each half cycle.

An experiment has been conducted by the author to determine the
resistance moment, N, that the tungsten ball encounters when rolling
on the aluminum tube. For convenience, N is expressed in terms of a
resistance force, ¥, acting at the center of the ball:i.e., N = Fr, and F is
determined experimentally to be ' = 0.0002 1b. In another experiment
devised to measure the coefficient of viscous friction, ¢, for the 0.484-
inch ball moving in the tube (nominal inside diameter = 0.495 in.) filled
with neon gas at one atmosphere, it is found that ¢ = 0.00193 1b-sec/ft.
The ratio of the energy dissipation per eycle due to the viscous friction
(in the steady-state foreed oscillation ecase) and that due to the rolling
friction ecan be shown to be E,/H, = | reRQan/4F |. With a,. = 0.0465
radian, B = 15 ft, | Q| = 1.50 rad/sec, corresponding to the case of the
Telstar satellite at 178.33 rpm, the above ratio is about 8. This indi-
cates that energy dissipation per cycle due to rolling friction is approxi-
mately one order of magnitude smaller than that due to viseous friction
at the indieated spin rate. If the rolling friction term is neglected, (25)
becomes

& + 2na + P'a = ¢ cos (26)
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for which the steady-state forced oscillation solution is

a = agcos (U — B) (27)
where
92 *\? 41]'292 —1
(= 5[5 + ]
cos B = (P* — &)[(P* — @) + 4’ (28)

sin 8 = 20n[(P* — @) + 4’07

The energy dissipation due to viseous friction per period of oscillation of
the ball {or per period of precession) is

T ar
E, = f cR'& dt = cR'ag’Q f sin® (9t — 8) d(2t) = meR'a’Q.  (29)
[} 1]

The time-average rate of energy dissipation per period of precession
appears to be

db, _ _E, %clﬂgﬂgaf

a (?;2_71—) 2 ' (30)

LEquating the negative of the above to the rate of change of the preces-
sional energy, #,, in (20) for the case of a small angle, tan 6 ~ 8, an
equation for the change of the precession angle # is obtained

({Ti - 1) Lw.'td = —é R oy, (31)
Substituting into the above with «o given by (28) and integrating, we
obtain an exponential decay of 8 with time
§ = e '™ (32)
where 8, = 8(t = 0) and 7, is the characteristic time given as
=

- ')[z 92 2 4:?’],292 N
= TamB2(A — 1)A(2 — \)? [(1 - F) + P—,_:I (33)

with A = I./1{>1). If the time-average rate of energy dissipation per
cycle due to rolling friction, 4FRaq | @ |/2mr, is included in (31), the
solution for 8 becomes

§ = (6 + h)e '™ — h (34)
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where

. 10F 92 2 4,”292]}
h = TemnRw. (A — 1)A(2 — ) |:(1 - 172) + P |- (35)

The 1/e¢ characteristic time in this case is

1+ ?hi’
(36)

™ = 7p1n

)
1+h—‘;

which involves the initial angle, ;. Because of the rolling frietion, the
precession will be damped out within a finite time, ie., 8§ = 0 at { =
7 In (1 4+ 6/h). A numerical computation, corresponding to the
Telstar satellite physical constants, shows that A is considerably smaller
than one degree. This indicates that if the precession angle, 8, is substan-
tially greater than one degree, the 1/¢ characteristic time given in (33)
for viseous friction alone should be used for convenience, since it is
independent of the initial condition.

From (26) it is seen that if the natural frequency, P, is made equal to
the frequency of the forecing term, @, ie., if

5
R_7(?\— 1)2b (37)

then the oseillating motion of the ball is in resonance with the precession
motion of the satellite. As a consequence, the 1/e characteristic time
becomes much shorter

_ 28al(x — 1)
T BmbNwR(2 — )

Unfortunately, such a tuned damper cannot be obtained for the Telstar
satellite, since the ratio of moments of inertia ({/1. = 0.897, 0.925 or
A = 1.114, 1.08) is close to unity, and as the tubes are placed outside
of the electronics package, b cannot be made too small. Therefore, in
view of (37), a tuned damper for the Telstar satellite would have to be
of an exceedingly large radius of curvature (R = 57-117 ft for b =
1.046 ft). In this case, the tubes become practically straight, and the
motion of the balls may not necessarily be at resonance with the pre-
cession of the satellite. The equation of motion of & ball in a straight tube
can be easily obtained by multiplying (26) through with B and then
letting B — o« or P — 0; in a similar way, the 1/e characteristic time
can be obtained. Nevertheless, such a straight or nearly straight tube

(38)
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damper will not be used for the essential reason that, in case of its
misalighment with the spin axis, no damping whatsoever will be obtained
when the precession angle is smaller than the misalignment angle. Another
type of damper can be obtained if the curved tube is placed concavely
away from the spin axis. The equation of motion of the ball in such a tube
can be easily shown to be the same as (26) except that the sign of the «
term is negative, hence forming an unstable system. The ball, which
rests at one end of the tube, will move toward the other end at a high
speed when a component of w is tangent to the former end of the tube
and is large enough to make the centrifugal force overcome the static
friction. The ball will move back and forth twice in each period of pre-
cession. Let the kinetic energy of the ball when it reaches the other end
of the tube equal the centrifugal force times the distance traveled by the
ball perpendicular to w. If we assume that the kinetic energy of the ball
is completely absorbed by bottoming at each end of the tube, it can be
shown that the decay of the precession angle is parabolic with time.
Such a damper can effectively reduce the precession even when the ratio
1/1, is close to unity, but it will not damp out a precession angle less than
about three degrees; thus, it was not adopted for use with the Telstar
satellite.

After comparing the advantages and disadvantages of the several
dampers discussed, the untuned concave damper shown in Figs. 4(b) and
(¢) was finally chosen for the Telstar satellite, although its damping time
is somewhat larger than that of the others. This choice was made because
the theoretical 1/¢ characteristic damping time, given in (33), is calcu-
lated to be a maximum of about three minutes for a ratio of /I, up to
0.95, a spin-rate range of 20-180 rpm, and for the parameters given be-
low. Such a damping time is acceptable even if it is one order of magni-
tude larger, in view of the slow rate of change of the angular momentum
due to the small transverse torques previously calculated. The chosen
parameters are: £ = 15 ft (a large value, although the tube still has
noticeable curvature), m = 0.0021 slug (for two tungsten balls of 0.484
in. diameter; tungsten is chosen for its high density), and n = 0.65 sec™’
or ¢ = 0.00193 lb-sec/ft (corresponding to neon gas, which is chosen for
its high viscosity ). [Note: For a tuned damper with 1/e¢ damping time
as given in (38), a gas with low viscosity should preferably be used.]

It is necessary that the theoretical 1/e characteristic time 7, of the
untuned eoncave damper should be compared with experimental results
for the following reasons. Formula (33) is obtained from the linearized
analysis of the motion of the ball under the assumptions of small ampli-
tude of the motion and an axisymmetric spinning body. In the actual
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case, the Telstar satellite is dynamically not axisymmetric. Also, as the
tube is limited in length, bottoming will occur when the precession
angle is larger than about 3.5°; the motion of the ball will then be dis-
turbed and will not follow (26). An experiment has been devised by G. T.
Kossyk which consists of an air-bearing supported flywheel (I, = 5.14,
Toax = 4.675, Inin = 4.404 slug-ft*) mounted with two precession dam-
pers as shown in Fig. 5. The flywheel is driven to reach a certain initial
speed about a skew axis making a desired angle with the axis of sym-
metry, which is the principal axis of maximum moment of inertia. As
soon as the drive is released, the spinning flywheel performs a preces-
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Tig. 5 — Sehematic layout of precession damping experiment.
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sional motion with known initial angular speed and initial precession
angle. The decay of the precession angle is recorded through an optical
tracking device for two different cases, with and without the balls in
the damper tubes. The difference between these two recordings is the net
effect due to the precession damper, excluding all other effects due to air
resistance, gravity, ete. The balls were observed to be moving, and bot-
toming was clearly heard. The experimentally determined 7, is found to
be about four times larger than the theoretical 7, calculated on
the flywheel based on the mean value of the transverse moments of in-
ertia and about nine times larger based on the minimum transverse
moment of inertia. Although the Telstar satellite has different moments
of inertia from those of the flywheel and a higher I.../I. ratio, it is
believed that the actual =, should not be greater than the theoretical 7,
in (33) by more than one order of magnitude.

For a conservative estimate of the precession damping time of the
Telstar satellite, let us multiply (33) by a factor of nine and use the
following physical constants: /. = 4.1412, I,,.x = 3.8252 slug-ft?, Amin =
I./Tmex = 1.08, m = 0.0021 slug, n = 0.65sec™?, R = 15 ft, b = 1.046
ft. Equation (33) is then reduced to
435

2

™ = 19 (0.76 + ) minutes

3
(053
which is relatively independent of the spin rate in the range of interest.
At 178.33, 65, and 24 rpm, the maximum 1/e characteristic precession
damping times are 14.8, 16.2, and 27.6 minutes, respectively.

IV. DRIFT OF SPIN AXIS

We have shown in the Section IIT that the major transverse torque
causing spin precession is contributed by the residual magnetic dipole
moment along the spin axis, M. (M is found to be pointing toward the
rocket-mount end of the Telstar satellite.) The torque produced by the
residual magnetic dipole moment normal to the spin axis is mostly
averaged out because of the spinning motion; other transverse torques,
produced by eddy currents and gravity, are all one order of magnitude
smaller than that produced by M, as shown previously. Therefore, in the
qualitative analysis of the spin-axis drift in this section it is sufficient to
take only M into account.

The initial direction of the Telstar satellite spin axis on the day of
launch was 82.3° right ascension and —65.6° declination, as represented
by the initial angular momentum, J,, (see I'ig. 1) in the nonrotating
coordinate system 0-XYZ, where OX points toward the vernal equinox
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and OZ is along the earth’s spin axis. The geomagnetic field, as shown
schematically in Fig. 1, is rotating about OZ at the earth’s spin rate.
When the satellite is traveling along its orbit, it finds that the geomag-
netic induction, B, generates a nearly conical surface with respect to
Jo or to O-XYZ, with the axis of the cone pointing in the direction of the
orbital angular momentum J,n, (see Fig. 6). Let us pass a plane through
O normal to J;, project the conical surface (or B) onto the plane, and
construct the time-average resultant of the projection, B, . Then B,
will interact with the magnetic dipole moment M (pointing in the nega-
tive direction of J or o) to produce a transverse torque, T., which
causes spin precession. Because of the rotation of the geomagnetic field,
which has anomalies, and because of the apsidal advance in the orbit,
the conical surface generated by B has a different area every orbit.

Fig. 6 — Schematic illustration of spin-axis drift.
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Furthermore, due to the precession or the nodal regression of the orbital
plane, the cone gradually changes its direction in the O-XYZ coordinates,
indicated in Fig. 6 as the rotation of Jom about OZ. As a result, B,
and hence T, gradually change in both direction and magnitude, while
the angular momentum, J, of the satellite follows the pattern of varia-
tion of T, , as shown in Fig. 6. Because of spin precession, the spin axis
is turning around J, yet does not deviate away from J as a consequence
of precession damping. Therefore, the tip of the spin axis deseribes a
spiral path, shown in an exaggerated way in Fig. 6. Such a phenomenon
is termed the drift of the spin axis. The pattern* of the drift is deter-
mined by the orbit and by the orientation of M, whereas the rate of
drift depends on the orbit and the magnitude of M.

A rough estimate of the rate of drift of the Telstar satellite spin axis
can be given. Let us assume that the transverse torque, T, , keeps acting
on the satellite perpendicular to the angular momentum, J, despite the
fact that J continuously changes its direction as time goes on. This
assumption is justified by the fact that the precession dampers work
properly, so that the spin axis is virtually in line with J. Let us disregard
the retarding torque at this point. Then, from the principle of angular
momentum about the center of mass of the satellite

aJ _

r (39)

we find that after a time interval At the angular momentum changes to a
new position by an angle

T,-At
3

In the above we have kept J = [.w, or w at a constant magnitude, be-
cause we have not considered the retarding torque. To evaluate Af in a
time interval of one week, let us substitute into the above with Al =
6.048 X 10° sec, I, = 5.61 kg-m®, T, = MH,, where M = 0.562 X
10~°% weber-meter and H, = H cos v (H = time-average value of the
geomagnetic field on the Telstar satellite orbit and H, is the com-
ponent of H along the spin axis; v is the angle between H and the spin
axis). Then (40) is reduced numerically to

Af =

(40)

H cos v

A = 274 degree

where H is in oersteds and w in rad/sec. If H is taken to be 0.2 oersted
* For details of the pattern and rate of drift, see Ref. 5.
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and v to be 45°, then at the initial spin rate of 178.33 rpm or w = 18.67
rad/sec, we find A = 2.1° per week, which is very close to the observed
value (approximately 2° per week). This drift rate should increase
exponentially with time because of the exponential decay of w resulting
from the action of the retarding torque. It appears from the above esti-
mate that the satellite’s residual magnetic dipole moment along the spin
axis did not change drastically due to launching,.

V. SUMMARY AND CONCLUSIONS

The dynamies problems for the spin-stabilized Telstar satellite, char-
acterized by spin decay, spin-precession damping, and spin-axis drift,
have been studied in this paper. In the section on spin decay, the nature
of the retarding torque due to eddy-current losses has been analyzed.
The observed decay phenomena are largely explained from the computed
B.?, taking into account the anomalies of the geomagnetic field, the
variations of orbital parameters, and the change of the spin-axis direc-
tion. The 1/e characteristic time of the nearly exponential spin decay is
estimated to be about 330 days 42 per cent by extrapolation from the
observed data. This indicates that at the end of two years from the day
of launch the Telstar satellite will spin at approximately 20 rpm. It is
helieved that motion at sueh a spin rate is still relatively stable with
respeet to precession.

For the spin precession, it is found that the transverse torque is pro-
duced mainly by the residual magnetic dipole moment along the spin
axis. The precessional motion of a spinning satellite is illustrated by
means of Poinsot’s geometrical constructions. A few different types of
precession dampers have been considered. Linear analysis of the motion
of the ball in the concave type damper has been made, from which ex-
plicit expression of the theoretical 1/e characteristic precession damping
time is obtained. Based on the analysis, it was possible to make a proper
design of the damper. An experimental comparison of the theoretical
1/e time enables us to estimate the actual 1/e time to be about 30 min-
utes maximum. It is concluded that this damping time is acceptable for
the computed magnitude of the transverse torques, and in fact, no pre-
cession angle larger than 0.5° has yet been observed on the Telstar
satellite.

In discussing the problem of spin-axis drift, only a brief qualitative
deseription is given to illustrate the fundamental mechanism; also, an
approximate quantitative analysis is shown for an order-of-magnitude
estimate of the drift rate. The observed continuous drift of the spin axis
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of the Telstar satellite is evidence of proper funetioning of the precession
dampers.

The above three problems, which are caused essentially by electro-
magnetic torques, can be summarized into one of the important dynamies
design criteria of a spin-stabilized satellite: i.e., evaluation of the maxi-
mum allowable eddy-current losses and residual magnetic dipole moment
for specified useful life and orbit of the satellite. Other basic dynamical
requirements are worth remarking here. The spin axis should necessarily
have a maximum moment of inertia because of provision of precessional
energy dissipation and because of elastic energy dissipation, since the
satellite is not a perfectly rigid body. This moment of inertia should also
be made as large as possible for a given weight and size of the satellite,
in order to make the satellite more stable and to increase the lifetime for
the same initial spin rate. Furthermore, the ratio of the moment of in-
ertia about the spin axis to those about the transverse axes should be
made large enough to yield an adequate precession damping time,
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A Passive Gravitational Attitude Control
System for Satellites

By B. PAUL, J. W. WEST and E. Y. YU
(Manuseript received May 28, 1963)

It is shown how the gravity-gradient effect may be utilized lo design a
long-lived, earth-pointing satellite attitude control system which requires
no fuel supplies, aititude sensors or active control equipment. This two-
body system is provided with a magnetic hysteresis damper which effectively
damps oul oscillations (librations) about the local vertical. The long rods,
which must be exlended in space from cotled up metal tapes, provide the
required large moments of inertia and possess adequate rigidity and suffi-
cient strength to endure the rigors of the extension process. The system is
compatible with the requirements of multiple satellite launchings from a
single last-stage vehicle. Analysis indicates that the gravitational torques
are sufficient to keep the distwrbing effects of solar radiation pressure, re-
stdual magnetic dipole moments, orbil ecceniricity, rod curvature, eddy
currents, and meteorite impacts within tolerable limits. It is believed that
the high-performance, earth-pointing system described and analyzed in
this paper represents an essential step in the development of high-capacity
communications satellites requiring long life.
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1. INTRODUCTION

An earth-pointing attitude control system offers many advantages
for a commercial satellite repeater. By directing the satellite’s radiated
power to just cover the earth, the satellite’s size and weight can be
minimized. For example, at a 6000-nm altitude the theoretical gain of
an earth-covering conical beam is 14.5 db; however, allowance must be
made for inaccuracies of the earth-pointing system and the gain that
can be achieved from a practical antenna. Conservative estimates have
shown that the achievable antenna gain is at least 10 db higher than
with a Telstar-type isotropic antenna.* Hence, with an earth-pointing
antenna, the power required from the satellite transmitter is only one-
tenth that required with an isotropic antenna. This reduction in power
makes the size and weight of communications satellites of high capacity
(e.g., two TV channels or 600 two-way voice channels continuously
operating) compatible with existing launch vehicles for orbits of interest.

In this paper we will describe a passive gravitational attitude control
system (hereafter called PGAC) which provides a particularly attractive
way to maintain a satellite axis pointing towards the earth. This system
should have an extremely long life since it is entirely passive and re-
quires no power and no active controls or attitude sensors. The system
has been designed to be compatible with the launching of several satel-
lites from a single launch vehicle. The importance of this feature becomes
 * While the first Telstar satellite satisfied the objectives for a communications
experiment, the performance was about 6 db below Bell System objectives.! For
a

igher-altitude commercial satellite, the additional 10 db would be considered
essential to assist in meeting systems margins,
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apparent when one considers the cost and time required to place perhaps
20 or more satellites into orbit with existing launch vehicles for a me-
dium-altitude satellite system. Unpublished studies at Bell Telephone
Laboratories have indicated that three satellites of the capacity men-
tioned and employing PGAC can be launched by a single Atlas-Agena
vehicle in orbits of communieations interest.

The most eritical part of any passive earth-pointing system is the
technique of damping employed to stop tumbling and limit librational
motions. A unique feature of the PGAC system described herein is the
employment of magnetic hysteresis damping in conjunction with a
two-body system that provides large relative motion for damping
purposes. Magnetic hysteresis damping is quite effective even at the
slow librational rates (approximately a six-hour period at 6000-nm
altitude).

PGAC employs long extensible rods to ohtain appropriate moments
of inertia about the three principal axes. In this respect it is similar to
other passive systems?:* which also require long rods to obtain a suffi-
ciently large moment of inertia in order for the gravity torque to be
effective. Another feature of this PGAC system is that a single trigger
or signal separates each satellite and simultaneously causes the rods to
extend. This simplicity should enhance reliability of satellite separation
and rod extension.

In any passive gravity-gradient orientation system, the satellite is
stable with either end pointing towards the earth. In the PGAC system
described here, dual antennas are proposed for each end of the satellite,
and the appropriate antennas are to be activated by a simple microwave
switch. Fig. 1 shows the two possible stable positions of the satellite.
Antenna tests have shown that the extended rods do not substantially
affect the antenna pattern; the maximum loss due to the rods is about
1 db. However, it may be possible to avoid this loss by properly orienting
each satellite initially. This would require precise control of the launching
vehicle orientation, satellite tumbling rate during ejection, and speed of
extension of the rods.

In Section II of this paper, the dynamie principles of PGAC are
described, and a general description of the system is given. Actually,
two alternative configurations are described, each of which has its own
advantages. Vibration analysis of the system is then given in Section
III to demonstrate the validity of certain rigid body assumptions made
in the dynamics analysis of the accompanying paper.! The stress and
deformation of the rods due to dynamie loading during the extension
phase and due to thermal effects are analyzed in Sections IV and V.
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Fig. 1 — Possible satellite orientations.

Various spring designs for satellite separation associated with multiple
launch are described in Section VI. The status of the hardware develop-
ment and tests on the hysteresis damper unit are reviewed in Section
VII. Finally, the various disturbing torques which the satellite will
encounter in space are reviewed in Section VIIL. It is shown that the
PGAC system should remain earth-pointing within a few degrees.

Typical computer results have disclosed that for a reasonable initial
tumbling rate of the satellite (1 rpm before rod extension, due to ejection
from the rocket), the satellite will be earth-pointing within a few degrees
of the local vertical in about 10 to 15 orbital periods. The deseription
and discussion of PGAC in this paper is primarily for a satellite in a
circular 6000-nm orbit with any ineclination. However, with modifica-
tions of rod lengths and damping and spring constants, PGAC could
be adapted to either higher or lower orbits.

The companion papert in this issue covers the basic dynamics analysis
of PGAC. The analysis includes large angle motion (as would be experi-
enced by a satellite due to tumbling after ejection from the launch
vehicle), as well as small librational motion. A complete three-dimen-
sional analysis of the satellite motion has been formulated, and stability
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criteria for the system have been determined. Other dynamics analyses
of passive attitude control systems have been reported in the literature.®:6
These analyses either have not ineluded large angle motions or have been
restricted to the pitch motion only.

1I. DYNAMIC PRINCIPLES AND GENERAL DESCRIPTION OF PGAC

2.1 Principles

The fact that an elongated body in orbit around the earth tends to
line up with the local vertical is well known.” Just why this should be
s0 is most easily explained by considering a rigid dumbbell with equal
tip masses. I'ig. 2(a) shows a dumbbell, in orbit around the earth, whose
axis makes an angle #(8 < 90°) with the local vertical. Since the gravi-
tational attraction varies inversely as the square of the distance from
the geocenter, the lower mass A will experience a gravity force ', which
is slightly larger than the force F, experienced by the upper mass B.

Y T
l “~DAMPER

SATELLITE

|
%
|
|

»

Fig. 2 — (a) Gravity forces acting on a dumbbell in orbit; (b) departure from
the unstable equilibrium position; (¢) system of primary and secondary dumb-
bells to produce damping.
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The net torque about the mass center €' produced by gravity forces is*
(F. — Fy)a where the moment arm a is shown in Fig. 2(a). The gravity
torque aets in such a direction as to diminish the angle 6. That is, it is
a restoring torque which will rotate the dumbbell axis back to the local
vertical. When the dumbbell becomes aligned with the local vertical,
the moment arm a vanishes. Hence, the gravity torque becomes zero in
the equilibrium position, # = 0. However, due to the inertia of the masses,
the dumbbell does not stop in its equilibrium position but continues to
rotate past it, whereupon the gravity torque reverses its direction and
acts to restore the dumbbell to the local vertical. This process produces
an oscillation or “libration” about the local vertical which would con-
tinue indefinitely if not damped out by some energy dissipating mech-
anism.

It is primarily the method of damping of the libration which dis-
tinguishes the various gravity-gradient schemes from each other. One
method of damping the librations requires the use of a second dumbbell.
In order to understand the function of this second body we should point
out that a dumbbell is also in equilibrium (that is, no gravity torque
acts upon it) when its axis is perpendicular to the local vertical. How-
ever, this equilibrium position is unstable in the sense that when the
dumbbell deviates from the local horizontal by an arbitrarily small
angle ¢, the gravity torque (F, — Fjy)a acts in such a manner (see
I'ig. 2b) as to increase the angle ¢, i.e., to drive the system away from
its (unstable) horizontal equilibrium position.

The inherent instability of a horizontal dumbbell may be used to
design an efficient oscillation damper shown schematically in Fig. 2(e).
In Tig. 2(¢) the primary dumbbell AB is connected by means of a
frictionless hinge to a secondary dumbbell A’'B’. A spring is placed
between the two dumbbells which keeps them crossed at right angles
when the spring is not stressed. An energy dissipating device (repre-
sented in Fig. 2(e) by a piston in a close-fitting cylinder) is placed
between the two dumbbells so that any relative motion of the two bodies
results in a loss of mechanical energy (mechanical energy converted
into heat energy). When the main dumbbell is deflected through an
angle 6 from the local vertical, it experiences a gravitational torque T
which tends to restore it to the loeal vertical. At the same time, because
of the spring, there is a tendency for the secondary dumbbell to be car-
ried along through an angle ¢’ in the same direction as the angle 9,
thereby producing a gravitational torque 7's on it which tends to increase

* Actually this is a slight oversimplification since F'4 and Fp are not exactly
parallel, but it adequately describes the main principle involved.
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g’ still further. The net effect is that the gravity torques T'y and T’y tend
to drive the two dumbbells in opposite direction, as shown in Iig. 2(c),
thereby dissipating a relatively large amount of energy per eycle in the
damping unit. The configuration shown in Fig. 2(¢) will damp out oscilla-
tions in the plane of the orbit; in order to damp out osecillations per-
pendicular to the orbital plane, it is only necessary to add a second
horizontal dumbbell which is perpendicular to the first one when its
spring is unstrained. The two secondary dumbbells may be rigidly con-
nected to each other and still provide damping in both planes of motion.

2.2 Deseription

The previous section deseribes the basic prineiples of the two-body
system. In this section we discuss one method of reducing these principles
to practice and describe the main features of all the major components
of the system. These have reached a sufficiently high level of develop-
ment for us to believe that they may be designed in detail for a specific
experimental satellite.

Fig. 3 shows schematically what an actual configuration might look
like. The long vertical “mast” connects the satellite to an upper “deck
assembly” which serves as the tip mass for the primary ‘‘dumbbell”
and as the unstable body. The deck assembly consists of two crossed
dumbbells which meet at a “hinge unit” that is connected to the mast.
This “hinge unit” is actually a universal joint (or Hooke’s joint) which
also provides elastic restoring forces (springs) and energy dissipation
devices (dampers).

It should be mentioned that the deck assembly may be placed much
lower on the mast rather than at its extremity as shown in Fig. 3, which
illustrates a “high-deck” configuration. If the deck assembly is lowered
to the vicinity of the satellite proper, the configuration will be referred
to as a “low-deck’” configuration (see I'ig. 8 below for a schematic draw-
ing of a low-deck configuration). From a dynamiecs point of view the
two systems are identical. The high-deck configuration can be erected
in a simple manner by the release of a single trigger which separates the
satellite from the launching vehicle and simultaneously initiates exten-
sion of all rods. The low-deck arrangement has the advantage of being
much stiffer structurally (see Section I1I) than the high-deck configura-
tion and is much less sensitive in its response to aceidental misalign-
ment of the various rods due to initial curvatures, thermal bending,
or micrometeorite impacts which might cause plastic deformation. It
has the disadvantage of a more complex erection sequence (to provide
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Fig. 3 — A passive gravitational attitude control (PGAC) system configuration.

clearance of the deck rods as they oscillate about the satellite body)
and introduces the need to elevate a set of antennas above the height
of the deck assembly in order to avoid electromagnetic difficulties.

2.2.1 Euztensible Rods

A convenient way of erecting the rods in space is to use the STEM
(Self-storing Tubular Extensible Member) units designed and developed
by DeHavilland Aireraft of Canada, Ltd. These units consist of a beryl-
lium copper tape (0.002 inch to 0.005 inch thick, and 2 inches to 5
inches wide) which is stored on a drum prior to extension, in the same
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manner as a carpenter’s steel tape. However, unlike the carpenter’s tape,
the STEM tape has been preformed so that it tends to coil into a long
straight tube when unwound from the storage drum, as shown in Fig. 4.
The tape has a tendency to unwind spontaneously if not restrained from
doing so. In fact, it is necessary to supply a governor which limits the
extension speed to a safe level or else to provide a motor which drives
the tape out at a controlled rate. Whichever is used, the motor or the
governor mechanism, it could be located at the extremity of the deck
rod to act as part of the necessary tip mass, as shown in IFig. 3.

2.2.2 Damper Unil

The damper unit will permit the deck a motion of two degrees of free-
dom with respeet to the mast in the manner of a universal joint. A pro-
posed damper unit is shown in Ilig. 5, where the two rotationally sym-
metrie housings are rigidly fixed to one another with their axes crossed
at 90°. The deck assembly is free to rotate about the axis of the upper
housing while the mast is free to rotate about the axis of the lower hous-
ing, thus providing the desired two degrees of freedom. To provide the
recuired restoring torque, the deck assembly is fixed to a rotor whose axis
is aligned with that of the housing by means of two fine torsion wires (or
ribbons) as shown. These wires are maintairied under suitable tension by
means of the leal springs at each end of the housing. This taut wire pro-
vides the rotational restoring torque required and also serves to keep the
rotor axis aligned with the axis of the housing. A slot is provided so that
the conneeting rod to the deck assembly may rotate through a total angle
of 120° before bottoming on the end of the slot. Although it is not antici-
pated that the rod will ever hit its stops except for rare periods of tum-
bling (following injection, or collision with a micrometeorite) one may

— _ FLATTENED TAPE~
—— » == \
.2

\

“ FORMED TAPE
(NATURAL SHAPE)

STORAGE
DRUM —

Fig. 4 — Extensible rod element.
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Fig. 5 — Damper unit.

design all stops so that they have no tendency to cold-weld in space.
Similar stops are provided to prevent excessive lateral or axial motion
of the rotor during periods of tumbling or during the launch phase.
Damping is provided by means of one or more bar magnets fixed
along a diameter of the rotor. These magnets have horseshoe-shaped
pole pieces which enclose an annular disk of permeable material (e.g.
cold-rolled steel) whose outer rim is fixed to the housing. A small gap
always exists between the faces of the pole pieces and the permeable
disk by virtue of the accurate elastic suspension, and even when the
rotor is bottomed during launch or tumbling, the stops maintain a pre-
determined elearance. As the rotor turns with respect to the housing
because of satellite oscillations, the pole pieces rotate magnetic domains



PGAC SYSTEM 2205

in the permeable disk, thereby creating magnetic hysteresis losses. Mag-
netic hysteresis losses are particularly desirable because they depend
essentially upon the amplitude of oscillation rather than the frequency
of oscillation and have been found to be effective at the very low libration
rates, which are of the same order of magnitude as the orbital frequency
(a six-hour period in the case of a 6000-nm altitude).

Damper units of the type described above have been developed which
provide the estimated damping torques required for 6000-nm orbits.
They appear to be sufficiently rugged to withstand the launching en-
vironment and weigh approximately two pounds for the complete damper
unit. The feasibility of construeting dampers for higher and lower orbits
has been demonstrated. Further details of the damper development
program are deseribed in Section VII.

2.2.3 Packaging and Multiple Launching

Design layouts indicate that there is no difficulty in packaging a
stack of several satellites within the confines of a suitable rocket vehicle
in such a manner that they will withstand rocket thrust and vibrations
with a minimum amount of additional strueture weight. The packaging
arrangement is such that each individual satellite may be ejected with
the required separation speed (see Section VI). The rod extension process
may be triggered by the same explosive bolt mechanism which causes
satellite ejeetion. One possible method of achieving this is indicated in
I'ig. 6 which shows how the rod constraints, which are needed during
the launch phase, are automatically removed when the satellite is in-
jected into orbit.

2.2.4 Weight Breakdown

Tor a 235-1b satellite body, operating at a height of 6000 nm, computer
solutions based on the work of Ref. 4 indicate that a good design is
achieved if the principal moments of inertia of body 1 (principal dumb-
bell) are I, = 3333, [, = 3333, I; = 10 Ib-ft-sec’, and the prineipal
moments of inertia* of body 2 (secondary rod configuration) are [, =
450, Is = 1000, Is = 1450 Ib-ft-sec’. These moments of inertia may be
achieved by using a 60-ft mast rod, four 40-ft deck rods, and the mass
distribution shown in Table I.

* The given values of I, , I's and I differ slightly from those given in the ex-
ample in Ref. 4; this difference is the result of computer studies made after Ref.
4 was submitted for publication.
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III. BLASTIC VIBRATIONS VERSUS RIGID BODY MOTION

The dynamics analyses* have been based on the assumption that the
rods behave in an essentially rigid manner under the “‘gravity-free”
conditions and extremely low librational angular speeds which prevail
in the anticipated orbits; yet by ordinary earth-bound standards, the
long thin rods would seem extremely flexible. To justify the assumption

TaBLE I — Mass DISTRIBUTION

Deck tip masses 29 1bs
Deck rods 2% ¢
Damper assembly o
Mast rod

Mast motor
Support structure

11
11

OO e D
[

Total 6«
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of rigid rods in the basic dynamies studies, it is necessary to estimate
the bending and twisting deflections which oceur in service.

It is known that under normal circumstances the entire satellite will
be oscillating, or librating, at certain well defined frequencies which
are of the order of orbital frequency @/2x. If any part of the system,
which is supposed to behave in a rigid manner, happens to have a
natural vibration frequency of the order of ©/2x, large deformations
might oceur, and the results of the rigid body dynamies analyses would
be open to serious question. It is the purpose of this seetion to show that
PGAC may be designed so that its smallest natural frequency is well
above the orbital frequency @/2x.

It will be assumed in this section that the satellite has been aligned
along the local vertical and that the elastic members of the system are
undergoing small vibration with respect to a nonrotating* set of eco-
ordinate axes. In order to rigorously caleulate the lowest natural fre-
quency of such a system, it would be necessary to consider a set of
coupled partial differential equations of considerable complexity. How-
ever, it will be shown in Section 3.1 below that the mast rod may be
considered to be perfectly rigid in the frequency range of interest. This
result enables one to find the bending and twisting frequencies of the
deck assembly in a relatively simple manner (involving ordinary rather
than partial differential equations) as shown in Section 3.2. Finally, it
is shown in Section 3.3 that the torsional mode of the mast rod has the
lowest natural frequency of interest but that this frequency is still
several times higher than the orbital frequency.

3.1 Rigidity of Mast Rod and Influence of Distributed Mass on Natural
Frequencies

Let us consider the bending vibrations of a long beam, of length I,
flexural rigidity £/, and mass p per unit length, whose ends carry two
relatively large tip masses, 1/, and A/,, but which are otherwise un-
constrained, as shown in Fig. 7. Since the tip masses are so great com-
pared to the beam mass A/, , the tips can never move too far from their
equilibrium position (in comparison with the midpoint of the beam).
Therefore, the principal mode shape must look somewhat as shown in
Iig. 7 with nodal points very near the ends. We ean thus consider the
problem equivalent to that of a beam, of length L’ &~ I, whose ends are
fixed against displacement and more or less fixed against rotation, de-
pending upon the constraints provided by the tip masses. In any case,

* This is equivalent to negleeting the eurvature of the orbital path.
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Fig. 7 — Mode shape for light beam carrying heavy tip masses.

the cireular frequeney p of the fundamental mode is given (Ref. §,
pp. 324-339) by

p = (C/L')'VEI/p (1)

where €' is a numerical coefficient which depends upon the degree of
constraint at the nodes.

Now consider two limiting cases of constraint between the mast
and deck assembly. If the springs which connect the deck and mast are
extremely soft, no appreciable bending moment can be transmitted to
the mast from the deck, so the connection point may be treated as a
hinged or simply supported end. If the tip mass at the other end has
negligible moment of inertia, that end may also be considered as simply
supported and the coefficient® ¢ = 3.14 (hinged-hinged beam); but if
the tip mass has an appreciable moment of inertia, the end may be
considered clamped, in which case ¢ = 3.93 (hinged-clamped beam).
Another limiting case arises if the connecting spring is extremely stiff,
in which case the deck assembly with its very large moment of inertia
is almost rigidly fixed to the mast rod and essentially prevents rotation
of the connected end of the mast. In this case (' = 3.93 (clamped-hinged
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beam) or ¢ = 4.73 (clamped-clamped beam) accordingly as the tip
mass has negligible moment of inertia or infinite moment of inertia.

We thus see that (' ean only undergo moderate variations despite
extreme changes in the manner of end support. If one adopts the most
conservative point of view and considers ' = 3.14, (1) predicts that
for a typical mast rod (L ~ L' = 600 in, EI = 38,300 1b in®, p =
1.51 X 107° Ib se¢’ in~") the fundamental mode of vibration has a fre-
quency of p = 1.37 rad/sec, which is certainly well above the orbital
frequency @ = 0.273 X 10" rad/see for a 6000-nm orbit. Thus, we see
that the influence of the distributed rod mass cannot play an important
role in vibrational motions at the low frequencies of interest, and the
mast rod may be considered rigid.

3.2 Nalural Frequencies of Deck Assembly

Having shown that the mast rod is practically rigid, one may con-
sider the satellite and mast rod a single rigid body upon which is mounted
the deck assembly via the flexible joints of the damper unit. Because
the deck tip masses are so great compared to the mass of the deck rods,
one may neglect entirely the deck rod mass and treat the problem
according to the standard “lumped mass” point of view. In particular,
if one restricts attention for the time being to the low-deck configuration
illustrated in Iig. 8, and notes that the center of mass* of the entire
system lies fairly close to the plane of the deck assembly, one may
introduce a further simplification by considering the deck assembly to
he oscillating about a fixed point where the two hinge axes are assumed
to eross.

In setting up the equations of motion, we shall use D’Alembert’s
prineiple, wherein each moving mass 3, is thought of as loading the

structure by a system of “inertia forces”: X; = —Muai;, Y = —M,i; ,
Z; = —Mo; , parallel respectively to the axes of 2, y and z; and the
rods are loaded by “inertia torques”, T; = —I;uf;. Superscript dots

denote differentiations with respect to time ¢, in the usual Newtonian
notation. To provide a more flexible and symmetrical notation, we shall
frequently speak of the generalized displacements, ¢;, and generalized
foreces, @;, which are related to previously defined quantities as in
Table II. In this tabulation, generalized masses m; have been defined for
future reference.

Each independent deflection ¢; ean be found as a function of the

* The eenter of mass has been assumed to be unaceelerated in inertial space and
for our purposes may be considered fixed.
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inertia forces applied to the system
9

qi = Z%QE- (2)

The terms dg;/0@Q; are called influence coefficients and are funections of
the elastic constants and dimensions of the system. Each influence
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TaBLE III — Low-DEck CONFIGURATION

Frequency pn (rad/sec) Most Significant Vibration

pi= 0.597 X 1072 Oscillation of deck assembly about z (roll)
axis

p2 = 0.643 X 1073 Oscillation of deck assembly about y
(pitch) axis
Py o= ps = pp = 0.401 X 107! Bending of deck rod parallel to z-axis
pe = p1 = ps = 0.500 X 107! Bending of deeck rod parallel to y-axis
pe = puw= 0.1373 Twisting of deck rod parallel to z-axis

pu = pra= 0.2625 Twisting of deck rod parallel to y-axis

coefficient may be found by an elastic analysis of a statically determinate
structure; for the sake of hrevity, these coefficients will not be explicitly
written out here.

Equation (1) may be written in the form

12
é)q.-
—_ y — 5."({ = 0 ;
;[301 Q; .u':l (3)
where 8;; = 1 for i = j, and &;; = 0 for ¢ # j. The symbol @; represents
the generalized inertia force, —mjq; , and m; represents the generalized
mass (or moment of inertia) defined in Table II. The equations of
motion are thus given by
12 /-
dq;) (—mig }
— ) (—myf;) — 85q: | = 0. 4
2 [ (%) (-ma) - o @
In order to solve the system of differential equations, we may assume
that
q; = A;cos (pt — ) (5)
where A;, p and ¢ are as yet unknown quantities. If one substitutes
(5) into (4) and follows the standard procedure,® one finds a twelfth-
degree equation in 1/p* with twelve solutions, 1/p,” forn = 1,2, -+ -, 12.
Tor these twelve (not necessarily distinet) values of p, (4) is satisfied
and the assumption of (5) is justified. Equation (5) shows that the
terms p, represent the circular frequencies of the so-called natural
modes of vibration. Upon the introduction of suitable numerical values,
one finds the twelve natural frequencies p, - - - pi2, listed in Table II1,
for a typical configuration designed to orbit at 6000 nm.
It may be seen from Table 1IT that the lowest natural frequencies
are those corresponding to the oscillations about the hinge-spring axes.*
* The frequency of the “rigid body’ oscillations of the deck assembly about the
piteh and voll hinge axes have been made intentionally close to the libration fre-

queney in order to provide good damping. All other natural frequencies must be
kept well above these values to avoid undesired resonances.
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These frequencies differ from those which would be obtained with per-
fectly stiff deck rods by one part in 5000. The bending of deck rods has
the next highest natural frequencies, which are about 70 times the pitch
spring frequency. This indicates that execitation at a libration frequency
(~0.5 X 107" rad/sec) would not cause very large unwanted deflections
any place in the structure, and that the assumption of rigid rods in the
dynamies analysis is well justified for the low-deck configuration.

Although a complete vibration analysis of the high-deck configuration
(shown schematically in I'ig. 3) has not been made, there is no reason
to believe that the natural frequencies of vibrational modes dominated
by bending aection will differ by orders of magnitude from similar modes
in the low-deck configuration.

3.3 Torsional Oscillations of Mast

On the other hand, it is to be expected that the frequency of torsional
vibration about the mast axis will be considerably less for the high-deck
configuration. As a first approximation, one may neglect the bending
deformations of the deck rods and consider the system shown in Fig. 3
as a long rod of torsional eonstant K,, (K,, = torque per unit twist angle)
separating two rigid bodies whose moments of inertia are I, and 1.,
respectively. The angular frequency of natural oscillation is given (Ref.
8, p. 12) for such a system by

_ (I, + 1) %Nl:Km i
P= [K”‘ T ] ~ 7?] %

where the approximation follows from the fact that 7, 3> I, . For a typical
case of interest, one would find a torsional oscillation frequency, for
the high-deck configuration, of the order of

p = 0.0048 rad/sec. (7)

This value should be compared with a libration frequency (in a so-
called higher roll-yaw mode) of p,y = 0.00049 rad/sec. If a somewhat
more refined analysis is made, which takes into account the elasticity of
the deck rods, the improved value of p differs insignificantly from the
value given by (7). Although this value is smaller by an order of magni-
tude than the corresponding frequency of the low-deck configuration, it
is still about ten times greater than the largest libration frequency. Some
other comparisons between high- and low-deck arrangements have
already been discussed in the introduction to Section II.
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1V. STRESS AND DEFLECTION ANALYSIS OF RODS DURING EXTENSION PHASE

Since a satellite cannot be injected into orbit with absolutely zero
angular velocity, in inertial space the tip masses on the extending rods
will tend to cause bending and twisting of the rods during the process
of extension. No attempt will be made to examine this problem in full
generality, but two important representative cases will be considered.
In both cases only the high-deck configuration is considered, since the
low-deck configuration would seem to be at least as strong as the high-
deck configuration.

Experiments® 1 have demonstrated that a properly designed spring
arrangement is capable of injecting satellites into orbit with tumbling
rates below 1 rpm prior to rod extension. It is shown in this section that
such rates do not cause excessive stresses or deformation in the rods
during the extension process.

4.1 Tumbling

The satellite is idealized as shown in Fig. 9 and is assumed to be
tumbling at time ¢ = 0 with angular speed w, about the body axis z,

/,fDECK ROD

Ma
~ _ DECK
STRUCTURE
M2
M2
FEN
C.M. OF SATELLITE~ _ A b
/ ;
/
i
/
Wy, W ’n"
/
/ v
R

1
SATELLITE S / /
BODY

Fig. 9 — Schematic diagram of satellite during extension.
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which is parallel to the deck rods earrying tip mass M, . At time { = 0
both mast and deck rods begin to extend with speed », as indicated in
the sketch where 7y represents the initial distance between the deck tip-
masses and the mast axis, and Ry equals the initial distance, measured
along the mast axis, between the satellite body and the deck assembly.
All mass in the deck assembly exclusive of the rods and tip masses is
considered to be concentrated at the tip of the mast (point A) in the
rigid body labelled “deck structure” in Fig. 9. The mass of the “deck
strueture” is denoted by M, , and its moment of inertia about a centroidal
axis parallel to x is denoted by [, ; similar expressions for the satellite
body are denoted by M, and I, , respectively.

I'rom Fig. 9 it is seen that the instantaneous distances r, Ky, and R,
are given by

r =19+ vt
R = (2M, + 2Ms 4 Ma)(Ro + vt)
= 2(M, + M) + My + M, (8)

B = My(Ry + vt)
* = 30, + Ma) + M, + I,

and the instantaneous moment of inertia I of the entire system about
the x-axis (passing through the instantaneous center of mass) can be
shown to be

I(t) = I+ Lo+ M(Ro + vt)* + 2Ma(re + ot)* (9)
where M is defined by

= My(2M, + 2M. + M,)
2M, + 2Ms + Mo+ My’

The initial value of I is denoted by I and is found from (9) by setting
t=0.

We shall now assume that: (7) the mass of the rods is negligible;
(#2) the hinge connection between the mast and deck assembly is rigid;
(727) the rods do not bend or twist (until further notice); and (&) the
mass center of the system is moving through inertial space with constant
velocity. Under these assumptions one may apply the principle of con-
servation of angular momentum* to find the angular velocity w and
acceleration @ in the form

=

(10)

* Although angular momentum is not strietly conserved in the presence of
gravity torque, it can be shown that this effect is not significant.
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_wlo, . —wlodl

T YT T E A
Equations (11) together with (9) fully specify the angular veloeity and
aceeleration during the entire extension phase. The absolute acceleration
a” of any point P in the system may be found from the vector equation

(11)

& = ;§+r—><p+ xz—f’+wx(u><p) (12)

where p is the position vector of the point P measured from the origin
shown in Fig. 9, or in terms of the unit veetors i, j, k along the body
axes:

p= ?J.ri A pyj + ]D:k- (13)
By definition:

Il

épfﬁt pri i pnj =+ ?jzk
8'p/8t" = pd + B + Pk (14)
o = wi; dw/8l =
Applying (12) successively for the five points A, B, C, D, and E qhowu
in Blg 9 one may find the components of accelemhon a’ = a1 +
a,"j + a."k indicated in Table IV.

Table 1V, together with (11), gives the absolute acceleration of all
the tip masses. The D’Alembert fUICP*- actlng on masses at pomts A, B
C, D, and I are respectively —Ma", —Ma®, —Ma® —M.a® —M.a".
The beudmg moment M, at any point z alnng the mast is given at any
time by

Mo = —[Maa,* + Mia,” + a,°) + Mila,” + a,"))(R: — 2)
+ My(a.® — a.”) — Lo, (15)

TasLE IV — COMPONENTS OF ACCELERATION

IPJ;I:‘IU Pr Py P: a:f a, ¥ a.F
A 0| R: | 0 | —(2Rx + Rud) —Rxw?
B r| 0| R | 0 |—@Rw + Ru) —Ruw?
C —f 0 R 0 — (2R -f— Ra) — Rx?
D 0 i It 0 rw® — 233@.—- R —(Rw? + 2w + 1)
i D) 0 T I 0 — (rw? + 2Rw + o) | —Rw?® + 2fe + ra
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TasLE V— PARAMETERS

M, = 286/32 Ib sec?/[t I, = 10 or 20 1b sec? ft
My = 8/32 b sect/ft I+ = 0.0845 b sec? ft

M, = 4/32 b sec?/[t Ro= 2 ft

M, = 9/32 b see? ft ro = 0.75 It

EI = 13.4 1b {t? (deck rod) EI = 297 1b {t* (mast rod)

Similar expressions are readily written down for the bending moments
at various points along the deck rods but will be omitted here for the
sake of brevity. Deflections are found by noting that a tip force I
prodaces a lateral tip deflection A, = FL'/(3EI) for a cantilever of
length L and bending stiffness K/7. Similarly, a tip couple M produces
a lateral tip deflection of amount Ay, = ML/ (2ET). The net deflection
is found by superposition. For a 6000-nm satellite similar to the one
deseribed in Section II, the parameters shown in Table V were used.
An investigation of the complete extension history shows that for an
initial tumbling rate of 0.1 rad/sec (=1 rpm) and an extension rate of
v = } ft/sec, the maximum stresses oceur early in the process and decay
rapidly thereafter; i.e., maximum moments occur before the rods have
extended a distance of 2 {t. The maximum bending moments (which
oceur at the cantilever root) and the corresponding tip deflections
(expressed as a fraction of rod length at the instant of maximum loading)
are given in Table VI. Published data" indicate that short lengths of
the mast rod could sustain a bending moment about a hundred times
greater than the maximum value indicated in Table VI, and the deck
rods could sustain a value about 30 times larger than the greatest
tabulated value. Thus, there appears to be no “‘stress” problem due to
tumbling.

4.2 Spinning

Assumptions (7) to () of the previous section will be retained.
If the entire satellite spins about the mast axis with angular speed

TasLe VI — BeExDpING MoMENTS AND DEFLECTIONS FOR v = % ft/sec;
wy = 0.1 rad/sec

Satellite Moment | Maximum Bending | Maximum Bending Mast Tip Deck Reod Tip
of Inertia Moment, Mast Moment, Deck Deflection Deflection
oy ) (Fraction of rod (Fraction of rod
(Ib sec? ft) (It-1b) (ft-1b) length) length)
10 0.072 0.018 0.0003 0.0012

20 0.113 0.029 0.0006 0.0025
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wy at time ¢ = 0, the deck assembly will acquire an angular speed 6,
and the satellite body will rotate at speed 6, . Conservation of angular
momentum* requires that

[Id + 2(M, + M) (ro + v0)°1s + Libs
= [Id 4 2(My + Ma)re + Ilwo (16)

where I/ denotes the moment of inertia of the “deck structure” about
the mast axis. The torque required to produce a unit relative angular
displacement between the satellite body and the deck is proportional
to (R — Ry)"" and may be represented in the form k/(vt), where k is
the torsional rigidity of the mast for unit length. In other terms, the
torque on the mast at any time is given by (8: — 6,)k/vt; this torque is
applied directly to the satellite body, so one may write

L.g[. = JT-( Bd — Bb)/"b't. (17)

Equations (16) and (17) represent a third-order system of linear dif-
ferential equations with time-dependent coefficients and with initial
conditions of the form 6,(0) = 0: 6,(0) = 0; 6,(0) = w; . These equations
have been integrated numerically to provide the complete response of
the system during the extension phase for various sets of parameters.
The solutions indicate that torsional stresses do not become excessive
at any time, although the satellite body might rotate, relative to the
deck assembly, by as much as 10 revolutions if an extension speed of
v = 1 ft/sec is used, and wo is as high as 2 rpm. The bending stresses
and deflections produced in the deck rods, under these conditions, are of
the same order of magnitude (very safe) as found in the foregoing
section on “tumbling.” With a nonspinning final-stage vehicle it is
unlikely that the initial spin rate wo will reach a value as high as 1 rpm.”"

4.3 Umbrella Iffect

If all rods are being extended simultaneously, for the high-deck
configuration the tip masses on the deck rods will continue to move
parallel to the mast axis at the termination of the mast extension
phase. This motion will continue until the cantilever bending of the
deck rods has converted the tip mass kinetic energy into stored elastic
energy. This effect will be referred to as the “umbrella” effect. To com-
pute the maximum tip deflection &, and the maximum root bending
moment A/, in the deck rods, it should be observed that a lateral tip

* Elfect of gravity torque is neglected here, as in Section 4.1.
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force P will produce a tip deflection 6, = I’L“/ 3L1, where L is the beam
length and K7 is the flexural rigidity. The stored strain energy U is
equal to (P/2)8,, which may be expressed as U = 3EIs, /2L° by
virtue of the linear relationship between P and §. When the stored
energy U is equated to the initial kinetic energy (Mv°/2) of a tip mass
M which moves at speed v, one finds the tip deflection

3 = vIMLY/3ED). (18)

The root bending moment A, is found by multiplying the load P =
(3EI5,/L") by the beam length L to give

M, = o[3EIM /L) (19)

For a typical deck unit with the following parameters, EI = 13.4 1b
ft', L = 50 ft, M = (10/32.2) 1b sec’/ft, one finds that for sufficiently
small values of v

6, (It) = 0983 v (ft/sec)
M, (ft-Ib) = 0.500 v (ft/sec).

Thus an extension speed of v = § ft/seec would produce a bending
moment of about % ft-lb, which is less than the approximate allowable
value of 1 ft-Ib. The corresponding tip deflection of about % ft is suffi-
ciently small so that the linear bending theory used is adequate. If one
wishes to find the maximum extension speed which produces a root
bending moment, below 1 ft-1b, it is necessary to consider a nonlinear
beam theory which allows for large slopes in the deflected beam shape.
An approximate treatment of this problem indicates that an extension
speed of about 1.5 ft/sec would result in a root bending moment of about
1 ft-1b. Therefore, if one wishes not to exceed the load-carrying capacity
of the deck rods, it is essential to keep the extension speed well below
1.5 ft/see, or else to extend the deck rods after the mast has been fully
extended.

Similar considerations show that reasonable differences in the exten-
sion speeds of the various deck rods result in tolerable loads on the mast,
for practical configurations.

It should be noted that when the oscillating deck masses slam down-
ward, they load the mast axially and tend to produce Euler-type buck-
ling. Tt may readily be shown that, so long as the mast extension veloe-
ities are kept small enough to prevent overloading of the deck rods, the
mast, will not buckle for the configurations of interest.
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V. THERMAL LOADING

The rods used in the proposed design consist of long split overlapping
tubes which will experience temperature gradients due to solar heating.
These temperature gradients will cause the rods to bend in such a way
that the illuminated side becomes convex.

TIn this section, the lateral deflections of the rods due to solar heating
will be caleulated. In Section VIII it will be shown that these deflections
have a minor influence upon the pointing aceuracy of the PGAC System.

5.1 Temperature Distribution

Tt will be assumed that the rod is sufficiently long so that end effects
may be ignored; hence the temperature distribution will not vary with
length along the rod. Since the heat input depends upon the angle be-
tween the collimated solar rays and the axis of the rod, it is implicit in
the above statement that the thermally induced curvature of the rod
axis is small; this necessary requirement will be verified a posteriori in
a numerical example. Confining attention to a unit length of rod as
shown in Fig. 10, it may be verified that the cosine of the angle between
the solar rays and the normal to a surface element located at an angle
6, measured from the outer edge of the tape, is given by

Fig. 10 — Unit length of split overlapping tube illuminated by the sun.
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s'n = sin ¢, cos (6, — ) (20)

where s is a unit vector pointing to the sun, n is a unit surface normal,
¢, 1s the angle between the =olar rays and the tube axis, and 4, is the
angular distance from the outer free edge of the tube to the plane formed
by s and the tube axis. The heat input per unit time on a unit area of tube
surface is given by

g = a Ssing, cos’ (0 —6,) =aScos™ (8 -0, (21)
where

a = abhsorptivity for solar radiation

S = solar constant (442 Btu/hr ft*)

S = 8§ sin ¢, = effective solar constant
cos"x = % (cos x + | cos z |) (half-rectified cosine wave).

In general, a small element of the tube of arc length rdé (where r is the
tube radius) gains heat g,ndf, in unit time, due to solar heating; the
element also gains heat ¢.d@ by conduction and loses heat ¢.rdf by
emission of radiation. It will be assumed that the overlapping layers do
not have an appreciable area in mutual contact. This idealization is
useful because of the random nature of the actual contact areas and the
uncertainties in the contact pressure and in the associated surface heat
transfer coefficients. Any heat conduction which does oceur between
overlapping layers will tend to reduce temperature gradients and
alleviate the thermal bending effect; thus, the neglect of such effects
leads to a conservative analysis. Since the walls are very thin, it is per-
missible to assume that the temperature varies only in the eircum-
ferential direction, so that Fourier’s law leads to the result

ge = (h) (T /r*d6") (22)

where x = thermal conductivity, h = wall thickness, and T = absolute
temperature. The heat loss by radiation is given by the Stefan-Boltzmann
law: qo = eoT", where ¢ = hemispheric emissivity at temperature 7,
¢ = Stefan-Boltzmann constant (1714 X 107" Btu/hr ft* (°R)*). For
simplicity, the effects of internal radiation will be neglected, so that the
above expression for ¢, is valid only for 0 £ 8 £ 2x. The inclusion of
internal radiation effects would result in reduced temperature gradients,
thereby reducing the thermal bending; thus, this assumption is also
conservative.

Upon summing up the three contributions to the thermal balance,
one finds that
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dzT e’f'z 4 ?‘aﬂaq + ;
(.LQ_Q - (m 0’) T B (= —?r cOS (6 = 03); 0 g B g 21!‘ (_4)3)
T _

: or. 2
7= 0; 6 >2r (24)

Because no appreciable amount of heat can be radiated over the
narrow faces (of area h per unit length) at the edges where § = 0 and
0 = Buux , One may write the boundary conditions in the form d7'/df = 0
at § = 0 and 6 = Bmax, and observe that both 7" and dT/df# must be
continuous at # = 27x. Equation (24) implies a linear temperature
distribution in the range 6 > 2, but since d7'/df vanishes at the edge
8 = Oumux , the temperature must be constant in the range 6 > 2#. In
addition, continuity of d7/d8 requires that dT/df = 0 at § = 2.
Thus, the temperature distribution may be found by solving the non-
linear differential equation (23), subject to the boundary condition
dT/d6 = 0at 6 = 0,and at 8 = 2«. This problem, except for the boundary
conditions, is similar to the problem treated by Charnes and Raynor™
of a continuous (nonsplit) tube. Following their treatment, one may
linearize (23) by writing

T =T+ 7(0) (r<&Ty) (25)
where T is the mean radiant temperature defined by
Ty = [aS/medlt. (26)
Upon substitution of (25) into (23), one finds
d*r/d6 — p'r = =8 cos” (8 — 60,) + T 27)
dr/df = 0at § =0, and atf = 2x
where
p = 2vATe; A= (ca’/xh); B = aSr'/kh (28)
Equation (27) may be solved by a number of standard procedures (e.g.,
use of Duhamel integral or of Laplace transform) which will be omitted

for the sake of brevity. For a typical beryllium-copper rod, the pertinent
dimensions are

r=0225in, h = 0.002in, x = 65 Btu/hr ft, Ouwx = 37,

Representative values of absorptivity and emissivity, calculated by
integration of monochromatie reflectivity measurements, are:

a=08 e=03
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Fig. 11 — Temperature distribution in split overlapping tube (neglecting
internal radiation and radial conduction effects).

where e corresponds to a temperature of 7, = 684°R. If the solar rays
are truly normal to the rod axis, one may use S = § = 442 Btu/ft* hr
and if the rod is oriented with 6, = x/2, as shown in Fig. 11, the tem-
perature distribution will be as shown in the figure, where 7+ = 7' — T
is plotted radially outward from the tube surface for positive values and
inward for negative values of 7. For this example, the temperature drops
continuously from 7" = 700°R (240°1") at 8 = 0 to 7" = 667°R (207°1")
at # = 3r.

5.2 Thermal Bending

Tollowing the method used by Timoshenko and Goodier" for bending
of a beam of rectangular cross section, one may show that the curvatures
developed in the z-2 plane and the z-y plane are given, respectively, by

k. = M,/EI,, &y = M./EI, (29)
where I is Young's modulus,
I = f y'dd, I, = f a*dA (30)
A A

B = Eaf gl M= Eaf i, (31)
A A
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In the above expressions, a represents the coefficient of thermal
expansion (a = 9.4 X 10°° °R™' for numerical example); x and y are
measured from the centroid of the ecross section which is located a
distance e from the axis of the tube, as shown in Fig. 11; x and y have
their origin at the centroid; dA represents an element of area; and the
integration is made over the entire cross section.

With the temperature distribution shown in Fig. 11 (corresponding
to the numerical data given above), one finds that the eurvature x, is
negligible, but , is found to be

Ky = 318 X 107" ft7' (R, = 1/x, = 314 ft).

It may readily be shown that one end of a rod of length I bends
through an angle A¥ = «L with respect to the other end and deflects
through a lateral distance of § = (3)L*/R. The maximum angular and
lateral deviations for a 50-ft length of rod are thus seen to be A¥ = 9.1°,
5 = 4.1 ft. A similar calculation shows that 8 = 3.5 {t for a rod of r =
0.45 in and A = 0.005 in.

In view of the conservative nature of the heat transfer analysis used,
one may estimate that the actual values of slope and deflection could
easily be less than half of the computed values. In any case, the deflec-
tions do not cause excessive misalignment from the local vertical (see
Section VIII), and the slopes are sufficiently small to justify the initial
assumption that the heat input and temperature distribution do not
vary appreciably along the axis of the rod.

VI. SPRING DESIGN FOR MULTIPLE LAUNCH

When several satellites are launched from the same rocket vehicle,
it is necessary that they be injected with different velocity components
along the orbit trajectory; otherwise, all the satellites will have the
same period and will appear to be “bunched” together when viewed
from the ground. The velocity increments required to “minimize” the
undesirable effects of bunching are discussed in Ref. 14, where it is
indicated that a relative speed of about 12 ft/sec between the slowest
and fastest satellites is desirable for the case of four satellites in a single
orbit at 6000 nm. Similar conclusions were reached in unpublished work
at Bell Telephone Laboratories for the case of three simultaneously
launched satellites.

Velocity increments of 12 ft/sec are readily achieved by mechanical
springs. In this section we shall consider the use of ordinary helical
springs and of the so-called conical disk-spring (sometimes called a
Belleville spring) shown schematically in I'ig. 12.
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Fig. 12 — Belleville spring showing stress distribution.

It is easily shown'® that the strain energy per unit volume u; stored
in a close-coiled helical spring with a narrow circular eross section can be
expressed in the form

w = ()7’ /G (32)

where 7,, is the maximum shear stress in the spring and @ is the shear
modulus.

In the case of a Belleville spring, the stresses are distributed!® in an
approximately linear manner over the cross section, as shown in Fig. 12,
if the inequality (b — a)/e < 1 is satisfied and only small deflections
are permitted. Under these conditions, it is easy to show that the strain
energy per unit volume 1 is given by

w = (Mo /E (33)

where o, is the maximum tensile stress in the spring and F is the modulus
of elasticity. The relative energy-storing efficiencies of helical and Belle-
ville springs may be found from (32) and (33) in the form

Uy o 2 G Om : _ Tm : 4
"= (3)(7;)(—) A~ () )

where use has been made of the well-known relationship (Ref. 15, p. 60)
(L/G) = 2(1 + ») and of the fact that Poisson’s ratio » is very close
to % for most structural metals.

If the spring material is to be used most effectively, the stresses 7,
and ¢, should be practically equal to their respective values at the elastic
limit. It is seen from (34 ) that the relative efficiency of Belleville springs
versus helical springs depends upon the ratio of (on/7x) at the elastic
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limit. This ratio depends upon the eriterion of elastic failure which
governs the material. For example, a relatively ductile metal tends to
yield (Ref. 16, Section 82) when either the shear stress or the octa-
hedral shear stress reaches a eritical value; for such materials it may be
shown that ¢, & 27,.. For materials with little duetility, failure gen-
erally oceurs by fracture and ¢,, = 7,, (Ref. 17). Therefore, (34) pre-
dicts that if the material is stressed up to its useful limit:

Uy

= 1, for ductile materials
Up

Lot , for brittle* materials.
u, 4

In other terms, both Belleville and helical springs require the same
volume of any given ductile metal to store equal amounts of energy;
but a Belleville spring can store only 1 the energy stored in an equal-
volume helical spring made of the same relatively brittle material.
Although there is a tendency towards weight saving in the use of a
helical spring made of a relatively brittle material, it may well be that
practical geometric considerations, reliability, and the reserve strength
of ductile metals would lead one to the choice of a Belleville spring.

To show that reasonable spring weights are required for the present
application, let us equate the strain energy in the spring to the kinetic
energy (3)(W../g)v" required to impart a separation speed v to a
satellite of weight We(g = 386 in/sec”). If the volume of spring material
is denoted by V., , (33) leads to the result
an Vey _ Wt

6K 2¢

Ift, = H-|,I'ygl, = (.55)

If one uses the relationship W, = wV,,, where W, is the total weight
of the spring and w its specific weight, (35) leads to the conclusion that

W = Wt %’ (""E) . (36)

o9
Tm™

Equation (36) is a compact expression for the weight of a well designed
Belleville spring or of a helical spring (for a material with o,, = 27.,.).
The material influences the spring weight only through the ratio
(o /wk), which may be interpreted as twice the elastic energy stored
in a unit volume of the material when uniformly stressed at its maximum

* The words ductile and brittle are used in the sense that there either is or is
not an appreciable amount of plastic flow between yield and fracture,
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TaBrLe VII — MATERIAL PROPERTIES

Material E w Tm wE /a2
(psi) (Ib/in?) (psi) (in"1)
(7) 4130 steel 29 X 10° 0.282 175,000 | 2.67 X 1074
(HT 200,000 psi)
(i) Aluminum alloy 10.4 X 10° 0.101 73,000 | 1.97 X 10
7075T(6)
(#7¢) Titanium Alloy 17 X 10° 0.162 190,000 | 0.763 X 104
(Ti-6A1-6V-28n)

allowable value of ... Table VII shows (wE/c,.') for some typical
materials of interest. Thus, if one wished to impart a velocity of » = 12
ft/sec to a satellite weighing W = 280 Ib, (36) shows that with the
three materials described above, the spring weight Wy, would be 12.1
1b, 8.8 1b, and 3.4 Ib for materials (¢), (#) and (i), respectively.

VII. DAMPER UNIT

The damper unit was deseribed in qualitative terms in Section 2.2.2.
In this seetion it will be shown in what respects the PGAC damper
differs from other dampers that have been proposed in the literature,
and how the damping torques and spring torques must be chosen in
order to meet the system requirements outlined in the Introduction,
Section I. The hardware development program for the damper units is
also described.

Since the means of damping libration motions is perhaps the single
most important feature which distinguishes the various attitude control
systems that have been proposed by several authors, it would seem
worthwhile to indicate the various methods that have been considered.
These fall under two main categories: (a) velocity-dependent damping,
and (b) amplitude-dependent damping.

In the first category, one finds schemes which depend upon viscous
fluids? 5181 or eddy currents. It has not been demonstrated that practi-
cal difficulties concerning seals, viscosity, temperature and adverse
rheological effects have heen overcome in lightweight systems utilizing
fluids. Caleulations have shown that effective eddy-current damping
requires a considerably greater weight of material than does the magnetic
hysteresis unit under discussion.

In the second category of damping methods, the energy loss per eycle
is independent of velocity but depends only upon the amplitude of mo-
tion. Included in this category are methods based upon Coulomb fric-
tion, internal friction,* 5 and magnetic hysteresis, as described in Section
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IT of this paper. Coulomb friction (also ealled dry sliding friction) de-
pends upon physical and chemical surface properties which are notori-
ously hard to control under conditions of high vacuum and thermal
eycling; it is also difficult to control the normal force between the sliding
bodies, which greatly influences the level of friction. Solid internal frie-
tion, which depends upon energy losses developed in the microstrueture
of the material, is quite temperature-dependent but does not depend
upon unreliable surface properties and should not be unduly influenced
by high vacuum,

In addition to the virtues of velocity independence, insensitivity to
surface conditions, and lack of rubbing parts, the magnetic hysteresis
damper proposed here has been shown to exhibit relative insensitivity
to wide temperature fluctuations,

7.1 Spring Constanis

It is shown' that because the deck oscillates about an unstable position
of equilibrium, it is necessary to satisfy certain stability criteria. This
requires that the torsional spring constants &; and ks exceed certain
eritical values &y* and k.* given by

k*/ 1,2 = 0.625 (roll)

ka*/10° = 1.3 (piteh)

(37)

for the satellite specified in Section 2.2.4, or, for 6000-nm altitude,
ky* = 0.155 X 107° ft-lb/rad
le* = 0.324 X 107" ft-Ib/rad.

It is also found that & eannot be too large, since the two-body system
becomes so stiff at large & that very small relative displacements between
the two bodies are developed and the energy dissipation due to amplitude-
dependent damping is reduced. To guarantee stability, it has been
decided to keep k; and ks at least 10 per eent above their eritical values.
Computer studies indicate that the variation in damping time is rela-
tively small in the range:
k= 0.175 X 107 to 0.375 X 107" ft-Ib/rad,

(ky/ L2 = 0.7 to 1.5) 38
k= 0.36 X 107 t0 0.76 X 107" ft-Ih/rad,

(ko/ [, = 1.45 to 3.06).
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From computer solutions it has been noted that if k is smaller than £*,
both the satellite body and the deck body will oscillate about cocked
equilibrium positions. This verifies the stability criteria for the spring
constants. If the spring constants are much larger than the maximum
values given in the above ranges, the relative angular displacements
become very small and little energy dissipation occurs.

7.2 Damping Torque

Damping torque is produced by rotational hysteresis losses obtained
from relative displacement between a magnet, fixed along a diameter
of the rotor, and an annular thin disk of cold-rolled steel, fixed to the
housing (see Fig. 5). The magnetic fluxes of the magnet pass from the
north pole of the magnet through the disk on both halves and back to
the south pole, constituting a closed ecircuit. Except possibly for a small
leakage, the unit does not act like a magnetic dipole with respect to the
outside field. In the part of the disk near the poles of the magnet there
is a relatively high and nonuniform magnetic field. Let the magnetic
field in a magnetic domain 7 be H;, and let the induced magnetization
in the same domain be I;, which is generally making an angle ¢; with
H, . The magnitude of the retarding torque can be represented by

Td= —ZH;I"Sinp;. (39)

The minus sign means that the torque tends to oppose the relative
displacement between the disk and the magnet.

Provided that the spring constants lie in the ranges specified by (38),

computer solutions have shown that there is a relatively small variation
in damping time if the damping torques are in the ranges:

Tu/I2 = 0.12 to 0.29 (roll)
Too/ 12 = 0.16 to 0.45 (pitch)

for the specified satellite. At 6000 nm, the numerical values of T, are

(40)

Ta = 0.30 X 107 t0 0.72 X 107" ft-lb

_ (41)
T = 040 X 107 to 1.12 X 107" ft-1b.

If the damping torques are much lower than the minimum values given
above, the satellite will become earth-pointing only after a large number
of orbits, as indicated by computer solutions. On the other hand, if the
damping torques are much larger than the maximum values, the relative
displacements hecome small and the satellite will keep tumbling for
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many orbits, In the case of large angle motion the damping time is also
found to be greater for values of Ty above the ranges given in (41).

7.3 Hardware Development Program

Damper units have been developed whose spring constants and
damping torques fall in the range given by (38) and (41). These con-
stants are suitable for the 6000-nm satellite previously deseribed. How-
ever, the mechanical design is such that the spring constants and
damping torques may be adjusted for use with satellites at different
altitudes (e.g., between 600 nm and 19,360 nm).

7.3.1 Spring Design

Successful torsion spring designs have evolved using both steel wires
and flat beryllium-copper ribbons. The torsion springs must he under
sufficient tension to prevent the lateral forces (due to gravity dif-
ferentials, rotational motions, and environmental effects such as solar
radiation, ete.) from deflecting the rotor laterally beyond the established
clearance, thereby avoiding rubbing or sticking against the housing
stops. The lateral forces have been calculated to be smaller than 107 b
for the 6000-nm satellite previously deseribed. An axial tension force of
G Ib will be more than adequate to resist forces of this level.

Two high-strength steel wires, each of 2-in. length and 0.008-in. diame-
ter, will meet all of the specified requirements and provide a torsional
spring constant of 0.36 X 10~ ft-Ib/rad. With a suitably designed end
support for the springs, a number of torsional fatigue tests have shown
that the springs are capable of withstanding in excess of  million cycles
at an amplitude of 60°, The static axial tension was G to 10 Ib. This
number of eycles is equivalent to 5 times the expected numbers of libra-
tion periods in a 20-year useful life of the satellite.

7.3.2 Damping Torque Test Program

The torque-displacement relationship (e.g., T versus a for pitch
displacement) has been measured for a damper unit at angular speeds
between 0.5 X 10" and 2 X 10”* rad/sec (corresponding to a range of
angular speeds of 0.18 @ to 0.73 Q at an altitude of 6000 nm). No de-
pendence of damping torque on the angular speed has been observed
in any of the tests, thereby verifying the assumption of velocity-inde-
pendent magnetic hysteresis damping. Measurements have been made
on a number of annular disks of various thicknesses made of cold-rolled
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Fig. 13 — Rotational magnetic hysteresis loops.

steel, annealed and unannealed, and of V-Permendur. The maximum
torque, T, depends on the volume of the disk, the applied magnetic
field and the degree of cold working of the material. A typical Tu-e
curve measured on an unannealed cold-rolled steel (1010) is reproduced
in Fig. 13. The energy dissipated per cycle is proportional to the area
enclosed by the loops in the Tu-a diagram. The slanted part of the
curve extends over an angular displacement, 2a =~ 8°, as shown. When
the amplitude of the oscillation motion is less than & = 4°, minor loops
as shown in Fig. 13 will be traced out. An appreciable loop area is still
obtained even when & is as low as 1°.

Measurements have been made on the permeable disks after the disks
have been irradiated by an electron flux of 10" /em®, which is roughly
equivalent to the highest electron radiation level anticipated within the
Van Allen belt for a period of 30 years. The results indicate that electron
radiation has very little effect on the damping torque. The effects of
proton bombardment at a flux of 3 X 10" protons/em* have also been
found insignificant on the unannealed cold-rolled steel disks of 0.004-
to 0.008-inch thickness without shielding. This flux is equivalent to
the highest proton radiation level at 6000 nm for a period of 6 years.

Tt has also been experimentally observed that the damping torque is
relatively insensitive to wide temperature changes. The torque increases
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only 10 per cent at —40°[" and decreases only 15 per cent at +250°F,
from its value at room temperature. The temperature of the damper can
be controlled within mueh closer limits in space by appropriate coatings,
if desired.

Vibration tests at a 20-g level over a wide frequeney band show that
the damper will withstand launch conditions.

VIII. ANALYSIS OF DISTURBANCES AND ERRORS

In this section, we shall study the nature and magnitude of disturbing
torques which produce forced librational motion of a gravitationally
oriented satellite. In Sections 8.1 to 8.6, calculated values are given for
each disturbing torque and its corresponding libration angle.

In Seetion 8.7, the accumulative effects of all the disturbing torques
are summarized. It will be scen that the satellite has been so designed
that the gravitational torque dominates all disturbing torques at the
altitudes of interest.

It is obvious that the amplitude of steady-state librational motion
should be kept to a minimum in order that maximum gain can be
achieved from the earth-pointing antenna. For example, the theoretical
(solid angle) gain at 6000 nm is 14.5 db with no allowance for librational
motion. Allowance of a conservative tolerance of 10° on an antenna half
angle, to accommodate 10° libration amplitude, results in a 3-db reduc-
tion of theoretical antenna gain. However, it will be shown that the
steady-state librational amplitude will be less than 10°,

8.1 Solar Radialion Pressure

An incident photon beam from the sun to a surface element will be
partly absorbed, partly diffusely reflected and partly specularly reflected
by the surface, resulting in an exertion of forces in directions normal and
tangential to the surface element. These forces produce a net torque
about the center of mass of the satellite. A detailed enumeration of the
torques contributed by different surface elements on the two-body satel-
lite shown in Fig. 3 indicates that a net maximum solar radiation torque
of 0.5 X 10~* ft-Ib will act on the satellite. The magnitude of the gravita-
tional torque at 6000-nm altitude is 0.13 X 10~* ft-1b per degree of angle,
8, off the local vertical in the orbital plane for small libration angles
(Tomax = 39°(1, — I;) = 0.37 X 107" ft-Ib at & = 45°). Thus, statically
the solar torque is balanced by the gravitational torque at 6 = 4°,
when the sun is in its most unfavorable position. From computer solu-
tions of the dynamies analysis in the pitch ease, it is found that the
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satellite, which is provided with damping, will perform oscillations about
the local vertical of a maximum amplitude not greater than 4°. Both
the static and dynamic analyses neglected the rod deflections due to
solar heating, and the accumulative effects due to solar torque and rod
thermal bending will be discussed in the summary, Section 8.7. To be
certain that there are no effects which would cause the libration ampli-
tude to appreciably exceed 4°, it would be necessary to perform a three-
dimensional analysis.

The foregoing analysis was for a 6000-nm orbit employing the high-
deck configuration. For significantly higher orbits the low-deck configura-
tion would be preferred since it would experience less solar torque and a
correspondingly smaller deviation from the local vertical.

8.2 Residual Magnetic Dipole Moment

The traveling-wave tube employed in a communications satellite
such as the Telstar satellite contains two permanent magnets of equal
size with the opposite poles placed against each other, thus constituting
a quadrupole. Because of possible unequal strength of the two magnets
and of inhomogeneous magnetic shielding outside of the traveling-wave
tube, there would exist a net residual magnetic dipole moment in the
satellite. Both the dipole and the quadrupole moments will interact
with the geomagnetic field to produce torques. It can be shown that the
torque produced by the quadrupole moment is only about 1 per cent of
that produced by the residual dipole moment, when the moments of the
two magnets are off by as little as 0.1 per cent. The magnetic moment
of the Telstar satellite (produced mainly by the traveling-wave tube)
was largely cancelled by the addition of compensating magnets. The
residual dipole moment was 107" weber-meter, the magnitude of which
does not seem to have changed much after the satellite was launched into
orbit. The use of two traveling-wave tubes, as might be needed in the
commercial system, would not appreciably change the satellite’s residual
magnetic moment.

Other magnetic dipole moments, which exist in the hysteresis damper
units and the electric motors of the rod extension units, have been
measured to be about 1.4 X 10°° weber-meter (a value obtained by
adding all the moments scalarly). Therefore, a total magnetic dipole
moment of 2.4 X 107° weber-meter may be expected in the satellite.
This value may be reduced by “‘compensating” the motor dipoles and
by further refinement of the cancellation techniques used on the Telstar
satellite. Assuming a maximum geomagnetic field of 2.71 amp-turn/
meter (0.034 oersted ) at 6000-nm altitude, we obtain a maximum torque
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of about 0.65 X 10~° newton-meter (0.48 X 107" ft-1b). Upon balancing
this torque against the gravitational torque in the manner indicated
in the preceding Section 8.1, one finds a statie libration angle of 0.4°.

8.3 Orlilal Eccentricity

The eccentricity, e, of an elliptic orbit introduces a foreing torque on
the satellite. If the eccentricity is not excessive, the satellite will settle
down, as a result of damping, from an initial tumbling motion to a
steady-state forced librational motion. In this case, the foreing torque
due to eccentricity, 2¢7Q° sin (€ + @u) (where I = I, or = [3), oceurs
only in the equations of pitch libration. In the case of viscous damping,
the steady-state pitch librational angle has been found;” however,
because of the complexity of the resulting mathematical formulas, they
will not be reproduced here. Since an analytical solution has not been
obtained in the case of magnetic hysteresis damping, the steady-state
libration angle of the earth-pointing body has not been evaluated
exactly. However, it may be computed approximately by replacing the
hysteresis damping by an equivalent viscous damping for the same
energy dissipation per eyele (good only for small oscillations). In so
doing, it is found that the libration amplitude 8 &~ 3.6e radian, corre-
sponding to the numerical data given in Seetion 2.2.4 and for spring
constants and damping torques which fall in the range given in Section
VII. A few computer solutions for the case of hysteresis damping indi-
cate that 6 ~ 5e radian. Guided final-stage vehicles are believed to be
capable of achieving orbit eceentricities below 0.005, which would result
in libration amplitude of about 1.5°,

8.4 Meleorite Tmpaet

Based on Whipple's data,” the meteorite flux rate to a spherical
surface in the neighborhood of the earth ean be shown to be

® = ('/M meteorites per meter’ per year (42)

for meteorites of mass = M gram in the range of 107" to 107" gram.
The constant ' (in gram/meter®-year) is found to be €' = 4.16 X 1075
according to Whipple and to be (' = 20.8 X 10" according to Dubin.”
For meteorites hitting the deck body, which is at a distance L from the
center of mass of the satellite, it can be shown that the expected number

of meteorite collisions per year which result in satellite tumbling is

o m B~
Mi=fLa Zm (43)
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where » is taken to be the average speed of meteorites, A to be the
average surface area of the deck body (neglecting the shadowing effect
of the earth), I, is the maximum moment of inertia of the composite
satellite, p = (I, — I.)/1, based on the composite satellite, and n is a
factor determined by the momentum transfer (<1 for penetration,
— 1 for completely inelastic impact, = 2 for perfectly elastic impact,
and >2 for hypervelocity impaet when the material is blown backward
out of a nearly hemispherical crater). Equation (43) is based on an
analysis of the planar pitch motion of a single rigid body ratellite, which
indieates that if an initial angular speed greater than +/3pQ is suddenly
imparted to a satellite, which is already in line with the local vertical,
the satellite will overcome a potential erest and turn over. Based on the
result for pitch motion, the expected number of meteorite collision per
year to give rise to angles of disturbance from the local vertical in the
range from 6, to 6. (£90°) has been found to be

2o T noC 1 1

No=3 LA 7m0 (sin 6 sm 92) : (44)
Both (43) and (44) were derived ina simple manner by approximating
the deck as a spherical body. A more exact result can be obtained if the
meteorite flux rate is defined with respect to the projected area of a
hody. In this case the resulting expressions for N, and N, are similar to
(43) and (44), respectively, except that the coefficient (w/4)LA 1is re-
placed by complicated integrals involving the projected area element of

various bodies and its distance from the mass center of the satellite.
Numerical values of N given in (43) and (44) calculated for the two-
body satellite with €' = 4.16 X 107" are tabulated in Table VIII, from
which it is noted that the expected number of turnovers is 0.044 per year
(or once in about 23 years). If €' = 20.8 X 107" is used, based on
Dubin’s™ data, all values of N in Table VIII should be multiplied by a
factor of 5, and the expected turnover rate is 0.22 per year or once in
about 4.5 years. These disturbances will be hysteretically damped
down to a librational motion with amplitude of 5° in a reasonably short
time. For example, computer solutions indicate that the pitch amplitude
will be reduced from 45° to 5° in two to four orbital periods. In view of
the uncertainty of the meteorite flux rate, all numerical values calcu-
lated in this section are to be interpreted as order of magnitude estimates.

8.5 Cocked Angle Due to Rod Deflections

The extensible rods will be bent in a natural way and due to the ther-
mal effects, as analyzed in Section V. Consequently, the axes of principal
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moments of inertia of both bodies will deviate from their positions in
the ease of perfectly straight rods, and the center of mass of the com-
posite satellite will not lie in the mast rod. As a result, the two bodies
may not be perpendicular to each other (or the springs between them
may not be in a neutral position) and the desired earth-pointing axis of
the satellite may be off from the local vertical by a small cocked angle
when the satellite is in a stable equilibrium position. Techniques have
been developed for measuring rod straightness so that the natural rod
bending in a gravity-free condition will not exceed a predetermined
value. Tt has been found possible to select rods so that the rod bending
will not exceed 1 foot for a rod length of 60 feet. This cocked angle
could be evaluated if we could find the position vector of the hinge joint
in the distorted configuration. A general error analysis has not been
made, sinee it is not known a priori in what way the rods might be
deflected. Based on the case of piteh libration, it is found that a deflec-
tion of 1 ft of a 60-ft long mast rod will cause a cocked angle of about
0.7° in the case of the high-deck configuration. Assuming that the lateral
tip deflections of both the mast and deck rods occur in the same diree-
tion, the total cocked angle will be approximately 1.5°. For the case of
the low-deck configuration, the cocked angle would be appreciably less.

Rod bending can be caused by solar heating. As has been covered in
Section 5.2, the deflection for a H0-ft long rod is expected to be about 2
feet when the sun is perpendicular to the rod. There is a cumulative
effect due to the mast and one pair of deck rods when the tips all bend
away from the sun during certain periods of the year. The cumulative
effects of these rods being bent produce a maximum cocked angle of 3°.
This cocked angle can he reduced to less than 1° by silver-plating the
rod exterior (the low absorptivity of silver, @ = 0.1, would significantly
reduce thermal rod bending due to a reduetion of temperature dif-
ferential across the rod cross section). As will be discussed in the sum-
mary, Section 8.7, the effects of rod bending and solar torques are not
additive.

8.6 Miscellaneous Torques

Torques due to self-gravity and eddy currents have been found to be
much smaller than those discussed above. It can be shown that the self-
gravity torque acting on one body due to the attraction of the other
body is negligibly small compared to the gravitational torque at the
altitude of interest. This is due to the fact that the sizes of the two bodies
are not significantly different and that their masses are much smaller
than that of the earth. Eddy-current losses induced in the conducting
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materials of the satellite are small because of the low geomagnetic field
at the altitudes of interest and because of the satellite’s low angular
speed. The torques due to self-gravity and eddy currents are less than
1078 ft-1b. The torques produced by plasma effects due to the motion
of the satellite in the Van Allen radiation belts are believed to be small.
However, it is intended to make a detailed analysis of plasma effects.

8.7 Summary

In Table VIII, the maximum libration angles are summarized for each
individual disturbance for the high-deck configuration. By simply super-
posing the individual effects of the various torques, the maximum
steady-state libration amplitude is about 10° for the high-deck configura-
tion. However, the various maximum individual effects cannot simply
be added to obtain expected maximum libration amplitude. For example,
the effect of solar torque and solar rod bending are not additive. The
solar torque causes the deck assembly to rotate about the center of mass
of the composite satellite in a direction away from the sun, whereas the
rod bending due to solar heating causes an effect in the opposite direc-
tion. A quantitative analysis is being made of the compensating effects

TasrLe VIII — ErFects oF DISTURBANCES FOR A 6000-NMm SysTEM

Maximum Magnitude Approximate Librational
(ft-1b) A

Sources ngle

Piteh gravity torque: 1.3 X 10~ per degree off the local vertical

Solar radiation* 5 X 1078 4°
Rod deflection* See text

Natural bending 1.5°

Solar heating 3.0°
Orbital eccentricity See text 1.5° for e = 0.005
Magnetic dipole moment 0.48 X 1078 0.4°
Self-gravity and eddy current Negligible Negligible

Effects* of Meteorite Impact

ﬁ’, Expected Number of

Occurrences per Year Period of Occurrence in Years

Angle from the Local Vertical

5°-15° 0.336 3
15°-30° 0.082 24
30°-50° 0.031 33
50°-70° 0.011 94
70°-90° 0.003 355

5°-90° 0.460 2

>00° (turnover or| 0.044 23
tumbling)

* Computed for high-deck configuration.
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of these two disturbances. Should it develop that the disturbances do
not substantially compensate for each other, silver-plating the rods would
reduce the effects of both disturbances to less than 5°, rather than 7°,
which is the sum of the two disturbance angles. The effects of the other
disturbances — natural rod bending, orbit eccentricity, magnetic dipole
moment — would not be added to give a total angle of 3.4°. Hence for
the high-deck configuration, the final librational angle is expected to be
well under 10°. For the low-deck configuration, the librational angle
would be expected to be somewhat smaller than that for the high-deck
configuration.

IX. CONCLUSIONS

The theoretical feasibility of the proposed PGAC system has been
amply demonstrated by more than one hundred computer runs based
on the dynamics analysis® of the ideal two-rigid-body system. Computer
simulations made with a wide variety of initial conditions showed that
the system stopped tumbling and then, within about 7 orbital periods,
settled down to a state of small oscillations about an earth-pointing
direction. It has also been indicated that disturbing influences, such as
solar radiation pressure and orbital eccentricity, produce oscillations
of less than 10° for a 6000-nm orbit,

The rods have been shown to possess adequate rigidity, to be fully
capable of withstanding the loads imposed during the extension phase,
and not to undergo excessive hending due to solar heating.

On the basis of comprehensive studies and tests, it is believed that
the PGAC system described in this paper is fully capable of meeting
all its design objectives, including compatibility with multiple launch
procedures, and that it will provide a significant advance in communica-
tions satellites practice.

X. ACKENOWLEDGMENTS

The authors wish to acknowledge fully the technical contributions
of L. Rongved* and his leadership during the formative stages of the
project; H. J. Fletcher* also contributed numerous ideas and mathe-
matical results. Among present Members of Staff at Bell Telephone
Laboratories the authors are indebted to J. G. Engstrom, J. W. Stafford,
and B. A. Unger who contributed greatly to various analytical and
experimental investigations, to L. 8. Goldmann who contributed to
Section 3 2, and to R. G. Murray for assistance in certain test proce-

* Now with Bellecomm, Ine.



2238 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963

dures. Thanks are also due to Miss I0. B. Murphy, Mrs. C. M. Kimme,
and Mrs. W. L. Mammel for programming various computations on
the IBM 7090 computer.

REFERENCES

1.

G = W N

o o~ o

. Fischell, R. K.

Hoth, D. F., O'Neill, E. F., and Welber, I., The Telstar Satellite System,
B.S.T.J., 42, July, 1963, p. 765.

. Kamm, L. J., An Improved Satellite Orientation Device, ARS Journal, 32,

No. 6, 1062, pp. 911-913.
The TRAAC Satellite, APL Technical Digest, 1, No. 3, 1962,

p. 2-9.

p
. Fletcher, H. J., Rongved, L., and Yu, E. Y., Dynamics Analysis of a Grav-

itationally Oriented Satellite, this issue, pp. 2239-2206.

. Nowak, G. H., et al., Unclassified Study of Vertistat Orientation for Com-

munication Satellites, Final Report, Contract NAS5-1808. GD/A Report
No. AE 62-0808, 15, September, 1962.

. Paul, B., Planar Librations of an Extensible Dumbbell Satellite, ATAA

Journal, Vol. 1, No. 2, 1963, pp. 411-418.

. Pierce, J. R., Orbital Radio Relays, Jet Propulsion, 26, 1955, pp. 153-157.
. Timoshenko, 8., and Young, D. H., Vibration Problems in Engineering, D.

Van Nostrand, Princeton, N. J., 3rd ed., 1955.

. Heydon, D. A., Final Report, 0GO/Agena B, Separation System Develop-

ment 'i‘ests, STL Doeument No. 2319-6029-TU-000, 9521.23-128, 26 December,
1962.

. Aichroth, W. W., Test Report OGO Separation Test, 19V-21, STL Doe. No.

9319-6030-TU-000, 7 January, 1963.

. Warren, H. R., DeHavilland Antenna Erection Unit, Proc. 5th MIL-E-CON

Conference, IRE, 1961, pp. 392-400.

. Charnes, A., and Raynor, 8., Solar Heating of a Rotating Cylindrical Space

Vehicle, ARS Journal, 30, No. 5, May, 1960, pp. 479-484.

. Timoshenko, S., and Goodier, J. N., Theory of Elasticity, MeGraw-Hill, New

York, 1951, pp. 309-404.

. Rinehart, J. D., and Robbins, M. F., Characteristics of the Service Provided

by Communication Satellites in Uncontrolled Orbits, B.8.T.J., 41, Septem-
ber, 1962, pp. 1621-1G70.

. Timoshenko, 3., Strength of Materials, Part I, D. Van Nostrand, Princeton,

N. J., 3rd ed., 1958, p. 313.

. Timoshenko, 8., Strength of Materials, Part 11, D. Van Nostrand, Princeton,

N.J., 3rd ed., 1959.

. Paul, B, A Modification of the Coulomb-Mohr Theory of Fracture, Jour. Appl.

Mech., 28, June, 1961, pp. 260-268.

. Lewis, J. A., Viscous Daumping of Gravitationally Stabilized Satellites, Proc.

4th U.S. Nat. Congr. Appl. Mech., Berkeley, June 18-21, 1962, Am. Soe.
Mech. Engrs., 1962, pp. 251-254.

i Za‘iac . L., Damping of a Gravitationally Oriented Two-Body Satellite,

RS Journal, 32, December, 1962, pp. 1871-1875.

. Yu, E. Y., Long Term Coupling Effects between Librational and Orbital Mo-

tions of a Satellite, to be published.

. Whipple, F. L., The Meteoritic Risk to Space Vehicles, in Vistas in Astronau-

ties, 1, M. Halperin and M. Stern Iids., Pergamon Press, New York, 1958.

. Dubin, M., IGY Micrometeorite Measurements, in Space Research, H. Kall-

mann, Ed., North-Holland Publ. Co., Amsterdam, 1960, pp. 1042-1058.



Dynamics Analysis of a Two-Body
Gravitationally Oriented Satellite

By H. J. FLETCHER,{ L. RONGVEDY and E. Y. YU
(Manuseript received July 27, 1962)

The rigid body motion of a two-body salellite under the action of gravita-
tional torques is analyzed. The satellite consists of two rigid bodies eonnected
by a universal joint where damping is provided in the two journals. The
motion of the satellite relative to the mass center thus has five degrees of
freedom, two of which are provided with energy dissipation. It appears that
the rigid body motion of such a composile satellite will automatically con-
verge upon a motion in which a given axis of the satellile is earth-pointing.

The equations of molion are derived divectly from those of Euler. Neces-
sary stability criteria are established. Nwmerical solutions for a practical
scheme are presented.

I. INTRODUCTION

This paper deals with the analysis of the rotational motion of a satel-
lite consisting of two rigid bodies eonnected by a hinge mechanism of
universal joint type. The rotational motion of the satellite thus has five
degrees of freedom; the two degrees of freedom that involve the relative
motion between the two bodies are provided with energy dissipation.
It is found that any motion of the satellite with respect to the local
vertical always involves relative motion between the two bodies. There-
fore, the damping at the hinge joint dissipates not only the relative
motion of the two bodies but also the motion of the satellite with respect
to the local vertical. The satellite will then converge upon a stable mo-
tion in which a specified axis of the satellite will remain close to the local
vertical.

The equations of motion are derived directly from those of Newton
and Euler. This approach naturally suggests several additional de-
pendent variables and results in numerically workable equations. This
is not the case in the Lagrangian formulation.

There are several practical problems involved in this scheme of pas-
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sive gravitational orientation. One problem is to make the gravitational
torque dominate over all other disturbing torques. A novel solution to
this problem, which employs extensible rods, has been given by Kamm.!
Another problem is the development of the hinge dissipative mechanism.
A viscous mechanism is deseribed by Kamm,! whereas a hysteresis
mechanism is suggested in this paper. These practical matters are not
the substance of this paper; they are used as illustrations for the nu-
merical treatment of a practical design.

II. GENERAL EQUATIONS OF MOTION

Consider a satellite which is constructed of two rigid bodies, with
masses my; and ma , hinged at a point H. The centers of mass of the two
bodies are denoted S; and S:, and the center of mass of the composite
satellite is denoted Sp. Let the earth’s center be O and let P, and P,
he arbitrary points of body 1 and 2. Also, denote OFP, = R, 08, =
Ql,OSu = Q,OSQ = 9‘3,0P2 = Rg,Sl.P_[ = I, S2P2 = fz,[fsl = £1,
HS. = £, (see Tig. 1). (Note: £; and £, represent vectors, while £; and
{» which appear later represent their respective magnitudes. See Ap-
pendix for list of symbols.)

Let us introduce the following notations:

wr, o = angular veloeity of body 1, 2,
T, = reactive torque transmitted through the joint on body 1,
F, = reactive force transmitted through the joint on body 1,
T,, Ts = resultant torque on body 1, 2 exclusive of Ty,
F,, F; = resultant force on body 1, 2 exclusive of Fy
my , e = mass of body 1, 2,
m = myumy/{m; + ms) = reduced mass of the system,
m = my + my = total mass of the system,
@, , @ = moment of inertia dyadic of body 1, 2.

Newton'’s and Euler’s equations can now be written as

Fi+ Fy = mlIE.h (1&)
F-_l = FH = '?n-g.ég (]I))
® o+ o X ®-op = Ty + Ty — € X Fy (1¢)

lI’g-u;n-I-mqu’z'LoI[:Tg—TnJrrGaXFH (1d)
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where the dots indicate time derivatives with respect to an inertial
frame. Because of the constraint imposed by the hinge, the following
relations are satisfied

mn
o=o+ (£1—£z)—2 (2a)
or
my
0 = Loy — £) —. 2
or = o+ (L Do (2h)

Addition of (1a) and (1h) yields the following veetor equation which
governs the motion of the mass center Sy :

F, + F. = mp. (3)
Using (1a), (2a), and (3) we may solve for Fy

Fy = i:i‘ F. — ):L F + m(& — &o). (4)

Inserting (4) in (1e) and (1d) and using the fact that
oélzmlxoe] and £1=£01X£1+m1><(01><£|),

ete., equations (1e) and (1d) hecome

‘T’l"t:ll + wr X ‘1’1"0’[ =T, + Tu
fm. _om _ . 3
+ £ X \— E F: + iilon X (mn X&) + o X -53::1 (5a)
@) o + og X @ rop = To — Ty
+ £ X {% F, — P:hFa + 7ilor X (op X &) + o X 31]} (5b)

where @/ = @, + m((’T — £,€;),7 = 1,2, and I is the unit dyadic.

ITI. GRAVITATIONAL FORCE

The earth’s gravitational field is taken to be radially symmetric. The
gravitational force, dG,, acting on an infinitesimal mass dm; at P; is
then

wdm;

H'G.' = = R.‘H

R: (6)

where ¢ = gR;" with g being the gravitational acceleration at the earth’s
surface and Ry being the earth’s radius. Irom Ifg. 1
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X

Fig. 1 — Vector displacement diagram of a two-body satellite.

) ey 2\
46, = —E8M (g, 1 1) (1 oy f‘;)
pi Pi i

p

2
- [—“f;m 0i — p:;n,: £+ 3:5‘ (pi-rs) dm.-:":l + 0 (pié):l (7)

where the last quantity represents terms of order I°/p;* and higher and
I is the maximum linear dimension of the satellite. These higher-order
terms are neglected in the analysis. Since S; is the center of mass of
body 2

f I; dm‘- = (.

my

Hence G, , the gravitational force on bedy 1, is

o=z s +0(3)]
pt pi
or, by (2a)

G, = [_"’;‘9 ¥ %ﬁ (L2 — £1)-(I — 3pp) ][1 + 0 (ii) ] (8a)
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Rimilarly,
G = [—&;9 — (e — ) (I - 35;3)][1 +0 (i)] (8b)
P P p*
where the symbol “~”" denotes a unit vector. Using (7), the gravita-
tional torque acting on body 7 about the center of mass is given by

Toi = [ x(IG.-=3'f:,6><¢,--ﬁ|:l +o(i)] i=1,2 (9)
p

Let F, = F/ + G;, T:. = T/ + Tai, 1 = 1, 2. Substituting in (5a,b)
with the gravitational torques in (9) and the gravitational forces in (8)
with terms of O(1/p) and O(F/p’) neglected, the general equations of
rotational motion of two hinged-conneeted rigid bodies become

£ 3 ’
@m+mxww=§ﬁx%ﬁ
+H (1 X & — 38 X pp-&) + TV + T
o (10a)

My
m

+ ‘f?—!(u)u‘aezoel X Wy — wnﬂﬂl X :Ez + =B_|'£2(;)H - £2£1‘t:)n),

&xw+%&xw

. BT ;o
@, o + on X B on = p—’:n X @y -p

+ B0 (g X &1 — 32 X pp-&1) + Ty — Ta

P ( 10}))
M st By D% v B
m m

-} Tﬁ(wl'ﬂﬁlﬂz X wy — UJIE;'{:? X £ + Lo-Lioy — L1892 0p).

Note that T\" and T+ are the resultant torques imposed on body 1 and 2
by some external sources other than gravity. They do not include
torques arising from the reaction of one body upon the other. Simi-
larly, Fy and Fy are the resultant forces on body 1 and 2 due to ex-
ternal sources other than gravity. They do not include the reaction of
one body upon the other. Thus both these torques and forces are worked
out as though the bodies were not connected. Various environmental
disturbances, like solar radiation pressure or interaction of a magnetic
moment in the satellite with the geomagnetic field, may be taken into
account by assigning appropriate values to T/, T, F/, and F,’. This
subject is not treated here to conserve space.



2244 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963
I'rom (8a) and (8b) it is seen that

G+ Gy = —“p—":”. (11a)
If the gravitational forces are the only ones in F, and F,, then (3)
becomes

6= —E8, (11b)

The solution of this vector equation is an elliptieal orbit of S, inde-
pendent of the rotations of the satellite, because of the fact that terms
of O(I’/p*) have now been neglected. As the earth’s gravitational field
is assumed to be radially symmetrie, the orbital plane is fixed in the
inertial space.

IV. COORDINATE SYSTEMS

T'our reference frames are used to deseribe the motions of the satellite.

The first frame has its origin at the geocenter O with the Z-axis
through the perigee of the orbit and with the ¥Y-axis in the direction of
the orbital angular momentum. The X-axis is chosen to form a right-
handed set of axes (see Iig. 2). This coordinate system is taken to be
inertial,

The second is an earth-pointing frame. It has its origin at the satel-
lite’s center of mass, Sy, with the z-axis along 0S, making an angle y
with the Z-axis. The y-axis is parallel to the Y-axis, and the z-axis is
chosen to form a right-handed system. The relationship between the unit
vectors of the coordinate systems 0-XYZ and S¢-xyz is

& Cy 0 —5Sy\ (X
al=10 1 o0 |J|Y (12)
3 Sy 0 Oy \Z

where S and C' are abbreviations of sine and cosine.

The third frame has its origin at S, with axes Si-zy:2; along the
principal axes of inertia of body 1. Euler parameters® are employed to
deseribe the motion of S;-rjy2 relative to Sg-ryz. The transformation
is given by

£ £
] = (ai;) ) (13a)

2

= 2
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(GEOCENTER)

Fig. 2 — Coordinates of the rotating and nonrotating frames.

where
2—n— 4 2+ i) 2(& — 1x)

(ai)) = | 2(n — ix) —g2 4+ =2+ 2+ ) (13b)
2(& + 2x) 2(—&x + nf) -2 -+ 4+

1, j = 1, 2, 3 representing rows and columns respectively, and

E4+n+8+x =1L (13¢)

The fourth frame has an origin at S with axes Syaay.z. along the
principal axes of inertia of body 2. If a universal joint is used, the relative
rotation of the second body can be completely specified with only two
angles, namely a, the rotation of the journal in body 1, and 8, the rota-
tion of the journal of body 2. When these two journals are directed re-
spectively along & and g, then the transformation from Sz to
Sa-aa3020 18 given by

) i
i | = (bij) h (14a)
éz él

where
cp Sa S —Ca SB
(b)) = 0 Ca Sa ). (14b)
S8 — S« CB Ca C8
The constraint equation #-» = 0 is automatically satisfied by the in-

troduction of the two coordinate parameters a and 8. The angular
veloeities of the two bodies are

o1 = ¥ + Mf + M + N (15a)
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where
Mo=2(xE + 1 — af — &) (15b)
Ne = 2(—(k + xn + E — n%) (15¢)
M= 2(nf — &1+ xd — %) (15d)
and
o = o + @by + Bis. (15e)

V. SPECIALIZED EQUATIONS OF MOTION

Let us specialize our satellite so that £, = 0 and £, = —£2 . We
assume gravity to be the only external foree, i.e., Ty, T2/, F,’ and F.' in
(10) are taken to be zero. Then equations (10) are equivalent to those
derived from two bodies connected at their centers of mass except that
the inertia dyadic @, is replaced by @, defined in (5) (@, = @, as
(> = 0). The two bodies are connected by a universal joint, which is
characterized by an interposed weightless body, having two perpen-
dicular journals as previously deseribed. The torque Ty, transmitted
through the universal joint, consists of the constraint torque T., the
elastic restoring torque T,, and the dissipative torque T,;. The com-
ponents of the latter two along the journals x; and y. are specified by
subseripts 1 and 2 respectively. Hence T, can be written as

TH = ?'c.'f«‘l X ?}_1 + (Trl + Tlfl)-{:l + (Tﬂ + Td2)?}2 * (I(i)

Let
I, =@ 4 (17a)
Iy = @/ (17b)
I; = @/ % (17e)
Iy = @, 8, (17d)
Iy = @, (17e)
Iy = @5 (17f)
wi(i = 1,2, 3) = components of wr along &, , 4 (17g)

w;(1 = 4,5, 6) = components of e along £, 72,2.. (17h)
IFrom the orbit equation (11b), the following relations can be derived

. Q —
¢:m(1+6(’¢) (18)
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3u o

Q=8
p:'l (__2)3

(14 y)’ (19)

where
¢ = eccentricity of the orbit
Q = 27 divided by the orbital period.

Euler’s equations of motion (10), simplified for the specialized satellite,
are written out as

Loy = (I, = 1) (wwwy — Grang) + T + T (200)
Lon = (I3 — 1) (wgoy — Gugny) + (Toe + Tar)Ca — TeSa (20bh)
Ly = (1) = 1) (@we — Gnme) + (T + Taw) Sa + TCa (20¢)
Ly = (Is — Ig) (wsws — Ggng) — (T + Ta)CB + TeS8  (20d)
Tes = (Ie — 1) (wews — Gngng) — Tro — T (20e)
Tewg = (Is — Is) (wyws — Guang) — (T + Tar) S8 — TLB (20f)

where

n; = (SEE 13})) i = 1, 2, 3 (20g)
Nigy = O buary  (see 14b)  1=1,2,3. (20h)
k=1

Because of the constraint #-7 = 0, a relation must exist among the
six w/s. Such a relation, i.e., (or — on) (& X #) = 0, can be ob-
tained from (15e). This yields the following relationship:

w«_u',\'ﬂ — w:;(-'ct = w;S,ﬁ‘ + me.('ﬁ = 0. (21)

If (21) is differentiated and equations (20) are substituted, the un-
known 7', is found to be

o2 2 r..
T1c:(i’3a+cl—+b]f3+(z )
I, 3 4 1
{%? [(I; = I)(wws — Gung) + (The + Ta2) Col

= % (I, = L) (wws — Gryne) + (The + Taz) Sel

S“ 211, — 1) (s = Grane) = (L + Ta) €l
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Cﬂ 1 v il o
+ T (I — I3)(wiws — Gnang) — (T 4+ Tar) SBI
6

+ a(wCa + wiSa) — plwlB + wsSﬂ)}- (22)

Equations (20) could be considered as a system of six second-order
equationsinsix unknownsé, g, ¢, x, e, 8, while ¢ is determined from (18)
and the w;'s from (15). For computation purposes it is convenient to
also leave the w,’s as dependent variables. Equations (15) give

E = 30xh — A + 7ha) (23a)
= 3N+ e — ) (23h)
£=3(—n\ + B+ x\y) (23¢)
X = 32 —E\ — e — EN) (23d)
@ = —w + w8 + wiSB (23e)
8= —wla — wSa + ws (23f)
Ni=w—awp, i=1,23. (23g)

There are now 12 first-order equations, (20 a-f) and (23a-f), in the un-
knowns £, {, x, &, B8, w1, we, wy, Wi, ws, and w. If Tuler angles had
been used instead of Buler parameters, there would be certain positions
of the body for which the derivatives of the angles have a singularity.
However, no singularities occur when Euler parameters are used, as can
be seen from (23). It should also be noticed from (13b) that the matrix
fixing the body position is not changed if the coordinates (&, #, {, x) are
l‘nplaced by (_Ep =, =, _X)-

VI. DISSIPATIVE AND ELASTIC TORQUES IN THE UNIVERSAL JOINT

To completely define the problem it is necessary to specify the elastic
and dissipative torques T, and T, .
6.1 Damping Torques

Two types of damping torques are considered here. The first is viscous
damping of the linear velocity type; the torque on body 1 has two com-
ponents

le = Cld‘.i‘l (24&)
Ts = (-'23’_1}2 (24h)

where 'y and ("; are viscous damping coefficients.
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The second is of magnetic hysteresis type. The damping is furnished by
hysteresis losses produced by the relative motion of a permanent mag-
net and a permeable material. The torque in the x;-direction might be
approximately expressed by the following process. If & > 0, the torque
would be represented in region I in I'ig. 3 by

a — o

Ta = Ta* + Ta (25)

as long as | Tw | < T where @, Tu are constants and o, T's* are the
values of @, Ty when & last chun;,pd sign. After | T | reaches Ty then
T4 remains at Ty as long as & does not change sign. This is represented
as region 11 in Iig. 3. If & changes sign, then (25) applies and the proc-
ess is repeated. This is represented by region III of Fig. 3. Ta. is defined
by replacing a by 8 and subseript 1 by 2 in (25). According to this
idealized hysteresis, no energy is dissipated in region III. In an actual
device, energy would also be dissipated in this region because of minor
hysteresis loops. The chief advantage of magnetic hysteresis damping
is that it is amplitude dependent instead of velocity dependent, since
the librational frequency, which is of the order of the orbital frequency,
is too low to make the velocity damping effective. Other merits of the
magnetic hysteresis damper will be stated in the descriptions of a prae-
tical design for a numerical computation.

Ty
1 I
Ty |[———
| :
“'
ot % z |
| l { B
|
|
B |
~Tar |
L—-ﬁ-aﬁ—-——>|

Fig. 3 — Magnetic hysteresis damping torque produced by a magnetic device
on the a-journal.
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6.2 Klastic Torques

It is assumed that each journal is furnished with a linearly elastic re-
storing torque produced, for example, by the torsion of a wire. The torque
acting on body 1 is given by

T,l = klai‘1 (26&)
T,, = 7"2»62‘/2- (26b)

where k; and k» are spring constants.

VII. MISCELLANEOUS TORQUES

Many other torques such as those due to interaction of the satellite’s
magnetic moments with the geomagnetic field, solar radiation, self-
gravitation between two bodies, and plasma effects will act as forcing
terms in the equations of motion. By proper design, these torques can
be made small compared to the gravitational torque. However, since the
gravitational torque varies inversely as the cube of the geocentric dis-
tance, it may not necessarily dominate in the orientation of satellites in
very high orbits. Also, in very low orbits, aerodynamic drag may be big
enough to upset the orientation. If long rods are used with weights on
the ends, the gravitational torque can be made to dominate for a certain
range in altitude.

VIII. EQUILIBRIUM AND STABILITY
Let us consider ouly the equilibrium position
(E:ﬂ)le!asﬁ) = (()FO!OJI 70!0)

in which the ay , 31 , 2 axes are lined up with the a,y,z axes. For viscous
damping, the stability criteria for the position (0,0,0,1,0,0) can be found
by linearizing the equations of motion about this position. The same sta-
bility eriteria are obtained for equilibrium positions found by rotations
of 180° around the 2, y, and z aves, i.e., (1,0,0,0,0,0), (0,1,0,0,0,0),
(0,0,1,0,0,0). For hysteresis damping, there will be an infinite number of
stable equilibrium positions. All of these can, however, be made suffi-
ciently close together to either one of the above four equilibrium posi-
tions, thus maintaining an axis in the satellite nearly in line with the
local vertical.

From the definition of Fuler parameters, the infinitesimal angles of
rotation about the @y, 4y, and z; aves are § = 2, 5 = 29, &) = 2(, de-
fined as the roll, piteh and yaw angles. If & , 5., {» arve the infinitesimal
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angles that the principal axes of body 2 make with respect to the rotat-
ing coordinate system Sy-ryz, and « and g are small, then

b=a+th (27a)
7 =B+ m (27hb)
f2=101. (27¢)

In the linearization process, we take the eccentricity of the orbit, ¢
to be small in order to insure the realization of the infinitesimal angles’
This is necessary in view of the well known result of the satellite pitch
motion that the angular excursion produced by the eccentricity is of the
same order of magnitude as the eccentricity itself. From (18) y becomes,
with zero phase angle,

¥ = Q + 2eS0 + 0(). (28)

To linearize the general equations of motion given by (10), let us assume
viscous damping as expressed in (24) and linear restoring torques as
given in (26). The perturbing torques and forces, T and F/’ (i = 1, 2),
are neglected. Also, let £, = —02 and £, = £ . Then, equations (10)
arve linearized to the following:

i A Lo + V(i — ) + dim — k' = 260°(1 + LO)SQU (29a)
ne 4 Lom + Cy (e — M) + dome — ka'm = 2592(1 + L.)St (29b)

E o Niba 4 OV (B — &) 4 098+ ki — kg = 0 (29¢)
Ey 4 Noby + O (b — &) + @0 + w0k — Bt = 0 (20d)
E4 (1= fi = )% — Qb — Qb = 0 (29)
where
In = Wble/ls, Lo = mbils/Is
O = CofIs, ¢ = Cy/I;
k! = /I, ket = Ko/ Ts

d, = 304, — I;)/I. + 39°L, + k'
de = 39 (Iy — Is)/Is + 3Q°L: + kY
Ny = mitls/I;,  Na:= mbls/1,
o =Cily, . = /14

q=(h+5L-L/hL
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(Is + Is — Is) /14

40%(1 — g, + 3N /4) + k/IL

s = 49°(1 — g2 + 3N2/4) + ky/1s

k= k/I, — @°Ny, ks = ky/I, — O'N,
h=(L+Ii— I.)/(Is+ Iy), fo=(Li + Is — Is)/ (I3 4+ I).

It should be noticed that the piteh equations (29a,b) do not depend
on &, &, ¢ and are decoupled from the roll and yaw equations (29¢,d,e).
The eccentricity enters as the amplitude of a foreing term in piteh but
not in roll and yaw. The transient part of the piteh libration ean be solved
from (29a,b), excluding the forcing terms, by substituting with

st -
Ny = B‘-e 3 1 = 1,2

=
e
Il

-~
=
-

The resulting characteristic equation in s is then
(1 — Lila)s' + (CY + €y + CYLy + C/'Ly)s°
+ (dy + dy + k' Ly + k'Ly)s*
+ (O + dCY — C'kd — Cki')s + (dids — k'le’) = 0. (30)

The piteh motion is damped about (0,0,0,1,0,0) if and only if the Routh-
Hurwitz conditions® are satisfied. This insures that the real parts of the
roots of (30), representing the damping constants for the two prineipal
modes, are negative. These give

Jwi3s T (31a)
]\'2 > — 392 (Il _IIa_+ITﬁ£1(2) (14 — Iﬁ + 'fﬁ!’[(g) (31[))
I, — Iy + mifile |, Iy — Is + mbify (31¢)

Iy 4 mbife Is + mbile

where
I. =1, + Iy + 2mbil
I, =1+ Is + 2m(,
I. =1+ Is.

I.,1I,,I.represent the moments of inertia of the composite body ahout
So . Condition (31a) is the same as that of a single rigid body. Condition
(31b) states that k. must be larger than a certain critical value if one
body is unstable (e.g., Iy — Iy + mlif: < 0). This value is zero if both
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bodies are stable by themselves. It can be shown that there cannot exist
a cocked equilibrium position in pitch if the parameters are such as to
make the position (0,0,0,1,0,0) stable. Condition (31c) implies that
there exists an undamped motion if the equality sign holds. This rigid
body motion has a frequency ., given by

2 o (I; = Ia + ﬁl(lfg)

e = G (32)

The roll and yaw equations (29¢,d,e) are all coupled. This justifies
the use of a damper only for roll. Up to first-order terms, there are no
forcing terms due to eccentricity. The characteristic equation is

bes® + bes® + bus* + bss® + bas® + bys + by = 0 (33)
where
bo = Q1 — fi — fo) (uaus — kuks)
by = @1 = fi — £2) (C"w + CY"us — BiCy” — BCy”)
by = Q1 — fi — f2) (w + ws + Noks + Noki) + wine — Kk
+ Q(hgky + faiks + figus + foguun)

by = (1 — fi = f2) (4" + C" + CNy + C,"No)
+ O (us + Lhge + Dhoge — k)
+ O (u 4+ DLl + Lhag — F)
by = (1L — fi — f2) (1 = NaNo) + w + ue + Nako + Noky

+ Q(fin + frg2 — [12N1 — [ruN)
by = C\"(1 + N.) + " (1 4+ Ny)
bg =1 — NiN:.
The Routh-Hurwitz stability criteria are

by by
bo > 0, b]_ > 0, b3 bg > 0.
by b O by bp 0 0
by b bi|>0, by ba by by| >0,
bﬁ bq bg bﬁ b-! b3 b2

0 Dbg bs by
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by by 0 0 O
'}3 b-_n bl bu 0
bﬁ b.; b;{ bg bl > O, bs > 0.
0 bﬂ ba b4 ba
0 0 0 by bs

If these are satisfied, there will be three more modes of damped libra-
tions. Due to the coupling between the roll and yaw librations, the yaw
libration can be damped out by the roll damping, as can be observed
from (29¢,d,e), although no yaw damping mechanism is provided in the
present scheme. Hence, all modes can be damped out and the satellite
will oscillate with some steady-state amplitude about an equilibrium

Fig. 4 — Gravitationally oriented two-body satellite with extensible rods.
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position. Some of these conditions are too complicated to give any physi-
cal insight. However, some are quite simple and are given below.

Since the parts of by, b: and bs which involve ki are (k/Ci)bi,
(ky/C1)by, (ky/Cy)bs respectively, multiplying the odd columns of the
Hurwitz determinants by k/C: and adding to adjacent columns will
eliminate the k; terms. Hence the only condition on &, is by > 0, i.e.,

o g [A(I, — I, + 3 mbl) (I; — Iy + 3 mbl) — § b’
I, — 1,

(34)

As ky, and &y approach infinity, the satellite becomes one rigid body. Since
the stability conditions are not changed by an inerease of & (and k),
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Fig. 5 — Angular variation between the zj-axis of the satellite and the local
vertical for a hysteresis damper, cos 6.



2256 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963

it appears that the single rigid body criteria for roll and yaw stability
are necessary. These are

P.P. >0 (35a)
1 4 3P, + P.P. > 4/P.,P, (35b)
where
e I, — 1. _ ]ﬂ 1,
P = 7. P = 1

and 7., 7,, and 7. are given in (31). Condition (35a) can be verified
from the inequality b > 0. Other necessary conditions in the case of
£, = 0 are found from the third-order Hurwitz determinant to he
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(I,—I1.)(I,—3I.) >0 (35¢)
and

Ig.—fc,;éfz—fﬁl

st T, (35d)

IX. BISTABILITY

The satellite is in a stable equilibrium position if the z-axis is in line
with the local vertical (i.e., the z-axis) pointing in either direction. If a
directional device such as an antenna or a camera is used along the
negative zi-axis, it may point at or away from the earth. The equi-
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Fig. 7— Relative angle about the y.-journal for a hysteresis damper, 8.
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librium positions (0,0,0,1,0,0) and (0,0,1,0,0,0) correspond to the device
pointing toward the earth, whereas (1,0,0,0,0,0) and (0,1,0,0,0,0) cor-
respond to the device pointing away from the earth. In the latter case
an inertia wheel in the satellite can be activated with a predetermined
number of turns, and the satellite can be rotated 180 degrees so that the
device will be earth-pointing. The equations governing this turning are
given by (10), where the applied torque on body 1 is approximately

T, = ~%[Jm(06.z".1 + S0l (30)

where J., is the angular momentum of the inertia wheel and é is the angle
between the w;-axis and the axis of the inertia wheel. Another scheme
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Fig. 8 — Component of angular velocity of the satellite along the y,-axis for
a hysteresis damper, w./Q.
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would be to use two devices, one on each side of the satellite, directed
along the positive and the negative direction of the z-axis respectively.
Only the one that is earth-pointing would be activated.

X. NUMERICAL RESULTS OF A PRACTICAL SCHEME

A practical scheme, as shown in Tig. 4, is suggested here for a com-
munications satellite. The particular construction, employing extensible
rods and tip masses, is to effect large moments of inertia so that the
gravitational torque will dominate over all disturbing torques. Body 1
of the satellite, which consists of the satellite’s main structure (with
directional antennas) and a mast rod, is to be earth-pointing. Body 2,
being an auxiliary body for attitude-control purpose only, is constructed
of two rods and is in an unstable position with respect to the local vertical.
These rods are extended, upon ejection from the launching vehicle’s
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Fig. 9 — Angular variation between the z;-axis of the satellite and the local
vertical for a viscous damper, cos 8.
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final stage, by unrolling from sheet metal drums. The universal joint
employs torsion wires to produce elastic restoring torques and provides
hysteresis damping by relative displacement between magnets and a
permeable material. (See Fig. 5 of companion paper.?)

The advantages of magnetic hysteresis damping are that it is ampli-
tude dependent, insensitive to temperature variation, involves no sliding
parts and requires little weight. Coulomb friction damping, while also
amplitude dependent, is less desirable because of possible cold welding of
sliding parts in the high vacuum of space. Velocity-dependent damping
by employing viscous fluids is believed to provide lower damping for a
given weight, and the viscous fluids involve questions of temperature
sensitivity.

All the parameters are chosen based on the adjusted moment of inertia,
I , of body 1 subject to stability eriteria and other necessary considera-
tions. The stability criteria (31b) and (34) specifying the critical values
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of ks and ky , respectively, which are derived from viseous damping, are
found to apply approximately also in the case of hysteresis damping.
These parameters arve: I/, = 1.00, 0.003, 0.159, 0.381, 0.540
(G =2 -+, 6); kL2 = 1.131, 2.238 (¢ = 1,2); for a hysteresis
damper: T/ = 0.159, 0.216 (i = 1,2), & = g = 2°; for a viscous
damper: C;/[,2 = 0870, 1.281 ({ = 1,2). With the above value of
the viscous constant ‘s, the amplitude of the lower mode of pitch
libration can be reduced according to (30) by a factor of e in 0.22 orbit,
which is close to the optimum. The optimum in the case of pitch mo-
tion was found by Zajac® to be 0.137 orbit. Equations of motion (20)+t
depend only on the above dimensionless parameters and are independent
of 7, and Q as long as ¢ is measured in fractions of an orbital period. Some
initial conditions which might simulate a micrometeoroid impact or the

t Equations (20) were programmed on an 1IBM 7090 by Mrs. W. L. Mammel.
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motion after the erection of therods areat{ = 0:¢ =g = =a=p=10,
x=1lw = w =50 w; = Q wy = wy = wg = 0. Figs. 5-8 represent
the computer solution of equations (20) using a magnetic hysteresis
damper. In Iig. 5, 8 is the angle hetween the z;-axis and the local vertical.
The satellite stops tumbling after four orbits and settles to within 10° of
the local vertieal after six orbits. The satellite librates about a cocked
equilibrium position indefinitely due to the forcing torque of orbital ec-
centricity (e = 0.01). The pitch angular speed of body 1, w. , approaches
one revolution per orbit, which is the proper speed for an earth-pointing
satellite. Figs. 9-12 show similar results of a visecous damper. In this
case the satellite ended up in an inverted position.

Effects of the environmental disturbing torques, such as those due to
solar radiation and the interaction of the magnetic moment in the satel-
lite with the geomagnetic field, have been investigated, although the
results are not included here. Cases with various other initial conditions
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Fig. 12 — Component of angular velocity of the satellite along the y.-axis for
a viscous damper, w2/,



TWO-BODY SATELLITE 2263

have also been computed. All these results indicate that gravitational
orientation of a two-body satellite is feasible.

APPENDIX

Nomenelature

A.l Latin Symbols

Il

direction cosines of Si-z112z frame with respect to S,-
ayz frame (7,j = 1,2,3)

direction cosines of Ss-as1p2. frame with respect to Si-
rpz frame (4,7 = 1,2,3)

coefficients of characteristic equation of & ,&,¢ (¢ =
0,1, -, 6)

complex constant of 7; (z = 1,2)

cosine operator

viscous damping constants of ,8 (¢ = 1,2)

adjusted damping constants of a,8 defined in equations
(29) (2 = 1,2)

coefficients defined in equations (29) (7 = 1,2)

moment of inertia coefficients defined in equations (29)
(G =1.2)

foree on body 1 due to reaction of hinge

resultant force on body 2 exclusive of Fy (7 = 1,2)
resultant force on body 7 exclusive of gravity and Fy
(= 12)

acceleration of gravity on the earth’s surface

quantity defined in equation (19)

gravitational force on body ¢ (7 = 1,2)

hinge point

unit dyadic

adjusted moments of inertia (i = 1, ---, G)

moments of inertia of composite body about the common
center of mass

angular momentum of inertia wheel

spring constants producing torques in a,, . directions
(¢ = 1,2)

adjusted spring constants defined in equations (29)
(¢ = 1,2)

! = maximum linear dimension of the satellite
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position vector of center of mass of body 4 from hinge
(1t =1,2)

magnitude of £; (i = 1,2)

coefficients defined in equations (29) (2
mass of hody 7 (i = 1,2)

total mass of satellite

reduced mass

direction cosines of z-axis on S;-vy112; and Se-222/02, frames
(1=1,---,6)

coefficients defined in equations (29) (7
center of the earth

arbitrary point in body 2 (7 = 1,2)
ratio of moments of inertia in equations (35)
coefficients defined in equations (29) (¢ = 1,2)
position vector of P; from eenter of mass of body 7 (4
1,2)

position vector of P; from O (7
mean radius of the earth

sine operator

variable in characteristic equations
center of mass of satellite
center of mass of body 7 (4
time variable

reaction torque transmitted through the joint on body 1
resultant torque on body ¢ exclusive of Ty (z = 1,2)
resultant torque on body 7 exclusive of Ty and gravita-
tional torque (7 = 1,2)

gravitational torque on body 7 (7 = 1,2)

constraint torque of joint on body 1

dissipative torque of joint on body 1

magnitude of saturated hysteresis torque of magnet ¢
(z = 1,2)

value of Ty4: when & (2
sign

elastic restoring torque of joint on body 1
coefficients defined in equations (29) (i = 1,2)
fixed frame eoordinates

rotating frame coordinates

body 1 coordinates

body 2 eoordinates.

1,2)

1,2)

1,2)

1) and 8 (« = 2) last changed
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Wy, WyI
W , Wy, Wy
wy , Wh, W

Wy

A.3 Noles
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Symbols

1

relative angle of rotation of body 2 about x-axis
constant of magnet 1

values of a when & last changed sign

relative angle of rotation of body 2 about y,-axis
constant of magnet 2

values of 8 when § last changed sign

angle between 2,-axis and the inertia wheel axis
eccentricity of the orbit

FEuler parameter

infinitesimal angle about z.-axis (7 = 1,2)

[Culer parameter

infinitesimal angle about y;-axis (¢ = 1,2

angle between z-axis and the local vertical or z-axis
components of the relative angular velocity of body 1 with
respect to rotating frame (2 = 1,2,3)

a gravitational constant of the earth

Euler parameter

infinitesimal angle about w;-axis (i = 1,2)

position vector of S¢from O

position vector of 8; from O (i = 1,2)

moment of inertia dyadic of body ¢ (¢ = 1,2)

quasi moment of inertia dyadic of body 7 (@ = 1,2)
Euler parameter

true anomaly of ellipse

mean orbital angular speed of satellite

angular velocity of body 1,2

components of wy along 1, 11, 21 axes

components of oy along 2, 2, 22 axes

natural frequency of an undamped roll libration.

unit vector

- = time derivative in an inertial frame (= 3{)

boldface characters indicate tensors and veetors (it is assumed that
dropping the boldface means the magnitude of the vector; ie, p =

lel).
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Innage and Outage Intervals in
Transmission Systems
Composed of Links

By S. 0. RICE

(Manuseript received April 3, 1963)

This note is of the nature of an addendum to a recent paper on salellite
communication systems. Il is concerned with the distribution and average
durations of innages and oulages occurring in transmission syslems com-
posed of a number of links. The links of such a composite system may be
either in series, as in a radio relay system, or in parallel, as in a many-
salellite system. Several results regarding composile lransmission systems,
including some due to D. S. Palmer, are reviewed, restaled, and extended.

I. INTRODUCTION

This note is in the nature of an addendum to a recent paper of mine
on satellite communication systems.! It is concerned with the same
general problem, namely the reliability of transmission systems com-
posed of links which fail independently. Various published results are
reviewed and extended. A large part of these results is due to D. S.
Palmer,? whose excellent work was overlooked in my satellite paper. The
approach given here differs somewhat from that used by Palmer.

Incidentally, questions similar to those discussed here have also
appeared in connection with coincidences in counting devices.

The notation to be followed is illustrated in Fig. 1. Suppose that a link
in a transmission system is always either in one or the other of two pos-
sible states, state (@) or state (b). For example, if the link is a satellite,
(a) may be taken as the state of being out of sight and (b) the state of
being visible. Again, if thelink isone of a series of links in tandem making
up a transmission line, we may choose (a) to be the state of working
order and (b) the state of breakdown. In a satellite system the links are
in parallel and in the transmission line they are in series. Fig. 1 applies
to both cases.

The light portions of the top line in Fig. 1 represent the intervals dur-
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oty et

1
2
k=3 —
tak
REsULTANT  [€ >T<——— thk ————>

Fig. 1 — Combination of % independent alternating sequences to form the
resultant alternating sequence,

ing which Link No. 1 isin state (a), and the heavy portions the intervals
of state (b). Similarly, the second and third lines represent the state
intervals of Links No. 2 and No. 3. This is a k-link system with & = 3.
The last line represents the system state intervals. In system state (ak)
all % links are in state (a). In state (bk) at least one link is in state (b).
State (ak) corresponds to the “intersection” of type (a) intervals and
state (bk) to the “union” of type (b) intervals.

For the satellite system, states (ak) and (bk) correspond to “out-
age” and “innage,” respectively. For the transmission line they cor-
respond to ‘“‘working order” and ‘“breakdown.” This reversal of interpre-
tation for links in parallel and for links in series has been mentioned by
Palmer.’

The problem is to find the distributions of the durations . and t5 of
states (ak) and (bk). The lengths £, , ts of the intervals shown in Fig. 1
are supposed to be independent random variables with given probability
densities pa(t), pas(t). Usually pa(t), ps(¢) will be the same for all &
links, but in the more general case the densities associated with the 7th
link will be denoted by p,.m(t), pb(i)(t). The links are assumed to operate
independently of each other. It is also assumed that the system has been
operating long enough to reach statistical equilibrium.

Although ¢, and {, are independent, f,+ and {: need not be. An example
is given just below equation (25) in Section IV.

The results given here do not apply to the case where the pattern of
intervals in two or more links shows periodicities. For example, if all
type (a) intervals of Links No. 1 and No. 2 are of length 1 and all type
(b) intervals are of length 3, then (depending on the relative phase)
there may be no type (ak) intervals and just one infinitely long type
(bk) interval.

The distribution of {.. depends only on p.(¢). It is obtained in Section
IT for general p.(t). The expected value #,: of iw depends only on the
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expected values 1, , f and is given in Section ITI. At present there seems
to be no practicable method, other than simulation on a high-speed
computer, of obtaining the distribution of for general p.(t), pu(t).
For exponential p.(t) a method due to Palmer® and Takdes (outlined
in Ref. 1) may be used, but even this is difficult unless p,(¢) is also
exponential. This method is developed in Section IV and illustrated in
Section V. Sections VI and VII are concerned with the special case k = 2
but general p,(t), ps(t). Now the determination of the distribution of
t» depends upon the solution of an integral equation. A vexing problem
which I have been unable to solve is to show that when p.(t) is exponen-
tial the integral equation leads to the same distribution as does setting
k= 2 in the method of Section IV.

I am indebted to John Riordan, David Slepian, and Lajos Takdes for
helpful comments.

II. THE DISTRIBUTION OF

It is convenient to set

F0) = [ o) dr (1)
4.0 = [ " Fue) e/, (2)
g, = fnw sold) dr = f: F.(x) dt. (3)

Here F.(1) is the probability that ¢, > ¢, I, is the expected value of ¢,
and A.(t) is closely related to C. Palm’s S “next-arrival” distribution.
If a(s) is the Laplace transform of pa.(f), i.e.

als) = [ pal) dt (4)
0
then
f c_'tlfl'ﬂ(t.) dt = _];ﬂs_).
0 S (5)
f e AL (D) dt = —1-[1 — :ﬂ]
0 8 Sta
For the special case p,(t) = ae ™
Fut) = A.(t) = ™, =1/
(6)

als) = a/(a + s).
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To interpret A.(¢), consider I'ig. 2, which shows a line in Fig. 1 cor-
responding to a typical link. Choose a point { = x at random [this means
that when the choice is from the very long interval (0,7') the chance
that x falls between ¢, ¢ + dt is di/T]. Let [ be the distance to the end
of the interval (which may be of either type) in which z falls. Then®**®
A,(7) is the probability that I > r, given that x fell in an (a) interval.

It should be noted that expression (2) for 4.(¢) holds even when suc-
cessive I,’s and ¢,’s are correlated. This point is important in the proof
of (7), since the intervals fu , & may be correlated. The only require-
ment is that as 7' — o the distribution of the lengths of the (a) intervals
in (0,7) approaches a definite distribution F,(f) possessing an average
t. which is neither zero nor infinite. IYor emphasis we sketch a proof of
(2) which is tailored to Fig. 2, in which, for the moment, {, and f, may
be correlated. The chance that + < [ < 7 + dr is the limit as T — =
of the ratio

[number of (a) intervals longer than = in (0,7)](dr)
total length of (a) intervals in (0,7)

In the limit this ratio approaches NF,(7)dr/Ni. , where N is the number
of (@) intervals in (0,7"). Cancelling the N’s and integrating r from { to
» then gives (2).

To find the probability F..(¢) that . > ¢, suppose that all links are in
state (a) at the randomly chosen time . Since the links are independent,
the chance that none has changed to state (b) by time = + ¢ is [4.(1)]".
Hence the function A..(¢) corresponding to the complete system is
[A.(t)]*. This A, (1) is related to F.(¢) by an equation obtained from
(2) by replacing the subscripts “a’ by “ak.” Differentiation gives

Fu(l) -—ak% A0

(7)
(L /1) KA ()Y Fa(2)

where I, denotes the expected length of intervals of type (ak).
Setting { = 0 in (7) and using For(0) = A.(0) = Fa(0) = 1 leads to

lat = to/k. (8)

Fig. 2 — A,(1) is the chance that I > .
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When the individual links have probability densities pa‘” (1), ps'"(£),
i =1,2 -+, k the chance that the length of a type (ak) interval
exceeds ¢ is

k
Fult) = ~tu S TT 4.7 () (9)
which implies
k
()™ = ; ()™ (10)

just as (7) implies (8). The A.’s and &.’s are related by equations cor-
responding to (1), (2) and (3). These results are due to Palmer,” who
obtains (7) by a different argument.

III. THE EXPECTED LENGTH OF INTERVALS OF VARIOUS TYPES, INCLUD-