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Measurements of resistivity and impurity concentration in heavily doped
silicon are reported. These and previously published data are incorporated
in a graph showing the resistivity (at T = 300°K) of n- and p -type silicon
as a function of donor or acceptor concentration.

The relationship between surface concentration and average conductivity
of diffused layers in silicon has been calculated for Gaussian and comple-
mentary error function distributions. The results are shown graphically.
Similar calculations for subsurface layers, such as a transistor base region,
are also given.

I. INTRODUCTION

A diffused layer in silicon is generally characterized by four parame-
ters: the concentration, C8 of diffused donors or acceptors at the surface,
the concentration, CB , of acceptors or donors originally in the material
(background concentration), the depth, x; , of the resultant junction,
and the sheet resistivity, p8 , of the layer. A knowledge of the relationship
between these parameters is essential to the establishment of device
processing recipes, the evaluation of diffusion techniques, and investiga-
tions of the thermodynamic properties of silicon.

The desired relationship may be readily calculated, given a knowledge
of the distribution of the diffused impurities, the variation of the re-
sistivity of n- and p -type silicon with donor or acceptor density, and a
fast electronic computer. The results of such a computation were first
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made generally available three years ago, in the form of curves relating
Ca to 1/pax; for a given CB , for n- and for p -type layers in silicon, and
for several common distributions.' Recent calculations, however, based
on new and more extensive silicon resistivity data, have indicated con-
siderable error in the earlier results. Thus a comprehensive recomputa-
tion has been undertaken, the outcome of which is presented herewith.

A necessary adjunct to the calculation is an accurate knowledge of the
resistivity of n- and p -type silicon with varying dopant concentration.
To this end, most of the extant data have been reviewed and supplemented
here and there with some new determinations. The results of this search
are also presented here.

II. THE RESISTIVITY OF SILICON AS A FUNCTION OF IMPURITY CONCEN-

TRATION

The variation of the resistivity of silicon at 300°K as a function of the
concentration of acceptors or donors is shown in Fig. 1. This graph
represents the author's judgment of a most reasonable compromise to
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Fig. 1 - Resistivity of silicon at 300°K as a function of acceptor or donor con-
centration.
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TABLE I - RESISTIVITIES AND IMPURITY CONCENTRATIONS
IN SILICON (T = 300°K)

Resistivity
(ohm -cm) Impurity Impurity

Concentration (cm -3)
Carrier

Concentration (cm -3)

0.00076 1.66 X 1020
0.00089 B 1.41 X 102°
0.0010 B 1.49 X 10'0
0.0010 1.12 X 1020
0.0012 B 1.04 X 1020
0.0011 1.12 X 1020
0.0014 B 9.23 X 1019
0.0013 B 8.84 X 1010
0.0067 B 1.43 X 1019
0.0073 B 1.43 X 1010
0.013 7.41 X 1018
0.014 B 7.03 X 1018
0.00095 As 1.80 X 1020
0.00094
0.00094

As
As

1.86 X 1020
1.1 X 1020

0.00093 As 1.87 X 1020
0.00094 As 1.97 X 1020
0.00088 As 2.10 X 1020
0.00088
0.00089

As
As

2.19 X 1020
1.1 X 1020

0.00083 As 2.30 X 1020
0.00083 As 2.20 X 1020

0.00082 As 2.44 X 102°

the mass of available and not altogether compatible data on the subject.
These data include most of the previously published work (Refs. 3-12),
recent, unpublished results kindly provided by other investigators,2'13
as well as some measurements obtained expressly for the present study.

The last data are shown in Table I. The crystals involved were pulled
from quartz crucibles, and hence can not be expected to be particularly
low in oxygen content. After dissolution of the boron -doped crystals
and separation of the dopant,14 boron concentrations were determined by
a photometric carmine technique essentially similar to published meth-
ods!' Arsenic concentrations were measured by gamma -ray spectrometry
after pile neutron activation. Resistivity measurements were done with
a four -point probe. In the case of a few samples, resistivity and carrier
concentration were measured in Hall -effect apparatus (where it was
assumed AL = 1).

Drawing curves through these many points was accomplished by a
succession of smoothing procedures, which were primarily visual. 75 per
cent of the data points deviate less than 10 per cent from the curves thus
obtained, both for the p -type and the n -type cases. The uncertainty is
greatest in the degenerate region. For p -type silicon, suitable data be-
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come scarce at dopings greater than 10" cm -a, and none are available
beyond 3 X 1020 cm -3. For n -type material, there is an abundance of
rather conflicting data representing donor concentrations between 1019
cm3 and 6 X 1020 CM-3. In this region a 10 per cent variation in the
chosen line still includes 67 per cent of the data, however.

A single pair of curves obviously can not characterize with the same
degree of accuracy all silicon material, regardless of dopant employed
or degree of compensation. However, over the range 10" cm -a =< Nr
1020 cm3, and subject to the limitations discussed below, Fig. 1 is con-
sidered to be within 10 per cent of reality. This graph refers specifically
to uncompensated silicon containing a donor or acceptor impurity con-
centration, Nz , consisting of arsenic, phosphorus, or antimony for
n -type, and aluminum, boron, or gallium for p -type material. (Actually,
even among samples doped with the aforementioned impurities, small
but consistent differences in carrier concentration and mobility, depend-
ing on the specific choice of donor or of acceptor, have been reported
recently for silicon in the 0.001 ohm -cm region.1°'12) In case of moderate
compensation, the net impurity density, I NA - ND I, should be used
for Nz . However, heavy compensation requires allowance for the added
impurity scattering.

For impurity densities near or greater than 1020 cm -a, Fig. 1 can not
be considered very reliable. At such concentrations, impurity band
conduction is prominent and its effects are apt to differ appreciably
depending on choice of impurity. Even more serious are the degrees of
impurity precipitation and lattice imperfection which occur in highly
doped material and which furthermore vary with growth conditions
and history of the crystal. It will be noted with some consternation that
the p -type and n -type curves are shown to cross near Nz = 3 X 1020 cm -a.

The paucity of data, of course, casts considerable doubt on this result.
However, for what they are worth, such are the indications. Perhaps this
can be understood in light of the acceptor action of imperfections,

/especially vacancies, which are abundant in very highly doped material.
The calculations discussed in the remainder of this paper require a

mathematical representation of Fig. 1. Straight-line approximations of
the form (1/p) = BNra have been obtained, which depart 10 per cent
from the desired curve at the turning points and rapidly approach
coincidence elsewhere. The parameters B and a are listed in Table II
for the respective straight-line regions.

III. DIFFUSION PROFILES AND CALCULATIONS

The diffusion profiles of current practical interest are the comple-
mentary error function, C. = C8 erfc (x/2\/Dt), and the Gaussian,
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TABLE II - VALUES OF B AND a IN THE EQUATION (1/p) = BNia,
REPRESENTING STRAIGHT-LINE APPROXIMATIONS TO THE p VS

N7 CURVES OF 11 -TYPE AND p -TYPE SILICON (T = 300°K)

Region (cm -0) B a

n -type
2.35 X 10" ND
6.00 X 1018 S N D< 2.35 X 1020
9.50 X 1018 S ND 6.00 X 1019
1.00 X 1017 S ND S 9.50 X 1018

1.04 X 10-8
1.43 X 10-12
2.00 X 10-18
6.93 X 10-8

0.456
0.744
0.940
0.543

3.50 X 10" S ND 15- 1.00 X 1017 6.97 X 10-14 0.837

ND 3.50 X 10"
p -type

1.50 X 10" NA

2.00 X 10-18

4.00 X 10-'7

1.000

0.966

2.40 X 1018 NA 1.50 X 1019 1.47 X HY" 0.832
1.50 X 10" S NA 2.40 X 10'8 3.30 X 10-11 0.650

NA 1.50 X 10" 7.20 X 10-17 1.000

C. = C8 exp ( -x2/4Dt). In these expressions, x, D, and t are the depth,
diffusion coefficient (assumed independent of impurity density), and
time, respectively. C. is the concentration of the diffused impurity at
depth x and C, , that at the surface. The former distribution is expected
when diffusion takes place with the surface concentration C8 held con-
stant; the latter when the total impurity diffusing is constant. Unfor-.
tunately it must be admitted that the accuracy of these expectations is
open to question in some situations.2'16 Also, precipitation and compen-
sation of impurities near the surface may further distort the distribution.
However, it is still useful to solve the problem under these assumptions,
leaving corrections for later determination.

The "average conductivity" of a diffused layer (which throughout
this paper is assumed to be diffused into a silicon slice of opposite con-
ductivity type and uniform doping CB) is given by the expression

xi

= 1/pss; = (1/x1) f qi2C dx

where q is electronic charge, tt the carrier mobility typical of a total
ionized impurity density of C. + CB ,C = r(Cx - CB) is the density of
carriers, r being the fraction of uncompensated diffused impurity atoms
which are ionized, and C. the total density of diffused impurity atoms at
depth x. (Possible variation of the mobility _as a function of the proxim-
ityof the surface is a hazard which should be recognized in passing but
is otherwise ignored in the present calculation.) Multiplying and dividing
within the integrand by r' (C. + CB), where r' is the ionized fraction
associated with an uncompensated dopant density of (C. + CB), and
writing
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+ CB) = 0(c.+613) = B(Cx CO'
the average conductivity becomes

= (1/x;) (r/1)(Cx -CB)B(Cz+ CB)a-ldx.

Now (r/r') represents the ratio of degrees of ionization corresponding
to Cx - CB and Cs + CB respectively. This ratio is very nearly unity
unless C. and CB are comparable in magnitude. Such is the case only for
the lamina nearest the junction, which contributes negligibly to the
conductance of the whole layer. Hence, (r/r') may be justifiably taken
as equal to unity, and writing Cz = Csf(x), where f(x) depends on the
profile of interest,

xi

Q = (1/x;)f [Csf(x) - CB1B[Csf(x) + CBr-ldx.
0

A program for the evaluation of this expression has been devised
previously by others and employed in the analysis of diffused layers in
germanium!' With slight additions to facilitate automatic plotting, the
same program has been used in the present work. Computations were
performed on an IBM 704, and plotting of points was carried out with
an Electronic Associates Variplotter.

IV. PRESENTATION OF RESULTS

Of frequent interest in transistor design and in the analysis of diffused
layers, are the characteristics of a "subsurface" layer such as illustrated
in Fig. 2. This layer, bounded on one side by the junction and on the
other by a plane paralleling the junction at depth x, may be characterized
by an average conductivity

1
x,

a = ifips'(x; - :0] = WAC dx(xi - x)
where p,' is the sheet resistance of the subsurface layer. It will be recog-
nized that the base region of a diffused -base, alloyed -emitter transistor
is an example of a subsurface layer. Another example is that portion of
a diffused layer remaining after removing the top strata of depth x.
Here, however, it must be remembered that the value of C8 specifying
this layer pertains to the original surface at x = 0.

Since a subsurface layer becomes the entire diffused layer when x = 0,
it is convenient to display the properties of both in the same plot by
introducing the parameter (x/x i). On pages 394 to 410 such graphs are
presented for n- and p -type diffused layers of Gaussian and comple-
mentary error function profile. Each graph contains the family of ten
curves (x/x ;) = 0, 0.1,  ,0.9, and relates the average conductivity of
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each layer to the surface concentration (at the original surface) for a
given value of CB . A separate graph is required for each value of CB ,
which in the present work ranges to
decade intervals. In each plot the range of surface concentrations
spanned is from CB to 1021 cm -8. The so-called "Backenstoss" curve for
a particular CB is simply the right -most line (x/x; = 0) in each graph.

The wiggle in the n -type average conductivity for diffusant concentra-
tions near 1019 cm -8 is ascribable to the rather large change in slope oc-
curring in the n -type resistivity plot at N r = 10'9 cm -3 .
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Fig. 3 (cont.) - Average conductivity of n -type complementary error function
layers in silicon.
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Fig. 4 (cont.) - Average conductivity of n -type Gaussian layers in silicon.
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Fig. 4 (cont.) - Average conductivity of n -type Gaussian layers in silicon.
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Fig. 4 (cont.) - Average conductivity of n -type Gaussian layers in silicon.
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Fig. 5 (cont.) - Average conductivity of p -type complementary error function
layers in silicon.
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Fig. 5 (cont.) - Average conductivity of p -type complementary error function
layers in silicon.
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Fig. 6 - Average conductivity of p -type Gaussian layers in silicon.
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Fig. 6 (cont.) - Average conductivity of p -type Gaussian layers in silicon.
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Fig. 6 (cont.) - Average conductivity of p -type Gaussian layers in silicon.
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Fig. 6 (cont.) - Average conductivity of p -type Gaussian layers in silicon.
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Fig. 6 (cont.) - Average conductivity of p -type Gaussian layers in silicon.
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A Miniature Tuned Reed Selector of High
Sensitivity and Stability

By L. G. BOSTWICK

(Manuscript received August 23, 1961)

This paper describes a selective contacting device that is responsive only
to sustained frequencies in a discrete narrow band and is insensitive to
speech and noise interference. It is of small size suitable for use in a pocket -
carried radio receiver and is sufficiently stable to permit 33 discrete res-
onant frequencies, spaced 15 cycles apart, in less than an octave between
517.5 and 997.5 cycles per second. It has a threshold sensitivity of about 35
microwatts and other operating characteristics that are essential in large
capacity systems.

I. INTRODUCTION

Tuned reed selectors used as selective receivers in multifrequency
systems involving large numbers of individual selections, such as per-
sonal radio signaling,' must operate within close and specifiable limits
in order to avoid false signaling and to assure satisfactory performance
under devious environmental and circuit conditions. In particular, three
operating characteristics, or their equivalents, must be controlled,
namely: the resonant frequency, the sensitivity (current or power needed
at the most sensitive frequency), and the bandwidth (the frequency
band in which contacting occurs with an input power twice that needed
at the most sensitive frequency).

The permissible variation in these characteristics is much smaller than
would seem necessary from first considerations. Resonant frequency
changes that seem negligible compared to the frequency spacing between
adjacent selectors often become important when other system require-
ments are considered simultaneously. For example, the frequency range
over which contacting will occur depends upon the electrical input level
and the selector bandwidth. Consequently, feasible limits for both of
these latter quantities must be considered, and in determining allowable
frequency deviations from nominal, the lowest probable input level and
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the narrowest bandwidth must be taken into account. On the other
hand, excessively high input levels cannot be allowed even in those
unusual instances where conserving power is unimportant, because this
necessitates wider channel separations in order to avoid transient opera-
tion of adjacent selectors, particularly those having high sensitivities.
Furthermore, high input levels result in longer decay times, which often
cannot be tolerated. When these and other related factors are considered
and the widest manufacturing tolerances are sought, it is found that the
above three selector characteristics are closely interrelated, and one
cannot be relaxed without making one or both of the others more
stringent.

The tuned reed selectors described in this paper have factory adjust-
ment provisions and sufficient structural stability to control in a practical
manner the resonant frequencies, the sensitivities and the bandwidths
within adequate and compatible limits. As a result, it is feasible to use
33 discrete resonant frequencies, 15 cycles apart, in less than an octave
between 517.5 and 997.5 cycles. An available electrical power of 35
microwatts at each individual resonant frequency will just operate the
contact, and a power of 100 microwatts will close the contact to a low
resistance over 20 per cent or more of the reed period. These and other
capabilities to be described distinguish these selectors from many others
that are not adequate for reliable operation in large systems.

II. GENERAL DESCRIPTION

Fig. 1 is a photograph showing one complete reed selector with the
outside shell removed. Fig. 2 is a partially exploded view showing
the subassemblies and indicating how the parts are fitted together.
The shell is formed from permalloy sheet; it serves as an effective shield
from extraneous fields and as a high -permeability flux path for the
internal magnetic circuit. All parts are electrically insulated from the
shell. The complete selector weighs about 8 grams.

As shown in these photographs, a tuning fork formed from two reeds
brazed to a base block serves as the resonant element. This balanced
type of structure does not require a massive support as would a single
cantilever reed in order to isolate it from extraneous influences, an im-
portant matter for a miniature device. This fork is freely supported
within the shell by a compliant frame that further isolates any small
residual vibration of the fork base from the rest of the selector, and yet
is sufficiently stable to permit the vibrating contact on the end of the
tuning -fork tine to be precisely positioned with respect to the stationary
contact. This latter contact is carried by a loop of wire spot-welded to a
rotatable stud that fits into a tapered hole in an insulating bushing in
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[1111111]
<IONE INCHI>

Fig. 1 - Tuned reed selector with shell removed.

the frame between the tines. A magnetic polepiece is positioned between
the open ends of the tines, forming two equal gaps. Polarizing magnetic
flux is set up in these gaps by a small permanent magnet attached to
the opposite end of the polepiece. The energizing coil surrounds the
center portion of the polepiece.

The tuning fork is made of a nickel -iron -molybdenum alloy2 (vibralloy)
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--:

Fig. 2 - Exploded view showing individual parts.

having controlled elastic and magnetic properties. Annealed permalloy
with low coercive force and high permeability is used for the polepiece
and shell to reduce magnetic flux changes. The materials and shapes of
other parts are chosen to minimize dimensional changes with time and
environmental conditions.

III. FREQUENCY SELECTION AND FINE TUNING

The range of resonant frequencies is obtained with tuning forks that
have the same over-all length but varying free tine lengths. The small
dimensions of these forks require the brazing fillets and the free reed
lengths and thicknesses to be precisely controlled. By special attention
to rolling of the reed stock, precise jigging of the reeds and base block,
and brazing with minimum fillet dimensions, it is feasible to produce
forks in which the individual tine frequencies are sufficiently close to
chosen nominal frequencies spaced 15 cycles apart so that they may
then be accurately tuned to these desired frequencies.

Precise or fine tuning is accomplished with spring sliders that may be
moved along the tines. This requires a slider that will stay in place
under shock and vibration, will provide an adequate tuning range, and
will allow the necessary fineness of frequency adjustment. This is
achieved by means of small spring clips that snap on and ride along the
edges of the tines. These sliders are shaped so that pressure at the center
releases the force with which the slider seizes the reed and permits it
to be moved. Each slider has a mass of about 1 milligram and provides
a tuning range of about 10 cycles on forks near 500 cycles and of about
25 cycles on forks near 1000 cycles. The sliders may be moved in incre-
ments less than a thousandth of an inch, permitting the resonant fre-
quencies to be readily set to a desired value within ±0.05 cycle. The
seizure forces are large so that shock and vibration acceleration in ex-
cess of 1500 G are required to move the sliders.



MINIATURE TUNED REED SELECTOR 415

IV. CONTACT FACILITY AND SENSITIVITY ADJUSTMENT

The sensitivity is adjusted in manufacture by changing the contact
gap separation. A fine rhodium wire having a resonance frequency above
the frequency range of the tuning forks is supported by a loop of larger
wire that may be rotated on a tapered stud through the frame. The
fine wire is pretensioned with a prescribed force against the loop wire to
form a lift-off type of contact that is accurately positioned and will
follow large tine excursions without objectionable interference with the
tine motion. This construction3 results in a contact that makes to a low
resistance with the vibrating contact on the reed for intervals of time
that may be 25 per cent or more of the reed period, depending on the
applied power. The operating sensitivity of the selector is precisely set by
rotating the loop on the stud axis and thereby causing the end of the
contact wire to move toward or away from the reed contact. The point
of contact is close to the axis of rotation so that a fine control of the
contact gap may be achieved.

Bandwidth Control

The bandwidth or sharpness of the resonance curve is determined pri-
marily by three dissipative factors, namely: internal frictional losses in
the reed material, viscous losses in the air surrounding the reeds, and
eddy -current losses in electrically conducting parts. The last factor has
been chosen as the adjustment or control means for bandwidth. A
copper washer is placed around the polepiece and where flux changes
due to motion of the reeds induce eddy currents in the copper. By
selecting the proper washer thickness and diameter and by setting the
magnet strength to yield the proper flux density, eddy currents are
developed when the tines vibrate that absorb energy and reflect into the
system as an effective mechanical resistance that broadens the resonance
curve by the desired amount.

V. VIBRATING SYSTEM PARAMETERS

Tabulated in Table I are some measured and derived data that show
the magnitudes of the more important vibrating system constants of
two selector samples with resonant frequencies nearly an octave apart.
These are typical values that will be of interest to those concerned with
the vibrational mechanics, electromechanical coupling, and other ana-
lytical design factors.
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TABLE I

Nominal Frequency
517.5 cps

Nominal Frequency
997.5 cps

Reed dimensions - length
thickness
width

Effective reed stiffness
Resonant frequency as brazed
Resonant frequency with contact
Resonant frequency with slider as

tuned
Effective reed mass as brazed
Effective reed mass with contact
Effective reed mass with slider as

tuned
Electrical impedance at resonant

frequency
Electrical blocked impedance at

same frequency
Electrical motional impedance at

same frequency
Current to just close contact
Bandwidth
Effective mechanical resistance

of fork at resonance
Electromechanical coupling fac-

tor
Effective magnetic gap stiffness

(each gap - from frequency
shift measurements)

Corresponding gap flux density
Maximtim tine flux density (as-

suming fringe flux equal to gap
flux)

1.4 cm
0.015 cm
0.254 cm
1.45 X 10' dynes/cm
560 cps
530 cps
517.5 cps

0.0118 grams
0.0130 grams
0.0138 grams

478 + j231

220 j277

258 - j46

0.275 milliamps
1.1 cycles
0.19 mechanical ohms

2.24 X 106 1° dynes/
abamp

-0.02 X 10' dynes/
cm

200 gauss
4000 gauss

1.01 cm
0.015 cm
0.254 cm
3.88 X 105 dynes/cm
1068 cps
1011 cps
997.5 cps

0.0087 grams
0.0096 grams
0.0099 grams

448 + j430

235 + j485

213 - j55

0.275 milliamps
1.3 cycles
0.16 mechanical ohms

1.88 X 106 7)
dynes/abamp

-0.02 X 106 dynes/
CM

200 gauss
4000 gauss

VI. PERFORMANCE OBJECTIVES

Consideration of the over-all system operating requirements for
personal radio signaling pertaining to such factors as the needed number
of individual selections, practical radio receiver power levels, calling
rates, and environmental conditions, led to the following objectives for
the performance of the reed selectors:

1) Nominal frequency range - 517.5 to 997.5 cycles.
2) Nominal frequency separation - 15 cycles.
3) Frequency deviation limits - ±0.3 cycle, including adjustment

tolerances, aging, shock, magnetic changes, and all other instabilities
except those due to temperature changes.

4) Temperature -frequency deviation limits - ±0.2 cycle over tem-
perature range of 35°F to 110°F (2°C to 43°C).

5) Nominal bandwidth - 1.0 cycle.
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6) Bandwidth deviation limits - 0.8 to 1.4 cycles resulting from
temperature changes and all other causes.

7) Nominal current to just operate contact - 0.25 milliamps for a
nominal 500 -ohm coil impedance at resonance.

8) Just -operate current deviation limits - ±3.0 db resulting from
temperature changes and all other causes.

These objectives are mutually consistent in that the limits given in
each case are as large as can be tolerated without reducing the limits on
some other factor. There are other important design considerations that
must not be neglected, such as weight, size and shape, contact life,
shock tolerances, corrosion resistance, magnetic interaction and so
forth, and with respect to which the selectors must, of course, be ade-
quate. However, the above -tabulated characteristics are the most sig-
nificant from an operating standpoint and are sufficient under marginal
conditions to assure positive operation and avoid false signaling.

VII. TYPICAL MEASURED DATA

Presented below are measured data showing that the above -described
reed selector meets these objectives. By means of the spring sliders, the
two tine frequencies are made alike within a small fraction of a cycle
and are given values that result in a combined fork frequency well within
requirements. Attention is given in the assembly and adjustment pro-
cedure to magnetically and mechanically stabilize the whole structure.
The magnet is stabilized well below its maximum remanence; the whole
final assembly is subjected to a moderately high temperature to relieve
residual stresses; and the tines are vibrated at a suitable level to bring
them into a normalized magnetic state prior to final adjustment. The
resulting selectors have resonant frequencies that will remain within
±0.3 cycle from their nominal frequencies at normal room temperatures
and under reasonable conditions of mechanical shock and electrical over-
load. Negligible changes occur under shocks up to 1500 G (2 milli-
seconds duration) or with input levels 20 db above the just -operate
values.

Frequency stability with temperature is achieved by making the
forks of a nickel -iron -molybdenum alloy of such a composition that
magnetic permeability changes are small and the temperature coefficient
of Young's modulus is low and of a magnitude to compensate for di-
mensional changes with temperature. Operate current stability is real-
ized by additional attention to the design geometry and materials so
that changes in temperature cause variations in contact separation that
are a small fraction of a mil -inch.
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Fig. 3 - Variation with temperature in the operating characteristics of a
typical lower -frequency tuned reed selector.

Fig. 3 and Fig. 4 are graphs of measured data showing variations with
temperature in the resonance frequency, just -operate current and band-
width of two typical samples, one at each end of the nominal frequency
range. The range covered by these graphs is much wider than that
required for most applications. In the more common temperature range
of 35° to 110°F, the deviations are well within the limits tabulated above.

Fig. 5 and Fig. 6 are electrical impedance diagrams of the same two
selector samples with resistance and reactance as coordinates and fre-
quency as the variable parameter. This form of plot emphasizes the
interesting values near resonance and may be used for analytical pur-
poses.4 From these graphs, it can be determined that the conversion of
electrical to effective mechanical power is about 46 per cent and that
the available electric power necessary to just operate the contact is
about 33 microwatts.
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Fig. 4 - Variation with temperature in the operating characteristics of a
typical upper -frequency tuned reed selector.

VIII. NOMINAL OPERATING LEVELS AND TIMES

The electrical power source supplying selectors in a system must have
an available power capacity sufficient to cause dependable contacting
under the worst temperature and adjustment conditions. These worst
conditions obtain when the frequency deviation from nominal and the
just -operate current are at their maximum values. Considering the
limits permitted in these selectors and making allowance for contact
quality and life with some statistical advantage taken of the small
chance of all limiting conditions occuring simultaneously, it was deter-
mined that the minimum electrical input power should be 6 db above
that needed to barely close the contact of a nominal selector. At this
level, the time required to close the contact after energizing the coil is
equal to the time needed for the reed amplitude to decay below contact-
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Fig. 5 - Vector impedance diagram of a typical lower -frequency unit.

ing amplitude after the coil current is stopped. For nominal selector
constants, this time is approximately 225 milliseconds. Input levels
higher than 6 db above just -operate will result in faster operating times
and slower decay times, but the sum of the operate and decay times will
increase less than 20 per cent up to input levels 12 db above the nominal
just -operate value.

IX. CONTACT CAPACITY AND LIFE

The contact has greater capability than would at first seem likely.
Such a light contact is most frequently used in circuits to change the
potential on a tube or transistor and thereby trigger some desired sig-
naling or switching function without the contact current exceeding a few
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milliamperes. The contact closure is intermittent at a rate corresponding
to the frequency of the selector, and the duration of the individual
closures is a small fraction of a millisecond, depending upon the fre-
quency and input level. These short closures, however, occurring at a
rate of several hundred times per second, may control current pulses that
have an integrated or averaged power that is a substantial fraction of a
watt.

The maximum power that can be controlled depends mostly upon the
reactive elements in the contact circuit and the life needed from the
selector. As an example of what may be expected, Fig. 7 shows changes
that occurred in the resonance frequency and the sensitivity of a typical
selector when operated continuously (except for a few minutes about
every 100 hours during check test) over a period of 1500 hours. The
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Fig. 7 - Variation with time in the sensitivity and frequency of a selector
closing a 12 -volt battery through a 240 -ohm resistor.

electrical input was 9 db above the just -operate value, and the contact
closed a 12 -volt battery through a 240 -ohm resistor, giving a closure
current of 50 milliamperes. Throughout the test period the resonance
frequency changed only slightly and the just -operate current increased
about 20 per cent. This later change was due to erosion of the contact
wire, which increased the contact gap. Erosion was minimized by con-
necting the fine contact wire to the negative side of the battery. At the
end of the test, the diameter of the contact wire was approximately half
its original value.

X. APPLICATIONS

The manner in which these selectors are used in the circuits of the
BELLBOY Personal Radio Signaling system will be described in a paper
to be published on the pocket radio receiver. In this system, three tuned
reed selectors are operated simultaneously in the receiver, and these
trigger a transistor oscillator that gives an audible signal. The power
controlled by the contacts in this case is small.

The substantial power capacity of the contacts can be used to operate
relays and other devices directly. Pulses of current from a battery at
the selector frequency can be supplied to a smoothing or integrating
capacitor, and the relatively constant voltage across the capacitor can
be used to operate a sensitive de relay. The battery may be at the loca-
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Fig. 8 - Reed selector actuated mercury relay for selective control of multiple
functions requiring substantial powers.

tion of the reed selector or may be supplied by superposition over the
same circuit used to transmit the selector frequency.

The contact may also be used as a synchronous rectifying means to
generate dc from the same ac source that operates the selector, as shown
in Fig. 8. When the source frequency corresponds to that of the reed
selector, the contact of the selector closes in synchronism once each cycle
to send unidirectional pulses to the capacitor and relay in parallel. The
capacitor smoothes the pulses and gives a nearly constant current in the
relay winding. For maximum sensitivity it is desirable that the contact
closures occur near the peaks of the supply voltage wave, and this is
accomplished by connecting a large reactance (either inductive or
capacitative) in series with the selector winding. This reactance also
serves to attenuate the supply voltage applied to the selector winding
to avoid overdriving the reeds, because a supply voltage large enough to
operate a relay is ordinarily many times that needed to operate the reed
selector. Combination circuits using reed selectors and mercury -wetted
contact relays provide a simple means of selectively controlling sub-
stantial powers to perform a multiplicity of functions over a single pair
of wires.

When operated just below the contacting level, these selectors have a
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Q (resonant frequency -to -bandwidth ratio) in the range of 500 to 1000
and therefore may be used effectively in a selective bridge or filter circuit
as described in a previous paper.5 The use of such a selective circuit in
the feedback loop of a single transistor oscillator results in an attractively
simple source of frequency having a precision corresponding to that of
the selector.
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An X -Ray Diffraction Study of the
Structure of Guanidinium Aluminum

Sulfate Hexahydrate
By S. GELLER and H. KATZt

(Manuscript received March 21, 1961)

The Busing -Levy IBM 704 least squares program has been applied to
three-dimensional X-ray diffraction data from crystals of guanidinium
aluminum-sulfate-hex-ahydrate-taken with -the -Bond -Benedict single -crystal
automatic diffractometer. Indications of interactions between parameters
were evident in the early stages of refinement and were not removed in the
subsequent cycles. Strong interactions were subsequently corroborated by
large values of many of the correlation coefficients of pairs of parameters.
In this case these interactions prevent refinement. The correctness of the
general features of the structure as given in a previous paper on the gallium
isomorph is nevertheless corroborated by the present investigation.

To enable those who have had similar difficulties to compare results, a
fairly detailed account is given of the course of the attempt to refine the
structure. The effects of highly correlated parameters are emphasized.

I. INTRODUCTION

The purposes of the investigation to be described were manifold. An
approximate structure of the isomorphous gallium compound has al-
ready been reported.' The gallium compound with the heaviest metal
atom among the isomorphs appeared to be best for establishing the
general features of the structure.' However, in the hope of finding a
closer relation between the structure and its electrical properties, it
appeared that a refinement of the structure would be very worthwhile.
In such a case, one would wish to have all of the atoms of more nearly
the same scattering power; thus the guanidinium aluminum sulfate
hexahydrate (G.A.S.H.) compound seemed most suitable for this pur-

f The contribution of H. Katz to this work was made during a period of employ-
ment at Bell Telephone Laboratories in the summer of 1959.
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pose. Furthermore, this crystal would have the lowest linear absorption
coefficient for all practical radiations; the importance of this feature will
be discussed later. But probably most important, it was anticipated
that the aluminum compound would be the one on which most measure-
ments of various sorts would be made. This has indeed been the case.

While our earlier paper' was in press, a note' appeared in Kristallo-
grafiia which gave an approximate structure for G.A.S.H. and its iso-
morphs which differed from that reported by us. A check with our data
indicated that the structure reported by Varfolomeeva et al.3 was incor-
rect,' but this did not mean that the structure reported by us was neces-
sarily correct. We had to face the question as to whether the correct
structure might lie between the two structures or as mentioned in our
first paper, perhaps some subtle disorder existed in the structure. In any
case the appearance of the other result gave additional impetus to
completion of work that had been started several years ago.

There is a further importance of this work. The quantitative X-ray
data were taken with the Bond -Benedict single -crystal automatic dif-
fractometer.4 It is the only crystal so far studied with this equipment
and perhaps is the first X-ray structure analysis to be based on three-
dimensional data collected automatically. Thus at least a small part of
this paper will be devoted to an assessment of this equipment and sug-
gestions as to future plans.

Perhaps the most frustrating experience encountered is to find inde-
terminate a problem which has taken considerable expenditure of time
and effort of various sorts. One such reported problem in the field of
X-ray crystallography is that of the determination of the structure of
tetragonal BaTiO3 ; this problem was found by Evans' to be indeter-
minate by X-ray analysis, at the very least on the basis of the data
collected. The results of the work on the three-dimensional data of
G.A.S.H. indicate that the structure as originally reported by us is
essentially correct. But we find that although a low discrepancy factor
and standard error of fit are obtained by the least squares method of
refinement, the structure cannot be refined; that is, convergence is not
attained : there are parameter oscillations in each least squares itera-
tion; some improbable interatomic distances and large error estimates
are obtained. The cause appears to be strong interdependence of many
of the parameters.

In this investigation the correlation matrix is used to demonstrate the
existence of the strongly interacting parameters. The importance of this
approach has also been demonstrated by a recent investigation de-
scribed in a paper written by one of us (S.G.).4
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TABLE I - LATTICE CONSTANTS OF GUANIDINIUM ALUMINUM
SULFATE HEXAHYDRATE

Investigators a,A c,A

Wood 11.77 f 0.04 8.98 f 0.03
Ezhkova, et al 11.737 f 0.002 8.948 f 0.002
This work 11.75 dL 0.02 8.94 E 0.01

II. CRYSTAL DATA

Guanidinium aluminum sulfate hexahydrate, C(NH2)3A1(SO4)2 ' 6H20,
is isostructural with the previously reported' gallium compound. The
morphology and unit cell dimensions have been reported by Wood.'
Lattice constants have also been reported by Ezhkova et al.8 The central
values of our lattice constants, obtained from careful measurement of
Buerger precession camera photographs, differ from those reported in
both of the aforementioned papers, but are in better agreement' with
those of Ezhkova et al.8 For purposes of comparison, the variously re-
ported values are listed in Table I.

As described earlier,' the most probable space group to which the
crystal belongs is P31m and the unit cell contains three formula units.
The molecular weight of the Al compound is 387.29, the volume of the
unit cell is 1,069 A3, and the X-ray density is 1.804 g/cc.

III. DETERMINATION OF THE STRUCTURE

The determination of the structure has been described in the paper
on the gallium compound. The evidence for the correctness of the general
features of the structure described in that paper, including the orienta-
tion of the guanidinium ions, is conclusive as will be shown subsequently.

IV. EXPERIMENTAL

The Bond -Benedict single -crystal automatic diffractometer4 was used
to collect the three-dimensional data. Some changes from the original
design of the instrument and in the electronics were made before the
final data were taken. A detailed description of these changes must be
left to the original authors. However, it should be mentioned that for
these particular data (which were taken in 1956), a proportional counter
replaced the Geiger counter and the "back -set" correction' was virtually

Dr. E. A. Wood and Mrs. V. B. Compton have informed us that their recent
measurements of lattice constants of G.A.S.H. give values which agree more closely
with those of Ezhkova et al.' and of the present work.
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eliminated by circuitry changes. Also, the internal geometry of the
collimator was changed to square cross section.

The need for a collimator with square cross section derived from the
mechanics of the instrument. The "back -setter" produces a jarring of
the goniometer head which could at times translate the crystal very
slightly out of the original alignment in the X-ray beam. If the beam
has a circular cross section, slight deviation from coincidence of crystal
cylinder and rotation axes causes significant differences in intensity
when the diameter of the crystal is large relative to the beam cross
section. This is not true of a beam with a more or less square cross
section.

Of course, one would not have to worry too much about this if small
crystals were being used. However, for this instrument and the use of
the usual type of sealed X-ray tube, it is necessary to use large crystals
to obtain the data. (This will be discussed further later.)

Two cylindrical crystals were used to obtain the data attainable by
this instrument with CuKa radiation and a pentaerythritol mono-
chromator. The crystal aligned along the c -axis had a diameter of 0.67
mm; the crystal aligned along the [20.1] direction (orthohexagonal
A -axis) had a diameter of 0.54 mm. With a linear absorption coefficient
for CuKa radiation of 48.7 cm -1, the values of AR for these crystals are
1.64 and 1.32 respectively.

As described in the paper by Bond,4 the single -crystal automatic
diffractometer works on a principle similar to that of the equi-inclination
Weissenberg camera. With CuKa radiation, seven levels were obtain-
able about the c -axis and fifteen about the orthohexagonal A -axis.

Data from a particular level n were collected as follows: The align-
ment of the crystal was checked. This was done in two ways whenever
possible. A microscope could be used to align the crystal cylinder axis
with the rotation axis of the instrument. The equi-inclination angle was
calculated and the crystal set to this angle. .The arrangement of the
counter of the instrument is always set so that the diffracted beam is
incident perpendicularly to the window. Thus the counter is actually
moved to twice the angle of the crystal from the zero level situation.
If a particular reflection (for example, 00  / on the lth level about the
c -axis) was observable when the counter angle was equal to zero de-
grees for a given layer, this reflection was used to readjust crystal and
counter.

To obtain the weak intensities, the diffraction unit settings were usu-
ally 40 kv and 20 ma. To obtain the stronger reflections, proper settings
of the voltage and tube current were made so as to record enough
moderate reflections to establish a scale between the two patterns.
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Integrated intensities, crystal angles and counter angles for each level
were recorded automatically by the Leeds -Northrup two -pen recorder
as described in the papers by Bond and Benedict." As indicated above,
resetting was made manually for each new level.

Following the collection of the data by the recorder, it was necessary
to index the data: This was the most time-consuming (i.e., on a man-
hour basis) part of the data processing required to obtain the observed
amplitudes. The indexing was carried out with the use of the plotting
device.' (The indexing problem will be discussed further later.)

Following the indexing of all the data, the usual absorption, Lorentz -
polarization and Tunell9 rotation factorsfi were applied to extract the
relative 1 F. 12. (The polarization correction is for monochromatized
radiation.) The calculation was programmed for the IBM 704 by R. G.
Treuting. The corrections calculated were based on the formulae
given by Bond and the tables used for the absorption corrections are
those given in Bond's paper.° The program written by Treuting put the
resultant 1 F. 12's or 1 F. l's out on cards as well as on a print-out. The
individual Lorentz -polarization, absorption and Tunell rotation factors
were also printed out for each reflection for each layer on which it
appeared.

Having extracted the Fo I2's for each layer about each of the two
axes, the next step involved an iterative cross -calibration process to
bring the values to the same basis. An IBM 704 program written by
W. R. Romanow allowed us to apply constant factors to the sets of
1 Fo 12 put out by the intensity correction program. Romanow's program
also put out new cards so that we could apply a different constant to the
new values if necessary.

When we felt we had arrived at the best values, it was decided to
carry out the subsequent least squares refinement on the basis of the
I -F. values7--Using-a- short program written by Romanow, square roots
were taken of all the I F0 12's and put out on cards. Those that came from
layers about the orthohexagonal A -axis were then sorted on the values
of 1 for ease in setting up the data for the least squares refinement.

As described in the Bond -Benedict papers, some reflections do not
get entirely into the counter; thus, in order to be sure that all are ob-

The proportional counter employed had a linear response to counting rates of
over 20,000 cps. Because for even the strongest reflections, observed counting rates
over 10,000 cps gave integrated intensities which went off scale on the recorder, no
dead -time correction; was necessary for any of the reflections.

t The formula for P, on p. 380 of Bond's paper should read
q - sin2 v) 2q

Pt, = T sin 20/ {1 + (1 ± q) cost
(1 + cos 20)2 -

1 ± q
(1 + cos 20) .
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tained, the instrument was designed to obtain each reflection twice.
For this reason the counter has a 4° window. Even at that, not all the
reflections of a given form will have the same intensity, but usually
about a twofold axis, a form of reflections of moderate intensity will
have two with the same intensity. About a threefold axis, perhaps eight
of twelve reflections from a given hk-1 form will have the same intensity
or 12 out of 16 of a given hk- 0 form. Unfortunately, the weaker reflec-
tions do not give as good results as the moderate to strong ones. In the
case of the c -axis layers, if there was a variation in the height of peaks
which appeared to have been fully in the window, the value taken for
the integrated intensity was the average of the several peaks. In the
case of the orthohexagonal A -axis layers, because there were fewer
peaks contributing to a form and therefore a greater possibility that
only one peak was squarely in the window, the value recorded in most
cases was the measure of the highest peak.

In taking the averages of observed structure amplitudes, the weighting
was in accord with the above. For example for a given I Fhk.1 h,k,1 0,
the value from the c -axis layer was weighted four times and a value from
an orthohexagonal A -axis layer once. The standard deviation was cal-
culated in accordance with the analysis given in Chapter 16 of the book
by Dixon and Masse? and as suggested earlier by Ibers.12 However,
for the unobserved, the standard deviation was taken as equal to half
the minimum observable. For I F00.1 I's which would have unity weight
since they appear only once, the was taken in accordance with a
subjective estimate comparing the particular I F00.1 I with others of
similar value. The agreement between or among Fo l's from the same
form but from different layers was quite good generally except for the
weakest reflections.

In the CuKa sphere, there is a total of 895 X-ray forms of guanidi-
nium aluminum sulfate hexahydrate. The geometry of the Bond diffrac-
tometer allows us to observe only 842 of these. Of those possibly ob-
servable by the instrument, only 546 were actually observed.

V. ATTEMPT TO REFINE THE STRUCTURE

Because the major point of this paper is to demonstrate that the
refined structure under discussion is effectively unattainable from the
X-ray diffraction data, it seems worthwhile to give some of the details
of the calculations. To make such a discussion simpler, the pertinent
data are collected in tables. In Tables II and IV the values of parameters
and some other important information are listed. In Table II two col-
umns are assigned to each cycle; the left one lists the starting parameters,



TABLE II - RESULTS OF LEAST SQUARES CALCULATIONS (FIRST SET OF WEIGHTS)
Parameters

Scale 1

Factors 2
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R
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Temperature
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positive
definite

Cycle 1

0130,0000013-0.01222

0130.00000

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 12
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0.569
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0.619
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0.00469
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the right, the calculated "corrected" parameters. A blank space in the
left column indicates that the last previous calculated value was the
starting value for the particular parameter. In the cases of cycles 9 and
10, all of the parameters had the last previous calculated values of
cycles 8 and 9 respectively.

The order in which the atoms are listed in Tables II and IV is not
the same as that of the paper' on the gallium isomorph, but the atom
labeling is. In writing the special position symmetry patch for the
Busing -Levy° IBM 704 least squares refinement program, it is most
convenient to list the atoms in general positions first. Then to avoid
mistakes in the listing of results, it is best to leave the order the same
as that of the output of the program.

In the calculation of structure amplitudes the following atomic scat-
tering factors were used: for 0, All+, N and C, those of Berghuis ea al;14
and for S, those of Viervoll and ()grim.°

In cycles 1 and 2, 895 reflections, all those representing independent
forms and observable in the CuKa sphere, but. perhaps not observable
with the single -crystal diffractometer, were included. Eight of the
parameters were scale factors, all of which were initially equal to 0.6667,
one for each value of 1 from 0 to 6 and the eighth value for all the re-
maining 1 values. Also in the first two cycles, isotropic temperature
factors were used despite the fact that it was obvious that the thermal
motions of the atoms in this crystal must be highly anisotropic.

The starting structural parameters for the first cycle were those given
for the gallium isomorph' except for changes in the S and Al tempera-
ture factors and the y -parameter of N(II), which was inadvertently
taken as 0.418 instead of 0.333. Now it may be seen in Table II under
cycle 1, that this y -parameter did not change as radically as one might
have hoped, in fact as one might have expected, for an incorrect parame-
ter. But the temperature factor of the atom did increase considerably,
perhaps indicating that, the atoms did not want to be at the positions
indicated. On the other hand, the temperature factor of the N in the
special position decreased considerably to a negative value as if to
compensate for the other. This, in retrospect, was already indicative of
strong interaction between the thermal parameters of these two atoms.
Another important change was the large one, to -0.392, in the value of
the 0(III) z -parameter; this implies a very short S-0 distance, 1.31
A, in one set of the SO4 groups.

The estimated error of fit!'" at the end of the least squares calculation
of cycle l was very much lower than the first computed error of fit,°
and it appeared that by readjustment of some of the temperature factors
we could go a step further toward convergence before changing to aniso-
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tropic temperature factors. Initially cycle 2 showed that even with the
readjustment of temperature factors, the R valuet had dropped from
0.473 to 0.303, the weighted R from 0.299 to 0.193. But the error of fit
was higher than that estimated in cycle 1 on the basis, of course, of the
parameters computed in that cycle, some of which were physically
impossible (i.e., negative temperature factors).

However, cycle 2 ended with an estimated error of fit somewhat lower
than that of cycle 1. The N(II) y -parameter decreased toward the value
which we believe to be the more nearly correct one, but the N(II) B
value increased greatly and the N(I) B value became a large negative
value. Also the s -parameter of N(I) decreased to imply an unlikely short
C-N distance. Changes in the S and Al pcsitional parameters were not
large but several oscillations occurred. The 0(III) (atom 10) z -parameter
returned to -0.400, but even this value implied a rather short S-0
distance, 1.37 A.

At this point, it seemed necessary to change to anisotropic thermal
parameters. The Busing -Levy program will compute these from the
isotropic thermal parameters using the following relations: /311 = Ba*2/4;

012 = (Ba*b* cos -y*)/4; etc.
The starting parameters were those computed in cycle 1 and adjusted

for cycle 2 (see Table II). For cycle 3, a critical estimate of the reflec-
tions really observable by the single -crystal automatic diffractometer
was made. This resulted in the removal from the calculation of 43
unobserved reflections, some of which had rather high calculated struc-
ture amplitudes when compared with the respective estimated threshold
values. Included in cycle 3 was a rejection test: that is, when A/cr was
>10.00, the reflection was not counted in the calculation of the R
values or the standard error of fit, nor was it included in the least squares
calculation. This reduced the number of Fhk. i's used in the least squares
calculation to 790. (Unfortunately the I? values and the calculated
amplitudes computed in this cycle have been lost.)

The estimated error of fit resulting from the cycle 3 least squares
calculation decreased from 4.99 to 2.30, an apparently tremendous im-
provement. However, the still incorrect N(II) y -parameter did not
improve; also the values of the N(II) thermal parameters greatly in-
creased. The 0(III) values still implied a short S-0 distance. The
C( I ) z -parameter indicated possible nonplanarity of the guanidinium
ion in the special position, but this parameter also had an apparently

t Unless otherwise stated, the R value is that for the independent Fhk.es, i.e.,
multiplicity is neglected. This is the I? value calculated by the Busing -Levy pro-
gram.
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large estimated error, 0.0115, indicative of potential difficulty. Twelve of
the atoms had calculated thermal parameters which did not satisfy all
the criteria for physical reality (see Ref. 13). Therefore, for cycle 4 some
of the thermal parameters had to be adjusted to satisfy these criteria.
Also, the N(II) y -parameter was corrected. The R value and error of fit
decreased considerably since cycle 2, but the weighted I? value increased
slightly. The same rejection test as used for cycle 3 allowed 809 reflections
to be included in the cycle 4 calculation. The least squares calculation
led to an estimated error of fit of 2.23, not too different from that esti-
mated in the previous cycle.

In cycle 4, the values of the N(II) thermal parameters decreased,
indicating that the high values had been caused by the wrong y -parame-
ter. One would prefer to think, however, that the y -parameter should
have tended to approach the correct value rather than to have the
thermal parameters act as if the atom should be removed. This time the
s -parameter of N(I) (atom 6) became rather large, implying too large a
C-N distance. A number of the other positional parameters showed
oscillation, and again there were twelve atoms which had thermal
parameters not satisfying the criteria for physical reality (Table II).
The 0(III) z -parameter continued to imply a short S-O distance.
The C(II) and N( (II) atoms did not have the same values in z -parame-
ter, nor did the C( I) and N( I) atoms have the same z -parameter. Also,
in this cycle many of the scale factors, especially 38 , had almost reached
their starting values after having at first decreased substantially.

The necessary adjustments were made on the thermal parameters
before cycle 5 was carried out. Also, the rejection test was removed. Five
reflections which appeared to have substantial contribution from the 54
hydrogen atoms or to have suffered from extinction were given zero
weight. Thus, of the 852 reflections, 847 were used in the cycle 5 least
squares calculation. Because some of the initially estimated u(F0)'s were
really very small, a few of these also were readjusted. Initially the I?
value was 0.198, while the weighted R decreased to 0.139, this latter
reduction resulting mostly perhaps from the few adjustments made on
the a (Fo)'s. The error of fit for the 847 reflections was larger than for
the 809 of the previous cycle. The calculated estimated error of fit after
the least squares calculation did decrease, however.

But in cycle 5 there was no improvement in the way the calculation
was going. There were further oscillations, and, very important, the
C(II)-N(II) distance continuing from cycle 3 was short, whereas the
C(I)-N(I) distance continued to be long. Considering the guanidinium
ion to be planar, the C-N distances were respectively 1.22 and 1.48 A,
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the average is 1.35 A in good agreement with the acceptable guanidinium
C-N value 1.34 A." Again this indicated interaction between the N(II)
x- and y -parameters and the N(I) x -parameter. Also, the parameter
values of the S(I) and 0(III) atoms still indicated an improbably short
S-0 distance. There were other indications of interaction: for example,
the y -parameters of the 0(V) and O(VI) atoms (2 and 3 respectively)
behaved strangely, that of 0(V) indicating an improbably large [SO4]
0-0 distance, that of 0(VI), too small an [SO4] 0-0 distance.

It seemed at the time, however, that there might be other possibilities
for explaining the course of events in the attempt to refine the structure.
For example, there could be many reflections to which the hydrogen
atoms would contribute, and, perhaps particularly because this is a non-
centrosymmetric structure, the affected structure amplitudes were hav-
ing a detrimental effect. Therefore, in cycle 6 all reflections for which
sine/X2 < 0.0800 were given zero weight. Necessary adjustments were
made in thermal parameters (Table II) ; the N(I) and N(II) positional
parameters were readjusted each to yield the C-N distance 1.34 A;
and the 0(V) and O(VI) y -parameters were adjusted to yield more
reasonable [SO4] 0-0 distances. The R value for the 755 amplitudes
(with nonzero weights) was 0.200, weighted R = 0.128 and error of fit,
2.82.

In the cycle 6 least squares calculation, only 43 parameters were
varied: the scale factors and all positional parameters except the N(I)
x -parameter. The estimated error of fit decreased to 2.38, but this cycle
was also discouraging in that again there were oscillations and some
rather large changes in parameter. The S(I)-O(III) distance continued
to remain improbably short; the O(VI) y -parameter again implied too
short an [SO4] 0-0 distance; and the values of the N(II) x- and y -
parameters implied a C(II)-N(II) distance of 1.25 A.

In the paper on the gallium isomorph,1 we had concluded that the
arrangement of the guanidinium ions on the threefold axes were related
to that at 3m to close approximation by 1,1-,0 and f,i3O - (u,O,w ;
0,u,w; u,u,w). However, some doubt remained, and therefore it was
decided to try some different orientations of the guanidinium groups.

For cycle 7, the N(II) parameters were readjusted, presumably back
to the starting parameters of cycle 6. However, a card -punch error
(0.5333 instead of 0.5533) was made in the x -parameter. The N( I)
parameter was set to -0.1130. This we shall call the ( - ) t orienta-

t This symbolism is derived as follows: The ± orientations of N(I) are those for
which in (x,0,z) of positions 3c, xN(i) = ±u where u is very nearly +0.113. The ±
orientations of N(II) are those for which in (x,y,z) of positions 6d, xN(11) = f u,
y = f. Thus (-,-) here means that XN(I) = - 0.113, XN(II) = 0.220, YN(II) = 0.667.
By symmetry the latter two are equivalent to 0.553 and 0.333 respectively.
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tion. The positional parameters of 0(VI) were also readjusted. The R
value for the 755 reflections increased to 0.250, the weighted R to 0.187,
and the error of fit to 4.10. In cycle 7 all scale and positional parameters
were varied. At the end of the cycle, the estimated error of fit was 3.53.
The C(II)-N(II) distance again was too short, -4_21 A; again the
0(VI) y -parameter decreased from the adjusted value; the difference in
the C(I) and N(I) z -parameters increased. Also again there were oscil-
lations. The results of cycle 7 did not look promising.

In cycle 8, the ( +,+ ) arrangement of the guanidinium ions was tried
with the other starting parameters the same as those used in cycle 7.
In this case the R value for the 755 amplitudes was 0.231, weighted R,
0.155, and error of fit, 3.40. Again only scale and positional parameters
were varied. The estimated error of fit obtained at the end of the least
squares calculation was 3.14. The results of this cycle looked promising.
The C-N distances looked good; the 0(V) and 0(VI) parameters
were not too bad. However, the S(I)-0(III) distance still looked
improbably short. The agreement for individual amplitudes actually did
not look as good as it did in cycle 6, but it was felt that perhaps some of
this poorer agreement resulted from hydrogen contributions and/or from
required changes in thermal parameters.

It was decided to continue to cycle 9 using the values of scale and
positional parameters obtained in cycle 8. The R value increased to
0.240; the weighted R value decreased to 0.140; the error of fit was very
close to that previously estimated. Despite this, the parameter results
of this cycle (Table II) looked even better than those of the previous
cycle, but the S( I )-0(III) distance continued to be improbably
short.

The scale and positional parameters resulting from cycle 9 were used
in cycle 10. There was not much change in R, weighted R or error of fit.
In cycle 10, all scale and positional parameters which had changed less
than lir in cycle 9 were held constant and all thermal parameters were
allowed to vary. The estimated error of fit at the end of the cycle was
2.55. It appeared that the thermal parameters of the N(II) atom in-
creased considerably as if trying to eliminate this atom, and as before
this seemd to be an indication that the N(II) atom was not placed
correctly. Also as if to compensate, the previously large 9 of N(I),
0.01480, decreased to -0.00095. Eight of the atoms had thermal
parameter matrices which were not positive definite.

With this continued disappointment, another notion became more
important. Was it possible that the structure given by Varfolomeeva
et al3 was correct? It seemed advisable to make the calculation with the
model proposed by those authors. The results proved that the structure
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cannot possibly be correct. The initial R was 0.559, weighted R, 0.473
and error of fit, 10.38 for the 755 reflections. Examination of the calcu-
lated and observed amplitudes showed a great many very large dis-
crepancies indicative of an improbable structure. Only the scale and
positional parameters were varied in the least squares calculation.
Thermal parameters for the N atoms were those initially used in cycle 6.
All other thermal parameters were essentially those obtained in cycle 10
with necessary adjustments made. The initial and final positional
parameters are shown separately in Table III. The estimated error of fit
was 8.92, indicating no real possibility of convergence. The parameter
changes were mostly drastic. The N(I) x -parameter, for example, would
imply a C(I)-N(I) distance of 1.16 A. Interestingly enough, the
S (I )-0(III) distance continued to remain very short.

In cycle 12, the guanidinium ions on the two three -fold axes (i.e., at
and a 1) were turned 30° from their original positions. The thermal

parameters were the same as those used initially in cycle 11 and are
shown in the next to the last columns of Table II. The R value was
0.238, weighted R, 0.154, and error of fit, 3.38 (the latter two being
somewhat higher than for the starting parameters of cycle 10). The
estimated error of fit obtained from the least squares calculation was 3.14.
The results of this calculation did not look promising. The C(I)-N(I)
distance was large; there was an extraordinarily large change in the
z -parameter of 0( VIII). Also, agreement of many individual amplitudes
was poorer than for the very first orientation of the guanidiniums. In
fact, from the calculations of cycles 7-10 and cycle 12, it had become
apparent that the (+, -) orientation was indeed the best. It also ap-
peared that disorder or rotation t of the guanidinium ions was highly
unlikely unless very subtle. In the case of complete disorder or the
equivalent free rotation, there would be no contributions from the nitro-
gen atoms to the amplitudes Fhk.j,h - k 3n, exactly as in the case
of the ( ) orientation. This alone makes it appear that the orig-
inally reported' (+, -) orientation of the guanidinium ions was corrob-
orated.

In cycle 12, the normal equations and inverse matrices were obtained."
Examination of the inverse matrix showed that there were large values
of correlation coefficients, pii = , for many pairs of parame-
ters. A few examples are:

t Two reports'' "'S based on nuclear magnetic resonance investigations of G.A.
S.H. mention the possibility of rotation of the guanidinium groups. We have
learned (by private communication) from, and have been permitted to quote, the
author, D. W. McCall, of one of these," that further investigation now indicates
that this rotation is highly unlikely.
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0.81

0.58

0.84

0.65

0.96.

It is noteworthy that the correlation coefficient for xN(Ir)-xN(I) was
very low, 0.10; it will be seen later that this low value resulted from the
incorrect orientation of the guanidinium (II) ions.

It seemed unlikely that the weighting scheme could be the cause of
the difficulties encountered. Nevertheless, it was decided to try a
weighting scheme radically different from that used in the first twelve
cycles.

In cycle 1' (Table IV), all amplitudes with sin20/A2 < 0.0800 were
still weighted zero. Also all unobserved amplitudes were to be weighted
zero and all observed, unity. However, a number of amplitudes which
should have been weighted zero were weighted unity, and a few which
should have been weighted unity were weighted zero. This left 534
reflections included in the least squares calculation. The initial parame-
ters were those from cycles 9 and 10, except for the N's which were
started at the exact +, -) orientation and the 0(III) z -parameter
which was started at -0.405 to give an S-0 value closer to 1.48 A.
The R value was 0.204, weighted R, 0.149 and error of fit 2.19 for the
534 amplitudes and these parameter values. The least squares calcula-
tion gave an estimated error of fit of 1.90. Again the S(I)-0(III) distance
decreased to 1.38 A, the C(I)-N(I) distance increased again and the
C(II)-N(II) distance decreased again. Some of the other distances are
listed in Table V.

Starting with this calculation, the vector vi = L(NATvD1)( -07.06.) was
obtained as output' as well as the direct and inverse matrices," the
purpose being to see whether Api's from the diagonal term approxima-
tions would be much different from those obtained by the exact solution
of the normal equations. Not many of these were checked in this and
subsequent cycles, but enough differences were found to indicate the
importance of the off -diagonal terms.

It appeared that it would be most convenient to have the correlation
or normalized inverse matrix to examine in each cycle. A program patch
to enable us to do this was written by Misses D. C. Leagus and B. B.
Cetlin.

t The program patch for this calculation was written by Miss D. C. Leagus.



TABLE IV --- RESULTS OF LEAST SQUARES CALCULATIONS (SECOND SET OF WEIGHTS)

Parameters

Scale 1

Factors 2

3
4

5

6

7

8

Atom 1 x

N (11) y

z

all
022
033

512
013
023

Atom 2 x

0 (v) y

z

511022
033
012
013
023

Atom 3 x

0 (VI) y

z

011
022

533
012
(3,,
0,...

23

Atom 4 x

0 (IX) y

z

PI,
02;
053
012
013
023

Atom 5 x

0 (X) y

z

5pH22

512

033

1323

013

Atom 6 x

N (I) z

,5,11

P3
gi2
'13

Atom 7 x

O (VIII) z

Xn3
P1203

Atom 8 x

O (vii) z

011
0A33
;;12

'13

Atom 9 x

O (IV) z

033
ll

33
012
013

Atom 10 x

O (111) z

011
533

512
013

Atom 11 x

O (II) z

. 011
033

,t.:12

'13

Atom 12 x

O (1) z0
flii

012
013

Atom 13 x

S (I) z

011A
'33
012
013

Atom 14 x

S (11) z

P
a11a33

01132

Atom 15

z
C (II)

f311
033

Atom 16
At (11)

fz311
033

Atom 17 z
C (I) 533

Atom 18 0,3
4(1) '

R

Weighted
3

Estimated s

No. of data
in L.S.
calculation

Temperature
factor not
positive
definite

Cycle

0110.01200

1', Cycle 2, Cycle 3,

0.5557 0.5846 0.5627
0.6186 0.6058 0.6069
0.5933 0.5951 0.6032
0.6161 0.5841 0.5903
0.6449 0.6503 0.6539
0.7327 0.6826 0.6849
0.6854 0.6689 0.6760
0.6856 0.6693 0.6751

0.2200 0.2211 0.2184 0.2237 0.2200 0.2171
-0.3330 -0.3377 -0.3399 -0.3330 -0.3386
0.5350 0.5465 0.5521 0.5579
0.00890 0.00229
0.00700
0.01820

0.00970
0.02051

0.00500 0.00227
0.00520 0.00293
0.00410 0.00039

0.3449 0.3412 0.3429
0.1166 0.1178 0.1167
-0.1977 -0.2072 -0.2076
0.00843
0.00307
0.02193
0.00375
-0.00333
-0.00206

-0.3211 -0.3225 -0.3243
-0.1137 -0.1155 -0.1162
0.2450
0.00287

0.2437 0.2447

0.00149
0.01905
0.00066
-0.00081
-0.00057

-0.4664 -0.4682 -0.4701
0.3272 0.3259 0.3258

-0.0520 -0.0573 -0.0571
0.00266
0.00120
0.01613
0.00127
-0.00122
0.00174

0.4647 0.4669 0.4661
-0.3391 -0.3377 -0.3373
0.1758 0.1748 0.1759
0.0000
0.002142
0.01636
0.00135
0.00007
-0.00150

0.1132 0.1192 0.1132 0.1218 0.1130 0.1178 0.1130
0.5065 0.4959 0.5000 0.5043 0.5100
0.0038 0.00791
0.01480 0.01356
0.00320 0.00934 0.00600
0.00000 -0.01098 -0.00500

-0.1304 -0.1284 -0.1284
-0.1208 -0.1209 -0.1212
0.00649

0.00514
-0.00700

0.1426 0.1366 0.1333
0.1175 0.1184 0.1185
0.00728
0.007100.007100.00045
-0.00545

-0.2912 -0.2927 -0.2908
0.4756 0.4738 0.4762
.00823

008230.00784
0.00627
0.00209

0.3699 0.3707 0.3695 0.3692
-0.4050 -0.3958 -0.3940 -0.4050 -0.3928
0.00651 0.00743
0.01627 0.01411
0.00640 0.00495
0.00233 0.00652

-0.4412 -0.4433 -0.4428
0.2764 0.2773 0.2752
0.00200
0.01777

-0.00009
0.00400

0.4538 0.4553 0.4533
-0.1611 -0.1629 -0.1625
0.00200
0.00910
0.00000
0.00200

0.3479 0.3476 0.3477
-0.2433 .0.2447 -0.2428
0.00163
0.00714
0.00067
13-.00041

-0.3174 -0.3189 -0.3187
0.3144
0.00194

0.3123 0.3137

0.00756
0.00082
0.00017

0.5350 0.5529 0.5467
0.00238
0.01029

0.0572 0.0571 0.0575
0.00189
0.00770

0.5072 0.5050 0.5060
0.01033

0.00891

0.204 0.176 0.177 0.167
0.149 0.119 0.117 0.102
2.19 1.05 1.90 1.69

1.90 1.86 1.79

534 496 568

6

Cycle 4!

a b a

0.2148 0.2155 0.2169
-0.3412 -0.3415 -0.3147

0.55590.5552 0.5591
0.00431 0.00586 0.00424
0.01172 0.01386
0.02269 0.02108

0.01191

0.00345 0.00427 0.00484
0.00185 0.00170 0.00228
0.00181 0.00217 0.00299

0.3419 0.3430
0.1201 0.1174

-0.2043 -0.2005
0.00741 0.00689
0.00010 0.00300 0.00335
0.2388 0.02161

0.003960.00267
-0.00262 -0.00054
-0.00217

-0.3215 -0.32?3
-0.1143 -0.1149
0.2385 0.2427
0.00027 0.00200 -0.00048
0.00238 0.00261
0.02399 0.03084

-0.00077
-g:g207171 0.00118
-0.00069

-0.4702
0.3255

-0.0549-0.0629
0.00357 0.00522
0.00070 0.00379
0.01697 0.00943
0.00089 0.00271
0.00017 -0.00212
0.00193

0.4626 0.4639
-0.3369 -0.3377
0.1735 0.1784
0.00383 0.00285
0.00269 0.00048
0.01668
0.00189 0.00075
-0.00176 0.00105
0.00048 -0.00002

0.1163 0.1172 0.1158
0.5055 0.5057 0.5110
0.00634 0.00600
0.01021 0.01008 0.00970

-0.01036 - 0.01189 0.00500 0.00792
-0.00476 -0.00453

-0.1348 -0.1306
-0.1187 -0.1155
0.00105 0.00400 0.00484
0.0i2 pi
-0.00147 0.00300 0.00361
-0.00487 -0.01211

0.1333
0.11 ?3 0.1180
0.00459 0.00087
0.00457 0.01211
0.00414
-0.00608 -0.00294

-0.294312 -0.2941
0.4755

0.00792
0.00919 0.00748
0.00788 0.00688
0.00155

0.3707 0.3734
-0.3946 -

0.3741
0.3974 -0.3919

0.00772 0.01052 0.01176
0.01235 0.01374
0.00596 0.00862 0.01144
0.00401 0.00653

-0.4402 -0.4444
0.2821 0.2822
-0.00019 0.00200 0.00024
0.00976 0.01433

-0.00144 0.00209
-0.00003 0.00245

0.4581 0.4567
-0.1559 -0.1632
0.00283 0.00427
0.01021 0.00641
0.00377 0.00603
0.00134

0.3477
-0.2414 -0.2433
0.00174
0.00684 0.00661
0.00158

-0.00229
0.00155
-0.00141

-0.3187
0.31350.3156

0.00e23
2:08N30.00871

0.00209 0.00179
-0.00142 -0.00048

0.5338 0.5500 0.5535
0.00371 0.00343
0.00672 0.00244

0.0573
0.00089 0.00102
0.01072 0.00986

0.4887 0.5000 0.5015
0.01027 0.02050

0.00630 0.00614

0.167
0.097
1.60

1.68 1.59 1.50

546 546 546

6 2,3,6 3,6,7
7,8,11 8,11,12

12

Cycle: 5,

0.0065856

c d 6 Par.!,

0.5420 0.0079 1

0.5620 0.0086 2

0.5472 0.0072 3

0.5519 0.0092 4

0.5724 0.0136 5

0.6089 0.0208 6

0.5779 0.0279 7

0.5649 0.0427 8

0.2169 0.2146 0.2176 0.0027 9

-0.3419 -0.3432 0.0026 10

0.5690
0.00422

0.5580 0.5584
0.00456

0.0044
0.00255

it

12

0.01222 0.01221 0.00330 13

0.00508
0.01509
0.00571

0.00470
0.00201

14

15

0.00226 0.00191 0.00233 16

0.00309 0.00292 0.00269 17

0.3428 0.3423 0.3428 0.0025 18

0.1173 0.1140 0.1165 0.0022 19

-0.2002 -0.2008 -0.2056 0.004? 20
0.00517 0.00248 21
0.00244 0.00173 22

0.00402
0.00999
0.00357

0.00473
0.00153

23
24

-0.00085 -0.00060 0.00230 25
-0.00255 0.00207 26

-0.3231 -0.3230 -0.3232 0.0022 27
-0.1148 -0.1166 -0.1155 0.0021 28
0.2436 0.2444 0.2365 0.0042 29
-0.00061 -0.00124 0.00163 30

0.00162 0.00180 31
0.03061 0.01944 0.00487 32
-0.00099 -0.00050 0.00113 3

0.00117 0.00159 0.00176 34
-0.00363 0.00216 35

-0.4688 -0.4717 0.0021 36
0.3263 0.3245 0.0016 37

-0.0552 -0.0581 -0.0515 0.0039 38
0.00522
0.00388

0.00403
0.00323

0.00166
0.00146

39
40

0.00926 0.00534 0.00401 41
0.00272
-0.00213

0.00218
-0.00128

0.00107
0.00172

42
43

0.00184 0.00124 44

0.4637 0.4634 0.4630 0.0022 45
-0.377 -0.3374 -0.3372 0.0017 46
0.1785 0.1753 0.1798 0.0044 47

0.00278
0.00039

0.00194
-0.00055

0.00187
0.00180

48
49

0.01066 0.00465 50
0.00071 0.00029 0.00131 51

0.00097 0.00029 0.00190 52
0.00000 -0.00090 0.00143 53

0.1157 0.1139 0.1159540.0026
0.5111 0.5100 0.5110 55

0.00488 0.00295
0.00866 0.00 30 57

0.00711 0.00646 0.00412 58
-0.00307 0.00432 59

-0.1309 -0.1321 -0.1317 0.0025 60

-0.1156 -0.1165 -0.1155 0.0053 61

0.00501 0.00464 0.00265 62

0.00971 0.00512 63

0.00376 0.0040) 0.00354 64
-0.01208 -0.01273 0.00380 65

0.1347 0.1330 0.0023 66
0.1176 0.1169 0.1198 0.0039 67

0.00071 0.00014 0.00228 68
0.01194 0.01199 0.00309 69
0.00021 -0.00011 0.00304 70

-0.00276 -0.00440 0.00292 71

-0.2933 0. 935 0.0020 72
0.4755 0.4725 0.4814 0.0039 73

0.00342 0.00311 74
0.00731 0.00627 0.00324 75
0.00686 0.00192 0.00398 76

-0.00473 0.00327 77

0.3736 0.3736 0.3755 0.0025 78
-0.3921 -0.3954 -0.3878 0.0043 79
0.1206 0.00812 0.00357 80

0.00369 0.00462 81

0.1182 0.00809 0.00467 82

-0.00179 0.00437 83

-0.4445 -0.4475 -0.4450 0.0023 84
0.2821 0.2803 0.0041 85

0.00009
0.01294

0.00067
0.01353

0.00180
0.00356

86
87

0.00165 0.00292 0.00315 88
0.00216 0.00258 0.00319 89

0.4568 0.4551 0.4566 0.0021 90
-0.1628 -0.1607 -0.1674 0.00 91

0.00424 0.00473 0.001/ 92
0.00666 0.00790 0.00369 93

0.00593 0.00677 0.00355 94
0.00599 0.00404 95

0.3474 0.3474 0.0008 96
-0.2432 -0.2423 -0.2450 0.0030 97

0.00118 0.00077 98
0.00655 0.00502 0.00126 99

0.00126 0.00105 100
-0.00148 0.00003 0.00099 101

-0.3183 -0.3189 0.0008 102
0.3136 0.3147 0.3112 0.0030 103

0.00172 0.00087 104
0.00987 0.00558 0.00181 105
0.00186 0.00198 0.00115 106

-0.00048 0.00069 0.00106 107

0.5525 0.5432 0.5520 0.0091 108
0.00336 0.00208 0.00105 109
0.00236 -0.00152 0.00364 110

0.0574 0.0587 0.0018 111
0.00022 0.00026 112

0.01009 0.00451 0.00235 113

0.4848 0.4394 0.0088 114
0.02009 0.01523 0.00689 115

0.00511 0.00211 116

1.48 1.58 1.40

546 546 546

3,6,7 2,3,5
8,11,42 6,7,8

9,11,12
13,14,15
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TABLE V -SOME INTERATOMIC DISTANCES OBTAINED FROM
LEAST SQUARES CALCULATIONS (SECOND SET OF WEIGHTS)
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Distance Cycle 1'
A

Cycle 2'
A

C (I)-N (I) 1.40 1.43
C(II)-N (II) 1.29 1.25
S(I)-O(V) 1.46 1.44
S (I)-0 (III) 1.38 1.38
SW -0 (I) 1.46 1.44
S(II)-O(VI) 1.47 1.48
S(II)-O(IV) 1.48 1.50
S (II) -0 (II) 1.50 1.49
Al (I)-0 (VII) 1.92 1.89
Al (I)-0 (VIII) 1.86 1.86
Al(II)-0(IX) 1.90 1.92
Al (II) -0(X) 1.91 1.91

In cycle 2' the starting parameters were the same as those resulting
from cycle 1' (new weights) except for the x -parameters of N(I) and
N(II) and the z -parameter of N(I). Also, it was found that under the
conditions set for the weighting in cycle 1', only 496 amplitudes should
have been weighted unity. For these reflections and the starting parame-
ters shown in Table III, the R value was 0.176, weighted R, 0.119 and
error of fit, 1.85. Again only scale and positional parameters were allowed
to vary. Changes were not large except for the N and C(II) parameters.
Some distances calculated from these parameters are given in Table V.
(C-N distances are always on assumption of planarity of the guani-
dinium group.) Note that again the C(I)-N(I) distance is short, the
C(II)-N(II) long, but the average is the expected value for such a
bond. Also noteworthy is the continued tendency of S(I)-0(III) to
be short. In fact, there is a tendency throughout for the S(I)-O dis-
tances to be shorter on the average than the S(II)-O distances. Ex-
amining the correlation matrix for this cycle we may summarize the
results as follows (Table VI). Only those pairs for which I p I > 0.40 are
listed. Thus of the 946 pi; (i j) terms only 75 are > 0.40. Important
also is the fact that a large number, 677, of the terms are less than 0.10,
many much less than 0.10; 194 of the I pi; I lie between 0.10 and 0.40.
These could be important especially if one parameter has many inter-
actions of moderate size with other parameters.

Earlier we gave some examples of I pii I that were calculated from the
inverse matrix of cycle 12 (old weights). It is seen from examination of
Table VI that the values for the particular I pii I obtained from cycle 2'
are essentially the same except for the value for the xmii)-xN(/) in-
teraction. The value is much higher, 0.62, than the one, 0.10, obtained
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from the incorrect orientation of the guanidinium ions. Thus, incorrect
values for parameters can uncouple parameters. Furthermore, this ap-
pears to be the reason that there was not much change in the incorrect
y -parameter of N(II) in the first three cycles. That is, a parameter which
is given a value which tends to make it independent may not change
rapidly to a value which tends to make it dependent.

The purpose of the next cycle was to see the results of allowing the
parameters, both positional and thermal, of only the N and 0(III)
atoms to vary. Before carrying out this calculation, however, the posi-
tions of hydrogen atoms were estimated. The guanidinium ions were
considered to be essentially planar, and the z -parameters of the guanidi-
nium H's taken as 0.55 for those about the threefold axes at Li and

, and 0.505 for those about the axis at 0,0. For the water molecules,
the links with the SO4 oxygen atoms were considered and the tilt of the
water molecule estimated accordingly. In any given level of H2O mole-
cules about either of the nonequivalent axes, the z's were taken equal.
The H-O-H angle was taken as 105° and the 0-H distance, 0.96
A. (The initial H -parameter values will not be listed; however, the
last set used will be listed later.) First, H contributions to the Fhk.i for
h,k,l positive were calculated for two different orientations of the
guanidinium ions, namely : ( -) and ( ). (The program used
for this calculation was written by R. G. Treuting; the atomic scattering
factors for H were those of Viervoll and Ogrim.15) These calculations,
together with consideration of previous calculations of the amplitudes,
corroborated the conclusion that the (+, -) orientation was the most
probable one.

The N -parameters were readjusted to yield the most probable C-N
distance, and the z -parameter of 0(III) was started at -0.405. Those
observed amplitudes with sin20/X2 < 0.0800 which were not strongly
affected by extinction were reweighted unity. The total number of re-
flections weighted unity was 568. The H atoms were put into the calcu-
lation as "fixed atoms" (see Ref. 13) with isotropic temperature factor
B = 3.00 A2. The over-all I? value was 0.177, weighted R, 0.117, and
error of fit, 1.90.

The results of the least squares calculation are given in Table IV
cycle 3'. It is seen that the 0(III) z -parameter returned to that of the
previous cycle. The N(I) s -parameter increased somewhat, implying a
C(I)-N(I) distance of 1.37 A. The parameters of N(II) imply a
C(II )-N( (II) distance of 1.33 A.

In Table VII, we list those correlation coefficients greater than or
equal to 0.40. If this table is compared with Table VI, one finds that the
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coupling of N(I) and N(II) positional parameters is still as strong as in
the previous cycle. In both cycles 2' and 3', the correlation matrices
showed no strong interaction between 0(III) and nitrogen atom
parameters. The correlation matrix of cycle 3' indicated that there are
some very strong interactions in pairs of thermal parameters. As ex-
pected, there was corroboration of a strong interaction between the
$33's of the N atoms.

For this case, it might be worthwhile to show the Api's obtained from
the complete solution of the 21 normal equations compared with those
obtained from the diagonal term approximation. These are given in
Table VIII together with the a's calculated by the Busing -Levy pro-
gram. As expected, several of the Api's for particular i are quite different,
particularly for those which are highly correlated (see Table VII).

Before proceeding to the next cycle, the calculated and observed data
were examined for any outstanding discrepancies and rechecks were
made on the intensity data. It was found that 27 of the reflections which
were listed as observed should have been listed as unobserved. It was
also found that 5 reflections which were recorded as unobserved should
have been observed by the instrument but were missed. These -were
obtained from film data.

Slight changes were made in the H -parameters; the x -parameter of
N(I) was returned to 0.113 and necessary changes made in the $12 and
#13 thermal parameters of N(I). Now the Busing -Levy program calcu-
lates and stores all derivatives, so that it is possible to allow different
sets of parameters to remain constant and solve for sets of Api for each
initial set of parameters. In cycle 4'a, therefore, we first allowed only
the N( I), N ( II ) , and 0(111) parameters to vary and then in 4'1),

TABLE VII - CORRELATION COEFFICIENTS FROM CYCLE 3'

Ip I

0.40-0.50 1,2 7,12 8,9 8,15

0.50-0.60 4,7

0.60-0.70 1,10 5,7 5,14

0.70-0.80 3,11 6,13

0.80-0.90
0.90-1.00 12,14 18,20

Parameter numbers

x 1322 fin fin ,13 023

N (II) 1 2 3 4 5 6 7 8

N(I) 10 11 12 13 14 15

0(III) 16 17 18 19 20 21
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TABLE VIII - PARAMETER CHANGES AND ERROR ESTIMATES
FROM CYCLE 3'

Parameter number
(see Table VII) Busing -Levy Diagonal term

approx.
cr's from

Busing -Levy

1 -0.0029 -0.0020 0.0027
2 -0.0056 -0.0027 0.0022
3 0.0058 0.0046 0.0037
4 -0.00661 -0.00105 0.00268
5 0.00270 0.00418 0.00245
6 0.00231 0.00477 0.00420
7 -0.00273 -0.00136 0.00202
8 -0.00227 -0.00333 0.00271
9 -0.00371 -0.00053 0.00225

10 0.0048 0.0051 0.0025
11 0.0057 -0.0030 0.0048
12 0.00411 0.00023 0.00296
13 -0.00124 0.00172 0.00527
14 0.00614 0.00113 0.00466
15 -0.01098 -0.00983 0.00552
16 -0.0003 -0.0009 0.0014
17 0.0121 0.0120 0.0023
18 0.00092 0.00160 0.00228
19 -0.00216 -0.00133 0.00311
20 -0.00145 -0.00230 0.00307
21 0.00419 0.00025 0.00351

varied all parameters except the scale factors. The results are shown in
Table IV. Again in both cases, the N(I) x -parameter increased; there
were changes in the N(II) parameters, but the implied C -N distance
1.35 A was good. Also the z -parameter of 0( III) seemed to improve,
especially when all the parameters were allowed to vary. But in 4'a,
the thermal parameter matrix of the N (I) atom was not positive defi-
nite, while in 4'b, seven atoms had thermal parameter matrices which
were not positive definite. Also there were continued oscillations and
large error estimates. It was evident that real convergence would not be
attained.

However, because the N and 0(III) parameters did look encouraging,
it was decided to try one more cycle. This time the parameters of the
water hydrogen atoms were recalculated in a somewhat different way.
In a recent paper,' Aleksandrov, Lundin and Mikhailov report results
of a study of the distribution of hydrogen atoms in guanidinium alumi-
num sulfate hexahydrate by means of proton magnetic resonance experi-
ments. They report that the nearest neighbor p -p (proton -proton)
vectors are perpendicular to the al , a2 and a3 axes. t They argue that on
the basis of symmetry considerations all H atoms bonded to 0's in a

t Previously, Spence and Muller" had reported this to be so for the p - p
vectors of the water molecules, but had concluded that the p - p vectors of the
guanidinium groups could be parallel to the c -axis with a separation of 2.05 A.
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single octahedron layer about a threefold axis must have the same
z -parameter. Of course, this is true only for those hydrogen atoms
bonded to N(I) atoms and to the water molecules about the threefold
axis at 0,0. The trigonal axes and planes of symmetry are such that only
three atoms about the axis at 1,1 and three about the axis at 1,1 must
have the same value of z.

Thus contrary to the statements of Aleksandrov et al,'9 symmetry
conditions do not require all the nearest neighbor H-H vectors to be
parallel to the (00.1) plane, nor must they all be perpendicular to the
al , az and a3 axes. Only for those about the threefold axis where the
mirror planes intersect, namely at 0,0 must this be the case. However,
it is possible that the nearest neighbor H-H vectors about the three-
fold axes at 1 1, 1 1 are close to parallelism with the (00.1) plane and
perpendicularity to the al , az , a, axes.

Furthermore, Aleksandrov et all° refer to the trial structure reported
by Varfolomeeva et al.' Although that structure is incorrect, it would
have no noticeable effect on the conclusions of Aleksandrov et al, since
they discuss only the nearest neighbor FI-H vectors.

Thus, in calculating the H parameters, the tilting of the water H-H
bonds out of the (00.1) plane and skewness to the al , az , az axes was
permitted in those water molecules about the threefold axes at 11- 3,
(The guanidinium ions, however, were assumed to be planar.) In calcu-
lating the H positions, the water molecules were assumed to lie in the
planes connecting the water oxygen atom with the two sulfate oxygen
atoms involved in the hydrogen bonding. The bisector of the H-O-H
angle of 105° was taken as the line passing through the center of the
water oxygen atom and the center of the line connecting the two sul-
fate oxygen atoms involved. The parameters of the N and 0 atoms
involved were those from cycle 4'b. The H -parameters thus deduced are
listed in Table IX. The new parameters caused some differences in the

TABLE IX -H PARAMETERS USED IN FINAL CYCLE

Description

on N(I)(atom 6)
on N(II)(atom 1)

on O(VIII) (atom 7)
on 0(VII)(atom 8)
on 0(IX)(atom 4)

on 0(X) (atom 5)

0.205 0.086 0.51
0.465 0.256 0.56
0.564 0.434 0.56
0.139 0.218 -0.148

-0.072 0.134 0.156
0.457 0.257 -0.124
0.526 0.400 -0.111

-0.452 -0.260 0.205
0.464 0.588 0.219
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contributions to several amplitudes, but in general not very important
ones.

Some necessary adjustments of thermal parameters resulting from
cycle 4'b were made. In cycle 5'a,t only those positional parameters
were varied in which changes greater than a/5 occurred between previ-
ous cycles 2' and 4', all thermal parameters were varied in which there
were changes greater than a/5 between cycles 1' and 4'; all scale factors
were kept constant. In 5'b, only those parameters were varied in which
changes in 5'a were greater than a/5. In 5'c, only positional parameters
were varied. In 5'd all parameters were varied. All results are listed in
Table IV. Differences range from very small to very large and are in-
dicative of the unattainability of convergence. We list also the a'st in
the Api's for the last cycle 5'd in the last column of Table IV. These
are especially large for most of the thermal parameters and for most of
the z -parameters, and reflect the strong interdependence in pairs of
parameters.

The correlation matrix for cycle 5'd contains 6,670 pii(ti 0 j) terms.
Thus we shall again only list the values of I piii > 0.40 (Table X). Of
the 6,670 terms in the matrix, 176 have values greater than 0.40; 1,389
have values greater than 0.10.

On examining Table X, one finds that no interactions of scale factors
with positional parameters are listed. In fact, the correlation coefficients
for such combinations are all very low. However, there are all the other
types of interactions, namely: scale factor -thermal parameter, thermal
parameter -thermal parameter, positional parameter -positional parame-
ter, and several (those with asterisk) positional parameter -thermal
parameter. 1VIost often, also, the interdependence is between analogous
parameters; for example, a z -parameter of an atom interacts with z -
parameters of other atoms. Even when a positional parameter inter-
acts with a thermal parameter, an analogy exists, e.g., a z -parameter
interacts with a $33 -parameter. This makes physical sense, of course,
and gives us some confidence that the correlation coefficients reflect the
structural interdependence of the parameters. Correlation may be
caused partially by the experimental techniques but it is unlikely to
result mainly from the ill -conditioning of the normal equations by a

f It should be kept in mind that all cycles 5' refer to the derivatives evaluated
with the parameters of cycle 5'a.

It is worth emphasizing that statistical theory precludes the use of the error
estimates or normal equations matrix to determine the statistical significance of
the parameters listed. Only if convergence is actually attained can these numbers
be so used. Nevertheless, in a practical way, the error estimates and correlation co-
efficients do give us important information in the course of refinement or, as in the
present case, relative to the unattainability of convergence.

§ X-ray vs neutron diffraction.
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TABLE X - CORRELATION COEFFICIENTS FROM CYCLE 5'd. t
(ONLY I pii I > 0.40 ARE LISTED)

0.40-0.50

0 . 50-0 . 60

0 .60-0 .70

0.70-0.80

0.80-0.90

0.90-1.00

3-4,5; 4-105; 6-75; 7-75; 8-75; 11-38,47,61,67,85; 15-56; 18-19,34;
20-47$,61,97,103; 21-30; 24-30,86,88; 25-26,27; 29-47,61; 30-33;
36-37; 38-61,103; 40-51,62; 42-68; 43-66$; 44-46$; 45-46; 47-55,
67,73,85,91,103; 51-64; 52-53; 55-97,103; 57-59; 61-73,79,85,91;
63-69; 67-103; 75-81; 77-79$,83; 79-83$,97,103; 81-83; 97-108,114;
103-108,114; 105-113; 108-110$; 113-116

4-5,6,7,8; 5-113; 8-99,113; 11-97,103; 12-15; 13-15,58; 16-59;
19-84; 20-91; 22-24; 26-89; 27-94$; 29-85,97,103; 30-94; 37-53$;
38-47,97; 39-42; 41-50,63,69; 43-71; 47-97; 48-51; 50-69; 51-62;
61-97,103; 67-97; 73-831,97,103; 85-91,97,103; 110-115

5-105; 13-56; 14-57; 20-29; 21-24,88; 23-86; 27-92$; 28-90; 30-92;
37-46; 40-42,49,68,70; 49-64; 52-65; 72-78,80$,82$; 74-78$; 76-
78$; 86-88; 96-104$,106$; 98-102$; 100-102$; 108-115$; 111-116$

5-6,7,8; 8-105; 9-54; 18-27; 21-86; 32-93; 35-95; 36-66; 45-60;
49-51,62; 50-63; 96-102; 108-114; 111-113$

6-7,8; 11-55; 25-91; 38-67; 62-64; 73-79; 98-100

7-8; 47-61; 56-58; 68-70; 74-76; 80-82; 92-94; 97-103; 104-106

1. See last column of Table IV for parameter numbers.
$ Positional -thermal parameter correlation.

reasonable but not necessarily ideal weighting technique. It will be
noticed also that the same pairs of parameters show very nearly the
same measure of interdependence as indicated by earlier calculations,
again corroborating the point that it is the structural model (including
atomic form factors) which causes the interactions.

For the sake of completeness, we show in Table XI a list of observed
amplitudes compared with those calculated from the parameters used
initially in cycle 5' and including the contributions of the H atoms with
parameters shown in Table IX. Including consideration of multiplicity
and the differences when calculated amplitudes are greater than the
threshold values (with half the threshold value included in the denom-
inator) for reflections not observed, the discrepancy factor is 0.11.t

The over-all agreement is quite good despite several discrepancies in
which a calculated amplitude is above the threshold value for an unob-
served reflection.t Table XI attests to the validity of the conclusion
that the general features of the structure are correct.

t Six amplitudes, those of reflections 30.0, 11.1, 21.1, 22.1, 42.1 and 21.2, suffer-
ing from extinction were excluded in calculation of this discrepancy factor.

$ These are a product of the instrument which sometimes missed reflections,
which, according to visual estimates of photographic intensities, it should not have
missed.
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VI. FURTHER COMMENTS ON THE INDETERMINACY OF THE EXACT STRUC-
TURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE

6.1 Importance of the Weighting Procedure

The use of two very different weighting procedures did not break down
the high correlations existing between parameters. It is doubtful,
especially in the case of so large a number of parameters, that any
reasonable weighting procedure would succeed in uncoupling the parame-
ters sufficiently to lead to greater determinacy.

6.2 Effect of Keeping Some of the Parameters Constant while Allowing
Others to Vary

In the case that there is correlation between parameters, it would seem
that, at least in the final stages of the refinement, holding of such parame-
ters constant could lead to erroneous results. In a case involving a smaller
number of parameters it might be possible to obtain a confidence regions
for all the parameters by holding some of the parameters constant, but
at several different values. For example, suppose the problem involves n
almost independent parameters and two almost completely dependent
parameters which appear to prevent convergence. Choosing several
judicious values of one of the latter and making the calculation for each
one will give sets of values for the other parameters which will allow the
construction of the equiprobability ellipsoids.

However, in a problem involving many parameters, and many large
and multiple correlations, such a technique would appear to be im-
practical. It should be mentioned that if the model were very nearly
linear, only those correlations very near ± 1 would be important in the
unattainability of convergence. However, it is possible that the more
nonlinear the model, the more important the other correlations become.

6.3 Possible Effects of Increasing the Number of Observed Data

There are two ways in which the number of data might be increased.
One is to obtain more of the weak intensities by increasing the detector
sensitivity. It does not seem that this would have the effect of decreas-
ing the correlations. This was shown to some extent by the calculations
based on the two different weighting schemes. In the first case the
weighted evaluated derivatives for unobserved reflections were included;
in the second, these were given zero weight and therefore excluded.
Also, the exclusion of reflections for which sin28/X2 < 0.0800 did not
have an apparently significant effect on the correlations. (Compare, for
example, analogous values in Tables VI and X. )
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The other way in which to increase the number of data is to use shorter
wavelength radiation. Now, it is not necessary actually to measure these
data before determining the effect on the correlations because the cor-
relation coefficients, as calculated, depend only on the model and the
evaluated derivatives. It is unlikely that the situation would change very
much if the additional terms were included because the relationship of
the derivatives with respect to correlated parameters would probably
not change very much.

In the case of tetragonal BaTiO3 ,5.6 higher index reflections would
have almost no important contributions from the oxygen atoms. Thus
the interactions among oxygen ion parameters will not be affected.
Similarly, interactions among the metal ion parameters will probably
not be much affected. But interactions between the two groups could be
reduced. However, in the case of an all light atom structure, it would
appear that the extra data would probably not reduce the correlations.

6.4 Possible Effect of Greater Accuracy in Measurement of Observed In-
tensities

The effect of greater accuracy in measurement of the observed in-
tensities is not really predictable in this case. To be sure, in each iteration
the reduction of s = 1/Z(Vw6)2/1/m -n would reduce the apparent
size of the equiprobability surfaces. This we certainly know.

However, we must ask first whether there is a limit to the accuracy of
the observed amplitude. One would suspect that there is such a limit.
Furthermore as pointed out by Caticha-Ellis and Rimsky,2° there will
always be a discrepancy between the calculated and true values of the
amplitudes. Thus s has a lower positive limit.

Reduction of s would not only decrease the size of the equiprobability
surfaces (and therefore, of course, the standard estimates of error) but it
would also decrease the components of the vector v, v = Z(-VwD;) 
( VwA), where the Di are the evaluated derivatives. Thus, for example,
if cycle 5'd were repeated with each A decreased to 2 of its value, each v ,

and therefore each Op= = Ei biivi would be reduced to the same extent.
Of course an average reduction of z might not do the same thing. In fact,
with a poor distribution of the reduction in A, the Api in some cases
could even be larger, depending on the algebraic values of the Di .

Actually the nature of the shape of the equiprobability surfaces might
give the best clue to what might happen if increased accuracy of measure-
ment were attainable. The nonlinearity of the model would probably
play an important part. The more nonlinear, the more important are apt
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to be those correlations which are not perfect. Of course, even one perfect
correlation ±1, renders the whole problem indeterminate6 if insistence
is made on allowing all parameters to vary in an iteration. This is not
necessary, however, and one could learn a great deal about the parame-
ters of a structure which has only one perfect correlation and the rest
very small ones (see Section 6.2). In the present case, there are many
correlations having absolute values between 0.90 and 1.00 (Table X).
These have the specific values: 0.917, 0.905, 0.913, 0.907, 0.975, 0.963,
0.901, 0.979, and 0.902, respectively. Perhaps the most important ones
are the three closest to unity.

In the case of gross nonlinearity it seems possible that these and so
many of the other high correlations of Table X could cause unattain-
ability of convergence even if the lowest limit of s were attained. That is,
the shape of the equiprobability surface may be such as to prevent the
practical attainment of separate estimates of the parameters (see also
Ref. 21) from the given data. This seems to be true of the BaTiO3
case.5'6

Needless to say, a measure of doubt remains. Further work might aid
in removing this doubt. This would involve trying to obtain more data
and of greater accuracy, and further calculations. Our doing this is not
presently contemplated.

6.5 Fourier Synthesis vs Least Squares

In the case of tetragonal barium titanate, Fourier synthesis produced
no improvement on the least squares method.22 It is likely that with the
present data, the situation in the case of the G.A.S.H. would be the
same. On the other hand, there is no requirement of linearity in the
Fourier synthesis: the actual amplitudes are the Fourier coefficients.
In the least squares technique, an approximation is used: i.e.,

Fhki(P1, P2 ,  ,Pn) = Fhkl( + Om., P2 + Opt ,  ,Pn + Op)
nv or hki= Fhki(pi,p2 ,  ,p) + L,, AR;

J-1 op; bi

where 131 ,732 ,  ,7:5 are approximate but nearly true values of the
parameters. It is possible that higher order terms could be important
here, but it is not clear that inclusion of the next higher order terms would
necessarily lead to improvement. Also, the calculation would increase in
complexity.

Cochran has shown that a rather close -relationship exists between the
Fourier synthesis and least squares techniques. There are conditions on
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this relationship given by Cochran" and Hoard and Geller", and in
addition in the actual least squares calculation, an approximation is
made and nearness to linearity is assumed. Therefore, if the nonlinearity
is not serious, convergence should be attainable in either case. If it is
serious, the relationship could break down further and the Fourier
synthesis could conceivably converge when the least squares calculation
tends not to converge.

VII. COMMENTS ON THE SINGLE -CRYSTAL AUTOMATIC DIFFRACTOMETER

As mentioned earlier, the data used in this work were collected four
years ago. Since that time only one or two attempts were made to use
the instrument for other studies. These were unsuccessful because of
difficulties which are probably surmountable, but require modification
of the instrument.

The present instrument puts a lower limit on the sample size. To keep
the time for recording a layer within reasonable bounds and to prevent
the instrument from reacting to background scattering, only intensities
above a certain preset count energize the circuitry which sets the crystal
back and shifts speed. To obtain satisfactory counting rates the use of
large crystals is required. (The intensity is proportional to the number
of unit cells irradiated.) However, to obtain adequate or meaningful
intensities from highly absorbing materials one must have small crystals.
In short, the instrument presently is suited mainly to crystals with low
absorption and from which sizable cylindrical specimens can be made.

The indexing of the reflections was a tedious process. The possibility
of error, particularly at the high angles, was great, but the use of photo-
graphs and cross examination of data helped prevent errors. An improve-
ment on the Bond -Benedict automatic single -crystal diffractometer
would be provision for foolproof pre -indexing of the reflections.

VIII. SUMMARY

Extensive application of the least squares refinement technique
( through the use of the Busing -Levy IBM 704 program) to three-
dimensional X-ray data from crystals of guanidinium aluminum sulfate
hexahydrate indicated that although the structure as originally reported
for the isostructural guanidinium gallium sulfate is essentially correct,
an exact structure is unattainable from the present data by means of the
least squares method of refinement. The numerous high correlations of
pairs of parameters, apparently linked with the nature of the structure,
appear to be a primary cause of prevention of convergence.
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The course of the calculations has been outlined with special emphasis
on some of the more obvious parameter interactions, but tables are given
to enable the more interested reader to examine the results in somewhat
greater detail.

The work also further demonstrates the importance of the correlation
matrix as a tool for establishing the existence or nonexistence of inter-
dependence of structural parameters.
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Discrimination Against Unwanted Orders
in the Fabry-Perot Resonator

By D. A. KLEINMAN and P. P. KISLIUK

(Manuscript received September 20, 1961)

It is proposed here that the usual Fabry-Perot interferometer structure of
the optical maser may be modified in a very simple way to provide discrimi-
nation against unwanted orders. The modification is an extra reflecting sur-
face suitably positioned outside the maser which can greatly affect the losses
of the various orders. A simple one-dimensional analysis is given for the
effect, and numerical results are presented for a realistic case, showing that
the effect can be large. It is concluded that this technique may be useful in
preventing unwanted oscillations in the optical maser.

I. INTRODUCTION

The Fabry-Perot interferometer has recently become important as a
resonant cavity for electromagnetic radiation at optical frequencies."2'3'4
The nature of the modes of such a cavity has been discussed by Schawlow
and Townes' and by Fox and Li.5 The modes may be specified by three
quantum numbers, one of which is the familiar order number giving the
separation of the plates in units of the half -wavelength. The other two
quantum numbers specify the possible field configurations across the
plates, which are essentially identical in each order. Fox and Li have
investigated these configurations and the corresponding frequencies and
losses for interferometers consisting of perfectly reflecting plates in air. In
the usual laboratory interferometer the Fox and Li modes cannot be
resolved because of insufficient reflectivity of the plates. Therefore the
role played by these modes in optical masers is not settled. On the other
hand, fine structure which could be due to various Fabry-Perot orders
has been seen in the output of both the gas' and the ruby' optical maser.
It has been pointed out"' that the optical maser is inherently a multi -
mode device, and that the excitation of many modes can lead to unde-
sirable effects in the noise, stability, and ultimate usefulness of the de-
vice. Therefore it is proposed here that it would be useful to discriminate

453
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against many of the Fabry-Perot orders which can occur in the output
by increasing their losses relative to other "preferred" modes.

The Fabry-Perot orders present a problem only when the fluorescence
emission of the maser covers a frequency band wider than (2/./4)-' wave
numbers, where µ is the refractive index and d the separation of the
plates. This is the case in the gas maser of Javan, Bennett, and Herriott3
where (2/.4d)-1 --, 0.005 cm-' and the doppler broadened Ne transition
would be expected to have a width r-,0.05. Also, in the ruby optical maser
of Collins et al', (2Ad)-' r.. 0.1 while the fluoresence line width at room
temperature X10. The orders cannot be eliminated in these cases by
shortening the maser and hence spreading the orders, because the gain
would then be insufficient to produce oscillations.' In ruby, however, the
gain could be increased' by more than an order of magnitude by cooling,
so that the crystal could be shortened. At the same time, the cooling
could decrease the line width by more than an order of magnitude,'° so
that elimination of orders appears possible in ruby optical masers by cool-
ing. These examples show the interrelation of gain, line width, and the oc-
currence of Fabry-Perot orders in the optical maser output.

The idea of using a Fabry-Perot interferometer to discriminate against
unwanted orders in the optical maser has occurred to a number of
people." Indeed, if the external beam contains several orders, a Fabry-
Perot etalon could be constructed which would transmit only one of
them. This, of course, would not necessarily have any effect on the losses
of the various modes in the maser. If the etalon were put in the internal
beam, elementary considerations do not tell us what to expect for the
relative losses of the modes. The structure to be proposed in the next
section is equivalent to making the etalon one of the reflecting ends of
the maser. It is believed that a detailed discussion of how discrimination
comes about in such structures is given here for the first time.

II. A MODIFIED INTERFEROMETER

It is proposed that another reflecting plate parallel to the maser plates
be provided outside the maser with a means for adjusting the separation
of the new plate from the maser. This would produce a modified inter-
ferometer having three essential optical surfaces with the active medium
in the space between two of these surfaces. It is expected that the separa-
tion of the third surface from the maser will be much less than the length
of the maser. The purpose of the extra surface is to provide discrimina-
tion between the Fabry-Perot orders of the original maser by making
some orders very lossy compared to other orders. The losses may be due
to scattering by inhomogeneities in the medium and irregularities on the
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reflecting surfaces, absorption by processes other than the fluorescence
process of the active medium, and transmission through the outer reflec-
ting surfaces. For convenience of discussion, all losses may be ascribed to
the last mechanism by assigning suitable effective reflectivities to the
outer surfaces. In any case, it is clear that the proposal has meaning only
when losses are taken into account, since the only other effect of the extra
surface would be to shift the frequencies of the already existing orders
by amounts less than (21d)-' and to introduce new frequencies corre-
sponding to the increased over-all length of the modified interferometer.
Therefore the performance of the device cannot be deduced in an ele-
mentary way by considering the two regions between the surfaces as two
interferometers with the shorter preferentially selecting and rejecting
certain orders of the longer. The truth is that the modified interferometer
has more, not fewer, orders than the original maser, but unlike the latter
the orders may have very different losses.

HI. ANALYSIS

For analysis it is convenient to consider the one dimensional problem
shown schematically in Fig. 1. A medium of real dielectric constant
e > 1 and real conductivity a occupies the region -a S z < a. For

-b -a

-±rbeLko(z-2b) Aeukz

+e-Lk0z + AeLkz

a

ei_koz

b

Lko(2b-z)rbe

Fig. 1 - Schematic diagram of one-dimensional symmetric structure chosen
for analysis of modified interferometer. The value of the constant A is not needed
in the analysis.
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Izi > a it is assumed that e = 1 and a = 0. At z = ±b are placed re-
flecting surfaces having the reflectivity for amplitude

rb = e2f. (1)

Since the phase angle of reflection is unimportant here, it has been as-
sumed zero. For later use the quantity

T = tanh f (2)

will now be defined. The reflectivity of the surfaces at z = ±a is

ra = - 1)/(1/E + 1).

From (1), (2) and (3) one can write

T = (1 - rb)/ (1 + rb)

1/.6 = (1 - ra)/ (1 + ra).
It is therefore possible in this example to consider arbitrary reflectivities
at z = ±a,±b by suitable choices for T and 1-6 in the range 0 to 1.

The symmetry of Fig. 1 about a plane at z = 0 causes the field to be
either even or odd with respect to reflection in this plane. The even solu-
tions are shown by (+) and the odd solutions by ( - ) signs in Fig. 1.
The propagation constants are given by

/ca = co/c

k = kV -41 i(47a/ eco)]l (5)

= ka-6 i(aircr/c-6) + 
The continuity of the field and its derivative at z = a gives the conditions

k tan(ka) = -ko tan(kob - koa + if) (6)

for even modes, and

ko tan(ka) = +k cot(kob - koa + if) (7)

for odd modes. These equations give, in general, complex eigenvalues for
the angular frequency co.

It is convenient to require that co be real and allow a to assume an ap-
propriate negative value. Both co and a are determined by (6) or (7) for
even or odd modes respectively. Physically this corresponds to supplying
sufficient gain through the negative a to maintain steady oscillations at
frequency co. The larger the value of -a the greater are the losses of the
mode in question. Now let the dimensions be so chosen that

n(b - a) = ma -6 (8)

(3)

(4)
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where m,n are positive integers. It is then possible to write

ko(b - a) = (m/n)z

Niekoa = nir + A.

The conductivity to be determined is contained in the parameter

X = tanh (27ro-a/cV; ). (10)

In any practical case the ratio k/ko occurring in (6) and (7) can be con-
sidered real, k/ko Ve. The equations for the real frequency and con-
ductivity then reduce to

tan A = (tan 11' A) 1 t V6Tx (11)
n ± Tx

1 - 1/E tan A tan (m/n)Ax = -T (12)
- tan A tan (m/n)A

for even modes, and to

(9)

e + x7'tan A = (cot - (13)
n 1 + A/Qr./1

1/e tan (m/n)A + tan A (14)x = tan (m/n)A VE tan A

for odd modes. When tan A is eliminated between (11) and (12) or be-
tween (13) and (14) the same quadratic equation for x is obtained,
namely

± 2Px -I- 1 =0
where

E T2 + (1 + 712) tan2 (m/n)A
2P - T-Ve(1 tan2 (m/n)A)

The solution of (15) which reduces properly as rb -> 0 (T -> 1) is

When

x= -p (p2 - 1)1 I.

x << 1, this reduces to

TN/e(1 tan2 (m/n)A)
- X ^'

e tan2 (m/n)i

The most practical method of solution is to find the frequencies by neglec-
ting Tx in (11) and (13), which gives
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V tan A = -tan(m/n)A (even) (19)

tan A = Ve cot(m/n)A (odd) (20)

respectively. From these solutions, the values of tan(m/n)A can be sub-
tituted into (17) or (18) to obtain x.

From (15) and (16) it is seen that x depends upon A through
tan2(m/n)A. As a result of the "tuning" condition (8), A = 0 is a solu-
tion of (19); this is the "preferred" mode having the lowest loss

Xmin = T/1/ (21)

The largest losses belong to modes having tan2(n/n)0 >> 1. The solufon
(17) gives two results in the limit tan2(m/n)0 -3 00, depending on
whether di' < 1 or > 1

xma. = - TV; (T2 < 1)

xmax = -1 / (TV -e) (er.112 > 1).

Let, the quantity

R = X/Xmin

(22)

(23)

be called the discrimination ratio; then Rmax = E or 1/T2, whichever is
smaller. Therefore the extra reflecting surface should satisfy

ra (24)

to achieve the maximum discrimination, but there is no advantage in
making rb exceed ra . It should be noted that the practical approximations
(19) and (20) are not valid if eT2 > 1.

IV. DISCUSSION

The properties of the solutions are best discussed with the aid of an
example. For simplicity, a case is chosen in which (19), (20) are valid.
Let

m/n =

= 10 (25)

T = 0.02.

The corresponding reflectivities for amplitude are ra = 0.82, rb = 0.96.
According to (21) the loss of the preferred mode A = 0 is measured by

x(0) = Xmin = -0.002. (26)
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From (19) it is seen that A = 57r /2 is a solution with tan2(m/n)A = co
so that according to (22)

x(57r/2) = xma. = -0.2. (27)

The graphical solution of (19) and (20) is sketched in Fig. 2 with circles
representing even solutions and squares odd solutions. The results are
summarized in Table I up to A = 57/2 = 450°; the remaining roots in
the fundamental period of 57 may be obtained from the symmetry about
A = 57/2. The roots are alternately even and odd as shown in the second
column, and tan(m/n)A in the fourth column rises monotonically from
0 to 00 corresponding to increasing losses. The discrimination ratio R,

0 77 277 37T

A
47T 577

Fig. 2 - Graphical representations of (19) and (20) for tit/n =1/5, N/i = 10.
Odd solutions are indicated by squares and even solutions by circles except at
A = 5r/2, where the intersection is at f 00.
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TABLE I-SUMMARY OF RESULTS FOR NUMERICAL EXAMPLE WITH
m/n = 1/5, Nie = 10

A type tan A tan A/5 R

0 even 0 0 1

88°10' odd +31.46 +0.318 1.1
175°58' even -0.0705 +0.705 1.49
262°34' odd +7.67 +1.304 2.66
345°21' even -0.261 +2.61 7.27
412°38' odd +1.31 +7.63 37.4
450° even 00 100

given in the fifth column, increases from 1 to 100. These results are fur-
ther summarized in Fig. 3, where the spectrum just calculated is com-
pared with that of the "original" interferometer having no surfaces at
z = ±b. The loss in the original interferometer is x = -1/Ve = -0.1
for all modes. The heights of the spectrum lines in Fig. 3 are proportional
to 1/R to indicate the relative "Q" of each mode. The total number of
frequencies in the fundamental period is twelve compared with ten in
the original interferometer for the same period. This is exactly what one
would expect, corresponding to the 20 per cent increase in optical length
of the modified interferometer. Also as one would expect, the spacing of
the preferred modes corresponds to the orders of an ordinary Fabry-
Perot interferometer of spacing d = b - a.

It will be seen in Fig. 3 that the three modes on either side of a pre-
ferred mode have frequencies very close to modes of the original inter-
ferometer at A = ±7r/2, ±7r, ±37/2. The losses of these modes can be

1111111111111
Fig. 3 - The calculated spectrum with the "Q" of each mode indicated by

the height of the lines. Shown below for comparison is the spectrum of the "origi-
nal" interferometer.
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calculated to a good approximation from these values of A. In general
the approximation is

tan(m/n)A tan[(m/n)N7/21 (28)

where N = 0,1,2,  but N <<n/m. Using (28) the evaluationof (17)
or (18) can then be carried out immediately without solving for all of
the frequencies. This is very convenient since only the modes near the
preferred mode are expected to be of interest. It will be noted that the
extra modes introduced by the extra surface are among the lossy modes.
The periodicity in the above example is a result of choosing n/m an
integer. If n/m is chosen not an integer, the periodicity is destroyed, but
A = 0 remains a preferred mode with minimum loss. Except for extra
modes in the regions of high loss, the general effect of the extra surface is
to impose a modulation of period (n/m) Tr on the original modes. It is of
course not essential for the desired effect that this modulation have a
period commensurate with the period of the orders of the original inter-
ferometer. Greatest advantage in discrimination against unwanted
Fabry-Perot orders is obtained by setting

b - a (2Av)-1 (29)

where Av is the half -width at half -maximum of the fluorescence emission.

V. SUMMARY

The theory of the orders of the modified interferometer has been
treated in one dimension by considering the symmetrical structure of Fig. 1.
The analysis clearly shows the nature and magnitude of the effects to be
expected. These effects do not depend in any essential way upon the
symmetry assumed for convenience in the analysis, and similar results
would be expected for an unsymmetrical modified interferometer with
only one extra reflecting surface. It is clear that details in the analysis
could be generalized in various ways without changing the substance of
the conclusions. The most important of these would be to allow arbitrary
reflection and absorption at the interfaces at ±a to represent the prop-
erties of deposited metal layers. On the basis of what has been presented,
however, it can be asserted that a third surface of suitable reflectivity
and properly positioned can provide considerable discrimination between
the orders of a Fabry-Perot interferometer.
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The One -Sided Barrier Problem
for Gaussian Noise

By DAVID SLEPIAN

(Manuscript received September 21, 1961)

This paper is concerned with the probability, P[T,r(r)], that a stationary
Gaussian process with mean zero and covariance function r(r) be nonnega-
tive throughout a given interval of duration T. Several strict upper and lower
bounds for P are given, along with some comparison theorems that relate
P's for different covariance functions. Similar results are given for
F[T,r(r)], the probability distribution for the interval between two successive
zeros of the process.

Let X( t) be a real continuous parameter Gaussian process, stationary
and continuous in the mean. We shall assume throughout that
EX(t) = 0 and shall write r(r) = EX(t)X(t r). We further assume
throughout that we are dealing with a separable, measurable version of
the process.

Our main concern in this paper is the probability P[T,r(T)] that X(t)
be nonnegative for 0 5 t 5 T. This quantity is of interest as a means of
describing the duration of the excursions taken by the process from its
mean. From P[T,r(r)], the distribution function F[X,r(r)] of the inter-
val between successive zeros of the process can be determined by differ-
entiation [see (19)]. This latter quantity is of importance in a variety of
engineering applications of noise theory.

Considerable effort has been directed in the past toward the numerical
determination of F[X,r( 7)] both theoretically"' and empirically. 28-32
These researches have resulted in various approximations for F[X,r( r)],
but many of these are neither upper nor lower bounds for F, and exact
circumstances under which they are good approximations are not clear.
Generally speaking, they are good for small values of X and become nuga-
tory for sufficiently large X. There appears to be nothing rigorous in the

463
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literature concerning the asymptotic behavior of F for large X. (An ap-
proximation method is given in Ref. 21.)

In this paper we summarize some known results and present a number
of new strict bounds and comparison theorems for P[T,r( and
F[X,r( T)]. The most important of these are: Theorem 1, Section 1.3;
Theorem 3, Section 1.4; and Theorem 10, Section 1.8. Theorems 12 and
13 (Section 2.7) dealing with class 2 covariances (defined in Section 1.1),
though of less importance for our goal, are perhaps of more than passing
interest. These and other results presented shed some light on theoretical
questions regarding P and F. Their utility in numerically determining
these quantities will be discussed elsewhere.

The paper is divided into two parts: Part I presents definitions, results,
and discussions; Part II contains the more technical aspects of proofs
and other supportive material for Part I.

PART I - DEFINITIONS, RESULTS AND DISCUSSIONS

1.1 Preliminaries

From its definition, it is clear that P[T,r(r)] is q. nonincreasing function
of T. It assumes the value a for T = 0. It obeys the scaling laws

P[T,Xr(r)] = P[T,r(r)] (1)

P[T,r(XT)] = P[XT,r(T)] (2)

X > 0.

In asserting (2) for all A > 0 we have assumed r(r) given for all T.
This is a convention that will be adhered to throughout this paper. It is
to be noted, however, that P[T,r(T)] for 0 < T S T. depends only on the
"piece" of the covariance function r( 0 < r ST..

The scaling law (1) suggests normalizing the covariances to be con-
sidered so that

r(0) = 1. (3)

We adopt this convention hereafter.
The scaling law (2) suggests that a normalization of the time scale is

in order. There does not appear to be a convenient way to do this for the
class of all covariances. For processes continuous in the mean, such as
ambeing considered here, all one can say in general about covariances is
that they are even continuous nonnegative-definite functions. This is a
rather large class of functions containing a great variety of pathologies
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such as nowhere differentiable continuous functions. In what follows we
shall have occasion to consider covariances r( 7), strictly monotone in
some right neighborhood of r = 0 and such that r(r) - 1 behaves like a
nonnegative power of I r I for sufficiently small I r I . We normalize and
define this class as follows: The continuous covariance r(T) is said to be
of class a if, as r approaches zero,

r(T) = 1 I

T la + 0(1 T 1"),r(a ± 1)
and if r(r) is strictly monotone in some right neighborhood 0 < r < ro
of the origin. Here necessarily 0 < a < 2 and r(a + 1) is the usual
gamma function. The normalization is contained in the specific choice
of the coefficient of I T a.

To the author's knowledge, when the scaling laws (1) and (2) are
taken into account, there are`only three distinct covariances for which
P[T,r(r)] is known explicitly. These are:

(i) ri(r) = e-111, 0 < r .15- 00,

P[11,ri(T)] = 2
arcsin e-7 , 0<T < 00;

(ii) 12(f3,T) = 1 - 32 + 02 cos (0) , o :5_ 7 < 00

I1

-
TT 1 .

') 4r - 2r_ arc isin [i3 sin
(

P[T,r2(0,r)] =

(1
T

1[1

- Oh 9r -3 <

1- HI, 17-1. 1

(iii) )3(T) =
0, I T I 1,

;

P[71,73(T)] = -1 + -1 [aresin(1 - T) - VT(2 -
4 r

0 1,

0 -T 2r- 0 -

0 T 1.

The process with covariance rt( r) is Markovian, and it is this special
property that permits determination of P[T,r1(r)] in this case (see Ref.
22 or Ref. 21, Section IX).

Case (ii) corresponds to the stochastic process

X(t) = A ± B eos Lt ± 431,
0

with A, B and (13 independent random variables, the two former being
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normal with mean zero and variances 1 - 02 and i32 respectively, and the
latter being distributed uniformly in (0,2r). The determination of P
in this case is an exercise in integration and elementary probability the-
ory that will be omitted here. For the obvious generalization of this case,

namely,

X(t) = A ± E B1 cos[t/f3i (13,],

P[T,r( r)] can be expressed in principle as a (2N + 1) -fold integral. Ex-
cept in the case N = 1 presented, the integrals appear untractable.

The form for P[T,r3(r)] given follows from results found in Ref. 23.
Note that it is valid only for T < 1. We have been unable to extend P
beyond this point.

These examples shed little light on the many questions that naturally
arise concerning the behavior of P[T,r(r)], both as a function of T and
as a functional of r( r). What are possible asymptotic behaviors of P
for large T? What features of r( r) determine this behavior? To what
extent is P determined by the behavior of r( 7) in the neighborhood of
T = 0? (For example, if r(r) is analytic in the neighborhood of T = 0,
then it can be extended as a covariance in only one way, namely, by its
analytic continuation. In this case, then, P[T,r( TA is completely deter-
mined by the behavior of r( r) near T = 0.) If q(r) is another covariance,
in some sense close to r(r) for 0 < r T, is P[T,r(r)] close in some
sense to P[T,q(r)]? How can P[T,r( r)] be determined numerically for a
given covariance r(r)?

These and many other basic questions await to be answered in full.

1.2 P[T,r(r)] as a Limit

Let 0 = t1 < t2 <  < t = T be a partition of the interval (0,T)
into n - 1 parts. The n random variables X(11), X(t2), , X(t) are
jointly Gaussian with covariance matrix r = (ri;), where ri; = r(t1 - ti).
Denote by P(r) the probability that these n random variables be non -
negative. Because of the assumed separability of the process,

P[T,r(r)] = lim P(r), (4)
n

where it is understood that the limit is taken as the partition is refined
with mesh tending to zero. If r(r) is positive definite, then I r I 0 for

any choice of partition, and one can write explicitly

Pn(r) = (2w) dx,i Jce dx
0 0

00

(5)
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It is somewhat surprising that information about P[T,r(r) ] is so difficult
to obtain when it can be expressed as the limit of the apparently not too
unwieldy expression on the right of (5). This integral is deceptive. For
n > 3 it cannot be expressed in terms of elementary functions of the co-
variance elements ri; . Series expansions and upper and lower bounds can
be easily written for this integral, but most of the obvious ones yield
vacuous results in the limit as the partition is refined.

The integral (5) admits of a simple geometric interpretation obtained
by reducing the quadratic form in the exponent to a sum of squares by
a linear transformation and performing a radial integration. Pn(r) is the
fraction of the unit sphere in Euclidean n -space cut out by n-hyperplanes
through the center of the sphere. The angle Oi; between the normals to
the ith and jth hyperplanes directed into the cutout region is given by
cos O = rib i,j = 1,2, , n. This geometric interpretation of P(r)
holds even when I r I = 0. For n = 2 and 3, this picture gives at once

1
P2 -1

4
- 012] = - -1 arcsin r12

21r

1
4,P3

42r

ro= - - 812 - e13 "-v231

= -1 + -1
8 42-

[arcsin r12 arcsin r13 arcsin r23].

(6)

(7)

Seen on the surface of the sphere, the region described above is the
generalization of the spherical triangle in three -space and is known as an
n -dimensional spherical simplex. Geometers have studied the problem
of expressing the content of the spherical simplex in terms of the angles
between its bounding surfaces.33-38 Many of their results can be readily
derived from known results in probability theory using the connection
with P. (r) just mentioned (see Section 2.1).

It is clear that P. (r) is an upper bound for P[T,r(r)]. The result (7)
then is a simple upper bound for P[T,r(r)], where r12 = r(12 -
r13 = 7.(t3 - 11), r23 = r(t3 - 12) and ti , 12 , 13 are any three points in the
interval (0,T). For very small values of T, this upper bound can be made
close to the true value of P[T,r(r)]. For large values of T, this is gen-
erally not the case. If, for example, r( r) is never negative, P3 is always
greater than If r( r) oscillates in sign, there is a minimum value for P3
different from zero (unless r( r) achieves the value - 1 ) obtainable for
any choice of ti t2 5 /3 , and hence this bound for P[T,r(r)] does not
approach zero for large T.
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1.3 A Comparison Theorem for P[T,r(r)]

Recall that in the geometric picture of Pn(r), ri; = cos Oi; where 0,, is
the angle between the inward normals to hyperplanes i and j. Intuitively,
it is clear that if this angle is decreased, i.e., if ri; is increased, Pn(r)
should also increase. This is borne out by the following

Lemma it - Let Pn(r) be the probability that n jointly Gaussian vari-
ates with mean zero and normalized covariance matrix r(rii = 1) be non -
negative. Let q be another normalized n X n covariance matrix. If ri; >= qi;
for i,j = 1, 2, , n, then Pn(r) Pn(q)

Note that the matrices r and q need only be nonnegative definite (as
distinguished from positive definite).

By regarding P[T,r(r)] as a limit of Pn(r), as explained in the pre-
ceding section, Lemma 1 can be used to deduce the following comparison
theorem.

Theorem 1 -Ij r(r) > q( T) for 0 , then P[T,r(r)]
P[T,q(r)] for 0 < T < To .

The covariance function of a process is generally regarded as a rough
measure of how much the process "hangs together." This view is sup-
ported by the theorem. A process with a larger covariance function
hangs together more and is more likely to maintain the same sign than
one with a smaller covariance.

The comparison theorem can be used with the three covariances
(Section 1.1) for which P[T,r(r)] is known exactly to bound this quan-
tity for other covariances. The theorem is particularly useful for com-
paring covariances of the same class. Let r( r) and q(r) both be of class
a, and suppose that r( r) > q(r) in some neighborhood of the origin.
Then P[T,r(r)] >= P[T,q(r)] in this neighborhood. But, for any X >
1,q( ) >= r (Xr ) in some sufficiently small neighborhood of the origin,
so that also P[T,q(r)] z P[T,r(kr)] = P[XT,r(r)] by the scaling law
(2). Choosing A appropriately leads to the following

Theorem 2 - Let r(r) and q(r) be of class a with r(r) > q( r) in some
neighborhood of r = 0. Then for some T* > 0,

P[T,r(r)] P[T,q(r)] P[r1(q(T)),r(r)], 0 T T*.

The theorem is proved in Section 2.3 where the determination of T*
and the choice of proper branch for r -1(q) are also discussed. Knowledge
of P[T,r(r)] thus provides both upper and lower bounds for P[T,q(r)]
near r = 0.

f Proved in Section 2.2. A special case of this lemma was proved by J. Chover4
by a completely different method. He applied his result to obtain a weak version
of our Theorem 1. Chover's result inspired much of the present paper.
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1.4 Some Related Results Useful for Large T

From Lemma 1, it is easy to deduce (see Section 2.4)
Theorem 3 - Let T1 0, T2 > 0 ,T3 > 0 be such that T1 ± 712 = T3 .

If r(r) > ()for 0 T T3, then

P[T3 , r(r)] P[7'1, r(r)]P[T2 , r( (8)

This theorem provides some asymptotic information on P[T,r(r)] for
covariances that are never negative. It implies for these covariances
that - (1/T) log P[T,r(r)] approaches a nonnegative limit as T becomes
infinite. In this sense, then, for nonnegative covariances, P[T,r(r)] cannot
decrease asymptotically more rapidly than exponentially. An exponential
lower bound for these covariances is found by iterating (8). Thus, if
T = NT., P[T,r(r)] = P[NT,,r(r)] > P[T., r(r)]N. One obtains in
this manner the exponential bound

P[T,r(r)] or 1 To T (9)

which holds for nonnegative r(T) with P. = P[T. , r(r)], > 0.
For covariances for which P[T,r( r)] is not known, (9) still gives useful

information by replacing Po by a lower bound. For example, from the
lower bounds presented below Theorem 6 in Section 1.6, it follows that
for nonnegative r(r) of class 2, P[T,r(r)] > f(T) where

- 1, 0 < T - 211:

f(T) = (10)
1 F3 7' 32-

' 15, 6' 71 5

By choosing To to maximize f(L)'17.° and using this maximum value for
P, in (9), one obtains the following

Lower Bound -If r(r) is of class 2 and nonnegative, then

P[T,r(r)] > 0.121 e-"78(TIT), T > (1.016)r.

For a specific nonnegative covariance of class 2, a somewhat smaller
exponent can often be obtained by using for f the lower bound of Theo-
rem 6, or a lower bound obtained from the comparison theorem and
example (ii) of Section 1.1.

For covariances (such as r3( 7) of Section 1.1) that are identically zero
for r Z T1 for some T1 > 0, an exponential upper bound can readily be
written for P[T,r(r)]. For example, if T = (2N - 1)711 , then
P[(2N - 11)T1 , r( TA is certainly not greater than the probability that
the process be nonnegative in the intervals (0,T1), (2T1 , 3T1), ,



470 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

( (2N - 2) Ti , (2N - 1) T1). But the process in any one of these inter-
vals is independent of the process in the other intervals because of the
vanishing of r( r) for r . Thus, P[T,r(T)] < {P[Ti r(r)]iN
Arguing in this manner, one arrives at the

Upper Bound -If r(r) vanishes for r Ti , then

P[T,r(T)]
1 p.TI2Ti,

- 1

where Pi = P[TI , r(r)].

T T1,

1.5 Bounds from Rice's Series

Let 0 = ti < t2 <  < = T be a partition of the interval (0,T)
into n - 1 parts. Let Ai denote the event: "X(t) changes sign at least
once in the interval ti < t < ti+1 ," i = 1,2,  ,n - 1. Then, by the

method of inclusion and exclusion,

2P[T,r(r)] = 1 - E PrIA, fl A;}
<i

- E PrfA
nA) nAkii<i<k

 + (-On-THAI (1 A2 fl (1 An -1},

is the probability that none of the events Ai occur. If r"(0) exists, the
above series approaches as a limit as the partition is refined with mesh
tending to zero

T

2P[T,r(r)] = qi(ti) dil z) -T f f dt2q2(ti , t2) -
0 0

(compare Rice,19 Equation 3.4-11) which we write as

2P[T,r(r)] = 1 +(-1):B
(11)

Bn =
0

fdt1 dint, (1-1 ' tn )

Here q (ti ,  ,t)dti  dt is the probability that X(t) has one or more
zeros in each of the intervals (ti , dti),  ,(t dl). The existence
of r"(0) assures us that X(t) has a derivative almost everywhere in
(0,T) for almost all sample functions. One then has

qn(ti ,
. . .

, tn) = Al . f** An I El . . En

[p(ti., , En, , Xn)lx,s,=0.

(12)
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Here pal ,  ,t , ,  ,x) is the joint density for the random vari-
ables X'(ti),  ,X'(t),X(ti),  ,X(t) with ti associated with X'(t, )
and xi associated with X(ti),i = 1,2,  ,n. X' (t) is the derivative of
X(t) with respect to t.

From the derivation of the method of inclusion and exclusion, suc-
cessive partial sums of (11) alternately overestimate and underesti-
mate 2P(T). We therefore have the sequence of bounds

0 < 2P[T,r(r)J < 1,

1 - Bl
- 2P[T,r(r)J 1 - Bi B2

1! (13)

Bi B2 Bi B2 B3 B4
1 - - - -BI 2P[7' r(T)] 1 -1l -

1! ! ' 2! 3!
+4!,

etc. Unfortunately, except for n = 1,2,3, the integrand
occurring in the definition of B cannot be expressed in terms of ele-
mentary functions. For covariances r( T) of class 2, one has

qi(ti) = -
1

7r

q2(t1Nt2) - 1 12312[V1 - a2 a arcsin
,

7r2 - ay/2
where

= (1 - r2)(1 - r"2) - r'2(2 2rr" - r'2),

a= [(1 - r2)r" rr"]/[1 - r2 ri2],

and

r = r(t2 - ti), r' = r'(12 - t1), r" = r"(t2 - t1).

The expression for q3 is too complicated to warrant display here.
Bounds given by partial sums such as (13) cannot be expected to

yield useful results for large T. Typically, for large T, B behaves like
T": the upper bounds exceed unity for large T and the lower bounds
become negative.

For small T, however, (13) yields useful information. One has

B1 = - .

If r( T) = 1 - T2/2 + cT4/4! + 0(7-6), a very tedious computation shows
that for small 7',
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T'c 1

B2 - o(T3),
24 r

B3 = 0(T6).

From this and the inequalities (13) follows
Theorem 4 -If for small T

2 4
CTr(r) = 1 - T - ( T6 ),
4!

then the first three right-hand derivatives of P[T,r(r)] with respect to T
exist at T = 0 and are given by

P[O,r(T)] =

P'[O+,r(r)] = -

P"[0±,r(7)] = 0,

3 -Pm[0-1-,r(r)] - c

2 48r1

for r(r) in Theorem 4 is important. It has been
shown by Longuet-Higgins14 that if r(r) = 1 - 7-2/2 b I Tr + 0(7-4),

b 0, then for small T, 13 = 0(T2) for n = 2,3,4, . One can only

conclude in this case that P10+,r(T)] = - 1/27.
The power series 1 + BXn/n! can be written formally as

exp E cx"/n.

Expand the latter in a power series, equate coefficients of like powers

of X and set X = -1. There results the formal identity using (11)

where

2P[T,r( 7-)] =
e-ci+col-c3/31+  

el = Bi = -7r

(14)

= I32 - B1.2 (15)

c3 = B3 3B1B2 2B13

C4 = B4 - 4B1B3 3B22 12B12B2 6B14,

etc., with the B's given by (11) and (12). Relations (15) are the usual
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ones connecting semi -invariants with central moments (see Ref. 39, p.
37 or Ref. 40, p. 186). Kuznetsov, Stratonovich and Tikhonovn have
suggested the use of (14) keeping a finite number of c's as a better ap-
proximation to P than series (11). For large T, (14) will perhaps yield
a better approximation than (11), but it is difficult to see under just
what circumstances this will be true. A knowledge of the asymptotic
behavior of the c's for large T is needed, but this appears to be a difficult
point.

A truncated form of (14) will not in general yield the correct asymp-
totic behavior of P[T,r(r)]. For example, retaining only c1, (14) gives
2 P[T,r(r)] ti CTIT for all class 2 covariances. That this is not in general
correct can be seen from a family of simple counterexamples. If q(r) is
of class 2, then so is

r*(r) = q(ar) sin /97 (16)
T

where a = -V1 - /32/3 and 0 < j.3 -5 0. If X(t) has covariance r*( T),
then since r*( nr/13) = O,n = ±1,±2,  , the random variables

X(7/0), X(27/0), X(37/0), 
arc independent. Set N = [13T /id. Then

P[T,*(7)] 5 Pr( X(jr/f3) >= 0,j = 1,.  ,N1 = (i)N
2(1)0Thr = log 2)7'17 r

Thus if

= 1.732 >
log 2

= 1.442, (17)

er/TP[T,r*(7)] approaches zero exponentially for large T, and the first
term in the exponent of (14) yields an incorrect asymptotic behavior.

It is interesting to note that the form CTIT obtained from (14) by
retaining only c1 would be correct for a process in which the axis cross-
ings were independent. One would then have q (ti ,  ,tn) = llqi(ti),
B = (BO' and c = O,n > 1. For processes with the covariance (16)
with f3 given by (17), P[T,r*(7)] decays even more rapidly. This has
nothing to do with the asymptotic behavior of r*: by proper choice of
q(T), this can be altered at will. One must suppose this rapid decay of
P[T,*(7-)] is due to the fact that typically r*(r) takes negative values
so that at certain time separations the process is anticorrelated. Indeed,
it is tempting to conjecture that for nonnegative class 2 covariances,
eTIT[T,r(r)] increases without limit for large T.
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1.6 Some Other Bounds for P[T,r(r)]

In this section we list a few miscellaneous bounds on P[T,r(r)].

Theorem 5 -

fP[T,r(T)]
2- (1 - u) arcsin r(Tu) du.

The theorem is proved in Section 2.5. If T arcsin r( 7-) is integrable, the
bound in Theorem 5 approaches zero like 1/T.

Lower bounds for P[T,r(r)] are difficult to obtain. One is given by

(see Section 2.6)

Theorem 6- If r(T) is of class 2,

3

4

.

P[T,r(r)] - 8- - -1 arcsm r(T).
7r. 4 r

This bound goes negative for relatively small values of T (at least be-
fore T = 2r). It gives somewhat more information than the bound

P[T,r(T)] [1 -7-1 , (18)

obtained from Rice's series (Section 1.5) by retaining only B1 . The
bound obtained by retaining B1, B2 and B3 is of course generally much
better than that of Theorem 6 but is so complicated that it can be used
only with difficulty even with a modern computer. For nonnegative
covariances of class 2, Theorem 6 gives P[T,r(r)] - T/47. This,
together with (18), gives (10).

Theorem 7 -If in the neighborhood of r = 0,

22

4

( T ) = 1 - - 0 ( T4 ),
02

then

P[T,r(r)] 5 -1 --T -
2 47

-1 arcsin [13 sin (7' )1 0 LC_ T T1,- 271- 213

where T1 = min((B7,70) and To is the smallest positive value of 7 for which

r(r) = 1 - 2-0. This theorem follows from the comparison Theorem

1, the result (ii) of Section 1.1 and the fact (see Theorem 14, p. 494),

that for 0 r T1 , the covariance of Theorem 7 is dominated by
r2(0,7).
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Theorem 8 - If r(r) is nonnegative and of class 2, then

1 T 1 [1 T
P[T,r(r)] - - arcsinsin _01 0 5 T

This theorem follows from the comparison Theorem 1, the result (ii)
of Section 1 and the fact (see Theorem 13 in Section 2.7) that for 0 5.
T S Ir/V2, every nonnegative covariance of class 2 is greater than
r2(1/V2,r).

We conclude this section with a rather weak, but sometimes useful,
result proved in Section 2.8.

Theorem 9 - Let h(E) be nonnegative for 0 5 5 B and let h(E) = 0
fore < 0 and > O. Define

Ge(x) = l h(r )h()

and set

Then

re(r) = f r(7. - x)Go(x) dx.

P[T,ro(T)] PET 0,r(T)].

1.7 Relationship Between P[T,r(r)] and F[X,r(r)J

If r"(0) exists, then almost all sample functions X(t) possess a deriva-
tive almost everywhere. If r"(0) does not exist, th6n almost all sample
functions are nowhere differentiable. In this latter case, if a realization
X(t) has a zero at t = 0, it almost certainly has infinitely many zeros
in every right neighborhood of t = 0. In discussing F[X,r(r)J, the
distribution of the interval, 1, between successive zeros of X(t), we ac-
cordingly restrict our attention to covariances for which r"(0) exists.

The quantity P[T,r(r)] - PET + A,r(r)] is the measure of those
sample functions which are nonnegative in (0,T) but are not nonnega-
tive in ( - 0,0), i.e., the measure of those sample functions that are
nonnegative in (0,T) and have at least one axis crossing in ( -A,0).
Divide this quantity by the probability vA o( A) that X(t) have one
or more upward axis crossings in ( - A,O) and allow A to approach zero.
There results

1 d
Q[T ,r(T)] -v - - P[T,r(r)] = 1 - F[T,r(r)]. (19)

Here (2[T,r(T)] is the conditional probability that X(t) be nonnegative
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in (0,T) given an uperossing of the axis at I = 0; F[X,r( T)] = Pr(/ 5 X)
is the distribution function for the interval 1 between zeros. One should
note carefully that the condition in the definition of Q is in the "hori-
zontal window sense" (see Ref. 10, Section 2 for a more complete dis-

cussion of this term). We shall find Q[T,r(T)] more convenient to deal

with than F[T,r(r)].
From its definition, Q[T,r(r)] is nonincreasing as a function of T. It

assumes the value 1 for T = 0. Like P[T,r(r)], it satisfies the scaling
laws

Q[T ,Xr(T)] = Q[T,r(r)]

Q1T ,r(XT)j = Q[XT,r(r)] (20)

X > 0.

For most purposes, then, it suffices to consider only class 2 covariances.

In this case (see Ref. 19, Equation (3.3-10)) v = Kr1 and (19) becomes

Q[T,r(r)] = P[T,r(7)]. (21)

Clearly upper and lower bounds on Q[T,r(r)], say

Qu[T,r(r)] Q[7',r(T)], 0 7' TO

QL[T,r(r)] 5_ Q[T,r(r)], 0 7' T.,

furnish bounds on P[T,r(7)] by integration:

1 1T 1 1 T

2
f Quix,r(r)] dx 2 2rP[T,r(r)] - - f QL[x,r(r)] dx,- -

0 < T S To.

However, since Q is nonincreasing, it is also possible to obtain weak
hounds on Q from known bounds on P. For example, since Q is non -
increasing, if b > a > 0,

(b - a)Q[a,r(r)] Z f Q[-y,r(T)] (1-y > (b - a)(2(b,r(r)1,

or from (21)

Q[a,r( T )1
P[a'r(T)] - P[b,r(T)]

Q[b,r( (22)b - a
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Thus if Pu(T) and PL (T) are respectively upper and lower bounds for
P[T,r(T)] valid for all T,

max 2r PL(T) - Pu(x)
Q[T,r(r)]xT T

(23)
Pu(x) - PL( 71)min 2 T -x

Note that the left inequality of (22) for a = 0, b = T again gives (18).
Also from (21) and the fact that Q is nonincreasing, it follows that
P[T,r(r)] for class 2 covariances must be convex downward.

To the author's knowledge, when the scaling laws (20) are taken into
account, the only covariance for which Q[T,r(r)] is known explicitly
is r26(3,r) of (ii), Section 1.1. One has

r2(0,7) = 1 - 02 + 02 cos (r)

cos (2/3
1 +

1
4/1 - #2 sine (2_1_3T) I

0 < 1,

0 -7' < 2r
fl

2r -I1 <

1.8 A Comparison Theorem for Q[T,r(r)]

Imposing the condition that X(t) have an uperossing at t = 0 in the
horizontal window sense greatly complicates computation of probabil-
ities associated with the process. For instance, when X(t) is conditioned
in this manner, the random variables X(ti),X(t2),  ,X(t,z) are no
longer jointly Gaussian. If r(r) is of class 2, their joint density is

27r
fE 03(E, xo, xi ,  ,x,,)x0-0,

0

where p(, xo , x, ,  ,x7,) is the Gaussian density of the unconditioned
variables X'(0), X(0), X(ti),  ,X(tn)

It is possible, nevertheless, to derive a comparison theorem for
Q[T,r(r)] and Q[T,q(r)] for class 2 covariances somewhat in the spirit of
Theorem 1. (See Section 2.9 for proof.) The function g(t) = q-qr(t)]
plays a role here. Writing r = g(t), then q(r) = r(t). For a given value



478 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

of t, we choose g(t) as the smallest positive value of T for which q(r) =
r(t). At t = 0, we have T = 0. As t increases from 0, so does T. One of
two difficulties can occur as t increases: r(t) may reach a local minimum
r(to) at t = to before q(r) has reached its first local minimum, say q(7-1);

T may assume the value Ti when t assumes the value ti < to . In the
former case we define g(t) only for 0 < t < to ; in the latter case, we
define g(t) only for 0 < t < tE . The comparison theorem can now be
stated as follows:

Theorem 10 Let r(r) and q(r) be of class 2 and let g(t) = fl[r(t)]
be defined as above. If for all nonnegative x and y with x y < To ,

g(x) g(y) g(x y), (24)

then for 0 < T

Q[T,r(T)] < Q[g(T),q(r)]. (25)

It is easy to show that if r(T) > q(r) in some neighborhood of the origin,
then g(t) has the subadditive property (24) in some sufficiently small
neighborhood of the origin so that the theorem is not vacuous.

The steps which led from Theorem 1 to Theorems 2 and 3 are no
longer valid when X( t) is conditioned to have an uperossing at t = 0.
We have found no analogue of these theorems for Q[T,r(r)].

By using (21), one can integrate the inequality (25) to obtain a more
complicated comparison theorem for P[T,r(r)], namely

g(T)

P[T,r(T)] d
(E) - P[E' q(T)] = P[g(T),q(r)]/gi (T)f

f0e(T)
P[E,q(r)]h"(E) dE,

valid for 0 < T LC_ To . Here h(a) = fl(E) = rlq(E)].

PART II - PROOFS AND SUPPORTIVE MATERIAL

2.1 t The Geometric Approach to P

We wish to consider the probability P(r) that n jointly normal
variates, each with mean zero and normalized covariance matrix r, be
nonnegative. Throughout this section we assume that r is nonsingular.
Then P7,(r) can be written as in (5). Denote the eigenvalues and nor -

1. The material in this section was developed in 1952. Many of the results have
been obtained independently by other workers and have been reported in the
literature. Cf. Plackett" in particular.
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malized eigenvectors of r by Xi and IV = (11,1',1P2', = 1,2,  ,n.
One has

=

E 4kiikk = E = s=i ,
(26)

xopik4iik,

i,j = 1,2,  ,n.

In (5) make the substitution ri = Ek 1,G,AVXkyk . There results

P,1(r) = (27)-"I2 f f dy, dye-IlYk2 ,

1?

where the region R is defined by

Hi = E oikvzilk 0, i = 1,2,  ,n.

Denote by An the (n - 1) -dimensional content of the intersection of
this region with the surface of the unit sphere having center at the origin.
Then, by changing to a spherical coordinate system,

00

P,, = (2ir)-"I2An f dr r"-' " = A
n

2 2

Sn'
where S,, = 21-"12/r(n/2) is the area of the unit sphere. Thus, Pn is the
fraction of the unit sphere on the positive side of the n hyperplanes
Hi = 0. The unit normal a' to Hi directed into R has components aki =
Oik-VXk . From the last of (26), we find for the angle 0ii between a' and
a', cos 0i; = aial = rii .

As mentioned in Section 1.2, expressions for the content An of the
spherical simplex in terms of the angles between its bounding surfaces
are not known for n > 3. However, for the determination of P[T,r(r)]
one is concerned with the limit as n 00 of P where the angles Oii(n)
are given, for example, by cos 0i(n) = r[(i - j)Tin] with r(r) a given
positive definite function. Thus, sufficiently tight bounds for Pn might
in the limit yield useful results concerning P[T,r(r)]. The geometric
picture suggests a large number of such bounds. Unfortunately, none
has been found which yields useful limits. Since, however, approxima-
tions for the n -variable normal integral Pn are of interest in their own
right, we digress to mention several such bounds which may be useful.
(See Ref. 42 for a bibliography on the multivariate normal integral.)
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Circular cones with vertices at the origin can be inscribed and cir-
cumscribed about the region R. The half -angle of the inscribed cone is

found to be given by

sin Oi =
1

4/E r

and the half -angle of the circumscribed cone is given by

1
cos 0c -

VE riiVr i -Off'

(27)

(28)

The fraction of the unit sphere Nit out by a circular cone of half-angle

0 is

(n)
1 sin

n - 1 1
,

J
a so .1,

2
,

2
(29)- - 2 81 20

k, 2

where I is Pearson's incomplete beta function." One has

1?(01) < Pm 17,,(0c). (30)

Bounds for P can also be written in terms of inscribed and circum-
scribed Euclidean simplexes. The planes Hi = 0 intersect n - 1 at a
time in lines which pass through the origin and a vertex of the spherical
simplex. Let b' denote the unit vector from the origin to the vertex not
contained in Hi = 0. One finds for the components bk' =

xkrii-I -1/2

and for the content of the Euclidean simplex determined by the origin
and the end points of the bi,

G ,1-
1 (31)

n!VirlVift-w-1-

This simplex lies within the region of interest. The hyperplane through
the end points of the vectors b' sec Bc is tangent to the unit sphere. The
Euclidean simplex determined by the origin and the ends of these vec-
tors therefore contains the region of interest. Thus,

G,,, seen° Gn< cV,a= " (32)

where V =n/2/r(n/2 + 1) is the content of the unit sphere, 0, is
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given by (28) and G by (31). Incidentally, for the cosines of the angles
between the b's one finds the interesting reciprocal relations

--1

s,, = b'b3 = rte
,.r - sii

v
which is the natural generalization of the usual relationship between the
sides and angles of a spherical triangle in three-space.

One can expect the bounds in (30) to be close to each other when the
bs are nearly coplanar, e.g., when all the entries of r are near unity. One
can expect the bounds in (32) to be close to each other when the if are
nearly codirectional, e.g., when all the entries of f' are nearly equal.

An important differential recursion relation first derived by Schlafliu
for the content of the. spherical simplex can be obtained in an analytic
manner from the expression (5) for P . We write

Pn(r) = f dxi f dxng.(xi,  ,x;r) (33)
0 0

where the n-variate Gaussian density is given in terms of its character-
istic function by

00 oo

fin(xi,  ,x,,;r) = f d6 (1E,,
0.0

From this latter expression it follows that

agn - a2gn k > j. (34)
arik oxiaxk

Here we regard g as a function of the n(n - 1)/2 variables r , k > j,
and recall that rii =1, rik = rki . Regarding P. as a function of this same
set of variables, we find from (33) and (34)

8P,4(r) fg° 82

87.12
dxi dx

ax,ox2gn(x12  'Sn'r)
Perform the integrations indicated on xi and x2 . There results

aP(r) - dx3 f dxg(0,0,x3,  ,x;r) 0. (35)aril
f

0

Now if g is the density for the random variables Xi
,  ,X

gn(xi y  yxyg ; r) = p(xi , x2)p(x3 ,  ,xn I xi , 52),

where p(xix2) is the joint density for X1 and X2 and

P(53 ,  ,xn I , 52)
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is the conditional density of X3 . ,Xn given that X1 = x1 and X2 =
x2 . In the case of Gaussian variates, these densities are well known
Evaluating this expression at x1 = x2 = 0, one finds

g(0,0,x3,  ,x;r) = 1
gn_2( , "  ,Xn;1* .12)

27x1/1 - r122

When combined with (35) and generalized for arbitrary indices, this

yields

aP,i(r) Pn_2(Lik) = a (36)
sari', 271/1 - rik2

Here r  jk is the customary notation of the statistician for partial corre-
lation coefficients (see Ref. 40, Section 23.4 and pp. 318-319), so that,
for example with /2 j,k, v j,k

=

rp;
r;,, 1 rik
rki, rki 1

1

rk,

T,k

1 r.ik

rk; 1

1 ryi ryk

r5 1 rik
rk rki 1

Equation (36) is Schlafli's celebrated differential recursion formula.
His many relations connecting the angles of the boundary simplexes are
familiar to the statistician as identities among partial correlation co-
efficients.

We close this section with a simple demonstration that for odd n, P
can be expressed in terms of the content of lower dimensional simplexes.
Let pi denote the probability that Xi be nonnegative, pi; denote the
probability that Xi and X be nonnegative, etc. Then P = p12... . Set

Ml = Zpi , 1112 = Ej<i Pi; , etc. Then from the well-known inclusion
and exclusion formula, the probability Q that none of the variates be
nonnegative is

Q = 1 - + M2 -  + (-1)nM
But from symmetry, P = Q. = M. so that

[1 - ( - 1 ) n]P = 1 - MI + M2 -  + ( - 1 )

(Cf. Sommerville,35 Chapter IX, Section 1.9.) No recursion is known for

even n.
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2.2 Proof of Lemma 1

Lemma 1 follows directly from (35). Note that in the derivation of
this result, it was not necessary to normalize the covariance matrix.
This result thus states that if p is a position definite symmetric matrix,
then

aPn(P) > 0 j > Z, (37)
=

with P( 9) defined by (5).
Now let r and q be nonnegative definite n X n symmetric matrices with

rii = qii = 1. Then e = Xr (1 - A)q EI, where I is the n X n unit
matrix, is positive definite for each e > 0 and each X satisfying 0 5
X 5 1. Consider Pn(p) as a function of X. It is readily established that
Pn( p) possesses a continuous derivative and indeed that

dPn(p) E aPn(e)dpi;
dX i>i api; dx

E aPn(e) - qq)i>i api;

If now ri; > qii > (37) thejn,give:d'i,

0.
dX =

Integration on A from 0 to 1 yields Pn(r EI) Pn (q e I). From
well-known continuity theorems (see Cramer,4° Section 24.3 and 10.7),
Lemma 1 follows by letting e tend to zero.

2.3 Proof of Theorem 2

Let r(T) and q(r) both be of class a > 0 and suppose that r(r)
q(r) for 0 _5 r < TO . Then for any A > 1,

r(r) q(r) r(XT)

0 < T Ti(X),

for some suitable ri(X). By Theorem 1, then, and the scaling law (2)

I'[T,r(r)] P[T,q(r)] P[AT,r(r)]

0 ri(X).

To see how best to choose A to obtain a good lower bound for P[T,q(r)],
it is convenient to define a version of h(r) = r-i[q( r)]. Let T q be the

(38)

(39)
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smallest value of 7 > 0 for which q(r) is not decreasing. (Strictly speak-
ing, 7, = inf. of those T for which q(r) is not strictly monotone for
0 < T < T. If this T set is empty, define 7q = 00 .) Define 7r in an anal-
ogous manner. The function r-1(q) is defined for 1 > q > r(rr) by the
branch having values between 0 and Tr . Similarly we define (1(r) for
1 > r q( TO by the branch having values between 0 and Tq . If q(r,)
r( Tr), we define h(r) = r-l[q(r)] only for 0 5 r < fi[r(r,.)]. If q(rg)
r(rf), we define h(r) for 0 < T < 7q . Clearly h(0) = 0. As 7 increases
from zero, h(r) is at first at least as large as T, since r(r) q(r) near

= 0. For small 7, r(h) = q(r), so that h'(r)r'(h) = q'(r) or
a-1 \

( 0 = 11111. him -7, = (h-1
1-a

= (04-)1-",
t -qt+ r -(n) t .0+ na-' 1-.0+ T

so that h'(0+) = 1. Three typical curves for y = h(T) are shown in
Fig. 1. Note that h(r) is strictly monotone in its domain of definition.

Consider now the plots of y = h(r) and y = AT as shown on Fig. 1.
For all values of A, these curves have the origin as a point in common.
When A = 1, the straight line y = Ar is tangent to y = h(r) at the
origin. As A is increased from 1, a second point of intersection moves
out from the origin. It may happen, as in Fig. 1(a), that the line y =
X T becomes tangent to y = h(r). If so, we denote by T* the abscissa
of the first such point of tangency as A increases from unity and we de-
note the corresponding value of A by A*. If no such tangency occurs, we
denote by T* the largest value of r in the domain h(T). In this case we
set A* = h(T*)/T*. (Note that A* may be infinite.) Observe that for a
given A < A*, the abscissa of the first point of intersection of y = AT
with y = h(r) to the right of the origin, say 71 , satisfies h(ri) = ATI
or q(ri) = r(X71). For 7" < T1 , the right inequality of (38) maintains;
for 7 = e,r(Xr) > q(T) for small positive E.

The lower bound P[XT,r(T)] on the right of (38) is a nonincreasing
function of A for a fixed T. For a given T 5 T*, then, this bound is made
as large as possible by choosing A as the smallest value greater than unity
for which q(T) = r(AT). With this choice, AT has the value h(T) and
Theorem 2 is proved. The largest T* for which the theorem as stated in

Section 1.3 is true is the value T* defined in the previous paragraph.
Note that if r( 7) and q( T) cross at r. > 0, i.e., r(ro) = q(ro), T* is

necessarily less than r0 , for in this case, y = h(r) crosses y = T at To
as in Fig. 1(a) and a tangency occurs as indicated.

2.4 Proof of Theorem 3

Let T1 > 0 and T2 > 0 be given and set T3 = T1 + 7'2 . Consider
the approximation to P[T3 , r( 7)] given by the probability P(r) that
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x(t,),  ,x(11), ,x(7.2)

all he nonnegative. Here 0 = Li < t2 < < 1, = Ti is a partition
of (0, T1) and T1 < rl < r2 < < T = T3 is a partition of (

+ T2) and n1 ± n2 = n. The covariance matrix r can be written in
block form

(A
CP

where A is an n1 X n1 normalized covariance matrix with elements
r(ti - ti) C is an n2 X n2 normalized covariance matrix with elements

y t

T* 10

r

y=h(r)
=

y =h(r)

(b)

T*
r r

Fig. 1 - The curve y = h (7) .

=

(c)
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r(ri - r5), and B has n1 rows and n2 columns and elements r(ti -
Now

(A 0

is also a covariance matrix, and if r(r) z 0 for 0 < r S T2 the ele-
ments of r are not less than the corresponding elements of t. From Lemma
1, it follows that Pn(r) Pn(r). But t is the covariance matrix for two
independent sets of random variables so that

Pn(r) Pn(f) = Pt(A)Pn2(C).

By refining the partition with mesh tending to zero, one has P[T3 ,r(T)]
P[Ti,r(r)]P[T2 , r(r)] and the theorem is established. (It is trivi-

ally true if T1 or T2 or both are zero.)

2.5 Proof of Theorem 5

Theorem 5 is a consequence of the following more general
Theorem 11 - Let the random variables X1 , X2 ;  XI; ; n > 2 have

a joint density p(x1,  ,xn) with the property p(-x1 ,  ,- x) =
p(x1,  ,xn). Then

1 4
Pr{Xi 0, i = 1,2,  ,n} < +n(n

-- 2)
E Pr{ X, > 0,X, > 0}.

The proof of this theorem follows that of a theorem by Gaddum"
concerning spherical simplexes and their angle sums. We introduce the
following notations: Pi; = Pr (X; Z 0, X; Z 0), P = 0, i

1,2,  ,n}, R(ai , , ... ,an) = Pr{ ->-:O, a2X2 0,  ,anX 0),

ai = ±1, i = 1,  ,n. Thus P = R(1,1,  ,1) and

ER(a1 , a2 ,  ,an) = 1,
ai,,an

where in the sum each a takes values +1 and -1. The 2" symbols R
are equal in pairs;

R(ai , a2 ,  ,a) = R(-a1 , -a2 ,  ,-an).
We call R(-a1 , -a2 ,  ,-a) the complement of R(a, , a. ,  ,an).

One has

P12 = P E'R(1,1,a3 , ,  ,an)

P13 = P I'R(1,a2 , 1,a4 , . .  ,an )

P.(n-1) = P R(ai , a2 ,  ,an --2 , 1,1).

(40)
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Here the R symbol on the right of the equation having Pi; as left mem-
ber has a 1 in the ith and ith places and a's elsewhere. In each equation,
the sum is over all combinations of plus and minus 1 for the a's except
for the combination all a's plus 1.

Now consider adding the n(n - 1)/2 equations (40). One has

E P,, = [n(n - 1)/2]P + S,
i<i

where S is the sum of all the sums of R symbols on the right of (40). A
given R symbol with precisely j of its arguments +1 will occur j(j - 1)/2
times in S, j = 2,3,  ,n - 1. Denote by T; the sum of all R symbols
that have precisely j of their arguments +1. Then

n(n -
1)

(n - 1)(n - 2) ,
n-1

i<i 2 2

Now

j=2 2

j(j -1) (n - j)(n -j - 1)
i=2 2 1=2 2

E - 1) T,
(41)

so that
n-2--../(j - 1) 1

1
T = 1) (n - j)(n -j - 1)

71;
+ I

,,,
n_ji

17'2 2 2 j-.2 2 2

But since an R symbol and its complement are numerically equal, T1 =
Tn_5, so that (41) becomes

E P=i -
n(n - 1) P (n - 1)2(n - 1) rr

1 _1
i <, 2

+1 V [-Ai -1)+ (n - j)(n -j - 112s T.;
2 a-2 L 2 2

Now, for./ = 2,3,  ,n - 2,
j(j - 1) + (n - j)(n -j - 1) n(n - 2)

2 2 - 4

so that

n(n - 1) (n - 1)(n - 2)E
<i

Pii
2

P
2

in -1

n(n 2) i7,2 n(n 2) n(n 2)
8 i=''= 2 8 i=1
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However, the last appearing sum is 1 - 2P and Theorem 11 follows
directly.

In the case of a Gaussian process X(t) with normalized covariance
function r( r), we consider the application of Theorem 11 to the random
variables Xi = X(iT/n), i = 1,2,  ,n. Then from (6), Pi; =
1/27r arcsin r[(i - j)T/n]. By taking limits as n becomes infinite, The-
orem 11 then yields

1

2 0

P[T ,7*(T)]
2-

T
f dy f dx aresin r(y - x).

ir

Elementary manipulations then lead to the result stated as Theorem 5.

2.6 Proof of Theorem 6

Consider n random variables, Xi , X2  ,Xn , and the following
mutually exclusive events: (A) the variables are all nonnegative; (B1)
the first j variables are nonnegative and the (j 1)" is negative, j =
1,2,3,  ,n - 1. The union C of these events is the event X1 0. We
suppose Pr{ = z and write P,, = Pr{ A},V; = Pr{ B;} , j = 1,2,  ,n - 1
so that

n-1
= -EV3.

But V; < Pr{ X 1 > 0, X; > 0, X; -F1 < = 2,  ,n - 1 so that
n-1

P - Pr{ 0, X2 - E Pr{ XI 0, X 0, X J+1 <0}. (42)
i-2

Consider a stationary Gaussian process X(t) with a class 2 covariance
r(r). In (42) set X; = X(jT/n). From (7), one obtains

Pr {Xi > 0,X; Z 0,X;14 < 0}

-41iraresin r ( j - 1)n -T1- a=8-1+ resin r
Lj

-T - aresin r
[

and from (6)

PDX'
1 10,X2 < 01 = - arcsin r ( -7 ) .

Insert these values in (42) and pass to the limit as n becomes infinite.
Theorem 6 results.
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Let r(r) be a class 2 covariance. From the Bochner representation
00

r(r) = cos AT dF(X),

where we now have

f1
= dF(X) =f X2dF(X),

it is not hard to show that r is continuous, that r'(r) exists everywhere
and is continuous, and that r"(r) exists and is continuous everywhere
except perhaps at r = 0.

If the process X( 0 with mean zero has r(r) as its covariance func-
tion, then the four random variables X(0),X'(0),X(t),X'(t) have
covariance matrix

1"7,"0)0
1

r
-r'

r'
-r"

r
(

-r' 1 0
0 1

where we write r = r(1), r' = d/dt r(t) , r" = d2/dt2 r(t). For this to be
a nonnegative definite matrix it is necessary that the determinant of
all major diagonal submatriecs he nonnegative. Evaluating these deter-
minants, one finds the system of differential inequalities

(1 - r2 - ram - r'2 - 2,2) - (rr' + r'r")2 . 0, (43)

1 - r2 - r'2 0, (44)

1
r2 r"2 ?ft

1 - r2 0, 1 - r" 0, 1 - r"2 0.

These inequalities can also he derived without raising the question of
existence of the derivative process by demanding that the covariance
matrix of the four random variables X(0), X ( e) - X(0), X (t), X (t+ e)
-X (t) be nonnegative definite for arbitrarily small values of e.

Consider now the family of covariances

r2(0,T) = 1 - + 02 cos , 0 1, (45)

introduced in Section 1.1. In what follows, we shall be concerned with the
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family, F, of curves r = r2(0,T), where for each Q with 0 < < 1 we
restrict our attention to the interval 0 < T < 0. Several members of
the family are shown in Fig. 2. The following statements, evident from
the figure, are easy to prove analytically. (1) The curves of the family
do not intersect each other except at T = 0. (2) A horizontal line r =
ro with I ro I < 1 intersects exactly once each member of F with param-
eter value in the range 1 V(1 - ro)/2. For each value of a
satisfying -1/1 - ro2 a < 0, there is a unique member of the famly
that intersects the line 7. = ro with slope a. If fl(a) denotes the param-
eter value of this member of F, 13(a) is a continuous strictly monotone
decreasing function of a, -1/1 - ro2 <= a < 0.

We shall say that the curve r = r(T) intersects the curve r = g(T)
from below if at the point of intersection r' > g'.

Lemma 2 - Let r(T) be of class 2.
a. If the first local minimum of r(T) is at Ti , then r = r(T) cannot

intersect from below any member of the family F,

r = r2(0,T) = 1 - 2+ 02 cos
T

, 0 < T < 70, 0 1,

in the interval 0 < T < Ti .
b. If r = r( T) passes down through the point (To , 7.0) with slope r0'

satisfying - V1 - r02 < ro' < 0, then there is a unique translated member

of F, say r = r2(01. , 1.1) which passes through (To , ro) with slope r0'.
If r2(00 , r - 12) and r(T) are nonincreasing for T To , then r(r)

r2(13. , T - u)for T < T < To .

1.0

0.8

0.6

0.4

0.2

r 0

- 0.2

-0.4

-0.6

-0.8

-10
0

/3= 0.35

/3 = 0.5

/3 =0.707

/3 = 0.85

/3=1.0

30 60 90
T IN DEGREES

Fig. 2 - The family F.

120 150 180



ONE-SIDED BARRIER PROBLEM 491

Proof - Part a of the lemma will be deduced from part b. The first
conclusion of part b is the remark (2) above. The second conclusion of
part b follows from the inequality (43). If

I r I 0 1, this latter can be
written by elementary algebraic manipulations as

1 - r2 - r" rr 1 - r2 - r/2r"1 -r2 1 - 1 - r2
The right-hand inequality can be rewritten as

r" r/2 1

(1 - r)2 (1 - r)3 - (1 - r)2'
or, if r' 0, as

2/r" 2r'3 2r'
(1 - r)2 + - r)3 - (1 - r)2'

or

d r'2 >9d 1

dr (1 - r)2 = dr 1 -r.
Integrate this expression from T to To with T < T to obtain

/2
2 ro/2

(46)(1 - r)2 1 - r (1 - 7.02 1-r0'
where the subscript o refers to quantities evaluated at To . Denote the
right member of this inequality by - 1/h2, and note that, as is indicated
by the notation,
1 2(1 -r.) - ro'2

>
(1 r,,) (1 -r0) - 1 - ro2 -

h2 (1 - 1.0)2 = (1 - 7.0)2 (1 -ro)2=0',
by (44). Inequality (46) now becomes

rl2 - 2(1 - r) -111t2 (1 - r)2,

or what is the same

where

It follows then that

,2r - (1 - r)(r - X),
11,2

X = 1 - 2h2. (47)

1

-V( - )( - X)
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with h a nonnegative quantity. Integrate this again from T to T to ob-

tain

arcsin
ro - (1 + X)/2

arcsin
r - (1 + X)/2 > - ro --(1 - X)/2 (1 - X)/2 h

Thus one finds

r(T) 5_
1 +A + 1 - X [To - 7 arcsin

ro - (1 + X) /21
2 9 sin (1 - X)/2 (48)

q(7).

This inequality is valid in a 7 -range to the left of To until either q(r) or
r(r) has a local maximum.

Now by (47), q(r) can be written

q(7) = 1 - h2 h2 cos ( ,

for suitably defined 12, and one finds by using the various definitions

q(ro) =

V(ro) =

Thus q( r) is the member of the family F which, when translated in the
7 -direction, passes through the point ( ro , r.) with slope ro'. To the left
of To , the curve r = r( r) remains below this translated member of F.

Part b is thus proved.
Now suppose that r = r(r) intersects a member of the family F from

below, say at (70 , ro) with r < ri . Let the parameter value of this
member of F be /3o . Since 0 r'(r.) > r2'(30, re), the translated mem-
ber of F passing through (To ro) with slope r'( To) has a parameter
value l3 = < /30 . This translated version of r = r2(31 , 7) has no local
maximum in the interval (0,r,,), and its value at r = 0 is less than unity.
One thus has the contradiction r(0) < 1 and the lemma is proved.

Theorem 12 - Let r(T) be a class 2 covariance. Then

r(r) cos T, 0 < T

Proof: In a region where r'( T) < 0, inequality (14) implies

rI- 1 < - 1.v1 - r2
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Integrating from To to T > To assuming that r'(r) 0 throughout
T r), one finds

- (r - ro) arccos 7.0 < arccos r < (r - To) arccos ro ,

where 7.0 = r( To). This in turn implies cos[r - To - arccos 7.0] > r( r)
and r(T) > COS[7 To arccos rob where the former inequality holds
from T = To until the cosine assumes the value unity, and the latter
inequality holds from T = ro until the cosine assumes the value minus
unity. The result may be stated as follows: Let the class 2 covariance
r(r) pass downward ( = not upward) through the point (ro , ro) in the
r -r plane. The curve r = cos T can he translated in the r -direction
to pass downward through (To , ro). Then to the right of To r = r(T)
lies above this translated cosine curve until either the cosine curve or
r( r) has its next local minimum. Similarly, a cosine curve can be trans-
lated to pass up through (ro , ro)..To the right of To r = r(r) lies below
this translated cosine curve until either r(T) has its next local minimum
or the cosine curve has its next maximum.

A similar result holds if r( T) increases through (ro , ro).
Now let To = 0, 1.0 = 1. Then r = r(T) lies above r = cos 7 until the

first minimum of either. If the first minimum of r( T) occurs at Ti > 7r,
the theorem is proved. Suppose now ri < r and that r = r( T) crosses
r = cos T in (0,7). The first such crossing must be downward, since
r(T) > cos T from 0 to ri. If the crossing is at .1-, then r(?) = cos .7,
and r' (T) < - sin T. If indeed r'(.1-) < - sin 1-, one obtains from (43)
the contradiction 1 r2(r) r'2(f) > cos2f- = 1. On the
other hand, if the crossing takes place with 7.T? ) = - sin f, then b of
Lemma 2 shows that r(T) < cos 7 for T < 1- which contradicts the
assumption that the crossing was downward. Thus, the theorem is
proved.

Theorem 13- If r(r) is of class 2 and

then

for

r(T) >= 0, 0 T

1.(T) r2 = 2 -I- z cos 0S2 T

0 < T .
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The theorem is a consequence of repeated applications of Lemma 2.
We prove the theorem by supposing it false and then arrive at a con-
tradiction. We refer to the curve r = r2(1/V2,7), 0 5 T 5 ,r/V- as C.

Suppose now that r(T) z 0 for 0 5 T 5 7/-0 and that some point
P. on r = r(7), say ( ro , r0), lies below C. Denote r'(70) by ro'. We can
suppose Po chosen so that ro' < 0, since r = r( 7) cannot be nondecreas-
ing at all points where it lies below C. Let the horizontal line r = ro
through Po intersect C at P1 and denote the slope of C at P1 by CV.).
The point Pi has larger abscissa than the point P. . The curve r = r(T)
possesses a continuous derivative. As the height rf, of the horizontal line
r = rc, is continuously decreased to zero from its initial value, a value
must be found with Po to the left of Pi and C' (ro). By b of Lemma
2, a curve of the family F with parameter value $ 5 1/ \/ can be trans-
lated to the left to pass through Po with slope 7.0'. In the interval 0 5

T , this translated member of F lies strictly below C and is mono-
tone. The first local maximum of r = r( 7) to the left of P. therefore
lies below C as must also the local minimum just preceding this maxi-
mum. A curve of F can then be translated to pass through this local
minimum with slope zero, and repetition of the argument shows that
all local maxima of r = r(T) for 0 5 T 5 ro lie below C. In particular
r(0) < 1, which contradicts the initial assumption concerning r(T).
Q.E.D.

Theorem 14 - Let the covariance r(T) have the behavior
2 4

r(T) = 1 --+ 7,-fi o(T4),

near T = 0. Then

V(T)
r2 /-m , T) Ti ,

-v

with r2(13,T) given by (45). Here T1 = min(37-,r0) and To is the smallest
positive value of r for which r(T) = 1 - 2/m.

Proof - The first four derivatives of r(T) exist at 7 = 0. From the
Bochner representation for r(T), it is easy to show using Schwarz's
inequality that

m - 1 0. (49)

It also follows that r"( 7) exists everywhere and is continuous.
The Gaussian process X(t) having covariance r( 7) has first and second

derivates X1(t) and X"(t) almost everywhere with probability 1. The
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covariance matrix of the random variables X(0),X(t),r(t),X"(t) is

1 r r r"
r 1 0 -1
r' O 1 0
r" -1 0 in

The determinant of this matrix cannot be negative. This is equivalent
to the inequalities

r r"-v 6 V1 - r2 - r'2 6 v.

In any region where r' S 0, the right-hand inequality gives

r' (r r" ) - V1 - r2 - r'2 yr.iV1 - r2 - r'2 dr

Integrate this from 0 to r to obtain

V1 - r2 - r'2 S v(1 - r). (50)

Note that if ri is the first positive value of r for which r' (r) = 0, (50)
gives

2r(71) 5 v - 1
v2 ± 1 

Thus we have the interesting side result that if r( r) is everywhere non -
negative v2 > 1 or m 2.

Squaring the inequality (50) and rearranging the terms, one finds

r'2 (1 + v2)(1 - r)(r - a),

where

V2 -a -
V2

+1 <1.
Since r' 0, this implies

V(1 - r)(r - a) - - V1 + v2,

if r > a. Integration from 0 to r yields

aresin r - (1 - a)/2
-V1 -1- v2 r,(1 - a)/2 2 -

(51)
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where it is assumed that T - To. If then

-v 1 + v2 T <

r - (1 + a) /2
(1 -a)/2"5 sin (75 - + v2r)

or, what is the same thing in virtue of the definitions (49) and (51),

r(T) < 1 - + -1 cos (mT).mem2

The theorem is thus proved.

2.8 Proof of Theorem 9

Let h(a) be nonnegative for 0 L5.. t LC. 0 and zero elsewhere. Then

Y(t) = h(t - t')X(t') dt' = f du h(u)X(t - u) du,f
will certainly be nonnegative for 0 S t < T whenever X(t) is nonnega-
tive for -0 < t < T. The probability that the Y process be nonnega-
tive in (0,T) is therefore not less than the probability that the X process
be nonnegative in ( -0,T). If X is Gaussian with mean zero and covari-
ance r(r), then Y is Gaussian with mean zero and covariance

re(T) = EY(t)Y(t r) = fa' du r dv h(u)h(v)EX(t - u)X(t T - v)
00 - 00

= f *2 du fxi dv h(u)h(v)r(r -u v)

= f .dx r(r - oodt h(x

One has then P[T,70 (r)] ?: P[7' + 0,r(r)], which is Theorem 9.

2.9 Proof of Theorem 10

Let 0 = < t2 <  < t = T be a partition of (0,T). Define Q(r)
by

Pr (X(ti) < 0, X(ti) 0,i = 2, 3, , n)
Pr (X(4) < 0, X(12)Q(r) - 0)

, (52)

where X(t) is a Gaussian process with zero mean and class 2 covariance
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r(r). As the partition is refined with mesh tending to zero, Qn(r) ap-
proaches Q[T "(T)] as a limit. The numerator on the right of (52) is
P( t) where

=

1

-r(t2)

-r(t3)

-r(1)

-r(12) -r(t3) -r(t)
1 r(13 - 12) r(1 - 12)

r(13 - 12) 1 r(t - 13)

r(tn - 12) r(t - 13) 1

(53)

and as usual Pn(r) denotes the probability that n normal variates of
mean zero and covariance matrix r Le nonnegative. Note that the de-
nominator of the right of (52) depends only on r(12).

Let another Gaussian process, Y (t), have class 2 covariance q(r).
We define 7.-1( r), (7), h(r) = rlq(7-)] as in Section 2.:t and set g(t) =
(1[r(t)] = (t). Note that g(1) is strictly monotone within its domain
of definition. Assume that T is within the domain of definition of g.
With the points ti given as in (52), set Ti = g (1 i) = 1,2,  ,n. The
points 0 = r1 < r2 <  < r. = g(T) form a partition orthe interval
(0, g(T)). The mesh of this partition tends to zero with the mesh of the
ti partition.

Consider now the approximation to Q[g( 71),g(T)J given by

Pr { Y(7-1) < 0,17(7-0 > 0,i = 1, 2, 3, n}
Q" (q) - Pr I Y(ri) < 0,Y(r2) 0}

The numerator here is P(4) where 4 is given by (53) with r replaced
by g and t replaced by T. Since Ti = g(ti), q(ri) = r(ti), i = 1,2,  ,n, so
that the first row and column oft are the same as the first row and
column of 4. For any other entry of t with ti > tj , one has

r(ti - ti) = q[g(ti - 1i)]
= q[ri- Tj {g(ti - ti) - g(ti) g(ti))].

Since q(r) is nonincreasing

r(ti - ti) .5 q(ri - ri)
and hence by Lemma 1

provided

Pn(f) 5 P(4),

g(ti - ti) - g(t4) g(1;) 0.
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or what is the same thing, provided

g(x) g(y) g(x y), (55)

where 0 < x = < ti = x + y.
When (55) is satisfied, the numerator of (54) is not less than the

numerator of (52). The denominators of these expressions are equal
since they are the same function of r(t2) = g(r2). Therefore, Q(q)
Q(r). The conclusion of Theorem 10 results by passing to the limit as
the t partition is refined.

2.1 o Generalizations

A number of the results presented in this paper can be generalized in
a direct manner. We only mention here an obvious extension of Theorem 1.

In the derivation of Lemnia 1, the lower limit of integration for xi in
(33) can be replaced by ai . Now choose ai = a(ti) with a(t) a given
function defined for 0 t < T, and where the points ti form a partition
of (0,T). Proceeding as in the derivation of Theorem 1, one arrives at
the following more general result. Let X(t) be a Gaussian process with
EX(t) = 0, EX(t)X(s) = r(s,t). Let Y(1) be a Gaussian process with
EY(t) = 0, EY(t)Y(s) = q(s,t). Then if

r(s,$) = q(s,$), 0 < s T

and

r(s,t) > q(s,t), 0 < s,t < T
PrIX(t) > a(t), 0 Pr( Y(t) >= a(t),0 T.

2.11 A symptotics

As already remarked in the introduction of this paper, there appears
to be little in the literature concerning the asymptotic behavior of
P[T,r(7)] for large T. Intuition would indicate exponential falloff for a
wide class of covariances. Example (ii) of Section 1.1, though special

in nature since r2((3,T) is periodic, provides a counterexample to expo-
nential behavior, and so the class must be carefully defined. Here, by
the two bounds presented in Section 1.4, we have shown exponential
behavior for nonnegative covariances that vanish identically for r
greater than some 70 > 0. Recently, by using Theorem 1, M. Rosenblatt
has established an asymptotic exponential upper bound for P[T,r(r)] for
all covariances which are ultimately majorized by a decaying exponen-
tial. This, together with the lower bound of Section 1.4, establishes the
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asymptotic exponential behavior of P[T,r(r)] for all nonnegative co -
variances that themselves decay exponentially. Professor Rosenblatt has
also established that if r( r) 0 with increasing r, then TP[T,r(r)] -, 0
with increasing T for every n > 0.

We conclude with the remark that from (23) of Section 1.7, one can
show that asymptotic exponential behavior of P[T,r(r)] implies asymp-
totic exponential behavior for Q[T ,r( r)].
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Probability Distributions for the Phase
Jitter in Self -Timed Reconstructive

Repeaters for PCM
By M. R. AARON and J. R. GRAY

(Manuscript received August 25, 1961)

Probability distributions for the timing jitter in the output of an idealized
self -timed repeater for reconstructing a PCM signal are approximated.
Primary emphasis is focused on self -timed repeaters employing complete
retiming. In this case the probability distribution for the timing jitter reduces
to the computation of the phase error in the zero crossings at the output of
the tuned circuit excited by a jitter -free binary pulse train. It is assumed
that the tuned circuit is mistuned from the pulse repetition frequency, and
the individual pulses are either impulses or raised cosine pulses. Both
random pulse trains and random plus periodic trains are considered. In
general, the probability distributions are skewed in the direction of increasing
phase error. The approach to the normal law in the neighborhood of the
mean when the circuit Q becomes arbitrarily large is demonstrated. Results
obtained from the analytical approach are compared with two computer
methods for the case of random impulse excitation of a tuned circuit char-
acterized by a Q of 125 and mistuning of 0.1 per cent. Excellent agreement
between the three techniques is displayed. For no mistuning and raised
cosine excitation two methods for computing the phase error are given and
numerical 'results obtained from both techniques agree closely.

Some attention is given to an idealized version of a reconstructive repeater
employing 'partial retiming and it is shown that the timing performance of
such a repeater for random signals is very much inferior to the completely
retimed repeater.

I. INTRODUCTION

Over the past several years the problem of maintaining pulse spacing
within very close bounds in PCM transmission has received considerable
attention both theoretically and experimentally. The effects of timing
jitter in degrading repeater performance, in introducing distortion in
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the decoded analog signal, and in enhancing the difficulty of dropping
or adding several pulse trains in time have been documented." Sources
of mistiming in a self -timed reconstructive repeater are well catalogued
and include: noise, crosstalk, mistuning, finite pulse width effects, and
amplitude to phase conversion in nonlinear devices. The first four of

these sources have been considered in various analyses of timing jitter
in self -timed and separately -timed PCM repeaters. Amplitude to phase
conversion in nonlinear circuits has received attention primarily from

the experimental viewpoint.
The majority of the theoretical work to date has been concerned with

timing errors in self -timed repeaters when the timing -wave extractor is
a simple tuned circuit. For a random pulse train exciting the tuned circuit
in the presence of noise and mistuning, results have been obtained for
the mean displacement and the standard deviation of the zero crossings
from their ideal location. This analysis is appropriate to repeaters em-
ploying complete retiming. These time displacements can also be
considered as phase errors and we will use this terminology in what
follows. If the probability density function for the phase error is normal,
the mean and standard deviation are sufficient for a complete statistical
description. In this paper we will show that in general the probability
density function is not normal, and is inherently unsymmetrical about
the mean.

An approximation to the probability density and the cumulative
distribution for the phase error at the output of a mistuned resonant
circuit will be derived for both random and random plus periodic pulse
trains. A completely random pulse train is defined to be one in which
pulses and spaces are equally likely. The individual pulses of the binary
pulse train are assumed to be jitter free and are either impulses or raised
cosine pulses. The approach to the normal law when the circuit Q is
large is demonstrated. For a value of Q of 125, and a mistuning of 0.1
per cent from the pulse repetition frequency a comparison of numerical
results obtained from the analytical approach and two computer methods
is made. Agreement among the three approaches is excellent.

Our plan of attack is to place all of the manipulations required to
specify the tuned circuit response to the most general pulse trains in
the Appendix and concentrate on most of the probabilistic notions in
the main body of the paper. Appendix A covers the response of the
tuned circuit to a random or random plus periodic binary pulse train of

arbitrary pulse shape, and Appendix B is concerned with the specializa-
tion to raised cosine pulses. Section II of the text deals with the terminol-
ogy required, covers the tuned circuit response to impulses, and briefly
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summarizes the results of Appendices A and B. In Section III, the
probability density function for the phase error is derived. Section IV
is devoted to the cumulative distribution function and Section V alludes
to the semi -invariants that are required in the evaluation of the density
and cumulative distribution functions. These semi -invariants are de-
rived in Appendix C. The approach of the probability density function
for the phase error to the normal law as the circuit Q becomes arbitrarily
large is displayed in Section VI with the algebraic support relegated to
Appendix D. The comparison of numerical results mentioned previously
with other computer approaches is made in Section VII. For zero mis-
tuning, but finite pulse width excitation, it can be shown that the proba-
bility distributions for the phase error can be related directly to the
probability distribution for the timing wave amplitude. This is demon-
strated in Section VIII. A discussion of further numerical results is given
in Section IX. We consider an idealized model of a partially retimed
repeater in Section X for purposes of comparison with the results of
Section IX. A wrap-up of the procedures, results, and future work
concludes the paper.

II. RESPONSE OF THE TIMING CIRCUIT

Before we go on to the general equation for the phase error due to
finite pulse width and mistuning, we will specialize to impulse excitation
of a simple tuned circuit characterized by its Q and mistuning from the
pulse repetition frequency. This should provide the casual reader with
some feel for how the more general equation for the phase error arises
without going through the detailed manipulations of Appendices A and
B. The procedure adopted in the analysis to follow is equivalent to that
of H. E. Rowe.`

Assuming the input to the timing circuit to be a train of jitter -free
unit impulses occurring at random with spacing T, the excitation may
be represented as

n=00

f(t) = 42.8(t - nT), (1)
n=-0

where a is a random variable taking the values 0 or 1 with probability
(3(t - nT) is a unit impulse whose time of arrival is nT, and the

spacing 7' is the reciprocal of the pulse repetition frequency ft . For a
parallel resonant circuit the impulse response is given by

* Unless otherwise specified, the case of equal likelihood will he considered in
all calculations,
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h(t) = A e-(TIQ)1°` cos (27fot + co),

where

(2)

1A / 1
1

\ 2 1A= + 1,
27 V (2Rc ' 2QC

Q = 2rfoRC , and rp = tan
_1-

2Q

Here 10 is the natural resonant frequency as distinguished from the
steady-state resonant frequency f, = (1/27).071C. Combining (1)
and (2), the total response to all impulses occurring in time slots up to
and including the one at t = 0 may be written as

n=-0

F(t) = A E a e -(7")f0" -"T) cos [27-f 0(t - nT) co]. (3)
n=-=

This expression gives the output of the timing circuit for values of t
in the interval between t = 0 and the arrival time of the next impulse.
Rewriting (3) in the form of a carrier with both amplitude and phase
modulation we get

F(t) = AV/x2 ± y2 C-(")h'i cos [2rfot Ol,

where

0 = tan -1 ,

x = a,, e---('/QVun 7' cos 211 , and
n=0

(4)

y = y a,, e-(wk"nr sin 27fonT.
n=1)

In the above x and y represent the in -phase and quadrature components
of the response. If the tank could be tuned exactly to the pulse repetition
frequency (.16, = fr = 1/T), then the phase modulation would disappear
and the amplitude modulation would be dependent on x alone. In prac-
tical applications this is not possible and the phase shift 0 does occur.
If we denote the fractional mistuning Allfr by k, we may write f° in
terms of fr as follows

f = fr(1 k).

In this case (4) becomes, neglecting k with respect to unity in the
exponential term
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F(t) = A1/x2 + y2 C(TIQ)fri cos [27f,(1 k)t 0],

with
00

E a. e-WO nX = cos 2irkn,
n=o

y = E a. e -(71Q)" sin 27,-kn,
n =0

and
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(5)

0 = tan -1 y/x.

To illustrate the relationship between the timing deviation td and
the phase error 0, it is assumed that repeater delays have been adjusted
so that the timing wave supplied to the regenerator in the absence of
mistuning is properly aligned with the signal impulses in the information-
bearing channel. In this case, the negative -going zero crossing occurring
ideally at to = T/4 determines the instant of regeneration. When mis-
tuning is present this zero crossing is displaced such that it occurs at
the instant to = T(1 - 0/2r). The difference to - to will then give the
timing deviation which, expressed as a fractional part of the pulse
spacing, is

td 0
(6)

From (6) and the definition of 0, the phase error corresponding to
the timing deviation is related to the random variables x and y by

0 = tan -1 -Y ( 7 )

In deriving (7) it should be recalled that only the incidental approxima-
tion k << 1 has been made. When we consider a binary pulse train in
which the pulses representing the binary "one" are of arbitrary pulse
shape, it is necessary to make other approximations to arrive at a tract-
able expression for the phase error. Furthermore, the excitation en-
compasses the infinite past as well as the tails of succeeding pulses to
accommodate driving pulses that may overlap or are not time limited.
The most .general result given by (59) is an extension along two lines
of Rowe's relationship for the timing jitter in the output of the tuned
circuit due to mistuning and finite pulse width. First, the results are
applicable to arbitrary pulse shape. Secondly, our relationship for the
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phase error is based on a different approximation in the case of finite
width pulses.

In appendix B we specialize to the case of raised cosine pulses in order
to make use of some of Rowe's results. For this case the phase error is
given by (73) and takes the form

a0 -xy
b

c' (8)

where a, b, and c are constants that depend upon Q, k, and the pulse
width 71/s of the raised cosine pulse. x and y are correlated random vari-
ables that depend upon Q, k, and the pulse pattern. They are defined
below (5) with the additional constraint that ao = 1 when we consider
finite width pulse; i.e., a pulse definitely occurs at the origin. In our
notation, a positive phase error corresponds to the zero crossing of

interest occurring prior to the reference. The largest pulse width we
consider is 1.5T. This avoids the necessity of considering the effect of
the presence or absence of a following pulse on the negative -going zero
crossing of interest. Similarly, for positive -going zero crossings we do
not have to use special methods for considering the occurrence or non-
occurrence of a preceding pulse. This is not a serious analytical restric-
tion, since larger pulse widths can be handled by the machinery provided
in Section A-4. As a practical matter in the design of a self -timed recon-
structive repeater for operation in a long repeater chain, wider pulses
would introduce intolerable phase jitter. In the following, we will also
neglect the constant c in (8), since it is independent of pulse pattern
and can in principle be compensated for in either the timing path or
information -bearing path in a self -timed reconstructive repeater.

III. PROBABILITY DENSITY FOR THE PHASE ERROR

3.1 Preliminaries

From the above, the random variable of interest is

y -I- a yi0 - - . (9)
x b xi

To determine the probability density p(0) or the cumulative distribu-
tion F(0), we consider the joint probability density of the correlated
random variables x1 and yi , P(xi yi). F(0) = Pr (y1/x1) S 0), which
may be written

F(0) = dxi dyip(xl , yi) + dxi dyip(xl , yi)
13

- oo ex
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Differentiation of F(0) with respect to 0 plus rearrangement yields

p(0) = xip(x1,0x1) dxi
0

xip(-xi, -ex') dxl. (10)f
Therefore if p(x1 , yi) is known, p(0) can be determined by integration.
As is typical of this class of problems when x1 and yi are not correlated
normal variables, the exact determination of p(xi , yi) is rarely obtain-
able. Therefore, we find it essential to proceed along approximate lines.

We can write the characteristic function sp(u,v) for p(x1 , yi) as

v(u,v) = f cl.rl dyle"ri+"1)p(xl, yi)
0.

If we take the partial derivative of (11) with respect to u, evaluate it
at u = - 0v, divide both sides by 2iri, and integrate over v from -00 to
00, we get

1 a40(u,v) dv =1 dv f03 f dyixieivtyi-Oxi)p(xi , yi)auL27i, . -Ov Z71" co oo

When we interchange the order of integration to integrate over v first,

1 f** aio(u,v)
2ri L. au 11= --On

dv = f d.r1 f dyixigyi - Oxi)p(xiYi)

where ON - Oxi) is the Dirac delta function. Integration over yi then
results in

1 r aso(u,v)
2ri Lo. au

dv =
ti= -Ov

xip(xi ,Oxi) dxi

00 00

= f xip(xi , Oxi) dxi -f sip( -xi , -Oxi) dxi.

A comparison of (10) with (12) reveals that they are equal provided
that xi is always positive, in which case p( - x1 , -Oxi) is zero. Under
this condition'

p(0)
1

L
rav(u,v)

2ri . au
dv.

(12)

(13)*

In the following we will use (13) to approximate p(0); before doing
so we make a few remarks about the range of the random variables xl
and 0.

* The result in (13) is given as an exercise for the reader on p. 317 of Ref. 9.
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3.2 Minimum Values of x1 and yi

Our comments in this section will largely be confined to the case of
impulse excitation in which case x1 = x and yi = y, where x and y are
defined following (5). From the definition of x it can be seen that it
attains its minimum value for the set of a = 1 in which the argument
of cos 2irkn is in the second and third quadrants (modulo 2r). With this
pulse pattern it is easily shown that

/3 sin 2irke-(w14kQ)
(i e-(1 -12k4)) e

-(.10Q)

xmin (1 e-(Irj2kQ)) (1 - 2/3 cos 27rk= -2g
/32) (1 - e-ookm)

where /3 = e-(TIQ) and g = average value of y (from Appendix D).
For the values of k and Q that we consider, namely kQ less than about
0.1 and Q 100, an excellent approximation for xmin is

xmin = -2ge-(714"1)

When kQ is fixed at 0.1,

4kQ2
e-2'57xmin =

and for Q = 100, xmin = -0.005. The ratio xmin/:f, where x = average
value of x, can be shown to be

xmin
x

-4kQ e-(714kQ)

which for kQ = 0.1 is -0.00016, or very close to zero. Based on un-
published work of one of the authors, the probability of .0 of even going
negative is so remote as to be completely unimportant and decreases
with increasing Q for kQ fixed.

Another interesting way of looking at the probability of x becoming
negative is to consider the probability of pulses occurring in the first
quadrant of the argument of cos 2irkn to constrain the minimum value
of x to zero. This can occur in any of several ways. One possibility is to
choose a single pulse (a single a = 1) in the sector of the first quadrant
bounded by n = 0 and the largest integral value of n that satisfies

13" cos 27rkn > I xmin I.

For Q = 100 and kQ = 0.1, the above is satisfied for a value of n that
is less than about 148. The probability of at least one pulse in this range
of n is 1 - (1 - p)148 which is about 1 - 10-18 for equally likely pulses
and spaces. Therefore, x is positive with probability very close to unity.
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For increasing values of Q, with kQ fixed at 0.1, the probability that
x is >0 approaches unity even more closely.

By an argument that parallels the above, the probability that y < 0
for k > 0 and impulse excitation is very small. Similarly, probability
y > 0 for k < 0 is extremely small.

For raised cosine excitation, xmin is increased by 1 b, which for
the pulse widths considered herein is always > 0.25, thereby making
xmin positive for the Q's of interest to us. We also note that long strings
of zeros as required in attaining xmin cannot be tolerated in a PCM
repeater with a simple tuned circuit timing extractor, since the timing
wave amplitude would fall well below the point at which it would be
useful in the repeater. A higher minimum on the timing wave amplitude
can be assured by constraining the transmitted pulse train to avoid such
long strings of spaces.' In this paper we simulate this constraint by the
introduction of a forced periodic pattern of pulses in the otherwise
random train. This serves to increase xmin and decrease the range of 0
as we shall see below and in Sections VII and VIII.

3.3 Range of 0

For random impulse excitation, it is apparent from (5) that 0 is un-
bounded when we choose a single a. = 1 for n large and all the rest zero.
However, with a. = 1 and the values of Q we consider, x is always
positive, and from the results of Section 3.2 0 is essentially confined to
(0, r/2) for k > 0 and [0, - (7/2)] for k < 0. In the following we seek
tighter bounds under the practically important case a. = 1. Experi-
mentally, a. = 1 means that we examine only those time slots containing
pulses.

For the general form of 0, D. Slepian and E. N. Gilbert of Bell Tele-
phone Laboratories* have developed an algorithm for determining the
pattern that yields the maximum value of 0. Their result is particularly
simple when kQ < 1; then we can approximate x by

and y by

CO

1 + E a. e -(11C1)4

27k E a, ne-(./Q) n

Under this condition Gilbert and Slepian have shown that the pulse
* Private communication.



512 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

11

o

nc

0 0.1 0.2 0 3 0.4 0.5 0.6 07 08 09 10

Fig. 1 - n, vs fi for random impulse excitation.

pattern giving the largest value of 0 is specified by all pulses present for
n > n, and pulses absent for n < n, . The value of n, is obtained from*

sn+1 a
74(1 - 13)2

(1 + b) -
2rk

where # = e-(r/Q). For random impulse excitation a = 0 = b. For this
case, n, versus 13 obtained from (14) is shown in Fig. 1. For < I, all
pulses present (n, = 1) yields the maximum value for O. In the range

< r3 < 0.639 the pulse immediately adjacent to the origin is dropped
out to obtain 0mnx and so on.

The maximum value attained in a specified interval is achieved for
the largest # in the interval and the maximum value is given simply by
2,rk times the n, defined by the /3 interval. The /3 intervals corresponding
to constant n, get smaller and smaller as /3 approaches one. This is
illustrated in Fig. 2, where we have plotted n, against Q rather than /3,
showing a continuous approximation to the actual staircase character-
istic. We note that for Q = 100, n, = 80 and O. = 27rkn, = 1607k.
With k = = 0.167 radians.

* See Appendix E for the proof.

(14)
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For finite width pulses, a and b are non -zero. With raised cosine pulses
of pulse width less than 1.5 time slots a < 0.65 and b > -0.75 with the
largest negative value of b corresponding to the consideration of positive
going time slots. When the mistuning, k, is positive, the effect of finite
pulse width then is to raise the maximum value of n, over the impulse
case and consequently to raise O. . On the other hand, when le < 0,
°max can be reduced over the impulse case. We will demonstrate this
effect in connection with the cumulative distribution in Section IX of

the paper.
As noted previously, the long string of spaces implied by large nc

make the timing wave amplitude so small as to be useless in a real re-
peater. The timing wave amplitude can be increased by forcing a periodic
pulse pattern. With the constraint that every Mth pulse must occur,
the pattern that yields the maximum value for 0 is as before where nc
is now given by

31 C+1a
- [1 b OM (

27k
+ nc

rMe+"
(15)(1 - fir (11113; ))

ill Om (1 - Orm)
27rk(1 - f3m)2 2rk(1 - OM)'

where r is the largest integer less than 1.1,01. It can be seen that (15)
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reduces to (14) as M 00 as expected. Furthermore, since the difference
in the last two terms of (15) is positive and the term added to 1 h is
also positive, it is apparent that the effect of the periodic pattern is to
reduce n, and consequently °max as expected.

3.4 Probability Density Function, p(0)

With the above preliminaries disposed of, we will proceed to use (13)
to develop an approximate expression for p(0). To do this we assume
that the logarithm of the characteristic function possesses a power
series expansion in the neighborhood of u = 0 = v. The general form of
this series isw

log go(u,v) E E Ars ju)r(iv)8
r=0 8=0 "rr=0

r 8 X 0

(16)

where the Xra are the semi -invariants of the distribution for x1 and y1
Since

we may write

p(0) -

ac a

au (P1 '

1
r a

[log col27i L. au exp [log go]
u=__ov

dv.. (17)

Using (17) and performing the differentiation indicated in the integrand,
we get

Ivp(0) =
de
-(1

[ir
r=0 8=0

f exp E E ( -irevo r+8 1 (-v ]. (18)
2 7.!S

r-F8X0

We now remove terms from the double summation for which r s S 2.
The remaining terms we treat as u, and expand en in a power series
retaining only the first two terms (eu ti I + u). In this case p(0) be-
comes approximately

r+s=6

s!
p(0) 1)('

r!
0) E E -iiprs(0),

r+8>2

where

(19)

Npo(o)
-d

[ r-dv
exp -iv(X100 - X01) -2 ( 2002 - 2X110 A02)]

(10 27 v
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or po(0) = (d/d0)f0(0), where fo(0) is defined by comparison with the
above.
Similarly,

_d [or i dv (iv)rIs

or

exp -iv(X100 - X01) - -2 ( X2002 2X110 + Xo2)1,

p(0) = -d f(0).
dO

An upper limit for the double summation in (19) is set in order to make
the approximation for p( 0) consistent with the number of terms used
in the power series expansion for e".. The reason for 6 as an upper limit
will become apparent when we discuss the semi -invariants, X , in detail
in Section V. Performing the differentiations and integrations indicated
in (19) we finally arrive at

1 A2(0)
p(0) exp[ A°(B)2

V27 Al(0)1 2A1(0)

1
T-1-8-6

1 ± E E (-1)'.
r!s!

1 i A0(64)1r+.
V V2A1(0)

( V 2A1(0))r+8

A0(0)

(0))
OA2(0) ) '

A r.(0)
II 0.+0-1.

(V2A1(0))(r+8) 1

where

A°(0) = X10(0- On),

A1(0) = X2002 2X110 + X02

A 2( 0) = X10[0(X2000 - X11) (X1100 X02)],

and

Ar8(0) = sx202 (r - s)X110 - rX02 ,

eO

X o=
Xio

(20)
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The H's are Hermite polynomials defined by

H.(Z) = ( -1)" ez2 (In

n

(e-L2)
dZ

The result in (20) gives a general expression for p(0) as a function of
the semi -invariants of the distribution of x1 and yl . The solution ob-
tained is approximate in that it depends upon an asymptotic expansion
analogous to the Edgeworth Series. As noted by Cramer,' one is not
particularly interested in whether series of this type converge or not,
but whether a small number of terms suffice to give a good approximation
to the probability density function over a specified range of its argu-
ment. In our case, the statistical properties of the input pulse pattern,
and the parameters of the timing circuit are controlling in this regard.
With this in mind, the determination of the range in 0 over which a
valid approximation may be obtained in various cases is deferred for
the present.

IV. CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function F(0) may be determined using
the results derived in the preceding section. Beginning with (19) we
may write

By definition*

P(o) .f,;(60 E E rk -1)r f rk' (6) 
r k r!k!
r+k >2

to
F(0) = p(u)

Integrating (21) between the limits indicated, F(0) becomes
r+s=6

1

F(0) E E rA!rR(- 1 rfr8(0) ±.
r s !

r+x>2

(21)

(22)

Referring back to (19) and performing the integration over necessary
to determine fo(0) and frk(0), we get

* The significance of the lower limit of integration in the definition of F(0)
will be discussed in connection with the numerical results.
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F(0)
1 err r A.(0) 1 1

2 L/2A1(e) 1/2TAI(0)

AH(r+.8)-1 (v2°)
 exp

A(!(0))
[-

2A1(0) `r+. r!s! 1 (V2i11(0))(r+8)-"
A0(0)21 X,

>2

where A0(0), A1(0) and Hr4.8_1 have been previously defined.

V. SEMI -INVARIANTS FOR THE DISTRIBUTION OF X AND y

In this section we consider the coefficients of the power series expan-
sion for the logarithm of the characteristic function v(u,v). These are
determined as functions of the parameters of the timing circuit, and the
excitation and provide the necessary information for an explicit solution
for p(0) and F(0). A closed form for the X is obtainable for all excita-
tions of interest under the condition p = 2 (pulses and spaces equally
likely). [The semi -invariants for any p can be obtained by appropriate
differentiations of log v(u,v). We have not expended the energy for this
exercise.] The semi -invariants are shown below for random impulse
excitation under the condition kQ < r and are derived for all excitations
we consider in Appendix D.*

(23)

Xio -
1 71-0

Xo1 - (24)2(1 - 13) (1 - 13)2
(

=Xrs ir+s
- 1)

 (27-11)
ac18 ( 1

(25)>1
dge - e-g

where 13 = e-("), g = r/Q (r s), and the Br+, are Bernoulli numbers.
Since Br+, = 0 for r s odd and >1, we note that the odd order semi -
invariants given in (24) and (25) vanish beyond order 1. Therefore
since the X for r s = 3 are zero, one can extend the upper limit in
the double summation in (19) to 6, and still maintain consistency with
the fact that only 2 terms in the power series expansion for the expo-
nential, eu, were used in the approximation for p( 0). This conclusion is
valid for all excitations of interest.

VI. BEHAVIOR OF p(0) FOR LARGE Q

When the Q of the resonant circuit becomes large, the past history of
the input signal becomes increasingly important in determining the

* The more general semi -invariants without the restriction kQ < it are given
in Appendix D; however, they are too long to be repeated here.
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statistical properties of x and y. This follows from the form of the ex-
ponential term in the expressions for x and y given in (5). Invoking the
Central Limit Theorem under this condition, one would expect the
values of x and y to begin heaping up about their respective means with
the probability density function p(x,y) approaching a two dimensional
normal distribution. Analogous behavior is expected of 0 and we will
now consider p(0) as given by (20) in the neighborhood of its mean for
large Q. The discussion is restricted to the case of random impulse
excitation, but the results for other excitations parallel those of this
section.

To determine p( 0) near its mean, we write, using the preNiious condi-
tion kQ

00

271-k E ann
0 Y n =0

X

where

Ean e -an
n =0

a =

(26)

For this to hold as Q becomes arbitrarily large, we require the kQ
product to be constant. Since

xryE an e -a" ,
n =0

0 can also be written as

d

X
-27th -d [log

da
= -27rk [log - + log X], (27)

da

where t is the average value of x. Expanding log x/i in a power series
in the neighborhood of 1 (x near t), and keeping only the first term, 0
becomes

d rx - xi
0 -27

IC«
k [log .11 - 27rk

da L j (28)

Differentiating the above with respect to a we get for 0 in the neighbor-
hood of its mean

(29)
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In determining this result we make use of the fact that

g = -2irk -d [x].
da (30)

Using (29) one can determine the logarithm of the characteristic func-
tion of 0, and the associated semi -invariants of the 0 distribution. When
this is done, the mean of 0 is

_ 2irkfl
u 1 -

which also can be derived directly from (29). The standard deviation
and the 4th semi -invariant are given by

= 'VG - 13) (1 + /3)3
2(27k)2/32

-2(27-k)4134 1-1 0(1 - f3) +
602(1 + i514) (1 - 13)2

A4 = (1 - 134) L (1 -/34)(1 - /34)2
413(1 - /3)3(1 4134 + 138)

(1 - 134)3

(1 - (3)4(1 + 1104 + 1103 (312)

(1 -(34)4

with /3 = Ca. These same results can be derived using (20) and including
only the first correction term from the double sum (i.e., only those Ars
for which r s = 4). The details of the calculation along with the Ara
of interest are given in Appendix D. The final result for p(0) is

. (33)p(0) exp - 2 ( + X4 -\/ 0')
0 -

1 (0 - 00) IH4
V270- 20.2 4! 4e

(31)

(32)

The above equation for p(0) is in the form of.,: standard Edgeworth
approximation. In the limit as Q becomes ;large (13 -> ;1), and with kQ
constant, p( 0) reduces to

1
ex

(0 - 00)2 [1
, p 57 (34)°°p(0) )]
27ro- 2132 128Q V2 a -

with 0. .4-- 2kQ and a irQ. Equation (26) indicates the approach
to the normal law as Q becomes large with the first correction term going
as 1/Q. The above results for 0° and a correspond to those derived
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earlier by Bennett' by another method. If we rewrite as kQN/r/Q we
notice that p(0) becomes more peaked with increasing Q, and falls off
quite rapidly as 0 departs from the mean. In the high Q case the concen-
tration about 00 becomes more pronounced as expected.

It is to be emphasized that the general properties of p(0) for large Q
demonstrated here will be true for the other inputs also. For example,
with random impulse excitation plus 1 out of 1W pulses forced, the
average value will remain the same as above but a will be a function of
111;

a kQ A
Q

/7r (M
1

1)2)
for >> 1.

The effect of M is to reduce a and therefore increase the concentration
about the mean. As IV becomes large (fewer pulses required to occur),
the effect of M becomes insignificant for this large Q case.

VII. NUMERICAL RESULTS FOR p(0) AND 1 - F(0): IMPULSE EXCITATION

7.1 p(0)

To determine the behavior of the probability density function for
finite Q, we must use the general form of the approximation to p(0)
given by (20), since most of the approximations made in the previous
section for Q arbitrarily large are no longer valid. By way of illustration
we consider the case Q = 100, k = 10-3 with impulse excitation and all
pulses random (p = 1). For negative mistuning, k = -10-3, the curve
for p(0) will be identical with that for k positive except that 0 is re-
placed with - O. The result for the probability density function is shown
in Fig. 3. The calculations* upon which this curve is based include
the first and second correction terms of (20) ; i.e., terms for which r
s = 4 and r s = 6. Points beyond 0 = 0.13 radians on the lower end
and 0 = 0.35 radians on the upper end are not included, since the ap-
proximation begins to fail at these extremes. More specifically, the
probability density obtained from (20) goes negative somewhere be-
tween 0 = 0.13 radians and 0 = 0.12 radians and 0 = 0.35 and 0 = 0.36
radians. However, as we shall see later, up to these points the results
for the cumulative distribution are in good agreement with computer
simulation. The cumulative distribution is also shown on Fig. 3 to point
out the fact that the median occurs slightly below the approximate mean
given by 2kQ. In addition, it is apparent from the shape of p(0) and

* Equation (20) and all subsequent calculations for p(0) and F(0) were pro-
grammed for the IBM 7090 computer by Miss E. G. Cheatham.
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Fig. 3 - p(0) and F(0) as a function of 0 for k = 10-3 and Q = 100. Random
impulse excitation.

F(0) that the probability density is skewed in the direction of increasing
phase error. This is more easily visualized from Fig. 4 where we have
shown p(0) as in Fig. 3 plotted on log paper. The normal probability
density with the same mean and variance as our computed curve is also
shown to further illustrate the skewness.

On Fig. 5 we have plotted p(0), as defined in (20), to illustrate the
contribution of its constituent terms. From this figure we see that the
principal term (always positive) predominates over most of the range.
At the tails, the terms involving X,. for r s = 4 pulls p(0) in and
forces the density to become negative. The last term in the approxima-
tion, for which r s = 6, serves to extend the region over which p(0)
remains positive.

When 1/M pulses are forced, the skewness is reduced, as is the vari-
ance. There are several ways of explaining this effect. First, as discussed
in Section 3, the denominator of 0 in (8) or (9) is raised, thereby reducing
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the range of variation of the timing wave amplitude and confining 0 to a
narrower range. This is expected from the physical standpoint, since
forcing a periodic pattern with the remaining pulses and spaces equally
likely is similar to increasing the probability of occurrence of a pulse in
an all -random sequence. Since the pulses, when they occur, have the
proper spacing, they will tend to correct for the departure of the zero
crossings from the mean that has occurred during the free response of
the tuned circuit in the absence of a pulse. Indeed, in the limit when
M = 1 (all pulses definitely occur), all the probability is concentrated
at the mean, 2kQ, which is identical to the steady state phase shift of
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the tuned circuit in response to a sine wave at the pulse repetition fre-
quency. This behavior is also predicted mathematically from (20) and
the fact that X goes to zero for r s > 1 when M = 1. The same effect
occurs when Q approaches infinity with kQ constant and it can be shown
from the results of the previous section that p(0) goes to S(0) when the
limit is taken. In this light, we can view the introduction of forced pulses
as effectively increasing the Q of the tuned circuit while maintaining kQ
fixed.
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In practical applications, the effect of a pulse at the origin is of par-
ticular interest. Mathematically, this corresponds to M = co . Physically
this means we examine and record phase error only for those time slots
containing a pulse. Fig. 6 illustrates the narrowing of the density func-
tion for M = 00 (pulse at the origin), and M = 16, 8, and 4. It is
interesting to note that, for these cases, the probability density function
remains positive over the range of 0 we have used in the computations
from 0.1 to 0.4 radian. This encompasses values of p(0) < 10-' on the
left of the mean and p(0) < 10-5 to the right of the mean. This is to be
expected since X, decrease with decreasing M for r s _> 2, thereby
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reducing the importance of the terms involving the Hermite polynomials
in (20) and improving the approximation.

Fig. 7 depicts the behavior of p(0) as Q grows with kQ fixed at 0.1.
The results are consistent with the predictions of the previous section.

7.2 1 - F(0)

For a closer inspection of the behavior of the distribution at its tails,
1 - F(0) will he examined. This function as evaluated from (23) for
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Fig. 7 - The effect on p(0) of increasing Q with kQ = 0.1 and random impulse
excitation.
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Q = 100, k = 10-3, and purely random excitation (p = 1) is shown in
Fig. 8. The plot shown gives the probability that 0 deviates from its
mean by more than some constant C times a. In the same figure a
comparison of the calculated approximation with the normal curve of
identical mean and standard deviation indicates a substantial departure
from the normal law as the phase error increases. When periddic patterns
are interspersed with the random train, the departure from the mean is
further reduced, as can be seen from Fig. 9. Similar behavior is exhibited
in Fig. 10, where Q is increased from 100 to 500 and kQ maintained
constant at 0.1.
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Fig. 8 - Comparison of 1 - F(9) with the normal curve in the vicinity of the
tails. The normal curve is computed assuming the same mean and variance used
in determining 1 - F(0). Random impulse excitation with Q = 100 and k = 10-3
is assumed for computing 1 - F (0) .
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7.3 Comparison with other approaches

Since we have made approximations in arriving at our expression for
the phase error, it is natural to ask how these approximations affect our
computed results. A comparison of our results with two other approaches
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Fig. 10 - The effect on 1 - F(0) of increasing Q with kQ = 0.1 and random
impulse excitation.

will be made for the case of impulse excitation. We recall from Section 2
that the phase error under impulse excitation is given by

tan 0 =

For kQ sufficiently small we can write
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nantin
0 n=0

2,rk E anti
n=0

(35)

The approximation of tan 0 by its argument is not crucial in this case,
since a straightforward transformation can be made on the probability
distribution to correct for this approximation [i.e., p(0) = sec2 Op(tan 0)].

H. Martens* shows that (35) can be manipulated to yield a recursion
relationship for the phase error that is in a convenient form for digital
computer evaluation. T. V. Crater and S. 0. Rice used this approach in
some of their work, and a probability distribution so determined is
shown by the dots in Fig. 11 for Q = 125. For the same value of Q, we
have computed the probability distribution from the series in (23), and
it is displayed as the solid curve of Fig. 11. It can be seen that the agree-
ment between the two approaches is excellent. The scattering of the
"experimental" points at the 10-3 level and below is due to the limited
number of pulse positions considered by Crater and Rice. Specifically,
104 pulse positions were processed after an initial transient of some
5 X 103 pulse positions had elapsed.

In addition, S. 0. Rice in unpublished work has shown that the tail
of the distribution should behave as A (4)9/2T', where A is an unknown
constant. When we take the values of 0 at the 10 3 and 10-4 levels and
substitute these in Rice's asymptotic form and form a ratio, the con-
stant A cancels out and we should obtain 10. The actual value for the
ratio is 10.9, which tends to indicate that the asymptotic behavior has
virtually been reached. This suggests that an extrapolation of the distri-
bution to larger values of 0 by merely continuing with the same slope
should be valid.

We also note that we can write

(z 2 /
e/27k intliihreo

where we have made use of O. = 2kQ. With kQ constant, one would
expect the cumulative probability to fall off faster for larger Q, as is
indeed the case. The slopes of the curves of Fig. 10 follow Rice's pre-
dictions quite closely.

While the above comparisons are comforting, they only indicate that
our final expressions for p(0) and F(0) are accurate for computing these
quantities from the initial defining equation for 0. Approximations have
been made in arriving at the starting relationship. A check on these
initial approximations may be obtained from a simulation of the problem.

* Unpublished memorandum.
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Crater -Rice simulation for Q = 125. Random impulse excitation is assumed.

One such simulation has been accomplished by Miss M. R. 13ranower

using a combination of analogue and digital computers. The principal
errors introduced in this process involve the stability of the analogue
computer with time and the number of pulses processed. For a tuned
circuit characterized by a Q of 125 and mistuning k = +10-3, the
computer simulation yields the results of Fig. 12. Results obtained using
(23), the exact semi -invariants of Appendix C, and the tan 9 transforma-
tion mentioned previously yield the "computed curve" of Fig. 12.
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Again the results are in very close agreement. To indicate the effect of
the approximation kQ << 7, we have repeated the computed curve of
Fig. 11 on Fig. 12.

VIII. RAISED COSINE EXCITATION

8.t Results for 1 - F(0)

With raised cosine excitation, the computations are performed as before
and only the semi -invariants Xn for r s = 1 are changed from the
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previous case. Results obtained for this excitation are shown on Fig. 13,
where it is apparent that the use of widest pulses and positive -going zero
crossings yields the largest phase error. The effect of Q and M with this
type of input is the same as with impulses.
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8.2 Comparison with another approach when k = 0

In the absence of mistuning, the phase error becomes

0 -
x b'

a

533

(36)

and the probability distribution for 0 may be obtained by methods given
previously, or by the following relationship:

Prob (0 > X) = Prob ( a
.r b

a -b)= Prob
X

(37)

Therefore, if the distribution for x is known, the distribution for 0 may
be determined from it. The random variable x is the normalized timing
wave amplitude defined by Rowe. This random variable has been con-
sidered by S. 0. Rice in unpublished work and he has developed a pro-
cedure for closely approximating its probability distribution. Using the
method of moments, one of the authors also computed this distribution.
The results were in excellent agreement with Rice's results and the
cumulative distribution obtained by the moment method is shown in
Fig. 14. It can be shown that the probability density for x is unimodal
and symmetric about its mean; therefore, the data on Fig. 14 suffices to
specify the complete distribution. With this data and (37) we can
determine the distribution for 0. Alternately, we can use (23) to make
this computation. A comparison of the distribution obtained by the two
approaches is shown in Fig. 15 and it can be seen that the agreement is
very close. Thus we have found another check on our series approxima-
tion for p(0). Conversely, we can use the distribution for 0 to compute
the distribution for x. In this regard it is interesting to note that when
the Edgeworth expansion including semi -invariants through order 6 is
used to approximate the distribution for x, the density function begins
to turn negative in the neighborhood of 3o from the mean indicating
failure of the approximation. On the other hand, using the same number
of semi -invariants in the expansion for p(0), where 0 in this case is es-
sentially the reciprocal of x, we obtain a good approximation to the
cumulative distribution for .r. This is believed to be due to the narrowness
of the range of 0 as compared with x; i.e., x varies from 1 to 1/(1 - /3) =
Q/ir, while 1/x goes from 1 - 15' = r/Q to 1.
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IX. OPTIMUM TUNING - FINITE PULSE WIDTH

In the case of impulse excitation it should be apparent that zero mis-
tuning, k = 0, is the desired objective for no phase error. On the other
hand, with finite width pulses zero mistuning does not yield zero phase
error. Mistuning can be purposely introduced in the finite pulse width
case to make the mean value of 0 zero, to minimize the variance of 0, or
to optimize some other parameter of the 0 distribution.

An approximation to making the mean of 0 zero may be obtained by
choosing k such that the average value of the numerator of 0 is zero.

This means that
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7r-100= a + g a + (1 - 0)2 = o'

Or

(38)

a(1 - 0)2k - (39)
71-0

For example, when Q = 100 and a = 0.65, as for raised cosine pulses of
width 1.5T, then k = -2.05 X 10-4 to satisfy (39). In the high Q case
(39) becomes k = - (ar/Q2).
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Fig. 15 - Comparison of the distribution of 0 as computed by (23) and that
determined from the distribution of the timing wave amplitude of Fig. 14. Raised
cosine pulses of width 1.5T drive a tuned circuit with a Q = 100 and zero mistun-
ing. Timing deviations in the neighborhood of negative -going zero crossings are
considered.
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When the objective is to minimize the variance of 0, we consider 0-
as defined in Appendix D; i.e.

(X200.2 - 2X110,, x02) 12
0 (40)

A plot of a versus k is shown in Fig. 16, where it is seen that theminimum
a occurs close to the "zero mean" value of k. Probability distributions
for values of k that encompass the optimum are shown on Fig. 17. The
narrowing of the density function for the optimum value of k is evident.

The results of this section suggest that when the tuned circuit in a
self -timed repeater is adjusted, it should be excited with a random pulse
train and the tuning adjusted to minimize the jitter on the leading edge
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Fig. 16 - Standard deviation of phase error as a function of mistuning with
raised cosine pulses 1.5T wide. Negative -going zero crossings are considered. Q =
100.
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Fig. 17 - 0) for raised cosine excitation with various mistunings in the
neighborhood of the optimum mistuning. Negative -going zero crossings and
pulses 1.5T wide are assumed in making the calculations. Q = 100.

of the output pulse train as viewed, for example, on an oscilloscope. This
is the method used for the adjustment of the repeater of Ref. 8.

X. PARTIAL RETIMING

In Section VIII we have shown that, in the absence of mistuning, the
variable 0 can be related to the normalized timing wave amplitude .r
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and the distribution for 0 determined from the distribution for x. Here
we will also make use of the distribution for x in order to analyze an
idealized version of a forward -acting partial retiming scheme. The
scheme we consider has been described by E. D. Sundeb and analyzed
for periodic pulse patterns in Ref. 7. We make the same assumptions
here as in the later reference, namely

1. The pulses exciting the tuned circuit are so narrow that they can
be considered impulses. They are obtained by processing incoming
pulses to the repeater and they excite a simple tuned circuit.

2. The timing wave is so clamped that its maximum excursion is at
ground.

3. Reconstruction of the raised cosine pulse takes place when the
algebraic sum of the timing wave and the raised cosine pulse crosses
a threshold assumed to be at half the peak pulse amplitude.

For random impulse excitation of the tuned circuit prior to t = 0 and
the definite occurrence of a pulse at / = 0, we have, according to the
above assumptions (with no pulse overlap)

27r 1
(1 ± cos 27rts\ -- 1 cos =

2 T 1 - 2x2 r)
for I I I < T/2s
where

x = E anr,
n

ao = 1 (the pulse at the origin definitely occurs),

and

(41)

average value of x.

Equation (41) is based on the assumption that the average timing wave
has a peak -to -peak amplitude equal to the peak pulse height (i.e., when
x = t, the timing wave amplitude varies between -1 and 0). If we
define t as the time at which regeneration takes place and 0, = 274/ T
as the corresponding phase angle, then it can be seen from (41) that
this phase is a random variable dependent. upon the random variable x.
We will solve for 0 under the condition s = 1, which means that the
information -bearing pulses are resolved.* Under this condition - (7/2)
< 0 < 0. Consistent with our previous definition of phase error, we will
consider the negative of 0, , since this makes the phase error positive

* Other pulse widths and different ratios of average timing wave amplitude to
pulse peak can be handled, but we will not consider them here.
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when we take our reference as the phase corresponding to the time at
which the pulse peak occurs (at t = 0). In this way a positive phase
error corresponds to regeneration prior to the pulse peak and permits
direct comparison with the results of section 8 for the complete retiming
approach. Solving (41) for cos 0, gives

X

X0, - (42)cos
1 +

and

Prob (cos Op < A) = Prob (0, > eos-' X)

= Prob < = Prob X2 (43)

- (1 - )

It is apparent from the above that we can use the distribution for x to
determine the distribution for Op . For Q = 100, the distribution for x
is shown in Fig. 14 and with (43) enables us to obtain the distribution
for 0, as shown in Fig. 18. When we compare this result with that of Fig.
15, which shows 1 - F(0) for the case of complete retiming, it is ap-
parent that partial retiming results in a considerably larger variation of
phase error. This supports the contention made in Ref. 7.

XI. CONCLUSIONS AND FUTURE WORK

We have derived an approximate relationship for the probability
density and cumulative distribution for the phase error at the output of a
tuned circuit when it is excited by a random or random plus periodic
pulse train. The effects of mistuning of the tuned circuit and the finite
widths of the driving pulses have been considered. Three independent
checks of our results indicate that the expressions given are excellent
approximations to the true state of affairs for kQ < 0.1 and Q > 100.
Regions defined by these limits encompass values of k and Q of interest
in PCM systems under consideration.

More specifically, we have shown that the distributions are not normal
and are skewed in the direction of increasing phase error. When we
consider pulse positions in which a pulse definitely occurs, it has been
shown that the maximum phase error is bounded. In addition with
raised cosine excitation we have demonstrated that the mistuning can
be adjusted to minimize the mean or variance of the distribution for the
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Fig. 18 - Distribution of the phase error with partial retiming. Q = 100 and
k = 0. Raised cosine excitation pulse width = T.

phase error. The performance of an idealized version of a forward -acting
partial retiming scheme has been analyzed and shown to be considerably
inferior to a completely retimed repeater.

There are several desirable directions to proceed from our present
position. First, it appears to be possible, in the case where we examine
pulses only, to start from the maximum value of 8 and work back toward
the mean to better approximate the distribution near the tails. S. 0. Rice
has used this approach in related problems with success. Second, it is of
interest to determine the pattern to give the maximum phase error at
the output of a string of repeaters. This is not necessarily the pattern
that creates On... in a single repeater. In this regard, we have concen-
trated on only a single repeater. Obviously it is of interest to extend our
results to a repeater string. This extension remains elusive.
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APPENDIX A. DERIVATION OF EQUATION FOR NORMALIZED TIMING ERROR

A-1. Response of tuned circuit to random pulse train

The impulse response of a parallel resonant circuit is well known to be

[1 ( -orievoth(t) = Real part of 1 + e (44)

Following Rowe,' we will imply the real part in all subsequent calcula-
tions involving complex quantities. The pulse train applied to the tuned
circuit is given by

00

r(t) ag(t - nT),

where:

a = 1 with probability p,

a = 0 with probability 1 - p, and

g(t) = pulse shape representing the binary 1.

The response of the tuned circuit to r(t) is

(45)

z(t) = 1 r(r)h(t - r) dr. (46)

In view of (45), this can be written

+op

z(t) = T E anh(t - nT)
(47)

g(xT) exp Rf°717 - ,j21rf0 x] dx.
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Define

1 k
k), (48)

with k ==- fractional mistuning from the pulse repetition frequency.
Equation (47) can be manipulated to yield

z(t) = IA(t) I e1[271,t+S(1)),

where

1

Q ' r
(D(t) = tan -1

2
+ 97f kt

[ae
7'

'l"±k)"
t-11 - -n sin 27r-kn,

t \ 7
/2

f
n cos 27r/cn

taii-1

and

-

E a c'f"(1±k)" ii (-t -n) cos 27rkn[ T

+12 (1, -n sin 2-kn

(t / T) -it

= Re g(xT) exp foT - j2rfol) x]dx, and

t

'
12

7
11)

(t I T) -n

= Im g(xT) exp [(r. f0T - j2irfaT) x]dx.

(49)

(50)

(51)

In (49), I A(t) I represents the amplitude modulation on the carrier,
while F(t) represents the phase modulation, the quantity of primary
interest here.

A-2. Equation for normalized timing error

There is no loss in generality and it is convenient if the timing error
is evaluated in the neighborhood of the pulse that occurs for n = 0.
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In this neighborhood, negative -going zero crossings occur where

27rIrt 4)(t) =

or

t 1 4)(t)
T= 4- 27-

Similarly, positive -going zero crossings occur for

t 1 (1)(t)

T 4 27 '

In the absence of tuning error, and with impulse excitation, 4) = 0
and the negative and positive -going zero crossings occur close to ± T/4
respectively.* Using these zero crossings as a reference, it is easily seen
that the equations for normalized timing error become

el
4_ Y) (54)

(1 e

T -ap 27

543

(52)

for negative -going zero crossings and

e2 = -4) (-4 + e2

for positive -going zero crossings.
With the exception of the minor generalization to arbitrary pulse

shape, the method employed thus far is identical with that used by
Rowe.2 At this point in the evaluation of the timing error, we depart
from his approximate solutions of (54) and (55) and attempt other
approaches. Before proceeding in this direction, an indication of the
approximation used by Rowe will be given. For the high Q case, 4, will
be small and will change only a small amount for small changes in 27frt.
Based on this assumption,

(53)

el _ 4)(1)
T 27r '

e2 _(I)(-4)
T 27r

1*Neglecting tan -1 in (50)
2Q

(55)

(56)



544 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

It should be pointed out that these initial approximations are good for
Rowe's purposes (steady-state error for 1/M patterns). However, for
our purposes they need to be improved.

A-3. Approximate solution of equation for normalized timing error

One method for improving the accuracy of the initial approximation
is to expand 43 in a power series about T/4 for negative -going zero cross-
ings and retain two terms in the expansion to get

el
T 2/r+4)'(4)'

The form of its makes this approach messy and makes the determination
of the probability distribution more difficult.

Another approach that is more tractable involves the separate Taylor
expansion of II and /2 (51) in 4) about the reference time. If we retain
only the first two terms in the Taylor expansion, replace the arctangent
by its argument, and neglect k with respect to unity, we obtain for
negative -going zero crossings

el 1 k

T = LITQ

00

E ae6")" [-sin 27rkn (Ii(1 - n) e1/1/(1 - n)

1 cos 27kn(1.2(1 - n) el/2/(1

E a e`")"[cos 2.7rkn (Mk - n) e111(4 - n))

+ sin 27rkn - n) e1/2'(4 -

(57)

n))] (58)

n))]

If terms in (ei/T)2 are neglected, multiplication of both sides of (58)
by the long denominator on the right results in a linear equation for
el/T. This equation is applicable to arbitrary pulse shape, time -limited
or not, and has been applied by one of the authors to periodic patterns
of both Gaussian and raised cosine pulses in unpublished work. The
results were compared with digital computer simulation and were in
excellent agreement, thereby. giving us confidence in using this approach
for random pulse patterns. In this paper, we will concentrate on raised
cosine pulses. This enables us to make use of some of the results given
by H. E. Rowe in Section 2.5 of his paper.2 For these time -limited pulses,
the limits of integration on the I's of (51) are modified in an obvious
way, and the upper limit on the sum over n is limited to the pulse im-
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mediately succeeding the time slot of interest at n = 0 for negative -
going zero crossings. The evaluation of the various I's required is dis-
cussed in Appendix B.

Subject to the above conditions, the normalized timing error, as de-
rived in Appendix B, can be written in the following form:

ei Ay + Bx + C
T Dy + Ex + F '

where

y E ae-(r/Q'n sin 271-kn,
n -o

x = E ane cos 271-kn,
n =0

(59)

(60)

and ao = 1 (a pulse definitely occurs for n = 0). A through F are de-
fined in Appendix B and are functions of the pulse width and Q and
mistuning of the tuned circuit. In addition, C and F are functions of the
presence or absence of a pulse in the succeeding time slot for negative -
going zero crossings if sufficient pulse overlap exists. For positive -going
zero crossings the form of the equation for the normalized timing error
is the same and the new C and F are dependent upon the presence or
absence of a pulse in the preceding time slot. This assumes that the
pulse width is less than 2.5T.

A-4. Modification of probability distributions for pulse overlaps

With the dependence on the occurrence of a succeeding pulse, as is
the case for negative -going zero crossings with sufficient pulse overlap,
we must modify the determination of the probability distribution as
given in the main body of the paper. If we denote en/T and C = C1 ,

F = F1 for al = 1 (a succeeding pulse definitely occurs), and denote
e 12/T and C = G2, F = F2 for al = 0, then the average probability dis-
tribution for the timing deviation will be given by

Prob
T 7'

= p Prob + ( 1 - p) Prop
71

X) . (61)

When the pulse width is less than 1.5T, C1 = C2 , Fl = F2 , and there-
fore en = e12 and the above modification is not required. A similar pro-
cedure is applicable for positive -going zero crossings.
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APPENDIX B. RAISED COSINE PULSES

B-1. Determination of I's

For a raised cosine pulse centered at the origin and of width T/s, I
of equation (51) becomes

I(x) = 0

/(x) = (1 + cos 271-sx0er(r/e)-52.1Kx,dx1
(1128)

/(x) =

where

K (1 + k)

The integral in (62) is readily evaluated to give

1 e
[(r/Q)-j2r]Kx - e-[(TIQ)-j2r]K128= _

27K (1 + ±
2Q

1 e
[(71Q)-1270Ex e-1-31Tax - e-[(r/Q)-J2idli/21

I

LIT (K - s) + j K
2Q i

(63)

[(7,,Q)-)27,1 Kr
c-

-)27r sr - c-[(7/Q)-j27d1C/2/1+4a
(K + s) + .7. K

2Q

The derivatives required in the evaluation of (58) may be obtained
from

-jI

1x < -2-8

I x I2s (62)

:17 >
Zs

dI e(ri(2)Kx rem,-2,Kr e-p,r(K+81. (64)
dx

In the evaluation of I and dI/dx, mistuning makes very little differ-
ence for the allowable values in practical systems. Therefore, with K = 1

/1=1/4 = erl" [1 + cos -2-781 (65)

[/1.= --1/4 = j eT14(2 1 + cos 71-s]
____

2
(66)



PHASE JITTER IN PCM REPEATERS 547

["(2
37rsl

/1=3/4 = j e 1 + cos
2

(67)

7/1-3/4 = -3 e'14(2
32s

[1 + cos . (68)

Equations (65) and (68) above are required for negative -going zero
crossings, while (66) and (67) are needed for positive -going zero cross-
ings.

B-2. Equation for Normalized Timing Error with Raised Cosine Pulses

From (58) we can write the equation for normalized timing error as

el 1 k 1 N
T 4irQ 4 2r P '

where N and 1' are defined by comparison with (58). Cross multiplica-
tion by P, neglecting terms in e12 and collecting terms, yields

el Ay + 131 C

T Dy Ex F '

where x and y are defined by (60), and A through F are as follows:

A = 1

2s
(

471

( 1 )
2r d2 4 V.,s

B = '2( 1+41.1. ()
27 Vs) L47Q j Vsj

C =

cos 2r/ J2 (-a]e('I(2)
r

sin 27rA
27r

- [471(2 + 41 [Sin 27rAl2 (-43) + cos 27rk/1 (A 1}

)D=

E = I1
2s

1
= I (1) - I1 (2 s) 471-()

[ _

4 4
(j--)

4 27r
0 ' (0
- 4

(69)

(70)
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+ al e("'2) {cos 27r1, [-,T1 /2 (--13) +
7r

( 1 ±4 (11 sin 27k [ (- 43)
471-Q. 4

( 1

Tc

'+ (41K2 + 12 P1)1Y
For positive -going zero crossings, only the constants C and F are

changed.

B-3. Numerical Evaluation of Constants

In order to make use of some of Rowe's results, we will choose the
same two cases for pulse width that he used.

Case 1. s = 1, Pulses Resolved

a. Negative -Going Zero Crossings. Since mistuning has a small effect
on the evaluation of the I's, we neglect it in this regard. Neglecting
terms in 1/Q2 and k/Q, after some arithmetic one arrives at

ei

1 1- (- - - x
k)
8

0.0795 0.0316 + 0.0085k
(71)

y
4r 167Q 2r

3 1 0.06- 1) +0.375
2

(x
16742

y

Q > 50 and kQ < 0.2 encompass values of practical interest. In this
region the term in y in the denominator of (71) can be neglected and
the numerator term 0.0085k is also negligible. It is also convenient to
deal with phase error rather than timing error. Therefore, we rewrite
(71) as

01 -
1 F 1y - it 1

Q - j x + 0.159 ± 0.397

21-ei

T
x - 0.25 +0.12

The multiplication by -27 is used to avoid any questions later on as
to which way certain inequalities are to be taken. This means that 0 is
the negative of the phase error as previously defined. A positive value
of 0 signifies that the zero crossing occurs prior to ± T/4 for negative
going and positive going zero crossings respectively. The general form
of 0 for all the cases to be considered herein then can be written as

(72)
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e -xy + c. (73)
++ L

For the situation under consideration in this section,

ra = 0.159 +0.33 -4 k
Q

b = -0.25 +2

_
Z2- L 4 2

b. Positive -Going Zero Crossings. Proceeding in the same way as in
Sections B-2 and B-3 above, the phase error for positive -going zero
crossings is as in (73) with

a = 0.159 - ° + /
Q 8 j

0.b = -0.75 + 62

-- -
4

- L.Q1.
Q 2

[1 r

In this case it should be noted that with zero mistuning (y = 0) and
with a pulse for n = 0 and nowhere else, a positive -going zero crossing
does not occur in the neighborhood of - T/4. Under this special con-
dition, x = 1 and (73) with the constants of this section would predict
an incorrect error in the positive -going zero crossing. Of course such a
sparse pattern occurs with probability zero. Fortunately, for all other
more reasonable periodic patterns, results obtained from (73) are in
good agreement with computer simulation.

c=

el  (0.034 - 0.02kQ)
T- 0.255x - 0.062 -I- 0.048/Q

Case 2. s = I, Pulses Overlapping, Base Width = 1.5T

a. Negative -Going Zero Crossings. In this section we will dispense
with all of the algebra and arithmetic and simply write down the final
results. For the case at hand

0.255 1 1
(0.073 - 0.064kQ)x + 0.0264 -I- -

(74)
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When this is converted to the form of (73), we have

0.4a = 0.65 ± - 0.21k

b = -0.243 + 0188
Q

c= --1 [1.8 - 1.580-2].

h. Positive -Going Zero Crossings

.4a = 0.65 - +0.94k

b = -0.753 + 1.66

c= --1 [1.8 - 1.581d2]

The remarks made in connection with positive -going zero crossings
for Case 1 are equally applicable here.

APPENDIX C. SEMI -INVARIANTS FOR THE JOINT DENSITY FUNCTION OF

Si AND Yi

C-1. One out of M pulses definitely occur; the remaining pulses are in-
dependent and occur with probability 1; raised cosine pulses.

The characteristic function is defined as

(p(u,v) = E exp i(uxi vyi),

where E is the expectation operator, and from Appendix B
co Go

X1 = E e-aMmcos 2irkMm b E ane-an cos 27-1cn,
nOmM

oo

MmE e-a sin 27rElini + a + E ane-an sin 271-kn,
m=o nOmM

(75)

(76)

with a m 7r/Q. Substituting (76) in (75) and performing the expecta-
tion operation gives
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CO

P(u,v) = exp iE e-womm
m=.0

(u cos 2irkMm v sin 27kMm)

-exp i(ub + va ) X H exp i2- e ("/Q)n(u cos 271-/cn -I- v sin arkn) (77)nAf
e

-(.1Q)71

X 11 cos (u cos 271 -km + v sin 27r/m)
nrn,if. 2

which may be rearranged to

(p(u.v) = exp - 2_, {e 7' (u cos 2irkMn + v sin 2irkMn)Z x--, -( IQ)Mn

2 n=0

}+ e -(1'.1Q)" (u cos 27kn + v sin arkn) exp i(ub + va)

co -(70(2)n

11 cos (u cos 2irkn + sin 27kn)
n=0 2

00

fe-(71-1(1)Mn11 cos: (u cos 2irkmn + v sin 27kMn)
n=o 2

When we take the logarithm of (78), we obtain

log v
i(u,v)= E tomn(u-cos v sin arkMn)

(78)

13" (u cos 2irkn v sin 27rkn)]

i(ua vb) E log cos (u cos 27rkn, v sin 27-kn) (79)
71-0

(4111 It

-E log cos (u cos arlalln v sin 27kMn) ,
n-0

where (3 = e-(wIQ).

The first sum in (79) may be carried out, and when combined with
i(ua vb) yields the semi -invariants X10 and X01 which are of course
the mean values for x1 and y1 respectively. Since the last two terms of
(79) are similar in form, we will confine our manipulations to the next
to the last term. We denote this term by

F(u,v) = E log cos [1±- (u cos 27kn v sin 2irkn)1 . (80)
n=0 2
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Using the infinite product expansion for the cosine and the power series
expansion for the log; i.e.,

)cost = [1 - 2z

(2m + 1)7, 2]
(z2 < co )

.-o

and
0,

log (1 - x) = -

F(u,v) becomes

(x2 < 1).

" w
vu(C. + Sn)2l

F(u,v) = - E E E (81)
n=0 m=0,7=1 GM + 1)21.72i 2

where C = C" cos 271cn and S = Can sin 271cn. The sum over j may
be obtained by virtue of

1 (225 - 1)( -1)-1-1(2.02lB2;
22i-1-1( 2 j ) !7,0 (2m ±1)''r

where the B25 are the Bernoulli numbers. With the above sum over m
and the expansion of (itC vS)22 in a binomial series, we arrive at

3B2;(22lF(u,v) = ( -1 ) - 1) L (2j) c,,,e(snv)2J-, (82)
f=, 2 j(2j)! r=0 \ r n=0

Proceeding in the same manner that took us from (80) to (82), it can
be verified that the last term of (79) takes the same form as the right-
hand side of (82) with n replaced by nM. These results and comparison
with the definition of the semi -invariants for a two dimensional dis-
tribution° lead to the following for the semi -invariants for the process
under consideration:

1 [ 1 - $ cos 2irk 1 - ,(3''f cos 2rk/1/
Xio

2 - 213 cos 27-1c + $2 1 - 213M cos 27rkill + 132m
b,

1 $ sin 27th $M sin 27rkM

X01 2 Ll - 20 cos 2rk 02 1 - 20m cos 271cM + 02M

and

+ a,

>1 Br+8(2r+8 - 1) [Cnr5n8 en/ifrSnMs1. (83)r + 8 n=0

The sum over n can be shown to be a geometric series multiplied by
two finite series if the sines and cosines in S and C respectively are rep-
resented in exponential form and use is made of the binomial expansion.
After some algebra, an alternate form for (83) can be shown to be
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B (21+8 - 1)r! sl
Xral r+8r-1-8 >1 - (r G(r,s,13,k,111),

where G(r,s,i3,k,111) is (shortened to G)

=
Er s

E -1 )q
=0 q=0 - p)!q!(s - q) I

[1 - )3(r+a) exp [i27k(r
1

s - 2p - 2q)]
1

(84)

(85)

1 - j3M(r+8) exp [i2rklIf (r s - 2p - 2q)]
For u and v in the neighborhood of zero, the contributions to the series
in (79) become smaller as n becomes larger. The importance of suc-
cessive terms is judged by the exponential decay factor e-("/Q). If we
consider all terms up to some nmax where n. >> Q/ r and kn. << 1,
then we arrive at the following inequality

k(2
(86)

Under the above condition cos 2irkn can be replaced by unity and sin
2irkn by 27rkn for all terms of importance in the series and (79) becomes
approximately

#
M

log io(u,v)
u + 1

vrk[{2[1 13 1 13mi (1 - + (1 - /?M)2

(ub va)} ,to log cos {c (u 271cnv)} (87)

co Mn

-E log cos {-2 (u 271cMnv)}.
=0

Paralleling the operations performed on (80) to obtain (82) it can
be shown that the semi -invariants obtained from (87) under the con-
dition (86) are

1 (
Aio =

1

2 \1 - 13+ 1 -
1

3 s 1 j 1 ' )i '

Xoi. = 711k* ( _13 + 11-1313mm )2) + a, and (88)

, ). Br+, (2r+8
7108 "'

da ( 1 1
Xrair-Fs>1 = ( - i / 1) (2(r + s) dga 1 - cv 1 - e-m)

with g = (r + s)ir/Q.
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C-2. Same as I Above Except That Pulses are Impulses

For this case the semi -invariants are as above with a = 0 = b.

C-3. Impulse Excitation, All Pulses Random

With this type of excitation, we have

1 [ 1 -i3 cos ark
Aio 1 - 2$ cos 2irk + 1321

X() 1

r- /3 sin ark
2 L1 - 213 cos 27k + 1321'

and

13,4_8(21.+8T 3 (-1>"
XrairFa>1 (r s)2r(2i)8 ,0 ,o p!(r - p) !q!(s - q)!

1

1 - 13'.+8 exp [i27rk(r s - 2p - 2q)11.

It is readily shown in this case that the approximate semi -invariants
[subject to (86)] are

Xi° - 1 1(1 13) ,

rki3
Xol -(1 (90)

(2r+8 -
Xrdr+,>i = (-1)8

Bri_8 1)
27rk

r s - e-g
1

with g = (r 8)7r/Q.

APPENDIX D

(89)

High Q Behavior of p(0)

To illustrate the behavior of the probability density function when
the Q of the resonator becomes large, we consider p(0) in the neighbor-
hood of the mean, 0. . We include terms of the double summation in
(19) for which r s = 4. Since the Bernoulli numbers Br+, = 0 for
r s odd and >1, the terms ArE, for r s = 3 are zero. For 0 "d 00 ,
therefore, p(0) becomes



r+r8 >82

or

p(0) 1

\/r
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X10

(X20002 2X1100 + X02)1

Al02 (0 - 00)2exp -
2 (X20002 2X1100 + X02)

X

"/2( X20e0 2X1100. Xe2)4)

120(0 - 0)

0(X20002 - 2X11O0 X02)1

Xio

r+8=4 r x eorEE (-1)
8 r !s X io4

r -Fe >2

The semi -invariants of interest in the above equation are given

(91)

below
and were determined using the results of the previous section for the
case "all impulses random," subject to kQ

XII)
1 0-13)

1
X11tqo

X40 =
1 1

X31

(1
Xi3 = - Ork )

X01

X,0

2T-43

1 - 0
rk 02

X02

or1)202(1
+ (32)

2 (1 - 02)2 (1 - /32)3

7k 04 (1x/)204(1 (34)

4 X22(1 - 134)2 2 ( 1 - j33)3
4

(1 + 4134 + 08)
-

X04 = -2(71*),
(1 014)5

(1 + 1 104 + 1113$ + #12).

Using the above expressions for the X's, the following quantities in (91)
may be reduced to

X10

(X20002 - 2X1100 + X02)3/4 -

r±s=4

EE (-or x" e;
r!s! X104 =

[1 -

1

1 2(2rk)4134
4! 1 -134

A/2(270#
(1 - /3)4(1 - /3)1

4030 - 0) 6132(1 + 04)(1 - /3)2
(1 - /34) (1 - /34)2

1

a

0(1 - /3)3(1 4/34 + 08) (1 - 0)4(1 + 1104 + 11(38 +
( 1 - 34)3 ( 1 - MP'
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ri-s=4

EE( -1)r
xrs 0:

r 8 Hs! X104 4!
r-1-8>2

The probability density therefore takes the form

(0 - 00\
00)2 H4 "Oa )1. (92)

p(8)
20-2 4! 4cr4

This result is in the form of the standard Edgeworth approximation
with 00 , o-, and X4 the mean, the standard deviation and the 4th semi -
invariant of the 0 distribution, respectively. In the limit as Q becomes
large ((3 1) we approximate 1 - (3 by 7/Q and

cr 00 -> 2kQ

The coefficient of the 4th Hermite polynomial approaches - (57r/128Q).
Equation (92) then indicates the approach to the normal law with the
first correction term going as 1/Q. The results for 0 and a- correspond
to those derived earlier by Bennett, Rice and others.

APPENDIX E

Determination of 0.

For kQ < 7, a good approximation for 0 is (from Appendix B)

When ao = 1, we have

-
a + 27rk E anOn

b > 0"
n=0

+ ann13
hric n=1

27rk
1 b E

n=1

(93)

(94)

It is of interest to determine the pulse pattern that yields the maximum
value of 0/271-k. This is equivalent to the determination of a one -zero
sequence of a's such that (94) is a maximum.
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Assume that an initial pattern has been chosen such that 0/271c =
AO/Bo . If a single an is changed from zero to one (pulse added), then
0/2rk is changed to (A. + nOn)/(B. (3n). Clearly, we should effect
this conversion if

A, + A°

B"

or

(95)

On the other hand if a one is changed to a zero (pulse removed), then
61/2irk will be increased if

or

A° - n(311
B, - [3"

n < -A0.
Bo

0

( 96 )

The process is continued in this manner until all an = 1 for n > n° and
all an = 0 for n < n° (except a. , which is constrained to be unity).
n0 may be determined from the above process, since

On. - max

2irk

which can be rearranged to

(1 - (3)2

a E ofn
n

b E on
= tt c

(97)

2-1-rk + 74(1 b)
(98)

When a periodic pulse pattern of 1 out of every M pulses is forced,
(L,nx is found in the same manner as above and the relationship between
the various parameters to achieve this maximum is given by (15) of
the main body of the paper.
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Properties and Design of the Phase -

Controlled Oscillator with a
Sawtooth Comparator

By C. J. BYRNE

(Manuscript received September 1, 1961)

A sawtooth phase comparator has advantages over the more common
sinusoidal comparator in a phase -controlled oscillator because its output
is linear for larger values of phase error. For some applications, it is no
more complex or expensive than the sinusoidal comparator.

This paper analyzes properties of the phase -controlled oscillator with a
sawtooth comparator that have been mentioned in the literature for sinu-
soidal comparators. In addition, there is new theoretical material on the
effect of fast jitter and noise.

The properties of the circuit are presented in a manner which is con-
venient for design.

Since it is easier to analyze the circuit with a sawtooth comparator, many
applications of the device have been considered. Because of this wide view-
point, the paper may be helpful in understanding the phase -controlled
oscillator in general.
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I. INTRODUCTION

The phase -controlled oscillator (see Fig. 1), otherwise known as the
phase -locked oscillator, is often used to produce a signal whose frequency
and phase are controlled by an input signal. The literaturew on the
subject assumes that the phase comparator, which is the error detector
of the loop, produces an output which is proportional to the sine of the
phase difference.

This paper considers the case of the sawtooth comparator, whose
output is a linear function of the phase difference over a periodic range
(see Fig. 2a). Because of this linearity, the sawtooth comparator is
superior in operation to the sinusoidal comparator for some applica-
tions. In general, the sinusoidal comparator is simpler and cheaper, but
in applications involving digital signals, the two are comparable in cost
and complexity.

The purpose of this paper is to present a comprehensive survey of
many properties of the phase -controlled oscillator, relating to many
different applications. We have drawn heavily on the literature, modify-
ing the analysis to make it apply to the sawtooth comparator. In addi-
tion, there is new theoretical material on the effect of fast jitter and
noise. New results derived by A. J. Goldstein in a companion paper'
are presented in an abbreviated form, more suitable for design.
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Most of the properties are presented in a graphical form which facili-
tates design.

II. DESCRIPTION

2.1 General

The block diagram of a phase -controlled oscillator is shown in Fig. 1.
Notice the resemblance to a negative feedback amplifier or a servo loop.'
There is a forward gain path, a feedback path, and a subtracting or
error detecting device.

The input and output signals are not the voltages themselves, but
are the phases of the nearly periodic voltages. If the input and output
voltages are at different frequencies, dividers or multipliers must be
used to bring them to a common frequency at the phase comparator.
In this paper, we will assume that the output and the input are at the
same frequency. We will however, consider the use of dividers to allow
the comparator to operate on the Nth submultiple of the input and out-
put frequency. We will measure phase of the submultiple signals in
radians of the original frequency.

2.2 Phase Comparator

The phase comparator is the error detector of the servo loop. It pro-
duces a voltage which depends on the phase difference between the input
submultiple and the output submultiple.

Of course, the comparator cannot distinguish between different cycles

DIVIDER
INPUT -

N
5°L

Pe=5°L

VARIABLE
PHASE FREQUENCY

COMPARATOR FILTER OSCILLATOR

f (50e) 1 v,

DIVIDER

V2= a2H (s) V,

FORWARD GAIN:

V2

OUTPUT

a, a2 a3
H (s) = -a H (s)

Fig. 1 - Block diagram of the phase -controlled oscillator.

5°0
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of the input and output submultiples. Therefore, its output must be a
periodic function of the phase difference between input and output, with
a period equal to one cycle of the submultiple frequency or N cycles of
the input and output frequency. We see that the greater the divider
ratio, the greater the range of the phase comparator, in cycles of the
input and output frequency.

The sawtooth and sinusoidal comparator functions are shown in Fig. 2.
The phase error is measured in radians of the input and output fre-

quency. The gains have been adjusted so that the slopes at zero are
identical. This means that the functions have the same small -signal
performance at zero quiescent phase error. Note that the peak output
of the sawtooth comparator is 7 times the peak of the sinusoidal com-
parator.

The sampler and mixer types of sinusoidal comparator are described
in the literature.5

Since the sawtooth characteristic is not common, we will describe
one method of building such a comparator. We assume that the input
and output signals are available as short pulses. If the signals are orig-

inally sinusoids, the pulses can be obtained from zero crossings. As
shown in Fig. 3, these pulses control a flip-flop. The input is sent into
the set terminal of the flip-flop and the output is sent into a comple-

+ 77 N

0_

0

ro PHASE
ERROR

-77NOC,

(a) SAWTOOTH CHARACTERISTIC

+2 7T N

-27/N -77N 0

-NCCI

+ 77N

(b) SINUSOIDAL CHARACTERISTIC

+277N

Fig. 2 - Characteristics of the sawtooth and sinusoidal phase comparators.
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Fig. 3 - Flip-flop sawtooth phase comparator.
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FILTER
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ment (or count) terminal. Therefore the time spent in the set state
will be the time between the input pulse and the output pulse.

If the flip-flop puts out a positive voltage in the set state and an equal
negative voltage in the reset state, the average output voltage will be
a linear function of the phase error. The average output will be zero
when the pulses are 180° out of phase. Therefore one of the signals
should be inverted before pulse forming if the output is desired to be
in phase with the input.

If the phase error exceeds fir, the pulses will pass each other. There
will be a sudden discontinuity, and the voltage will change quickly from
one extreme to the other.

If the input signal is turned off, the flip-flop acts like a binary counter,
driven by the output signal. The average output voltage will be zero.

The average voltage will be extracted from the flip-flop output by the
low-pass filter. It should have a cutoff frequency low enough to remove
signal components near the submultiple frequency.
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Since this type of comparator works on zero crossings, its conversion
gain is independent of signal amplitude.

A sampler comparator can also have a sawtooth characteristic, if the

input has a sawtooth waveform.
Because of the operation of the phase comparator, the phase -con-

trolled oscillator is really a sampled system. E. G. Kimme has shown6
that the phase -controlled oscillator can be treated as a continuous sys-
tem if the sampling frequency is so high that its effects are strongly
attenuated by the closed loop. We will assume this to be the case through-
out this paper.

2.3 Filter

The filter has a low pass characteristic to attenuate fast changes in

the phase error due to noise in the input signal. It also helps to smooth
out the high frequency component of the phase comparator output.
Usually a simple RC filter or a phase lag filter is used, as shown in Fig. 4.

2.4 Oscillator

The variable oscillator produces the output signal. When its input
voltage v2 is zero, the output frequency is the design center frequency

we If v2 is not zero, the output frequency varies in proportion to v2
Since the important property of the output is the phase, which is the
integral of the frequency, the variable oscillator acts like a perfect in-

tegrator.

III. OPERATION

Readers who have a background in servo systems may find it helpful
to think of the phase -controlled oscillator as a type 1 servo system, such

R, v. R,

1-,=1:21C

71.0(RiC

1-2=0

71=0

H(s)= I

(a) R -C FILTER

Fig. 4 - Filters.

V2

Ti= (RI +ROC
OC(Ri+R2)C

T2= R2C

= R2 C

I+ST2H(S)- +sT,

(b) PHASE LAG FILTER
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as a velocity motor with position feedback.2 The analogy is clear from
Fig. 1.

3.1 Aligned Operation

Let the frequency of the input signal be identical to the center fre-
quency of the oscillator and let the phase error be zero. Then the input
to the oscillator is zero and its frequency will be identical to that of the
input.

Now let us quickly advance the input phase by a small amount and
continue at the center frequency. There will be a positive error voltage
which will increase the output frequency. The output phase will advance
until it catches up to the input. The circuit cannot settle down until
the output phase is identical to the input phase, because of the integrat-
ing action of the oscillator.

3.2 Mistuning

Assume that the input frequency increases a little, causing the input
phase to continually advance. As before, a positive error signal will
result, increasing the output frequency. Therefore the output phase will
continually advance. When the circuit settles down to a steady state,
the phase error will be constant, and just sufficient to detune the oscil-
lator so that its frequency will be identical to the input frequency. The
greater the phase -to -frequency gain of the forward path, the less phase
error will result from a given input frequency deviation.

3.3 Jitter

Now let the average input frequency be constant, but assume that
the phase is jittering back and forth. Suppose the jitter is very rapid.
Even if there were no filter, the integrating action of the oscillator would
smooth out the jitter so that the output would be more stable than the
input. The low-pass filter, of course, smooths the error signal before it
gets to the oscillator and attenuates the jitter even more.

If the amplitude of the jitter is too great, the phase comparator will
go through a discontinuity, and when the circuit settles down again, it
will have slipped N cycles of the input, either ahead or behind.

As the rate of jitter decreases, the operation of the loop becomes more
complex. Because of the integration, jitter in the oscillator phase lags
the fluctuations in its input voltage by 90°. If the low pass filter also
has about 90° phase lag at some frequency of jitter, we see that we have
positive feedback instead of negative feedback. The open loop phase
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gain is the ratio of a change in output phase to a change in phase error.
If this is large enough at a frequency where we have positive feedback,
we can actually have an increase in jitter, or even a jitter oscillation'
which would destroy the usefulness of the device for most purposes.

If the jitter is very slow compared to the loop time constants, the
servo loop will track it, and the jitter will be passed on to the output.

If the jitter is distributed in a wide band, such as that caused by the
addition of white noise to a coherent signal, the circuit will respond only
to that jitter resulting from noise components near the frequency of the
coherent signal. Therefore the circuit can be used to enhance the signal-
to-noise ratio of a phase -modulated carrier. This property also allows
the circuit to lock on a coherent signal of approximately known fre-
quency although it is surrounded by strong wide -band noise.

3.4 Phase Modulation

The error signal v1 (see Fig. 1) is essentially proportional to the phase
modulation of the input at frequencies higher than the circuit can track,
and to the frequency modulation at frequencies that can be tracked.
The signal at v2 is filtered. to reduce noise. Therefore the circuit can be
used as a demodulator of phase or frequency modulated signals in noise.

The circuit can also be used as a phase modulator. The carrier is con-
nected to the input. The modulating voltage is added to the output of
the comparator. The feedback tends to keep the oscillator input voltage
small. Therefore the comparator output must be nearly equal to the
negative of the modulating voltage. This means that the output phase
is nearly proportional to the modulating voltage. At high frequencies,
the loop gain drops, and these relations are no longer valid.

3.5 Quieting

If the input signal is smooth, but the oscillator itself is jittery because
of internal noise, the oscillator will be quieted by the feedback, especi-
ally at low frequencies where the problem is likely to be most serious.

3.6 Discontinuities

We have looked at the small -signal linear performance of the phase -
controlled oscillator; now let us examine its operation when it is passing
through discontinuities. Suppose we increase the input frequency until
the phase error is nearly equal to +Nir, where N is the divider ratio.
A small further increase will cause the phase comparator to go through
a discontinuity, making the error -Nr. This will start to decrease the
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oscillator frequency and the error will rapidly return to +Nir, and then
jump to -Nir again. After a short time, the error will settle down to a
periodic behavior, with discontinuities at regular intervals. Since the
average error must be somewhat less than +Nir, the average output
frequency will be somewhat less than the input frequency, and the fre-
quency of the phase error will be the beat frequency between input and
output, divided by N.

3.7 Pull -in

As the input frequency is reduced in this "flickering" state, the beat
frequency decreases. Finally, the phase error does not quite hit a dis-
continuity at its highest excursion, and the error settles down to a static
value. We say the loop has pulled into lock with the input.

Depending on the nature of the filter, there may or may not be hys-
teresis in the pull -in action. If there is hysteresis the pull -in frequency
deviation will be less than the deviation which can be held in lock, once
lock has been established.

IV. APPLICATIONS

The phase -locked oscillator has many interesting capabilities, and
consequently has found many diverse applications.' Some of the func-
tions and examples of use are:

a. Locking a high frequency signal to a submultiple; television sync
signals are locked to the power frequency.

b. Locking a strong steady signal to a weak, intermittent signal;
television color carrier recovery.

c. Locating and locking on a weak coherent signal in wide -band noise;
space communication.

d. Detecting phase or frequency shifts in a signal; space communica-
tion.

e. Smoothing a jittery signal; smoothing jitter in a digital signal.
f. Locking a high -power oscillator to a more stable low -power oscil-

lator; microwave generation.
g. Phase modulation of a reference carrier.
h. Frequency synthesis.
Each of these applications requires a different viewpoint in analyzing

the circuit. An optimization process for one application may be useless
in another. Even an expression such as noise bandwidth may not have
the same meaning with a jitter reducing circuit as with a microwave
source.

The application we have foremost in mind is that of capturing and
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smoothing a jittering timing signal for a digital channel. Most of the
properties we analyze are chosen for this application. However, we
present additional material which is needed for other applications. We
have attempted to be explicit in revealing our viewpoint when we define
noise bandwidth, figure of merit, etc.

V. QUIESCENT OPERATION

5.1 Steady -Stale Error

If a phase -locked oscillator is synchronized with a signal whose fre-
quency is not identical with the oscillator's center frequency, there
must be a steady phase error. The comparator converts this phase error
into the voltage required to tune the oscillator so that its output fre-
quency will be identical to the input frequency.

The gain a is the low frequency conversion gain from phase error to
frequency (see Fig. 1). It is the change in output frequency (in radians
per second) that results from a change in phase error of one radian. The
mistuning frequency 04, is the difference between the input frequency
and the oscillator center frequency. Then the steady phase error is

Wm=
a

(1)

The phase error is directly proportional to the mistuning. With a
given mistuning, the error may be made as small as desired by increas-
ing the gain, a. However, we shall see that high gain has undesirable
effects also.

5.2 Lock Frequency

The greatest frequency mistuning that can be locked in synchronism
is determined by the maximum output of the phase comparator. At the
limit,

I co. I = cot = N. (2)

We call WL the lock frequency.

5.3 Phase Error Margin

One of the advantages of the sawtooth comparator over a sinusoidal
comparator is that the small -signal performance is independent of the
steady mistuning, since the gain does not depend on the phase error.
However, mistuning reduces the margin between the steady phase error
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and the error which will cause a discontinuity. This limits the permis-
sible peak jitter amplitude, if no discontinuities are allowed.

The phase error margin is

Per = Arr - I w"' I (3)a

VI. RESPONSE IN THE LINEAR REGION

As long as the circuit is in synchronism and the phase error does not
exceed the bounds of ±N 1r, the phase controlled oscillator acts like a
linear feedback system.

6.1 Phase Response

From Fig. 1, we see that the forward gain of the loop is the product
of the gains of the comparator, filter, and oscillator:

= iced[a211(s)][21

H(s)= a

where a = .

The feedback is

(4)

= 1. (5)

The response of the output phase to changes in the input phase is
given by the familiar negative feedback equation:

Y
430 aH(s)

(6)
43i 1 ± 14 s aH(s) 

The signals (1)i and (1,0 are phases of the input and output voltages.
The phase error, as a function of the input phase, is

4.0 = -4' = (Di . (7)
s aH(s)

Notice that we measure phase of the submultiple signals in radians of
the original signals.

The filter is usually either an RC filter or a phase lag filter, as shown
in Fig. 4. For the phase lag, the more general case,

1 4- sT2H(s) - (8)1 + sTI '
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where

T2 .

In the 1W case, T2 = 0.
When we substitute (8) into (6), the transfer ratio becomes

Y -

where

1 + 8 --:

+ To 711 + S1 + s2-
a a2

T1 = aTl 2 T2 = aT, .

The phase error response is found from (7):

s- (1 + s
a a

(De ---- 43, . (10)
I_ + T2 Ti1 + S + s2

a a2

Note that the denominator of transfer functions (9) and (1.0) is a sec-
ond order polynomial, of the form

(9)

where:

2
1 s -+

a
COn =

Ti

2

S

'

1 T + 1- 
2 N/T,

Equations (9) and (10) appear frequently in the literature, but have
been included here for completeness. Some of the literature1.2 uses the
natural frequency oh, and the damping ratio as defining parameters
of the system. We shall use a, 71 and T2 more often, because they are
more closely related to physical quantities.

Most of the important properties of the phase -controlled oscillator
can be expressed as normalized ratios which are independent of a. There-
fore we shall present these properties as functions of the two remaining
design parameters, r, and 72 . As an example of our method of presenta-
tion, contours of constant damping ratio E are shown on a plot of T2 vs
ri in Fig. 5. We will call this the filter plot. Properties of the filter plot
are discussed in Section IX.
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Fig. 5 - Contours of constant. damping ratio on the filter plot.

6.2 Voltage Response

As we have mentioned, the phase -locked oscillator can be used as a
phase modulator by adding a modulating voltage vm to the error voltage
vi . The response of the output phase is:

4)0 =
1- v m
al (12)

where Y is given by (6) and (9). Note that we have used VM for the
transform of vm . Examination of (9) shows that the output phase will
follow the input voltage as long as the modulating frequency is low
enough, since Y approaches unity as s approaches zero.
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If the phase -locked oscillator is used as a demodulator the output
can be taken before or after the filter. Therefore we present the response
equations for the voltages at each point (see Fig. 1).

Vl = ai(1 - (13)

V2 =
1- 8/ 'Pi.
as

VII. SMALL -SIGNAL PROPERTIES

(14)

The small -signal properties we shall analyze are the response of the
output phase to sinusoidal jitter of the input phase, the noise bandwidth,
the peak jitter gain, the response to a step change in phase, and the
response to a step change in frequency. All of these effects are not per-
tinent to every system, but each is useful in some of the applications.

7.1 Sine Wave Jitter Response

The small signal transfer ratio Y between input phase jitter and out-
put phase jitter was given in (9). For sinusoidal jitter, the squared
magnitude (power gain) of Y(w) is

1 + -) 792

Y(w)12
a

I

+ (-ICY [1
2( Ti - T2)

'

T22] + Ti(:)'
The phase of Y(w) is

a)0(w) = tan-1(0
T2

u))(1 + T2)
--I (a- tan

1 - (1-) Ti

(15)

(16)

The jitter attenuation curves for several sets of filter parameters are
plotted in Fig. 6.

In Case I, no filter, we have simply an integrator with unity feedback
around it. At low frequencies the jitter is not attenuated; at high fre-
quencies there is a 6 db per octave roll -off. When an RC filter is added,
the additional high frequency attenuation produces a 12 db per octave
roll -off. When the filter time constant is very large, the phase shift in
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20

the forward loop results in positive feedback, and causes a region where
jitter is amplified.

When a phase lag filter is used, the second break point caused by the
resistor in series with the capacitor can be used to stabilize the feedback
loop and reduce the peak jitter gain. Since the attenuation of the phase
lag filter is constant at high frequencies, the final slope is 6 db per oc-
tave.

7.2 Noise Bandwidth

One of the functions of a phase -controlled oscillator is to reduce noise.
In the absence of better information, it is usual to assume that some-
where in the system the noise is white and Gaussian. Since most of the
noise at the output is usually restricted to a narrow band by the filter-
ing action of the circuit, it is convenient to express the amount of noise
that remains as the bandwidth of an ideal filter (i.e., rectangular filter)
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that would pass the same mean square noise. The familiar formula for
computing noise bandwidth is

B = I G(co) 12 dco, (17)

where G(w) is the normalized transfer function between noise input and
noise output, and B is in radians per second. The transfer function which
is used for G(w) will depend on where the noise input and output are,
and this in turn will depend on the application.

When the phase -controlled oscillator is used to clear up jitter in dig-
ital signals, the appropriate transfer function is Y, the ratio of output
phase shift to input phase shift, as given in (9). We will call the noise
bandwidth of Y the jitter bandwidth B . When we substitute (9) into
(17), we have

2

1 -I-
T2

B.; J.
T1 (18)

ira 2 1 +

We recall that Nira is the lock frequency. An increase in N increases the
lock frequency without changing Bi .

For no filter, or for any RC filter, the normalized jitter bandwidth is
Z. For T22/T1 much greater than 1, the normalized jitter bandwidth
approaches i(r2/71). The jitter bandwidth is shown on the filter plot
in Fig. 7.

With a sawtooth phase comparator, the jitter bandwidth is inde-
pendent of the mistuning. This is not true of the sinusoidal comparator.
The jitter bandwidth for the sinusoidal case is

2
, T2

1 - COS (pe
B; 1 Ti-= cos ice (19)
ira + 72 cos Cp.

where a is the gain at zero error.
Equation (19) can be obtained from (18) by replacing a by (a cos

(Pe), the small signal gain at a quiescent phase error Pe . Note that a is a
factor in ri and 72 . Notice that the jitter bandwidth for the sinusoidal
comparator decreases as the mistuning (and therefore v.) increases.

Now let us consider the effect of interference due to broad -band noise
added to the input signal. To justify a small signal analysis, we must
assume that filtering limits the total energy of the interference, to keep
it well below the signal level. However, we assume that the filtered
noise is essentially flat in a band around the signal which is much wider
than the interference noise bandwidth which we shall derive.
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The effect of interference depends strongly on the type of phase com-
parator in the system. We shall analyze the linear zero -crossing case
and the sinusoidal mixer or sampler case.

Interference noise disturbs both the phase and the amplitude of the
input signal. When a zero -crossing comparator is used, only the phase
disturbance is detected. If the noise power density is v2 (volts' per
radians per second) and the input sinusoid has a peak vi , the jitter
"power" density for phase in radians is (v/vi)' (radians' per radians
per second).

The output jitter will he

V(po2 = B: (20)
vi2

The effect of broad band input noise is quite different when a sinu-

2
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soidal sampler or mixer phase comparator is used. The following dis-
cussion assumes that the reader is familiar with the literature of the
sinusoidal comparator. With this type of comparator, noise at the input
produces a voltage at the output of the comparator which is independent
of the amplitude and phase of the input signal. The noise density of the
comparator output voltage is (advi)2v.2 where vi is the expected peak
signal amplitude used in computing the expected al at zero error (if no
limiting is used with this type of comparator, the gain depends on the
signal amplitude). When the comparator is connected in a feedback
loop, the appropriate method of analysis is to consider the interference
noise injected at the output of the phase comparator. The appropriate
transfer ratio is that previously used for modulation in (12).

The interference bandwidth B, can be found by substituting (12) into
(17) ;

Bi 1
cos (p

2

1 )
r cc

- 2 ( COS co. ) -1 1 ± (r2 cos coe)

This is the noise bandwidth given by Rey.'
Notice that the interference bandwidth Bi increases as the phase

error increases, while the jitter bandwidth B decreases. The reason for
the difference is that the sampler and mixer comparators are sensitive
to the amplitude of the input signal as well as the phase.

Now we can compare the output phase noise performance of the linear
zero -crossing comparator with the sinusoidal sampler or multiplier type.
If they have the same gain at zero error, they will have the same re-
sponse to jitter and interference at zero error. In the presence of mis-
tuning, however, the sinusoidal comparator will be more sensitive to
interference and less sensitive to jitter while the linear comparator will
not change.

When the phase -controlled oscillator is used as a demodulator, still
another definition of noise bandwidth is required. If we take the output
signal after the filter, which cuts off some of the noise, and assume that
interference noise is added to the input signal, we have for the zero -
crossing detector,

V2 = [-S 171 ala2 Vn
a vi

(21)

(22)

By substituting the expression in brackets into (17), we can find the
demodulator noise bandwidth, BD . This bandwidth is not finite for the
phase lag filter, because the transfer ratio does not approach zero at
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high frequencies. Therefore higher order filters are desirable for this
application.

7.3 Peak Jitter Gain

We have shown in Fig. 6 that it is possible for the jitter transfer ratio
to be greater than unity. In most systems, this is not very harmful.
However, where phase -controlled oscillators are connected in cascade,
gain can be very troublesome.

We can find the peak gain I Y I by examining (15) for its maximum.
The frequency at the peak is

2 2

= 1
i+R.) [2 (ri - 72) - 1]) - (23)a r22 "Ti

A. J. Goldstein' has shown that the square of the peak magnitude can
be written

kr /6\ 4.

An examination there and the gain is
never greater than unity if

1 -
(24)

71 - 72 < (25)

The peak gain is shown on the filter plot in Fig. 8.

7.4 Response to a Step Change in Phase

Fast phase changes can occur because of quick changes in the trans-
mission path or because the signal has been deliberately modulated.
When a step in phase occurs there is a sudden change in the phase error,
since the phase of the oscillator cannot change instantaneously. The
error signal controls the oscillator so that the error returns eventually
to its quiescent value.

To act like a step change, the phase shift does not have to be instan-
taneous, as long as the rise time is much less than the shortest time
constant of the phase -controlled loop. Therefore if the phase comparator
works from a subharmonic of the input frequency the amplitude of the
phase change can be several input periods, as long as the change is slow
enough for the subharmonic generator (counter, etc.) to follow, but
faster than the loop time constants.

If a counter is used as a subharmonic generator, an error in the counter,
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or an extraneous pulse introduced into the counter, will act like a step
change in input phase.

The response of the phase error to the phase input is given in (10).
When the input phase is a step of amplitude Asp; , the time response of
the phase error can be shown to be

[
COn

ye), = AicieEwni cosh (ve - iwnt) a
.02- 1

 sinh we - -jw.t)

(26)
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For the underdamped case (E < 1) the hyperbolic functions in (26)
become trigonometric functions. The damping ratio E and the natural
frequency wn have been defined in (11).

At t = 0, just after the step, we see that the phase error equals the
change in input phase. If we examine the initial derivative of (26), we
find that it is never positive. This means that the phase error will never
exceed its initial value.

Some examples of the phase error response to a step change in phase
are shown in Fig. 9.

7.5 Response to a Step Change in Frequency

A sudden change in frequency can occur because of a change from
one source to another, because of malfunction, or because the signal has
been modulated. When a frequency step occurs, the error signal builds
up until the oscillator frequency catches up to the input frequency,
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Fig. 9 - Scope traces of the response of the phase error to a step change in
phase of the input.
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leaving a static change in phase error. If a low-pass filter is used between
the phase comparator and the oscillator, the transient phase error can
have a peak value much greater than the quiescent phase change.

Let us assume a frequency change Acoi . This is equivalent to a ramp
phase input, Awit. We can use (10) to find the response of the phase
error:

A i
Ewnt[-e cosh ( '02 - 1Wt)We =

a

(27)
a- -- sinh ( -02 - 1 (.0,,t).02 _

Some examples of the phase error response to a step change in input
frequency are shown in Fig. 10.
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The peak phase error is of particular interest. For the overdamped
case it is

Au), , + tanh-1 Vt2 - 1 (28)4^a4^a =Ti - T2 exp
a 02

Wn

a

For the underdamped case, the inverse hyperbolic tangent is replaced
by the inverse trigonometric tangent. The value of this angle is between
zero and r. An expression closely related to (28) has been derived by
R. D. Barnard,' as a capture condition.

A large value of 71 can result in overshoot which is many times the
quiescent phase error. This means that the response of such a system
to a sudden frequency shift looks like a pulse. This characteristic is
useful in demodulation of a frequency shift signal.

The large overshoot can throw the loop out of synchronism if it ex-
ceeds the capacity of the phase comparator. This effect will be discussed
more fully in Section 8.5.

The normalized peak phase error is shown on the filter plot in Fig. 11.

VIII. LARGE -SIGNAL PROPERTIES

We have examined the operation of the synchronized phase -controlled
oscillator when the error is within the range of the phase comparator.
For this "small -signal" case, the problem was completely linear. When
the circuit is not in synchronism, or when disturbances of the input
signal are large enough to produce a phase error which exceeds the range
of the comparator, discontinuities are present in the output and the
problem becomes nonlinear. Despite this difficulty, we have been able
to analyze certain large -signal properties of the phase -controlled loop
with a sawtooth comparator. These are the pull -in frequency, the seize
frequency, the settling time, the maximum allowed frequency shift,
and the effect, of certain types of jitter on large -signal performance.

8.1 Pull -in Frequency

A very important property of the phase -locked loop is the range of
frequencies that can pull the oscillator into synchronism. In general,
this range is smaller than the range of frequencies which can be held in
lock. When the system is not synchronized, the phase comparator goes
through periodic discontinuities, which prevent the loop from synchro-
nizing. Whether or not a loop will pull a given frequency into lock de-
pends on the past history of the loop and the jitter of the signal.

We define the pull -in frequency as the maximum steady mistuning
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of the input frequency that will always pull the circuit into synchronism.
Frequencies outside of the pull -in range but inside the lock range may
or may not be pulled in, depending on the initial conditions.

We can determine the pull -in frequency experimentally by mistuning
the input beyond the lock frequency and then slowly reducing the mis-
tuning until the circuit locks. When the mistuning exceeds the lock
range, there are frequent discontinuities in the phase error; it appears
to "flicker." As the mistuning is slowly decreased, the flicker rate de-
creases.

When the mistuning is brought down to the pull -in frequency, the
flicker mode becomes unstable. With the mistuning then held constant,
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just under the pull -in frequency, the phase error trajectory from dis-
continuity to discontinuity slowly changes as shown in Fig. 12. Finally,
the error misses a discontinuity and synchronism is achieved.

The pull -in frequency, then, is the mistuning for which the stable
asynchronous mode disappears. For lower values of mistuning, the cir-
cuit must eventually reach a synchronous condition since there is no
asynchronous solution.

A. J. Goldstein4 has found an exact answer for the pull -in frequency
Wp ;

wp 1 -D
(D) tanh tcon To (29)

Nara tank itcon To i

where To , the critical flicker period, is the smallest positive solution of

tanh -}to).To

tanh - 1 w To

= \frit - - 1 -T1 (

72

and D is given by

(,(\/r E - 1) - rice - 1)
Cie - Ti(E2 - 1)

For the underdamped case (damping ratio E < 1) the hyperbolic tan-
gent is replaced by the trigonometric tangent.

A. J. Goldstein4 has used a digital computer to evaluate (29). The
data is presented on the filter plot in Fig. 13.

We can see from (29) that the pull -in frequency is directly propor-
tional to the lock frequency Nara, for a given set of parameters r1 and
72  We will call wp/Nra the pull -in to lock ratio, or the relative pull -in.
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Fig. 12 - Scope trace of the phase error after the mistuning is brought just
below the pull -in frequency. The flicker mode becomes unstable.
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We have shown that the small -signal properties of the phase -con-
trolled oscillator are completely specified by the parameters ri , r2 and
a. Therefore, for constant small -signal performance (such as noise band-
width), the pull -in range is proportional to the count ratio N. We can
get any pull -in frequency we wish by using a large enough count ratio.

There are two limitations on increasing the count ratio. The first is
economy; high counts require more equipment. The second is theoretical.
The comparator supplies data only once every period of the submultiple
frequency. For our analysis to be valid, the submultiple frequency should
be much higher than the cutoff frequency of the forward path, which
is of the order of w . This limits the maximum count.
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For T2 >> 1, and T2/Ti < 0.5, the pull -in frequency approaches

2
W VT2

N/ra NA1 Ti
(30)

It is interesting to compare the pull -in frequency of a sawtooth com-
parator to that of a sinusoidal comparator' with the same gain at zero
error. The normalized pull -in frequencies for both types of comparator
are shown in Fig. 14, for a damping ratio E of 1.

Fig. 14 shows that the sawtooth phase detector has a pull -in frequency
at least twice that of a sinusoidal detector which has the same small -
signal performance.

8.2 Figure of Merit

In most applications, a large pull -in frequency and a small noise band-
width are desired. Unfortunately, these requirements are antagonistic,
since a small noise bandwidth means that the loop cannot react to a
rapidly flickering phase error. Examination of the formulas for pull -in
(29) and jitter noise bandwidth (18) shows that both are proportional
to the gain, a. Therefore a natural figure of merit is the ratio of pull -in
frequency to the jitter noise bandwidth:

11I= B''.

Since the pull -in frequency is proportional to the count ratio N while
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Fig. 14 - Normalized pull -in of the sinusoidal and sawtooth comparators for
a damping ratio of 1/2.
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the noise bandwidth is independent of N, the figure of merit is propor-
tional to N. This means that we can get as large a value of pull -in as we
wish for a given noise bandwidth, if we are willing to use a large count
ratio.

The normalized figure of merit M/N is shown on the filter plot in
Fig. 15.

D. Richman8 has defined a different figure of merit, since he wished
to compromise between noise bandwidth and gain. His figure of merit
is equivalent to our normalized noise bandwidth (18), plotted in Fig. 7.
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8.3 Seize Frequency

As long as the mistuning of a signal is less than the pull -in frequency,
we can be sure the circuit will lock; but it may flicker for a long while
before it does.

For some applications, it is important that the circuit synchronize
immediately on a signal that has just started, without flickering through
discontinuities. We define the seize frequency co, as the maximum mis-
tuning of a suddenly connected signal that cannot cause a discontinuity
after the initial phase jump (see Fig. 16).

We have described a phase comparator which produces a zero error
signal when there is no input signal. With such a device, the effect of
suddenly connecting a signal is equivalent to a step phase shift of an
arbitrary value between -Nir and +Nr and a step change in frequency
equal to the mistuning of the signal w,,, .

In the marginal case, the phase error between the oscillator and the
signal at the instant of connection is nearly N7r. The seize frequency is
the value of mistuning for which the initial derivative of the phase error
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Fig. 16 - Scope traces of the phase error during capture.
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is zero, so that no discontinuity results. It is easily shown that

Cds T2

Nina ri
(32)

Note that a circuit with an RC filter ( T2 = 0) may go through a dis-
continuity for any nonzero mistuning, if the initial phase shift is large
enough.

According to Riclunan8 the seize frequency for the sinusoidal com-
parator is a( T2/71). As indicated by a comparison with (32), the seize

frequency in general is simply T2/Ti times the lock frequency.

8.4 Settling Time

The settling time is the time required for the phase error to settle
nearly to its steady state value after a change in input conditions. If no
discontinuity occurs, the settling time t, may be estimated to be the
time at which the damping term e-writa [in (26) and (27)] decays to 0.1.
Then, substituting for E according to (11),

4.6ta - . (33)
T2 ± 1

If a discontinuity is crossed, an additional time will be required to
allow the flickering to die out. During each flicker period a small charge
is added to the filter capacitor, bringing the average output frequency
of the oscillator closer to the input frequency. Finally, the circuit locks.

The flicker time for a given mistuning depends on the initial conditions,
especially on the initial capacitor voltage. For the special case of a sud-
denly connected signal (initial capacitor voltage zero), D. Richman has
derived8 an approximation for tp , the time in the flicker state, for the
sinusoidal comparator.

He assumes that the capacitor voltage does not change appreciably
during a single flicker period; in effect, he replaces the capacitor with a
variable battery. Further, Richman neglects the effect of the initial
phase. By applying his methods to the sawtooth comparator, we ob-
tain:

tfr.

-

(1 (col)
T.) COL (34)

Ti 04) WIrwmiwL

WL

(T
cOL2

-r (1 - [coth (71 --)]
T2 COL

where wr is an "instantaneous mistuning" parameter introduced by
Richman.
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Equation (34) is a good approximation for T2 >> 1 and tF >> t8 .

To carry out the integration, we must use numerical methods. We have
plotted tF/712 against co,/wL for various values of r2/Ti in Fig. 17. Ex-
perimental results are also shown in Fig. 17.

Note that tF goes to zero as co., approaches the seize frequency and
to infinity as con, approaches the pull -in frequency. If a short pull -in
time is important, the mistuning frequency should not be allowed to
approach the pull -in frequency.

8.5 Maximum Frequency Shift

Consider a phase -controlled oscillator which is locked on an input
which is frequency modulated by a digital signal (frequency -shift key -
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Fig. 17 - Flicker time during pull -in. The time is zero for mistuning less than
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ing). Let us find the maximum frequency shift that will not cause the
phase error to cross a comparator discontinuity. We assume that the
center frequency of the oscillator is set midway between the two signal
frequencies. We further assume that the time constants of the phase -

controlled oscillator are much smaller than the maximum time between
shifts, so that the circuit may be in steady state before the next shift

occurs.
We will consider the case of a sudden increase of frequency ACOi . The

initial phase error is -( Acod2a). The maximum allowed phase error is

+Arr. Thus the peak change in phase error (P caused by the maximum
allowable change of input frequency AA; , is

93, = Na (35)

The error 0, has been given in (28). Solving (35) for AQi in terms of

0,/,643i , we have:

z16,- 1

Nara 4, 1 (36)
A61 2

In the presence of mistuning, N7 in (35) and (36) is replaced by the
margin (per , given in (3). Values of agSe/Acoi have been plotted in Fig. 11.

8.6 Effective Comparator Characteristic in the Presence of Fast Jitter

One of the functions of a phase -locked oscillator is to produce a steady
output despite jitter and noise in the input signal. Therefore, we can
expect that a major part of the phase comparator output will have fre-
quencies much higher than the oscillator can follow. In such a situation
only the low frequency component of the comparator output is signi-

ficant in controlling the circuit.
The low -frequency component of the comparator output is the time

average taken over a time interval which is longer than the period of
the predominant jitter, but shorter than the response time of the cir-
cuit. The following analysis assumes that such an intermediate time
range exists; i.e., that there is very little jitter whose frequency is low
enough to cause the circuit to respond.

Let us write the phase error as the sum of a low -frequency component
cpeo and a fast jitter component vei . Then the instantaneous output of
the phase comparafor is Ave° + (0,4). The average output of the com-
parator is
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1 T.
vl = -

o
f Goa dt, (37)

where T. is the averaging time.
Let us define an effective comparator characteristic in the presence of

jitter:

v; = fi(Peo) (38)

This new characteristic governs the response of the circuit to slow phase
changes in the presence of fast jitter.

Now we assume that the time of integration is such that the time
spent at each value of ape; is proportional to the probability density of
co.; at the value. For random processes, this requires that T. be much
greater than the correlation time of the process. If vej is periodic, it is
sufficient that T. be equal to one period.

If this assumption is valid, we can replace the time integral (37) by
an ensemble integral:

= f+ce f (soeo so,v)P(vei) dioci (39)

where p(coej) is the probability density of the jitter.
Equation (39) represents a smoothing operation by the jitter prob-

ability function upon the comparator characteristic. If the density func-
tion has even symmetry, (39) is analogous to the general filter equation

vout(t) = f vin(t - r)i(r) dr (40)

where i( r) is the impulse response of a hypothetical filter.
The effective sawtooth comparator characteristic for Gaussian, sinu-

soidal, and square wave jitter is shown in Fig. 18. These photographs
were obtained by opening the phase -controlled oscillator loop and allow-
ing the oscillator to free run. This means that the average phase error
coo increases linearly with time. The phase comparator output was passed
through a low-pass filter to obtain h((p,0).

Note that jitter always decreases the peak comparator output voltage.
For Gaussian noise, we can evaluate (39) by neglecting the possi-

bility of jitter crossing two or more discontinuities. Then the effective
comparator characteristic for ( -Nr < veo < +Nir) is

co

fi (tPoo) = voo + N27r L
-xi

1_e-(x212).;r dx
1

-f ---e-(x2")dx (41)[
°2 Vair



592 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

where

xl
Nr (Poo

(i0c)rins

(goe)rms

(ipe)rms is the root mean square phase error due to fast jitter.
The peak effective comparator output for Gaussian jitter is plotted

in Fig. 19.
The effective comparator function for the sinusoidal comparator is

very easy to find, using the filter analogy:

f (so.) = sin (Pe

f i(4080) = e-I(Ce)rms2 sin va 

Therefore the effect of high -frequency Gaussian jitter for the sinu-
soidal comparator is simply to reduce the loop gain.

In general, the. presence of fast jitter causes a deterioration of large

N7 - (NO
X2

(a) NO JITTER

(b) GAUSSIAN
JITTER

(C) SINUSOIDAL
JITTER

(d) SQUARE WAVE
JITTER

and

+N77,

0
D

-N77

-N77 0 +N77
PHASE ERROR

+ N77,

O °_-

D
- N77

-N77 0 + N77

PHASE ERROR

+ N77

O I-
D

-N77
-N77 0 +N77

PHASE ERROR

-N77 0 +N77
PHASE ERROR

+N77

O
a.

D
-N77

(42)

Fig. 18 - The phase comparator characteristic in the presence of fast jitter.
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Fig. 19 - Normalized lock frequency (peak comparator output) in the pres-
ence of fast Gaussian jitter.

signal performance. For example the lock frequency depends directly
upon the peak comparator output, which decreases as jitter increases.

8.7 False Synchronization Mode

As shown in Fig. 18(d), the sawtooth comparator characteristic can
have a region with positive slope centered on an average phase error
N7r. This means that the circuit can synchronize in this region instead
of the region near zero error. In this false mode the jitter continually
crosses and recrosses the discontinuity.

Fortunately, this undesirable mode is possible only for certain types
and amplitudes of jitter. We can test for the possibility of the false mode
by examining the slope of fkpeo) at Nir. We can write f (co.) in the vicin-
ity of N7r as (pc - 2N1rU ((pc - Nir), where U is the unit step function.
Substituting this in (39) and taking the derivative, we have

dii(veo)
d(cod)

= 1 - 2N7rp ( 0),
NT

(43)

where p(0) is the probability density of y at 0. Therefore the- false
mode is possible when p(0) < 1/2N7.

For square wave jitter, p(0) = 0. Therefore the false mode is always
possible.

For sine wave jitter with an amplitude A ,p(0) = 1/A7. Therefore
the false mode is possible only when A > 2N. Since the comparator can
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accommodate only jitter error amplitudes less than irN in the normal
mode, we are not likely to encounter sinusoidal jitter large enough to
support the false mode.

It can be shown by using the filter analogy that Gaussian jitter cannot
produce the false mode; the slope of f1(Nir) is always negative. The p(0)
criterion is not applicable in the case of Gaussian jitter because more
than one discontinuity is involved.

We see that the false mode need be considered only for signals with
jitter such that p(0) is very small.

Even if the false mode has been established, a lull in the jitter will
cause the circuit to jump to the normal mode. It will stay in the nor-
mal mode even if jitter returns, as long as no discontinuities occur.

IX. DESIGN METHODS

We have analyzed many properties of the phase -controlled oscillator
with a sawtooth comparator. Some of these properties, notably the lock
range, pull -in range, and noise bandwidth are significant in nearly all
applications of the device. Others, such as peak jitter gain, seize fre-
quency, and settling time are important only for certain specific applica-
tions.

Usually, in a particular design problem, two or three of the properties
will be of prime importance and the rest can be neglected. Then the
problem is to find the values of the design parameters (a, r1 , T2) which
yield the best combination of the important properties. If the properties
are simple, like the lock frequency (N7ra), it is easy to find the best
design.

0.1 Filter Plot

Unfortunately, most of the properties of the phase -controlled oscil-
lator turn out to be complicated transcendental functions of the design
parameters T1 and T2 . Therefore we have presented many of the prop-
erties as contour curves on a plot of Ti vs. T2 , which we call the filter
plot (Figs. 5, 7, 8, 11, 13, and 15). Most of the properties are normalized
through division by the gain constant a. In some cases, the count ratio
N is also used as a normalizing factor.

ri and T2 are the time constants of the phase lag filter (Fig. 4b), mul-
tiplied by the gain a. We have plotted T1 and T2 on logarithmic scales,
to allow the presentation of large ranges. A useful property of these
scales is that a given percentage change in Ti or T2 appears as a constant
displacement on the plot. This facilitates estimating the effect of vari-
ations of the parameters.
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TI is always larger than T2 ; therefore the possible designs are restricted
to the region below the 45° line on the plot. Points along this 45° line
are identical, and correspond to the case of no filter. When r2 is zero,
the phase lag filter degenerates to the RC filter. Since this case is of some
interest, we have provided a zero T2 axis below the plot and indicated
the intersection of the various contours with this line.

9.2 Approximate Relations

An examination of the filter plots shows that there are large regions
where the contours approach straight lines. It is possible to derive sim-
plified formulas for these regions. A summary of these approximations
and the conditions for their validity is given below.

2full -in frequency.ti
Nara -V3

Bj T2Noise bandwidth: - - (T22/71 » 1)
era 7.1

Figure of merit:

- (7-2 >> 1)
71

M 4

N = V (T2- / >>

Peak error, fre- 0,
(7-22/7-1 >> 1 )quency step: OWt r2

Equation (44) has been derived from (29) by A. J. Goldstein.4 Equa-
tion (45) can easily be found from (18). Equation (46) is found by
dividing (44) by (45), according to the definition (31). Equation (47)
can be derived from (28).

These approximations sometimes allow analytic methods to be used
to find an approximate optimum solution. This requires justification of
operating in the region where the approximations are valid.

(44)

(45)

(46)

(47)

9.3 Optimization Techniques

There are several types of optimization methods, which we shall dis-
cuss in order of increasing difficulty.

The simplest method optimizes one property by varying one param-
eter, all other parameters being fixed. This yields a class of designs which
has one less parameter than the general case. The remaining param-
eters can be assigned to satisfy requirements on other properties, in
confidence that the final design will have high performance for the op-
timized property.

An example of this approach has appeared in the literature." The
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gain a and the time constant ri (which together specify the resonant
frequency) are held constant and the time constant r2 is varied to min-
imize the noise bandwidth B; . This process restricts the design to

T2 + 1 = VT1 + 1. (48)

For large values of 71 , the damping ratio E approaches 0.5. Equation
(48) is plotted in Fig. 20, against the figure of merit contours.

Let us describe one procedure for designing a circuit using (48). The
gain a can be set to give the proper lock frequency. Then r1 and T2 can
be set to give the required pull -in frequency, while satisfying (48).

This approach is good, and yields rather useful designs. However, it
does not necessarily produce the best possible design for a given set of
requirements.
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Fig. 20 - "Optimized" designs of Jaffe and Rechtinw and T. Rey,, wit II t he
figure of merit contours on the filter plot.
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For example suppose the lock and pull -in frequencies have been speci-
fied, with a pull -in to lock ratio of 0.5. Following the above procedure,
we compare Figs. 13 and 20 to find that ri and T2 should be 18 and 3.2
to satisfy (48) and have cop/ceL = 0.5. From Fig. 7 we find that the nor-
malized noise bandwidth is 0.19.

To see that a better design than this is possible, suppose that T1 and
T2 were 100 and 20. Then the noise bandwidth would be 0.12, a large
improvement.

A more powerful technique is possible when some properties are speci-
fied by system requirements and another property should be optimized.
The specified properties are used to restrict the range of the design
parameters. Then the remaining range is examined to seek the optimum
design.

For example, suppose that the lock range has been specified, and the
normalized noise bandwidth is required to be less than 0.2. It is desired
to maximize the pull -in frequency. A comparison of Fig. 7 and Fig. 13
shows that the design should lie on the upper part of the 0.2 noise band-
width contour, and Ti and T2 should be as large as possible.

The most common problems require a compromise design which yields
good results for two or more properties. Sometimes it is possible to ex-
press the relative importance of the properties mathematically. Then
the optimum design can be derived analytically. A good example of this
is given by Jaffe and Rechtin,I° where the desirable properties are low-

noise bandwidth and a high peak phase error due to a frequency step.
Their design curve is shown in Fig. 20.

More often the relative importance of the properties is indistinctly
known, and the engineer must use his judgment in striking a compro-
mise. The filter plots are intended to aid this process by giving the en-
gineer a "feel" for the circuit properties over the entire range of the
parameters.

9.4 Numerical Example

To show how the design aids we have presented can be used in practice,
we will do a realistic problem.

A phase -controlled oscillator is to be designed to smooth jitter in a
1.5 megacycle signal. In the worst case of mistuning, the circuit must
pull itself into synchronism. We wish to design a circuit with low jitter
noise bandwidth.

The uncertainty of the input signal is ±10-5 or ±15 cycles per second.
The oscillator center frequency is controlled by a frequency deter-

mining element, which we shall assume to be a crystal, and by the sur-
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rounding circuit. We take the range of the crystal as ±10-5 or ±15 cps.
The effect of variations in the circuit will depend on the control the cir-
cuit has on the crystal, which is in turn related to the gain a. We assume
that the range of center frequency due to circuit variations is ±0.2
Nra.

The count ratio N is 4.
Let us make the following definitions:
88- maximum deviation of the signal frequency (rad per sec)
60- maximum deviation of the crystal tuning (rad per sec)
E - maximum deviation of the oscillator center frequency due to

circuit variations, divided by N7ra.
Then the maximum mistuning (which determines the pull -in frequency)
is

, = o = Ss 6 0 + eNra. (49)

If we assume that the final design will be in a region where the ap-
proximate relations hold, we can use (44) and (45) for the pull -in fre-
quency co, and the jitter noise bandwidth B..

When (44) and (49) are combined, we find

72 3 (6. + 5o y
+ e (50)

Ti 4 Nra

For this value of r2/7-1 , the jitter bandwidth is

B; = (68 + 60 + eY.
8 Nra (51)

Note that the only variable is a. When we minimize Bi by varying a,
we obtain

bs
a =- Nr '

2= 3E,
Ti

cop = 2(6 --I- 60), and

3 (6 60)E
B.;

2 N

When the numerical substitutions are made, we have

(52)
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a = 75 rad/sec per radian,

-T2 = 0.12,
Ti (53)

wp = 377 rad/sec, or 60 cps, and

B.; = 14 rad/sec, or 2.25 cps.

Now we have not yet completely specified the design, because we only
have the ratio of T2 and Ti . We can be confident of the numbers above
for any value of Ti , as long as we have the proper value of T2/Ti and as
long as we stay in the region where the approximate relations are valid.

If we make ri very large, we will require a very long time constant
in the filter. Therefore we will make ri just large enough to satisfy the
condition for the approximate noise bandwidth relation, T22/Ti >> 1.
Let us set TNT,. = 4. Then, from (53)

T2 = 33,

Ti = 275,

712 = 72 = 0.44 sec, and
a

(54)

Tl = Ti=
3.67 sec.

a

If high accuracy is required, the values of T2 and Ti given in (54) can
be used to find the exact values of cop and B; , instead of using the ap-
proximate values given in (53).

X. CIRCUIT MODIFICATIONS

A two mode system has often been usedli to increase the pull -in fre-
quency. In this system, a frequency detector as well as a phase detector
is used; the output of the frequency detector adjusts the oscillator tuning
until the phase -controlled loop can synchronize. This scheme greatly
extends the pull -in range, but requires additional hardware.

Another means of extending the pull -in frequency has been published
by R. Ley.9 Back-to-back diodes are placed across the series filter re-
sistor R1 . When the circuit is in synchronism and the jitter is small,
the diodes do not conduct. The small signal properties are just as we
have analyzed them. However, if the circuit is not synchronized, the
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flickering error voltage will cause the diodes to conduct, shorting out
R1. This will bring the pull -in frequency up near the lock frequency.

The major drawback of this method is that large jitter error voltages
will make the diodes conduct, and be passed on to the oscillator.

Either or both of these methods may be used to greatly extend the
pull -in range if the other system requirements permit their use.

XL SUMMARY

' Nearly all the properties of the phase -controlled oscillator which
have appeared in the literature have been analyzed for the case of the
sawtooth comparator and the phase lag filter.

New theoretical' material has been introduced on the effects of fast
noise and jitter.

The sawtooth comparator has advantages over the sinusoidal com-
parator for many applications. The reason for this is that the gain of
the sawtooth comparator remains constant over a broader range of

operation.
The properties of the phase -controlled oscillator are presented in a

manner which facilitates design without unnecessary restrictions. Vari-
ous methods of design are discussed, and numerical examples are pro-
vided to illustrate the methods.
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GLOSSARY OF IMPORTANT SYMBOLS

A Laplace transform is denoted by capitalizing the symbol.

Bi jitter noise bandwidth
Bi interference noise bandwidth
BD demodulator noise bandwidth

f(ve) comparator function
f;(9.0) effective comparator function

G(w) any normalized noise transfer function



PHASE -CONTROLLED OSCILLATOR 601

H(s) filter transfer function
al de gain, comparator
a2 de gain, filter
a3 frequency to voltage ratio, oscillator

a = aia2a3 open loop dc gain

M = figure of merit

N count ratio
T1 large filter time constant
T2 small filter time constant
t, settling time
tp flicker time
v1 comparator output voltage
v2 oscillator input voltage
vn interference noise density
vi signal voltage amplitude

vm modulating voltage
Y jitter transfer function
Y peak jitter gain

1 7-2 + 1

/ damping ratio

coi input phase
Api change in input phase

coo output phase
99, = i - (Po phase error

c8c peak phase error
(per phase error margin
v(0 short -time average phase error
(pc; phase error due to fast jitter

((Pe). root mean square of coca
Ti = «771 large filter time constant (normalized)
TZ = aT2 small filter time constant (normalized)

w input frequency
Acoi change in input frequency
Awi maximum frequency shift
w,,, mistuning frequency

con = v-- natural frequency
T

COL lock frequency
w pull -in frequency
co, seize frequency
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Analysis of the Phase -Controlled Loop
with a Sawtooth Comparator

By A. JAY GOLDSTEIN

(Manuscript received October 18, 1961)

Because of the recent interest in phase -controlled oscillators, a discussion
of the phase -controlled loop with a sawtooth comparator is presented. The
main emphasis is on finding the pull -in range of the loop. A companion
paper in this issue (Ref. 4) deals with applications and shows how design
parameters can be obtained from results developed here.

I. INTRODUCTION

The phase -controlled oscillator has evoked much interest in recent
years. Some of its applications are to synchronism in television," syn-
chronization to a harmonic of a crystal oscillator,' elimination of jitter
in pulse code modulation,4 tracking filters, etc.

The general phase -controlled oscillator loop is given in Fig. 1. The
incoming signal and the variable oscillator have the same free -running
frequency we . The phase comparator has as its output some function f
of the phase difference so, = - co . As examples of Ace) we have

the linear case:

the sinusoidal case:

f(soe) = (Pe

f('pe) = sin sae

the sawtoothed case Asa.) = so, for < <

(see Fig. 2): Ave nd) = five) for n = -1,0,1, .

The output of the phase comparator passes through a filter whose im-
pulse response is h(t). The output of the filter v(t) controls the variable
oscillator according to the equation

4, = av(t). (1)dt

603
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SIN (Wct + Sot.
PHASE

COMPARATOR

1

f soo FILTER
h (t)

v(t)
VARIABLE

OSCILLATOR

SIN (Wet + soo)

Fig. 1 - The general phase -controlled loop.

Thus, the frequency of the controlled oscillator is

dioo
co = co, + av(t).

In a companion paper in this issue, C. J. Byrne4 discusses the engineer-
ing origins and applications of the sawtoothed comparator and shows
how design parameters can be obtained from the results of this article.

This article is primarily concerned with finding the pull -in range of
the loop. This is defined precisely in Section III. Briefly it is the maximum
asymptotic (in time) value of the mistuning clioddt for which the slave
oscillator eventually synchronizes or locks to the input frequency. All of the
literature cited in the references deals with this problem for the case of
a sinusoidal or linear phase comparator. The linear case is easily solved
since the resulting differential equation is linear. (See in particular
Labin8 for a detailed discussion.) In the sinusoidal case the differential
equation of the system is nonlinear. Only in the cases of no filter and an
ideal integrator has the equation, up to the present, been solved in closed
form. See Labin8 for an excellent discussion of the no -filter case. In order
to handle the nontrivial filter, many authors have used methods of

phase plane analysis. e'''$ Phase plane analysis is restricted to the prob-
lem of capture range in which the mistuning and phase error are zero
for negative time, and the mistuning is constant for positive time. This

Fig. 2 - The sawtoothed phase comparator characteristic. The phase error
coe is difference between the input and output phases of the loop.
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kind of analysis gives only upper and lower bounds for the capture
range and is restricted to a lag filter (Fig. 3). For an RC filter (R2 = 0),
Barnard8 shows how phase plane analysis can give exact results.

To obviate the mathematical complexities, people have resorted to
making various hypotheses about the nature of the solution of the non-
linear differential equation. These assumptions are based upon physical
intuition and gross behavior observed in the laboratory. Different as-
sumptions have led to different approximate solutions for the capture
range. Moreover, they deal primarily with the lag filter, since it leads
to a second -order differential equation while a more general filter gives
a higher -order differential equation.

The loop equation when expressed as an integral equation is

= -a f fkoe(e)]h(t - 1') dt'(400

dt- avo(t).
0

It is surprisingly tractable for the sawtooth comparator, and the pull -in
range can be computed for any filter. Fig. 4 shows the excellent agree-
ment between theory and experiment for the lag filter. These experi-
mental results were obtained by C. J. Byrne.

To obtain our results, we too must make an assumption. While the
assumptions other authors have made deal with the behavior (in steady
state) when far outside the pull -in range, ours deals with the behavior
just outside of the pull -in range (see Section 4.4). This hypothesis is
easily verified experimentally and has been so verified by C. J. Byrne
for a representative selection of RC filters.

A brief description of each section follows.
Section II gives the basic integro-differential equation of the loop.
Section III defines the lock and pull -in range. The former is called by

some the pull-out range. The lock range is the maximum frequency
difference that the loop can lock to. It is given by

co!, = af,naxH(0)

0

Fig. 3 - The integral compensating or lag filter. The normalized time con-
stants are 2-1 = ce(Ri R2)C and Ty = aR2C. For an RC filter 72 = 0. a = (V. F. O.
output frequency shift )/(V. F. 0. input voltage).
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Fig. 4 - The relative pull -in range. For critical damping (7-.2 + 1)2/4 = n and
for the RC filter R2 = 0.

where H(0) is the dc gain of the filter and fmax is d/2 for the sawtooth
comparator.

Section 4.1 gives the solution of the basic loop equation. This solution
is the sum of (1) the solution of the linear phase comparator problem,
(2) a series of step functions, and (3) a series of damped exponentials.
The solution is obtained by representing the phase comparator function
as the sum of the phase difference [giving (1)] and a series of translated
unit step functions [giving (2) and (3)].

Section 4.2 gives the steady-state solution when not captured. In this
case the output of the phase comparator is a periodic function whose
period for a fixed filter depends on the asymptotic relative mistuning
(Fig. 5). By examining this non -capture situation we obtain the pull -in
range. We observe that in non -capture state the period and relative
mistuning must correspond to a point on a curve typified in Fig. 5.
Hence a relative mistuning lying below the minimum point of the curve
corresponds to a capture or synchronized situation, and the height of
the minimum gives the ratio of pull -in to lock range (the relative pull -in

7p).
Section V gives all the explicit design formulae for the lag filter. For

the special case of the RC filter (R2 = 0 in Fig. 3) an explicit formula
for relative pull -in can be given, namely
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{ tanh 5 («RIC - D-1 (aRiC >= I)
47p =

1 (aRiC 1)

In all other cases we must find the roots of a transcendental equation by
numerical approximation methods.

Byrne' gives graphs of the results of Section V for the lag filter. These
are graphs of relative pull -in (Fig. 13), noise bandwidth (small signal)
(Fig. 7), figure of merit (relative pull-in/noise bandwidth) (Fig. 15),
and maximum loop gain (small signal) (Fig. 8).

The noise bandwidth is a measure of the ability of the loop to reject
small phase noise. More explicitly, the noise bandwidth N of a network
is defined to be the bandwidth of that ideal low-pass filter which passes
the same white noise power as the given network.

There are many possible ways of defining a single measure of the
performance of the system, depending on the particular application in
mind. We have chosen the figure of merit ryp/N, i.e., a large figure of merit
implies high noise rejection and large relative pull -in.

T = PERIOD -31.-

Fig. 5 - Relative mistuning com/coL in a non -synchronized steady state vs the
period T of the comparator output. (a) no filter, (a) and (b) overdamped loop and
(c) underdamped loop.
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For small phase deviations of the input, the comparator can be con-
sidered linear. We can then discuss the gain of the loop as a function of
the frequency of the phase deviation. The maximum of the loop gain is
denoted by Y. In some applications Y is restricted by stability considera-
tions to be less than unity.

Section VI is devoted to the derivation of several interesting asymp-
totic results for the lag filter. A simple formula is obtained for the
relative pull -in for large values of the filter time constants. It is also
shown that if the maximum loop gain is allowed to have a fixed value
greater than unity, then, by appropriate choice of the time constants,
arbitrarily large values of the figure of merit can be obtained.

This work could not have been completed without the aid of M.
Karnaugh who suggested the problem, E. G. Kimme who proved that
the sawtooth comparator is a continuous approximation to the original
discrete sample data system, C. J. Byrne whose experimental work con-
firmed the formulae derived here, D. E. Rowlinson who constructed the
contour curves from the computer data, and R. D. Barnard with whom
many fruitful discussions were held.

II. THE BASIC LOOP EQUATION

We obtain an integro-differential equation for the loop by noting that
the output of the filter can be written as a convolution plus initial condi-
tions

t ,fv(t) = f [ve(t')]11(t - t') dt' vo(t)

where vo(t) is the filter output due to residual charges and fluxes in the
filter at time zero. vo(t) damps out exponentially in all filters of interest.
Substituting this into (1) and replacing Apo by vi - epe we obtain

due = -a Jof[ve(t')]lt(t - t') +
dt °

- av (t) (2)

In order that the derivations which follow not be unduly complicated
by inessential parameters, we make the following normalizations

x(t) = 'pc(t)/fm. = d/2)
C(x(t)) = f(ve(t))/f.

io(t) = vi(t)/fm.
The normalized form of (2) becomes

dx = -a f CIx(t')lh(t - t') de ± - avo(t)/fma. (3)
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III. DEFINITIONS OF LOCK RANGE AND RELATIVE PULL -IN
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If the input frequency we dept/dt is increased "very slowly" to a
value which is not too large, the output frequency we 40/dt will
follow it (i.e., be always equal to, or locked to, the input frequency).
The maximum value of dpi/dt for which lock -in will occur is called the
lock range and is denoted by coi, . More precisely, WL will be determined
from (1) when the maximum dc voltage v is obtained. This maximum
value is clearly the product of «, /max the maximum value of the com-
parator function f and H(0) the dc gain of the filter.*

COL = afmaxH(0). (4)

Suppose that the input frequency is not increased slowly, but in some
sudden or erratic manner. Suppose moreover that the input frequency
approaches a limiting value, co., the mistuning; i.e.

,. &piurn -= Wm .e.. dt
In general, even if 0 < wm < wL (that is, we are in the lock range), the
output frequency will not asymptotically lock to the input frequency
(that is, be captured), but will be a modulated frequency. We define
the relative pull -in range -y,, to be that normalized maximum frequency
difference such that

implies

dpi
c. um

dt
= con, <

,.
11111 - w,,,.

dt

( 5)

(6)

Notice that we make no restriction on how dco/dt approaches 04, , as
long as I w, I < 7to,, .

IV. DERIVATION OF RESULTS'

4.1 Basic Equation

Let

0 < to < ti < t < .
* We shall use capital letters to denote the Laplace transform of the function

denoted by corresponding lower-case letters.
From here on we are dealing with the sawtooth comparator.
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be all the instants (called discontinuity points) at which the phase
difference x(t) crosses the discontinuity of C, i.e.,

lim x(tn - A) = x(tn- ) = 1 + 2n'
>0

where the first equality is a definition of x(tn- ) and where n' is an
integer dependent on n. Let

an = 1 if x is increasing at to

an = -1 if x is decreasing at In

a = 0 if x is stationary at to .

Using the unit step function

for t <0
u(t) =

1 for t z 0

we can express C(x(t)) in the analytically useful form

C(x(t)) x(t)
2 2 - no - ctiu(t - ti)

3-0

where no is an integer so chosen that this equation holds at t = 0.
We note here for future reference that

(7)

x(t-) = no ± + E a; . (8)
)=-0

Substituting (7) into the loop equation (3), we obtain

t
dt

1 fa x(e)h(t - 1') de ano f h(t')
0

t

+ a E a; f u(t' - t,)h(t - dt'
=0 0

(0)

1 (Iv - avo(t) /2fri. .

Solving this by Laplace transform methods we obtain

s'P(s) - 6(0) aVo(s)i/imax
+

no aH(s)1X(s) - 2(s + aH(s)) s s aH(s)

all(s)
s1=0 S aH(s).
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Letting

1R(s) - (10)
s aH(s)

we have

«1 - sR(s) - H(s)
(11)

s «H(s) 

Note that sR(s) is the transfer function between input phase vi and
comparator output phase ve for the linear comparator case. r(t) is then
the phase response at the linear comparator output due to a step in
input phase. Since applications will require the system to synchronize
to a step in phase, we will assume that r(t) -> 0 as t -> CO .

Using this equation and taking inverse transforms in the equation for
X(s) we obtain

x(t) xL(t)
no(1 r(t)) aiu(t - ti) - ajr(t - ti) (12)2 2 i=0

where

XL( s) - scF(s) - [coo(0) aVo(s)ltrin.
s arl(s)

xL(t) is the solution of the loop equation in the case of a linear com-
parator function f(x) = x.

Using the final value theorem° we have

.o( co) = lim xL(t) = lim sXi,(s) = lim (1(0
t-°3 «H(0)

2w,/d w,
«H(0)'XL( cc ) -

coz,

(13)

From (12) and (7) we have for the comparator output

C(x(t)) xL(t)
2 2

-E ajr(t - ti) nor(t). (14)

In a steady-state condition this reduces to

C(x(t)) = wm- 2 E air(t - ti) (15)
(oz.

where the nor(t) term vanishes because of the remarks following the
definition of R(s).
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4.2 Steady -State Solution When Not Captured

When we are not locked and in steady state, the output of the phase
comparator will be a periodic function.* We give here a simplified
heuristic derivation of the steady-state periodic solution. A rigorous
derivation is easily obtained using the heuristics as a guide. In steady
state, the normalized comparator output y(t) = C(x(t)) will be periodic
with a period which we will call T. In a given period there may be many
discontinuity points t; ; let us suppose there are k. Then assuming we
are in steady state, we can write

where

ink+i = nT T, +r, {n = -1,0,1, 
i = 0,1, ,k - 1

0 = To < T1 < < < T.

These relations are illustrated below.

Itnk itnk-1-1

nT T nT
I I ' I

r

(16)

+ 1)k

117 T T (n + 1)T +
>I

The a's will be periodic in steady state and we let

n = -1,0,1,
ank+i = A i = 0,1, - ,k - 1

It is no restriction to assume a time shift so that r = 0. Then, let

t = mT u (0 < u T)

and combine the above three equations with (14). We obtain

y(t) = C[x(t)] = C[x(mT u)]

= Wm/COL - 2 E ank,r(mT u - tnk-1-1)

= com/coL - 2 EA1 ErRm - n)T u -
1=0

(17)

(18)

(The second summation has the upper limit m because r(t) = 0 for
0.) Letting j = m - n, we obtain

k-1

y(t) = - 2 E Ai E r(jT u - Ti). (19)
WL i-o J=0

* A mathematical proof is not at hand. Indications of its truth are given in
Benes9 and experimental observations confirm this.
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Let us define a periodic function

p(t,T) = apt r(t jT) (0 < t 5 7')
p(t - nT,T) (nT < t < (n + 1)T)

or
+00

p(t,T) = E r(t jr).

(20)

(r(t)) = 0 for t < 0 makes p(t,T) a well defined function.) With this
definition, the normalized steady-state comparator output, when not
locked, can be written

k-i
y(t) = 422 - 2 E Aip(t - Ti ,T).

coL, i=o
(21)

The expression for p(t,T) is familiar to those in the field of sample
data systems.* Though superficially formidable, it can be expressed in
closed form quite easily for the only important class of the filter transfer
functions H(s), namely rational functions. In that case R(s) is a rational
function too. Hence r(t) is a linear combination of exponentials of the
form refit (real part of 13 negative). Then p(t,T) for 0 < t < T is a
linear combination of geometric series, each of the form

00

z(t) = E (1 + irmeo(i+m
i=0

dm 4°

= E et3(t+jr)
Om i=o

dm est

di 3m 1 -

This steady-state solution consists of a constant term 2conidaH(0),
which is the normalized steady-state output for a linear phase com-
parator plus a linear combination (with coefficients ±1) of time trans-
lates of the function p(t,T), which is periodic of period T. The derivation
shows that every steady-state periodic solution of the loop equation has
the form of (21).

Equation (21) hides several pitfalls. These are:
1. We must have I y(t) I < 1. Hence only certain T and Ti are

admissible.

(22)

+00

* It is the response of a filter R(s) to an input E jT).
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2. Are the solutions represented by (21) physically, realizable?
3. Are the solutions represented by (21) stable with respect to small

noise perturbations?
These three topics are grouped under the title Boundary Conditions
and will be discussed following a discussion of the pull -in range.

4.3 Relative Pull -in

From the definition of T, y(T -) = ±1 and by an appropriate choice
of T in (16) (if (.0, > 0) we may assume y(T) = 1. Then from (21)

k-1
= 1 + 2 E Aip( T - ,T).

WL i=o
(23)

Now the minimum value of Wm > 0 for which we have a non -constant
periodic steady-state stable solution is by definition -ypcoL , hence

k-i
yP = 1 + 2 min E Aip(T - Ti ,T). (24)

i=0

where the minimum is taken over all T and over all steady-state solu-
tions satisfying conditions 1, 2 and 3 above.

4.4 Boundary Conditions

4.4.1 Discontinuity Point Condition

y(t), being the normalized phase comparator output, satisfies -1 s
y(t) < 1. Also y(t' -) = ±1 if and only if for some n and i, t' = T
nT, or y(t) is stationary at t' (i.e., y' (e) = 0 and y at t' is increasing if
y(e) = -1 or decreasing if y(e) = 1). These are equivalent to

E Ai(p(t' - Ti , T) - p(T - Ti, T)) = 0
if and only if t' = nT T i or y(e) - y( T) is stationary at t'. This
restriction will be called the discontinuity point condition.

To analytically determine whether this condition is satisfied, in a
general case, is clearly very difficult. For the case of the lag filter we
can solve the problem analytically but must rely on an experimental
fact. C. J. Byrne has found experimentally, in a large class of RC filters,
that there is just one discontinuity per period T, i.e., the k in (21) is
one. We will call this the Experimental Hypothesis. Thus

y(t) = (-j-)L" - 2p(t,T)
WL

and

(25)
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y, = 1 + 2 min p(T,T). (26)

In the section on the lag filter we show that if

p(T',T') = min p(T,T) (27)
T

then p(t,T') satisfies the discontinuity point condition. Thus if p(t,T')
is realizable (it is - see below) and is stable under noise (we do not
know, but have some evidence - see below) then

yP = 1 + 2p(T',T') (28)

for the lag filter.

4.1.2 Realizability Condition

Does there exist, for each of the steady-state functions represented
in (21) satisfying the discontinuity point condition, a corresponding
input function cp(t)? That is, are the y(t) in (21) physically realizable?

In Appendix A we prove realizability for any filter but not in quite
the form stated above. We do the following:

(a) A particular input (1)(0 = d is injected.
(b) The loop is broken at the output of the phase comparator.
(c) Into the filter, at this point, is injected a voltage which asymptot-

ically has the form (21).
(d) One shows that the output of the phase comparator has asymp-

totically the same form.
(e) In steady state the loop is closed.

4.4.3 Non -Synchronous Stability

Are the solutions stable? By this we mean: Will a steady-state solution
be thrown into synchronism by a "small" noise? In formal terms, we
suppose that a solution y(t) has a discontinuity point, say to shifted by
noise to to + Do . Each of the following discontinuity points t1 , t2

, is shifted to ti + , t2 A2 tn ,  . It suffices for
our purposes that the (t. 0 )'s be asymptotically periodic (i.e., the
noise sends us into another periodic solution and not into synchronism).
The best we have been able to prove is that

lim
dA

0=)
= c < cc

This has been done for the lag filter using the experimental assumption
that k = 1 and that T' - E < T < T', for e sufficiently small, where
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T' is given in (28). Now it would suffice for stability to show .that & is
bounded for Ao sufficiently small, but the above does not imply this, for
all it says is that

An = CAO en002

and we do not know that e is bounded.

V. LAG (INTEGRAL COMPENSATING) FILTER

5.1 General Results

This section gives all the explicit formulae for design procedures in
the case of the lag filter (Fig. 3). We assume the experimental hypothesis
(see Section 4.4) throughout this section.

The transfer function of the filter is

where

Hence

R(s) =

H(s) -t2s + 1
tls ± 1

tl = (R1 + R2)C

t2 = R2C

1 tis + 1
s aH (s) to2 (au + a

, ,

1
P2 1- -

t2 1

P1 - P2 s - pi pi - P2 P2

where pi and p2 are the roots of denominator of R(8). In particular,
introducing the normalized dimensionless time constants

Ti = ati , i = 1,2

we have for the roots

pi = 1- (a + (-1)ib)

where
a = (7-2 + 1 ),:2

b2 = a2 - Tl .*

* The real or imaginary part of b is non -negative.



PHASE -CONTROLLED LOOP 617

The denominator of R(8) can be written in the form

where

+ 20.,E.9 o.,2

Wn2 = (a/ti)

and E, the damping factor, is

= (T2 + 1)/2 -V1.71 = a/(a2 - b2)4.

In this notation we obtain

r(t) = -1b [- (a - b - 1) exp (-(a - b)t/ti)
2

+ (a + b - 1) exp ( - (a + b)tni)].

Because r(t) is a linear combination of exponentials, we can easily sum
the infinite series for p(t,T), obtaining

p(t,T) = P(ni,n) =
1

2b
[- (a - b - 1) exp[- (a -

1 - exp[- (a - b)n]

+ (a + b - 1) exp[- (a b)nl
1 - exp[- (a + b)n]

where n' = 0, and n = TA are dimensionless time variables.
To obtain 7, using the results of (27) we must find

min p( T,T)
T

or the roots of

dij(n n)0 -
do

Differentiating the expression for 73(n,n) we obtain n 0 and

sinh2 (a - b)n/2 (a - b)(a - b - 1)
sinh2 (a + b)n/2 (a + b)(a b - 1)

or n = 00 . And upon using the addition formula for the hyperbolic sine,
we have

(29)

(30)

tanh an/2 b tanh bn/2 - 2 a2 + b2 -
a 2c (31)

1 tanh an/2 ' 2a - 1
tanh bn/2

which defines c, or n = 00.
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Use of the quadratic formula gives

tanh an/2
c Vc2 - b2 = ci(a,b)

tanh bn/2
(32)

or n = co.* In special cases considered it was found that the minimum
of 73(n,n) occurs at the first positive zero of its derivative (or at n = co).

5.2 Critical Damping

From (31) we see that as b approaches zero (damping factor equals
one),

tanh an/2
2a - 1

a(a - 1) -
n/2

ci(a,0), if a > 1

n= cc, if i < a < 1.

Thus y, = 1 for b = 0 and z < a < 1.

5.3 No Filter and RC Filter

The filter parameters satisfy

0 C T2 Tl

which upon conversion to the a and b parameters become

(a - 1)2>>= b2

and

(33)

a>=Z.

Equality holds in the first case, when R1 = 0 or C = 0 (i.e., there is no
filter) and in the second case, when H2 = 0, (i.e., a simple RC filter.)

For no filter, a + b - 1 = 0 or a - b - 1 = 0, and referring to (30)
we have only n = co . Thus min p(T,T) = 0 and -y = 1.

For the RC filter H2 = 0, a = 1, we obtain from (30) n 0 and
sinh bn = 0 or n = co. If b is real, n = co and 7, = 1. If b is imaginary

n = mr/b m = 1,2,

* If the negative sign were used in the quadratic formula then n would be nega-
tive (complex) when b was imaginary (real).
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and we easily find that 7-5(mr/b,mir/b) is minimum at m = 1, giving
finally

itanh (Ti

if Ti -4-
1

The results of these special cases are graphically summarized in Fig.
6. (Also see Fig. 13 of Byrne, Ref. 4.) In the shaded area of Fig. 6 the

Cel

0.5

0

=

1)--1

4)
if >

4

0.5 1.0 a

(a)

0.25 1.0

= T2
(NO FILTER)

-*-

UNDERDAMPED
LOOP

(34)

Fig. 6 - In part (a) the parameters a and b are restricted to lie below and/or
to the right of the polygonal curve. The heavy lines and the shaded area give
values of a and b for which the relative pull -in is unity. In part (b) the same in-
formation is given for the normalized time constants ri and Ti.
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relative pull -in is unity. This follows from the fact that the left-hand
side of (31) is bounded below by 2b* while

2c - 2b = 2(a - b - 1)(a - b) / (2a - 1)
is negative in that region. Hence in (31) we must have n = 00.

5.4 Computational Procedures

Except in the special cases of no filter (R1 = 0) and the RC filter
(R2 = 0), there is no simple way of computing the relative pull -in. We
must solve (32) by an iterative procedure and substitute the result into
the equation for 73(n,n). If n is the solution of (32) or (33) we have a
simpler equation for 7 , namely

72, = [1 -D sech2 an/2]/tanh an/2

where

(a - 1)ci - b2D - (b 0)
c12 - b2

and

D = (a - 1)/a (b = 0).

An upper bound for n is obtained from (32) and (33). Using the fact
that tanh .r < 1, we obtain

12(tanh-1b/ci)/b 0)
12/ci (b = 0)

A lower bound for n in the case b is real is obtained by using the in-
equalities

z - z3/3 5 tanh z S z.

Using this in the equation for n we have

tanh bn/21
an/2 - (an/2)3/3 tanh an/2 = b cin/2

ci(a,O)n/2

giving the lower bound

2 (3 a - c1) < n.
a'

(35)

* The left-hand side of (31) is of the form b(x 1/x). For x positive this is
bounded below by 25.
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We note here for future reference that if b is imaginary, b = ib' then
(35) implies the inequality

0 nb' < (36)

5.5 Discontinuity Point Condition for the Lag Filter

To prove that this condition is satisfied, it suffices to show that

dy
0 for 0 < t < T

For, since we may suppose

it follows that if

y(T) = 1,

y(e) = 1 (0 < t' < t)

(37)

then Rolle's theorem tells us that there exists a I" with t' < t" <
such that y'(t") = 0. This contradicts (37). It suffices also to prove
(37) for that T which minimizes p(T,T).

Recall that we are assuming we have a lag filter and that k = 1 in
(21) (experimental hypothesis). Assuming (37) false, we obtain from
(29) after some calculation

e-(a+b)77' /2

-(a -b)702
1 - e- ("+"''
1 -

where n minimizes 13(u,u). Note that 0 < n' < 77.
Case 1, b real. Then a > b and

e-(a+b)702 -bee-(a-bW/2

Hence (38) is false.

>e -b°

e-(.4 -1)q/2

e-(a-b)7//2

1 c(a+b),1/2 *

1 - e-(a-b)7112.

(38)

* If 0 < x < y < 1, then x/y> x - 1/y - 1, for -x > -y implies xy - x >
xy - y; hence in factoring and dividing we obtain the desired inequality.
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Case 2, b imaginary. Let b = ib', then (38) becomes

-1)/702 + mlr = arg(e-(a±m"/2 - 1). (39)

Now the real part of e-(a +ibi)li 2 - 1 is negative and the imaginary part
is negative (since by (36), 0 < b'ri/2 < T/2). Hence the right-hand
side is an angle in the third quadrant. But the left-hand side is an angle
which can only be in the second or fourth quadrant, since

0 < b'ni < bin <

Hence (39) is false, proving the discontinuity point condition.

5.6 Small -Signal Properties of the Loop

In this section we give formulae for design parameters of the loop
when we are operating on the linear portion of the phase comparator.
Then the closed loop transfer function Y is

a(t2s -I- 1)
17(s) - s24 (at2 + 1)s -I- a

Restricting our attention to real frequencies and normalizing the fre-
quency w by

and recalling that

we obtain

Y(0) 12

With the phase shift

Sl = w/a

T1 = ate , 7-2 =

T22Q2 +
( + 1 )2Q2 ( 1 1227.02 

( 1 ± rir2Q2)00 = -arctan
(1 - 7-192) + 72(1 + 72)2S22

if denominator positive *
-1-

ifar denominator negative 

Important parameters for design are the maximum gain and the
frequency and phase shift at which it occurs and the range of frequencies
for which the gain exceeds one. Differentiating 1 Y(0) 12 and solving for
its zero gives

* The arctan is an angle in the first or fourth quadrant.
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1(2T1 - 1)/2712 if T2 = 0, Ti

2max2 1[1 + (2( T1 - T2) - 1)7-22/T1211 - 1-1/7-22

0 if ri - T2

Solving 1 Y(S2) 12 I gives

where

s2,2

5212

2(Ti - T2) - 1
Ti2

0

if T1 T2

if Ti - T2

if Ti - T2

2

We also have the interesting inequality

Simax

with equality when T2 = 0. The cases T2 = 0 and ri - T2
mediate. The case Ti - T2 > 2 gives

C2iii..2 = 1 [ 1 + T22C/1211 - 11 /T22

< I are im-2

[1 + T220191 + 1
fzi2

2

proving the result in this case.
We wish to emphasize that the maximum gain is unity if and only if

T1 - T2 4. Peak gain = constant contours are given in Fig. 8 of Ref. 4.
The 3 db point occurs at SZ = St; where

1 Y(9,1) 12 =

from which we obtain

= B + (B2 +Tl 2)

where

B = (T22 + 2(Ti - T2) - 0/27-22.

The noise bandwidth N is defined by4

N= I 17( co) 12 do).
0
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It can be evaluated in various ways, for example see Ref. 10. One obtains

N = Tot(1 T22/70/2(7.2 + 1).

In the no -filter case ( T2 = Ti = 0) and RC case ( T2 = R2 = 0) we have
N = ira/2. N = constant contours are given in Ref. 4, Fig. 7.

As discussed in the introduction, the figure of merit was chosen to be
the ratio N/7,, . N/'y, = constant contours are given in Ref. 4, Fig. 15.

VI. ASYMPTOTIC RESULTS

In this section we obtain the asymptotic results stated in the introduc-
tion. Since the derivations are tedious, the results are first summarized.

From computer data, the contour curves of relative pull -in -y, =
constant with ordinate and abscissa the normalized time constants

Ti = a(RI R2)C

T2 = cyR2C

seem to be asymptotic to straight lines for large values of the normalized
parameters. (See Fig. 13 in Ref. 4.) This observation led to the con-
jecture that for fixed 7, and large T2

Ti = K(T2 + 1).

In Appendix C we prove this and show that

1/K = 1 - (1/-y, --y)2(tanh-1 -y,)2.

With respect to the figure of merit (see Fig. 15 in Ref. 4), the following
very important results are derived in Appendix B for the lag filter. Sup-
pose the peak small -signal phase gain Y of the loop is restricted to be
unity (it is always unity at dc). Then the maximum merit obtainable
for filters giving the unity peak loop gain is 2.27. If, however, we permit
a fixed peak gain greater than unity, we can have an arbitrarily large
merit figure. This usually results in very poor transient response. More
precisely, the following results are derived in Appendix B. Let us con-
sider those lag filters for which the peak small -signal (phase) gain is
fixed at Y. Define M by

M2=1-y-2
Then for a filter with normalized time constants T1 and T2 and normalized
frequency Sl = w/ a, for which the loop has peak gain,f, occurring at
frequency U. , we have
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gmax2 = M/71

and
(11127.22 + 2T2 + 1)/2(1 + 31).

Asymptotically for T2 large we obtain for the noise bandwidth (with
a = (T2 + 1)/2)

N/ira = (1 + 2(1 M)) / 4a + 0(a-2)*
312

and for the relative pull -in range

yr2 V/I/ -= a ---,. 1+0(a?)
M

= -2 (T2 + 1)1
ri t.

Thus the noise bandwidth decreases as a-1 while the relative pull -in
decreases as a -l. Hence the figure of merit increase as al.

The derivations of the preceding results are given in Appendices B
and C.

APPENDIX A

Realizability of Steady -State Solutions

Recall that (assuming d = 2)
k-1

y(t) -
«H(0)

- 2 E Ai E r(t - n71) (40)
n -o

where [see (13)]

(dXL m= XL(x) - «H(0) 

Since we assume y(t) satisfies the discontinuity point condition
k -1

COP71 - 1 + 2 E A1p(T - T.; , T).
aH(0) =o

Break the loop at the output of the phase comparator, inject y(t)

* Two functions f (x) and g(x) satisfy f (x) = 0(g(x)) if and only if f (x)/g(x)
I 5

constant < OD for x sufficiently large.
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into the filter, and let the input phase be (Amt + xL - c (where c is
defined below). The phase output of the oscillator is given by

d90(t)
a

dt
f y(t')h(t - t') dt'

,

and upon integrating once and substituting (40),

e g'coo(t) -
H(0) 0

f f h(t") dt'
0

- 2 .A ar(t" - Ti - nT)h(t' - t") dt" dt'.
i=0 n-=0 0 f0

By taking the Laplace transform of the double integral in the summa-
tion and by using the relations in (10) and (11), we find

''= w"') f0 f h( til ) dt" dt'
H (0 0 s

k-1

-2EAE,t(t- Ti - nT) - r(t - Ti - nT).
=1) n=0

Now the remaining double integral is the integral of the step response
of the filter and for large t is of the form H(0)t c. Using this and the
definition of y(t), we obtain for large t

k-1 00

,pa(t) co,t c - 2 E Ai E u(t - Ti - nT) - y(t) .

i=0 n=0

Now using the discontinuity point condition and the representation of
the comparator in (7) we find the comparator output is asymptotically
y(t). Hence in steady state we may close the circuit without any dis-
turbance.

APPENDIX B

Figure of Merit for Constant Peak Gain and Large Time Constants (Lag
Filter)

From Section 5.6 we have for the closed loop small -signal (phase)
gain

T22122 1
I 17(Q) 12 - ( T1 + 1)20 + (1 - C22702 

(41)
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Differentiating with respect to ) and equating the result to zero gives
T127.221-1.4 27-12121.. - [2( - T2) - 1] = 0. (42)

We can also represent the square of peak gain 172 as the ratio of the
derivatives of the numerator and denominator of (41) evaluated at

max *
2

172 72

(T2 + 1)` 27-1(1 T1Witix)

2

72

722 - [2(Ti - T2) - 1] + 221.20L. 

This, after using (42), gives

1;2 1

1 - T12QLax

Defining M z 0 by

M2 = - /7-2,

we have

0 S M < I, since 1 < oo .

Also (43) gives

rtgla. =-- 31.

Substitute (44) into (42) and solve for T1 . Then
(m2722 2r2 + 1)/2(1 - M).

(43)

(44)

Using this result in the formula for the noise bandwidth (Section 5.6),
we have for I> constant and T2 large (and hence a = ( T2 + 1)/2 is

large)

N =
4a
-ra

(1 + 2( 1 - M) ) + 0(a-2). (45)
2

We now turn to the problem of obtaining asymptotic expressions for
the relative pull -in range for Y fixed and greater than unity.

We can rewrite the expression for T1 as

22
Tl

M
m a2 + 2(1 M)a - M + 1.2 (46)

* If f(x) = p(x)/q(x), then r(x0) = 0 implies f (x0) = P1(xo)/4' (x0). One obtains
this result by logarithmic differentiation of f(x).
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Using the definition b2 = a2 - Tl , (46) and the binomial expansion,
we have for huge a

a

if A/ and

(1 -
2M2 y 1 -M 1+

0(a-2)1 -M 1 - 2/11 a ) (47)

= -3(a - I) (48)

if M = 4. In the following we suppose M 4. Recall (31) that to find
the relative pull -in we need the root of

where

and

Hence

Also

giving

Finally

tanh an/2 = cl tanh bn/2

= c (c2 - b2)1

c = (a2 b2 - a)/(2a - 1).

c = (2a2 - a - n.)/(2a - 1)

= a[1 - n/a(2a - 1)] = a

MM -}-0(a
1

c = a [1 - 0(a-1)].

= (a - - (a2 -

(c2 - =
Tl[1
T2

T2

2

(TT12) (1 - T

2

Tl

TI

72 (49)

(50)

1 (7) (7-2) (7-2 3)].
- 8 7-1
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= b2)1
T2

=a [1 --1 -I- 0(a-2)].
2a

Setting z = an/2, we have

tanh z =
T)

tanh
b
- z.
a

(51)

(52)

We will show that for large a, z is small and then obtain an approximation
to z by using a power series expansion for tanh z. First note that the
derivative at zero of the right-hand side of (52) is

a
-= 1 -

2a
-1 -V 0(a-2)

which approaches 1 from below for large a. Also

c1 a
b b

0(b-')ri)

= (1

2
2/11

0(b-1).1 - /11
Hence I cub I is bounded away from 1 (and greater than 1).

A sketch of the curves of the two sides of (52) with the above two
facts shows that

Or

lim z = 0.

Using power series expansions in (52) we obtain for large a

z3 Cu ( (b2) z3 1)(-Y\
:3 b \a 3 \a ) 1

z2 =
1 - ci/a2 = .

6
1 - cjb2/a3

2a
0(a-2)

2M2
0(a--1)1 -M

z - (3(1 - /1/)r + 0(a-1).
2M

=3 (53)
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From Section 5.4 the relative pull -in is

7p - an
2

)D tanh (-1 -D

where

Then

and

since

tanh (n)
2

D = ((a - 1)c1 - b2)/(c12 - b2)

1 -D - (ci -a+ 1)
Cl - b2/ci

1 -D - -2ac+ 1

b2/ei = 2c.

Using (49) and (51) we have

-D -- 14aM
2

+ 0(a-2).M

(54)

(55)

We now obtain the asymptotic formula for -y by substitution into
the formula for 7, the approximations for D, 1 -D and the approxima-
tion tanh (an/2) ti an/2 = z with z approximated as in (53).

- 2(1 - M)1 + 0(a-1)
31/2m

=
31

((r2 1)/71.)1 + 0(72I).

APPENDIX C

Relative Pull -in (Lag Filter, Large ri and r2)

Assuming that for a large a

rl = 2Ka L 0(a-1)

we obtain from the definition

b2 = a2 - T1

(56)

(57)
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that

631

b = (a - K) [ 2+ + 0(a-3)-(a K)2

Expanding the square root we obtain

b = (a -

and

ab. =

1_ 1 L + K2 0(a-3)1 (58)

(59)

(a - K)2

1 - -a + 0(a

From (57) since

a

we have

= K

= (T2 + 1)/2

K+ L
+ 0 ( T2-2) (60)

From (50) we have

T2 T2

C2 - b2 = (T1)2 - (Ti-
T2

and by using (60) we have

e2- b2 -r>2 L K)(2K - 1) 1K)[1 + +0(x22)
K(K - 1) T2

onUsing the binomial expansion

± K) (2K - ,
0-

L
"2 2] (61 )

2 K2 -K

From (49)

Tic = a - --
T2

and using (60), we obtain

L Kc= a -K - +0(T2-).2
T2

Then

(62)
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= C ± (C2 - b2)1

= (a - K) (K2 - K) + 0(72-1).

Finally from (58) and (63)

(a - K)
b b/ (a - K)

(K2 - K)3= 1 + + 0(a-2) .
a

(63)

(64)

Letting z = an/2, (31) becomes

tanh z = [1 + (K2 - K)4/a + 0(a-2)] tanh (1 - K/a 0(a -2))z. (65)

Using the addition formula for tanh (A + B)z and simplifying, we have

tanh2z tanh (K/a + 0(a-2) )z - [(K2 - K)1/a + 0(a-2)] tanh z

+ [1 + (K2 - K)4 /a + 0(a-2)] tanh (K/a 0(a2))z = 0.

We show that z/a approaches zero with a and use this to simplify (66).
From (35)

z
2 tanh-1 [1 + (K2 - K)4/a O(a-2)]

< 1 - K/a 0(a-2)

Since

we have

2-a

K)I
In ((K2 ± 1 + 0(a 1)

- K/a 0(a-2)

lim In u/u = 0

lim z/a = 0.

Returning to (66), we now have asymptotically

1\4 tanh z
tanh2 z

K 1 = 0.

Solving for K we obtain

1/K = 1 - 1 ttanh2 22.
I -1111h z

(67)
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Now the relative pull -in given in Section 5.4 is

1 -
-Y p tan h z

D tanh zD

and we easily show that [using (54)1

- a + 11 -D -
2c

(K2 - K)1 -K 1 + 0(a-1)

a -K 0(a-')

= 0(a-1).

Hence asymptotically for fixed z,

= tanh z 0(a-1). (68)

Thus for given relative pull -in, the above gives us z and tanh z, and
then (67) gives K from which (57) gives for large ri

= K(r2 + 1). (69)
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Reliability of Components for
Communication Satellites

B) I. M. ROSS

(Manuscript received August 15, 1961)

This article considers the reliability of components such as transistors,
diodes, and solar cells in relation to the design of a communication satellite
with adequate reliability. Consideration is given to methods for determining
the reliability of high -quality components and of techniques for selecting the
most stable components for this application. It is concluded that, at least for
a simple communication satellite, components can now be obtained that will
lead to a satisfactory life.

I. INTRODUCTION

All the necessary components and circuit techniques are available to
fabricate a simple communication system using low -orbit satellites.'
Such a system would use many satellites at an altitude of a few thousand
miles and be capable of global communications with a few megacycles
baseband. The ground receiver portion of the system could achieve
adequate signal-to-noise for very low received power by use of high -gain
receiving antennas, low -noise maser receivers and FM modulation with
feedback. The satisfactory performance of this type of receiver was
demonstrated in the Echo I experiment.2 In conjunction with such
sensitive ground receiver equipment, it is possible to use a satellite re-
peater putting out only a few watts of power from an isotropic antenna,
and hence avoiding the additional complexity of attitude stabilization.
The components needed for such a satellite, including the traveling -wave
tubes, transistors, diodes and solar cells, are all either available or
achievable within the capability of existing technology. Thus a com-
munication satellite system is feasible in principle. Whether or not it is
economical and therefore practical, depends upon the life expectancy of
the system, and specifically on the life of the satellite itself. It will be
assumed here that a satellite life of at least five years is a reasonable
target in the design of a practical communication system. By the very
nature of the system, repair of the satellite is presently impossible (and if

635
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ever possible, would be exorbitantly expensive), and because of the cost
penalty of additional weight in orbit, extensive redundancy is most
undesirable. Thus, the practicality of the system depends critically on the
reliability of the components that make up the satellite itself. This paper
is devoted to a discussion of the reliability of components in relation to
the design of a satellite with adequate reliability. Although the discussion
is directed specifically to low -orbit (several thousand miles altitude)
satellites, many of the ideas could apply equally well to higher orbits.

In Section II, below, consideration is given to the order of component
reliability needed in a simple communication satellite. Section III deals
with the reliability of components in general with emphasis on means for
attaining highly reliable components and for determining quantitatively
their degree of reliability. Section IV discusses the level of reliability that
can be achieved in three critical classes of components, namely transistors
and diodes, traveling -wave tubes and solar cells. Finally, it is concluded
that, with careful manufacture and selection, components can be ob-
tained for a practical communication satellite system.

II. COMPONENT RELIABILITY REQUIRED FOR COMMUNICATION SATELLITES

For the consideration of reliability it is convenient to divide the life of a
satellite into three periods, namely pre -launch, launch, and orbit. It is
usual practice to assume that any failure that occurs a reasonable time
prior to lift-off can be corrected by replacement and that, at the worst,
this could result in some delay in the launch time. For such an assump-
tion to be valid, it is necessary that components or batches of components
be accessible and removable so that failed portions of the satellite can be

replaced. The design for such flexibility does necessitate some weight
increase. Although the launch period is short, it is accompanied by large
mechanical stresses liable to cause failure. As will be discussed later, in
the section on traveling -wave tubes, experience with many launches has
shown that with well designed components and equipment, failure during
launch of the electronic equipment in a satellite is not a significant factor
in the over-all reliability of the satellite. It is the third period, life in
orbit, which dominates the reliability design of a satellite. In this section
we consider the relationship between the reliability of components and
the anticipated life in orbit.

In calculating the probability of survival of a system containing a
large number of components, it is frequently assumed that the failure
distribution of any type of component is exponential. On such an assump-
tion, the performance of a given type of component can be characterized
by a mean time to failure or a failure rate. One of the more convenient
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ways to represent the failure rate is in terms of a number of failures for a
given number of component operating hours. A method which is in in-
creasing use defines failure rate as the number of failures per 10° compo-
nent hours (1 failure per 109 hours corresponds to a failure rate of 0.0001
per cent per 1000 hours). By way of calibration, a good resistor or
capacitor has a failure rate in the range 5 to 10 per 10° component hours,
while an entertainment receiver tube will have a rate in the neighborhood
of 100,000 per 10° hours.

If we assume that a given system contains n1 components of a given
type, and that the failure rate for that type is h per 10° hours, we expect
statistically that there will be ni ft failures per 109 hours. Hence in a time t
hours we expect tnif1/109 failures. Assuming that failure probability is
random and that the failure of any one of these components leads to
failure of the system - that is, assuming no redundancy - the proba-
bility P1 that the system will not fail in t hours due to failure of one of the
n1 components, is given by :

P1 = exp (1)

Similarly, if we have a system composed of n1, n2 , etc., components of
types having failure rates fi , f2 , etc., and we again assume no redun-
dancy, the probability P. of survival for time t is given by:

tPm = exp [ - (nj, )1 .

109
(2)

This simple equation can be used to estimate probability of system's
survival, provided that the following conditions are met:

a) The failure mode of the components is assumed random with
recognized exceptions being treated separately.

b) The system contains no redundancy.
Assumption b) is unrealistic since a certain degree of redundancy will be
featured in any good design. However, because of weight limitations in a
satellite, redundancy cannot be used to correct for poor reliability per-
formance of a majority of the devices. Hence the equation is useful in
determining desired objectives.

Table I shows the results of reliability calculations for a hypothetical
communication satellite. At the left of the table are listed the types and
numbers of critical components used. These types and numbers, which
are representative of a very simple repeater of a few megacycles base -
band, do not include any allowance for redundancy, nor do they include
allowance for the telemetry invariably associated with such a system.
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TABLE I - RELIABILITY CALCULATION FOR SIMPLE COMMUNICATION
SATELLITE

Type of Component Number (n)

Case I Case II Case III

Failure
Rate (f)
(Fail-

ures/I09
hrs)

P
Product

(nf)

Failure
Rate (f)

(Fail-
ures/109

hrs)

Product
(nf)

Failure
Rate (f)

(Fail-
ures/109

hrs)

Product
(nf)

Transistor 140 20 2800 10 1400 5 700
Diodes 161 15 2415 10 1600 5 805
Resistor 400 5 2000 5 2000 2 800
Capacitor 250 10 2500 5 1250 2 500
Inductor and Transformer 40 20 800 15 600 5 200
Relays 6 50 300 25 150 6 120
Ni-Cd Cells 20 50 1000 25 500 15 300
Totals 1017 11,815 7510 3425
Average Failure Rate 11.6 7.4 3.4
Probability of success - 1

year
0.901 0.94 0.97

Probability of success - 5
years

0.60 0.72 0.86

Excluded from the list is the traveling -wave tube. The unique life proper-
ties of the single traveling -wave tube in a nonredundant satellite warrant
special treatment. Also excluded are the solar cells which, as will be
discussed later, will probably fail through wear -out resulting from radia-
tion damage and thus cannot be treated with the statistics of equa-
tion (2).

The table shows three cases, each assuming somewhat different failure
rates for the components. For each case the table gives the failure rate f
assumed for the component, the product of the failure rate times the
number n of each component, the total sum ET (n,,, f,,,) and the average
failure rate. Also shown in the table is the probability of success of the
satellite, i.e., no failure of any component as calculated using (2), for
one-year operation and for five-year operation. It is seen that case 1
represents satisfactory performance for one year and poor performance
for five, while case 3 represents satisfactory performance for five years.
Case 2 is an intermediate case. Using some judgment as to the relative
values of failure rates for various components, the failure rates were
chosen in the three cases to give the above results. Thus the table shows
what level of component reliability is needed to meet a given systems
performance.

It must be emphasized that considerable caution is needed in the
interpretation of the results shown in Table I. Implicit in the calculations
are many assumptions, the validity of which could be questioned. The
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results should therefore be used as a guide to the order of magnitudes of
reliability required and should not be considered to be precise predictions
of systems performance. There are, nevertheless, a number of general
conclusions to be drawn from the table. The first is that although this is a
fairly simple system - 1000 components - average failure rates in the
neighborhood of 10 per 109 component hours are required to give any-
thing approaching economical life. As seen from (2), the life expectancy
for a given probability of success varies inversely with the average
failure rate. Thus, an average failure rate in the neighborhood of 100
would be intolerable, while an average failure rate in the order of 1 would
permit increased design life and/or complexity. A second conclusion is
that all the components that are numerous, i.e., all the transistors,
diodes, resistors and capacitors, require an equally high order of reliabil-
ity. This conclusion results directly from forbidding redundancy for the
high -runner components. A final conclusion is that, at least for the more
reliable designs, the reliability of connections between components can-
not be ignored. For the 1000 components of Table I there would be
several thousand connections and hence, in order that there -be an in-
significant probability of a connection failure, they must have failure
rates substantially less than 1 per 109 hours. Although there is little
quantitative information regarding reliability of connections, it is
believed that those liable to fail are eliminated during the vibration,
temperature cycle, and vacuum tests normally carried out as part of the
acceptance test of a complete satellite.

III. RELIABILITY OF COMPONENTS

Fig. 1 shows a possible failure pattern for a batch of components.
Such a curve could be obtained by taking a large number of new compo-
nents of a specific type, operating them under typical conditions, and
plotting the failure rate versus time for the batch. The distribution has
two regions of relatively high failure rate, one early in life and attrib-
utable to "manufacturing freaks," one later in life attributable to "wear -
out," separated by a region of low failure rate labeled "random failure."
These three regions will be discussed separately.

3.1 Wear -Out Failure

In some manufactured products there is a mechanism or a collection of
mechanisms which systematically reduces the useful performance of the
product until a point is reached at which it has no further utility and is
"worn out." Typical examples of wear -out mechanisms are friction of
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MFG FREAK
FAI LURE

II

RANDOM FAILURE
III

WEAROUT FAILURE

TIME

Fig. 1 - Possible failure distribution for a large number of new components.

bearings, corrosion of relay contacts, and deactivation of electron tube
cathodes. If, for a given batch of components, conditions were identical
during fabrication and use, then all components would fail in response
to wear -out simultaneously. However, because conditions are not
identical, simultaneous failure does not occur, and the failure distribution
is characterized by a peak of finite width. Region III in Fig. 1 shows the
onset of wear -out. Once wear -out failure commences, the failure rate of
the batch of components increases vary rapidly, and effectively all
components of that type must be replaced. In systems such as satellites,
where replacement is not possible, the time at which wear -out becomes
significant should be greater than the designed life of the satellite.
Lengthening of the time to wear -out can only be achieved by under-
standing the wear -out mechanisms and by designing the components
either to minimize or eliminate these effects.

3.2 Manufacturing Freak Failure

There is a certain percentage, preferably small, of any product that
fails unusually early in life because of some defect in manufacture.
These are, in a sense, objects that were not made according to the design.
For example, such early failures can occur both in tubes and semicon-
ductor devices as a result of defective seals or of the presence of particles
inside the encapsulations. The prevalence of manufacturing freaks can
be reduced drastically by quality control in manufacture. Remaining
freaks can usually be detected and rejected by rigorous pre -aging tests,
such as leak tests, vibration and shock tests. In addition, the product can
be aged for a period longer than that corresponding to Region I, so that
the remaining freaks will fail during this "pre -age period."
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3.3 Random Failure

Even in a well designed and well manufactured product there may be
a substantial period, after that exhibiting high failure rate due to manu-
facturing freaks and before wear -out occurs, of a continuing failure
rate. These failures include components which, through presumably
detectable causes, fail in response to manufacturing weaknesses much
later than the majority of freaks, and others which fail through similar
causes to, but earlier than, the wear -out failures. The failures that occur
during this period may generally be attributable to a large number of
different causes, each of which occurs so rarely that it would be exorbi-
tantly expensive to identify all of them. This period is in essence the
useful life of the product. If the frequency of such failures is sufficiently
low, as indicated, these may be essentially below the noise level of
identification of mechanisms, and a random failure mechanism, and
hence a constant failure rate, may be assumed. Although there may be
considerable doubt as to the validity of this assumption for some com-
ponents, it has proved useful in the estimation of over-all systems relia-
bility.

Fig. 2 summarizes the steps that can be taken to cope with the vari-
ous modes of failure shown in Fig. 1. The region of high failure rate
corresponding to wear -out can be moved further out in time by design
based upon knowledge of the failure mechanisms. The number of devices
subject to early failure through manufacturing freaks can be reduced
by quality control, rejected after testing and annihilated by pre -aging.
Hence, provided sufficient care is taken, it is possible to obtain a prod-
uct which, during the intended life of the system, will exhibit substan-

QUALITY
CONTROL AND
DESTRUCTIVE

PREAGING

Iz
LIFE TEST

AND SELECTION

III
RELIABLE

DESIGN

TIME --3.

Fig. 2 - Summary of steps that can be taken to reduce failures of various
types.
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tially only a low failure rate corresponding to Region II. This failure
rate can be determined from the results of extensive life tests involving,
for the most reliable components, thousands of devices for thousands
of hours.

The low failure rate of Region II is that characteristic of the product.
Where reliability is of supreme importance, it is desirable to select
from the product as a whole those components that exhibit the greatest
degree of stability. This can be achieved by putting on life test a num-
ber of components many times that needed in the system, and after a
given length of time selecting from the batch only those components
which have shown the minimum change in their parameters. The dura-
tion of the life test prior to selection will depend upon a number of
factors, including the life required in the system and the system's
schedule which, itself, frequently limits the life -test period. In the selec-
tion of submarine cable tubes, a period of seven months is used. Al-
though it is expected that the selected product will have a lower failure
rate than the batch from which it was selected, it is difficult, if not
impossible, to estimate the degree of this improvement. The consensus,
however, is that a factor of 10-100 improvement could be achieved.

In order to achieve the reliability potential of a carefully designed
and manufactured component, it is essential that the same care go into
the design and assembly of circuits and subsystems. Circuits must be
designed with adequate margins, and power dissipations must be deter-
mined so that temperatures do not reach values at which reliability of
the components is no longer adequate. Assembly procedures should be
arranged to avoid excessive mechanical or thermal shock. The conserva-
tive use of a component is thus an important part of the achievement
of reliability.

IV. RELIABILITY OF SPECIFIC COMPONENTS

The components that appear in large number in a typical satellite
and require reliabilities corresponding to 10 failures per 109 hours, in-
clude transistors, diodes, resistors and capacitors. Passive components,
resistors and capacitors, have for many years been available with relia-
bility in this range. However, until recently such low failure rates had
not been achieved in the active components. For this reason the discus-
sion in Section 4.1 below is restricted to transistors and diodes.

The traveling -wave tube used to generate the output power in most
communication satellite designs does not require the high degree of
statistical reliability called for in transistors and diodes. However, it is
required to operate without failure for a period much longer than the
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life of ordinary tubes and also to withstand severe mechanical stress
during launch. The expected performance of satellite tubes is discussed
in Section 4.2 below.

The solar cells, although as numerous as the transistors and diodes,
are expected to fail due to "wear -out" from radiation damage. The ex-
pected life of these components is discussed in Section 4.3.

4.1 Transistors and Diodes

As indicated previously, the reliability of a component in the final
analysis is limited both by the design of the component and the care
with which it is manufactured. The attention to design and manufacture
is particularly important in the case of transistors and diodes which are
both delicate and particularly sensitive to contamination, yet are re-
quired to exhibit failure rates comparable to those of the more rugged,
passive components. Mechanical techniques have been developed
whereby small semiconductor wafers can be bonded to headers and
even smaller leads connected between the wafers and the headers, such
that the resulting structure will easily withstand the mechanical shock
and vibration experienced during the launch of a satellite and the tem-
perature cycling that may be experienced while in orbit. Final cleaning
and sealing techniques have also been developed which insure a degree
of initial cleanliness and subsequent protection from outside contamina-
tion, such that adequate reliability for satellite applications can be
achieved.

Table II outlines the complete reliability testing program proposed
by Bell Laboratories for providing transistors and diodes for satellite
applications. The first step is to insure that the design itself has ade-
quate reliability potential. In order for a design to qualify for satellite
use, it must pass mechanical tests which represent conditions more
rugged than will be experienced during launch. The devices are further
subjected to electron and proton bombardment simulating many years
exposure to Van Allen radiation. Finally, devices are subjected to relia-
bility evaluation to determine the reliability potential of the design.

The second step, that of screening and pre -aging, is designed to elimi-
nate those few remaining freaks that were not eliminated by quality
control. These tests include mechanical shock and vibration tests to
eliminate weak components. In the reliability portion of these tests, a
sample from the particular manufacturing lot is tested at increasing
temperatures until all devices in the sample have failed. The median
temperature for failure and the distribution of failures with temperature,
when compared with similar figures for previous manufactured lots,
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TABLE II-RELIABILITY PROGRAM FOR SATELLITE. TRANSISTORS
AND DIODES

1. Design Qualification Tests

Mechanical
Temperature cycling -65C to +850

(-120C to +400 for blocking diodes)
Temperature -humidity cycling
Shock 2,000 g
Centrifuge 5,000-10,000 g
Vibration 60g, 100-2,000 cycles

Radiation
Reliability

Accelerated aging
Life testing
Field experience

2. Screening and Pre -aging

Mechanical
Centrifuge 2,000 g

Temperature -humidity cycle
Tap or shock
Reliability

Accelerated temperature sample
High -temperature aging

3. Life Test and Selection

Reliability
System simulation and selection

indicate whether or not there are major differences from previous lots.
In addition, all the devices,that may be used in satellites are subjected
to a short period of high temperature aging. Since, as discussed later,
aging is accelerated by raising temperature, this pre -age eliminates
many devices that otherwise would have exhibited unusually early
failure.

The third step consists of choosing from the components that have
passed step two, a number many times greater than the number that
are finally to be used, and putting them on life test for six months under
power and temperature conditions simulating those anticipated in
operation. The duration of this test, which ideally should be a sub-
stantial fraction of the design life of the system, is frequently limited by
economic factors or by the time available prior to the system's opera-
tion. During the life -test period, the characteristics of the components
are measured at frequent intervals. The components needed for the
system are chosen on the basis of their performance during the life -test
period. If proper choices have been made, the components used should
be ones which have shown no change in characteristics.
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Steps 2 and 3 in this program are intended to insure that the com-
ponents selected are truly representative of the design and do not in-
clude any freaks. Assuming these steps to be successful, the most sig-
nificant portion of the program in determining system performance is
the evaluation in step 1 of the reliability potential of the product. Since
the reliability required is in the neighborhood of a few failures per 109
hours, this reliability evaluation can involve tens of thousands of com-
ponents for tens of thousands of hours. It is with the object of reducing
the numbers and times involved that considerable emphasis has been
put on the development of accelerated aging techniques.33,9 The results
of a typical accelerated aging experiment are shown in Fig. 3. Plotted
in the figure is the median life of a germanium transistor as a function
of the temperature at which the transistor is operated. The data shown
as solid points were obtained for some germanium transistors manu-
factured by the Western Electric Company in 1958. The temperatures
at which the transistors were tested range from 100°C to as high as
as 350°C, while the range in time to median failure is from about 20
minutes to just over 1 year, nearly 5 decades. The fact that the points
fit a straight line on a 1/T versus log time plot suggests that raising
the temperature is accelerating some failure mode which can be charac-
terized by an activation energy. It has been found that within experi-
mental error, the apparent activation energy is the same for all ger-
manium transistors and, in addition, that there is a single but slightly
different activation energy for all silicon transistors and diodes. The
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triangles in Fig. 3 are for transistors manufactured by the Western
Electric Company more recently. It is apparent that substantial im-
provements have been made at least in the high -temperature perform-
ance of the product. The data in Fig. 3 are for the median life. In per-
forming the accelerated aging experiments, one also obtains the dis-
tribution of failures in time for a given temperature or, alternatively,
in temperature for a given time. It is found that these distributions
have the same shape, i.e., log normal in time* and normal in tempera-
ture, for all transistors and diodes. The widths of the distributions do
not change with temperature for a given device type, that is, for fixed
design and manufacturing procedure. This uniformity of failure distribu-
tion gives further confidence that raising temperature is accelerating a
failure mode characteristic of the product.

Knowing the variation of median life with temperature and the dis-
tribution of failures in time for a fixed temperature, it is possible to
derive a more useful plot for the systems designer, that of failure rate
against temperature as shown in Fig. 4. The points are for the older
transistors from the previous figure. A straight line is observed in the
plot of 1/T against log failure rate. Extrapolating the line to room tem-
perature, one would predict a failure rate of 10 per 109 hours for these
transistors. The prediction of a failure rate of 10 per 109 hours from
the acceleration curve of Fig. 4 is, however, liable to be optimistic be-
cause there is no guarantee that the curve does not dip below the straight
line for times greater than the longest at which a measurement was
made. There is no guarantee that in raising the temperature we are

* This is an example of a component that in the region of low failure rate does
not exhibit the exponential failure distribution usually assumed.
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accelerating all the failure mechanisms or even a guarantee that we are
accelerating the most important failure mechanism at operating tem-
peratures. For example, although one might expect that raising the
temperature would increase the rate of reaction between the germanium
surface and any water vapor inside the transistor can, one has no rea-
son to suspect that elevated temperature would affect the occurrence
of a short-circuit caused by a metal chip falling between emitter and
base contact.

The accelerated aging curve, when extrapolated to room tempera-
ture, indicates the potential reliability of the design, and in the final
analysis one must depend upon laboratory tests or field experience
under operating conditions. The triangle on Fig. 4 shows the failure
rate observed in the field trial of a new system using about 40,000 of
these same transistors for about 10,000 hours. It is encouraging that
the failure rate is only a factor of about 2 higher than that predicted
from accelerated aging, and particularly so since the system failure
rate includes failures due to mishandling and is for devices which were
subjected to no special selection. It is therefore reasonable to estimate
that the failure rate for these older germanium transistors, when prop-
erly handled and selected in a manner proposed for satellite use, would
lie somewhere in the neighborhood of 10 to 20 per 109 hours.

The line through the squares in Fig. 4 is the accelerated aging curve
for the more recent Western Electric product. Note again that there is
a substantial improvement. The accelerated aging curve for recent sili-
con transistors and silicon diodes does not differ significantly from that
for germanium transistors. With such an improvement in the reliability
potential of the product, and with careful pre -aging and selection, one
is confident that failure rates substantially lower than 10 per 109 hours
are now achievable and that they may well be lower than 1 per 109
hours. However, complete confirmation of this prediction will have to
await results of field trials.

The acceleration curves serve to emphasize the importance of con-
servative circuit design in the achievement of high reliability. It is seen
fr3m the slope of the curves that failure rate increases very rapidly
with temperature. It is therefore important that power dissipation in the
device be maintained sufficiently low that temperature rise above am-
bient does not impair reliability. It is equally important that the am-
bient temperature be maintained at a suitably low value.

4.2 Traveling -Wave Tubes

Fig. 5 is a photograph of the traveling -wave amplifier under develop-
ment at Bell Telephone Laboratories for use in experimental communi-
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Fig. 5 - Traveling -wave amplifier under development for satellite use.

cation satellites. Table III lists the more important characteristics of
this tube. Before discussing the performance and reliability of the
M4041 satellite traveling -wave tube, a few words are in order on the
reasons for selecting traveling -wave tubes to provide the output power
in the satellite. It would appear that if a solid-state device could pro-
duce several watts at a few thousand megacycles, it would be, because
of its small weight and potential reliability, an obvious choice over the
traveling -wave tube. To date, however, schemes for generating power
at several thousand megacycles using solid-state devices - harmonic
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TABLE HI-SATELLITE TUBE CHARACTERISTICS M4041 (7/7/61)

Operating point

Output power (minimum)
Gain (at saturation)
Gain (low level)
Anode voltage
Helix voltage
Collector voltage
Cathode current
Cathode current density
Collector power (includ-

ing helix and anode)
Heater power
Weight

0 dbm input satu-
rated output

3.5 w
35.5 db
41 db
1770 volts
1540 volts
740 volts
17.0 ma
85 ma/cm2
12.5 w

1.5 w
7.1 lbs.

generators, for example - operate at efficiencies very much lower than
that of a traveling -wave tube, even when heater power is included. The
weight of the additional solar cells needed to provide power for the
solid-state device would more than offset the decrease in weight from
that of a traveling -wave tube. The weight penalty for extra power is
particularly severe for satellites subject to Van Allen radiation, where
account must be taken not only of the weight of the solar cells and
their mounting but also of the necessary protective covers. The higher
gain of the traveling -wave tube gives it a distinct advantage over other
tubes such as triodes, which would require at least two stages and,
through consequent loss of efficiency, lead again to greater over-all
weight. The high efficiency of the traveling -wave tube results from the
distinct separation between the microwave interaction region and the
beam formation and collection regions. After the microwave interaction
takes place, the beam is allowed to enter a region of retarding field, where
the beam is slowed before collection. This is usually done by depressing
the collector voltage below that of the helix, as shown in Fig. 6. Since
very little current is intercepted on the helix and the anode, the input
power is very nearly proportional to the collector voltage. By depressing
the collector voltage, efficiencies as high as 39 per cent have been
achieved and 36 per cent is typical. When the power required by the
cathode heater is included, this value falls to typical value of 31 per
cent. A second effect of collector depression is that ions generated be-
tween the anode and the collector will flow to the collector and not to
the cathode. This results in a substantial decrease in the possible ion
current bombarding and consequently damaging the cathode.

The traveling -wave amplifier for a satellite must be a new design in
order optimally to meet the specific needs of the system. With any
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Fig. 6 - Traveling -wave tube circuit with depressed collector.
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reasonable time scale, it is not possible to carry out a long-term evalua-
tion of tube life, nor is it possible to do shorter experiments on very
large numbers of models as is done with semiconductor devices. It is
therefore necessary from the viewpoint of reliability to employ a design
closely derived from experience gained with previous tubes and to
utilize a "pedigree" approach in the assembly process. These earlier
tubes include the pentodes used in telephone submarine cables,' the
traveling -wave tubes used for microwave transmission at 6 kmc7 and
the rocket -borne traveling -wave tube used in a Bell Telephone Labora-
tories missile guidance system.' The salient features of these tubes are
discussed in the next few paragraphs.

The submarine cable tube, the 175HQ, was the first tube designed
to meet long -life reliability requirements somewhat similar to those
encountered in satellite work. The failure pattern for this tube was
found to agree with that shown in Fig. 1. The dominant wear -out
mechanism in this case was determined to be the deactivation of the
cathode, an effect which increases rapidly with increasing cathode tem-
perature. Design information was developed which permitted the choice
of a cathode temperature low enough to insure the desired life of the
tube. The techniques of quality control to eliminate manufacturing
freaks, and of life test and selection to insure the minimum random
failure rate, were used extensively on this tube. As a result, the tubes
that have been manufactured and put into operation in submarine
cables easily meet the systems requirements. For example, Fig. 7 shows
the accumulated tube life of the tubes in operation to date in submarine
cables. There are now over 1600 tubes in such operation, some for as
long as five years, with an accumulated life of 49 million tube -hours and
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no failures. It is on the basis of this evidence that it is believed possible
to make long -life tubes and, in particular, to eliminate failure due to
cathode deactivation.

The second tube of interest is a 6 kme traveling -wave tube used as a
ground -based microwave repeater, the M1789, now the WECo 444A.
This traveling -wave tube was the first designed by Bell Telephone
Laboratories specifically for long life, and it used many of the design
principles and many of the selection techniques developed for sub-
marine cable tubes. This tube also was designed to operate with a de-
pressed collector. A little over four years ago, twelve of these tubes
were placed on life test at their normal operating power of 5 watts.
Table IV shows the accumulated hours on each of these tubes as of
May, 1961, at which time there had been no tube failures. On the basis
of this experience and the fact that the satellite traveling -wave tube
has been designed to have a substantially lower cathode loading and
cathode temperature than the 6 kmc tube, the satellite tube has an
expectation of a life considerably in excess of four years.

The third tube is a traveling -wave tube designed to operate in the
Bell Telephone Laboratories Command Guidance System, the M1958,
now the 7116. In this system, the rocket to be guided contains a re-
ceiver, decoder and transmitter. There is a component count approxi-
mating 1000, including one traveling -wave tube. This system has been
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Fig. 7 - Operational life of electron tubes in undersea cable system repeaters.
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TABLE IV- M1789. TRAVELING -WAVE. TUBE LIFE TEST

Tube Number
Accumulated.Hours

5/1/61 '

BC -856 39502
BC -1342 39630
BC -1363 39319
BD -14 39256
BD -660 39401
BH-69 39256
BH-208 33994
BH-413 37813
BH-464 36840
BH-559 35394
BS -41 36615
BS -102 34352

used in the guidance for about one-third of the U.S. satellites now in

orbit. It was used, for example, with Echo I and with the three Tiros
satellites. There have been to date over fifty successive firings using
this guidance package with no failure. Since the guidance system needs
only to operate for a few minutes, it gives us little information on long
term reliability. However, since it not only must survive launch but
must also this performance is a very potent
demonstration that traveling -wave tubes can be made rugged enough
to withstand the strains of launch. It further demonstrates that an
electronic system containing roughly the number and kind of compo-
nents needed in an active satellite can also survive launch.

To summarize, then, it is known from experience with the submarine
cable tube and with the microwave relay tube that traveling -wave
tubes can be designed with a life expectancy considerably in excess of
four years. The performance of the guidance tube demonstrates that
techniques are available for making a traveling -wave tube sufficiently

rugged to withstand launch.

4.3 Solar Cells

Communication satellite designs for the immediate future rely on
silicon solar cells as the prime source of power. These cells will be sub-
ject to radiation in the Van Allen belt,' which consists of electrons with
substantial densities at energies up to 1 mev and protons at energies

as high as 100 mev. Fig. 8 is a map of the Van Allen belt on a plane con-
taining the earth's magnetic axis. There is a peak in the electron intensity
at an altitude of about 2000 miles, and a second peak at about 10,000
miles with a substantial density of electrons at intermediate altitudes.
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The protons, which are much less numerous, have a distribution which
also peaks at around 2000 miles and falls off in some undetermined
manner to negligible values beyond 10,000 miles. Bombardment of
solar cells with particles of such energy results in a continual decrease
of power output with time, at such a rate that this degradation could
result in the failure of the power supply within the desired life of the
satellite. Here then is an example of probable failure due to wear -out,
in which case it is particularly important both to understand the mecha-
nism of wear -out and to design the devices to minimize the effect. In
this section, we discuss the effects of Van Allen belt radiation on solar
cells, the means of designing cells to minimize the effects, and the pre-
dicted performance of such specially designed cells.
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As shown in Fig. 9, a solar cell typically consists of a slice of n -type
silicon with a thin p -type layer on one surface and contacts made to
both surfaces. When light falls on the p -type surface, the photons pene-
trate the silicon to depths dependent upon their wavelengths and are
absorbed with the creation of free carriers, hole -electron pairs, in the
silicon. The free carriers created in response to the longer wavelength
light are created deeper in the material. Some of the carriers move to
the junction, and in crossing the junction create a current flow in the
external circuit. Thus an illuminated solar cell is a source of electric
power and has a voltage -current characteristic typically as shown in
the figure.

In discussing the optimum design of solar cells, it is convenient to
divide the generated carriers into two classes, namely those that are
generated in the body of the material beneath the pn j unction, and
those that are generated in the surface layer above the pn junction.
Those generated beneath the j unction will reach it only if they are
generated within a distance called the diffusion length, that is, the
distance that generated carriers may move in the material before being
annihilated by recombination. The diffusion length is a property of a

V

Fig. 9 - Solar cell construction and typical voltage -current characteristic.
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particular material and depends critically upon its perfection and purity.
For a solar cell to have the maximum efficiency, this diffusion length
should be as long as possible in order that effectively all carriers gen-
erated beneath the junction may reach the junction and contribute to
the output current. A somewhat different situation exists for the carriers
generated in the surface layer. This layer is usually quite thin compared
to a diffusion length. However, the surface of the semiconductor acts
as a sink for carriers and thus competes with the junction for carrier
collection. The net result is that the efficiency for collection of carriers
generated above the junction is less than that for carriers generated
below the junction. It is therefore desirable to minimize the thickness of
the surface layer.

The perfect solar cell therefore would have a zero thickness of surface
layer and an infinite diffusion length. A zero thickness surface layer,
however, would lead to infinite series resistance. Obviously a compro-
mise is necessary. Fig. 10 shows the distribution of carriers generated
in silicon in response to sunlight. The plot gives the percentage of car-
riers generated beyond the value of the abscissa. It is seen that about
75 per cent of the carriers are generated below 1 micron depth, and
that for a junction depth about 1 micron, essentially all the carriers
are generated below the j unction.

When high-energy electrons or high-energy protons are incident on a
silicon solar cell, they create local disorder in the crystal which results
in a steady decrease of diffusion length with time. A simple theory for
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the degradation of diffusion length predicts that the diffusion length L
should depend on the total flux 43 of electrons or protons according to
the equation:

= -L? + K43

where Lo is the value of the diffusion length before irradiation and K is
a constant for a given energy of particle and for a given semiconductor.
Hence, for large enough radiation fluxes, the diffusion length is in-
versely proportional to the square root of the flux. Fig. 11 shows a plot
of diffusion length versus flux of 1 mev electrons. The experimental
points were obtained by measuring the diffusion length in silicon after
successive exposure to 1 mev electrons from a Van de Graaff generator.
The line on Fig. 11 is a two -parameter fit of (3) to the experimental
data. Similar results are obtained for proton bombardment.

As the diffusion length in a solar cell decreases with exposure to
radiation, fewer and fewer of the carriers generated deep in the silicon
are collected at the junction. Thus, the power output of the solar cell
decreases. Since, as pointed out earlier, the depth of generation increases
with the wavelength of light, the solar cell degrades initially by loss of
response to the longer wavelength, i.e., the red light. This fact has a
number of implications for the design of solar cells for use in the Van
Allen belt. Firstly, since it is the blue response that is likely to be main-
tained, and this response involves the carriers generated closest to the
surface, it is most important for satellite solar cells that the junction
depth be minimized. Secondly, it is important that any antireflective

2 5 2 5,014 1015

Mev ELECTRON FLUX, CM -2

2 5

Fig. 11 - Diffusion length vs flux of 1 mev electrons.
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coating be optimized for blue light, not for red. Initial good response to
red light, which calls for long diffusion length, becomes of lesser im-
portance.

It has been found by several investigators that the decrease of diffu-
sion length in response to electron and proton bombardment is less
rapid in p -type silicon than it is in n -type silicon." For this reason, cells
for satellite use are preferably made with a thin n -skin on a p -type
body rather than the other way around. Fig. 12 is a schematic diagram
of a solar cell designed at Bell Telephone Laboratories and incorporat-
ing the features just discussed.n It is made on a p -type silicon body
with an n -layer 4 micron thick. In order to produce such a thin layer
with good properties, it is necessary to minimize surface damage. For
this reason the surface used is given an optical polish. Such a thin layer
tends to have high sheet resistance and calls for many contact fingers
to minimize the effect of series resistance. Finally, the cell is given an
antireflection coating of thickness designed to optimize the response to
blue light.

Having designed a cell to minimize the effects of radiation damage,
it is then necessary to consider what, if anything, can be done to shield
the cells from the radiation. In the case of electrons, substantially all of
which have energies of less than 1 mev, such shielding is practical using
materials like quartz or sapphire. Fig. 13 shows the measured degrada-
tion of the short-circuit current of variously shielded solar cells after
electron bombardment corresponding to increasing time in the Van
Allen belt. The shield thicknesses are represented as g/cm2. It is seen
that over the range for which the measurements were made - which
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Fig. 12 - Structure of Bell Laboratories solar cell for satellite use.
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was equivalent to two years in the Van Allen belt - the effect of elec-
trons was eliminated by the use of 0.3 g/cm2 of shielding. Shielding of
protons, which are much more energetic, would require intolerable
weights of material. However, the 0.3 g/cm', which eliminates the elec-
tron damage, does provide some reduction in the proton damage.

Fig. 14 is a plot of the anticipated power output of the solar cells
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shown in Fig. 12 as a function of months in the heart of the Van Allen
belt. The curves were obtained by estimating the densities and energy
distributions of electrons and protons in the Van Allen belt and subject-
ing the cells to electron and proton bombardments simulating Van Allen
conditions. There may be considerable errors in the estimation of Van
Allen radiation and, as a result, the time to a given degradation may
well be in error by a factor as great as 3. It should further be noted
that the curves have been calculated for the case of a satellite that
spends all its time in the Van Allen belt, and this is certainly pessimistic.
A satellite in a circular polar orbit, for example, would spend approxi-
mately s of the time in the Van Allen belt.

The most significant feature of the curves in Fig. 14 is that the plot
of power output per solar cell versus log time is approximately linear

 after initial degradation. This dependence is consistent with the antici-
pated variation of diffusion length with flux, Fig. 11, and the distribu-
tion of carriers generated in the silicon, Fig. 10. The degradation with
time becomes progressively less severe at longer times. Thus, for the
case of 0.3 g/cm2 protection, the output after 10 months has dropped
from an initial value of 24 mw to about 16 mw while at the end of 100
months it has dropped further only to 11 mw. This additional decrease
in power output for a factor of 10 increase in time could be compen-
sated for by a 50 per cent increase in the number of solar cells. It appears
then that provided there has been no gross underestimate of the nature
and effect of the Van Allen belt radiation, solar cell power can be pro-
vided for a design life of five years and that the design life could be in-
creased without excessive penalty. The curves also illustrate the design
choices that can be made in selecting the mass of front protection. It
is seen that for a given power output per cell, a factor of 3 increase in
weight of protection yields about a factor of 5 improvement in life.
However, the same improved life for a given power output could be
achieved by retaining the lighter front protection but increasing the
number of cells by -30 per cent. Just which is the best design of front
protection thickness will depend on the particular satellite under con-
sideration. For the case of the experimental satellite being designed at
Bell Telephone Laboratories, a front protection consisting of 0.3 g/cm2
of sapphire was found to be the best choice. Fig. 15 is a photograph of
some solar cell modules with and without the sapphire protection.

The solar cell is yet another example of a component which can give
adequate life performance only if the component is properly designed
and used conservatively. In this case, conservative use involves paying
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Fig. 15 -- Photograph of solar cells, without protection (center) and with
sapphire shields.

the weight penalty of sufficient radiation protection and increasing the
number of solar cells to allow for some inevitable loss of power output
per cell in response to radiation.

V. CONCLUSIONS

Returning to Table I, it is seen that the failure rate of 20 per 109
hours chosen for transistors in case I is probably a conservative figure.
This degree of reliability has already been observed in the field on older
devices that did not have the benefit of more recent design improve-
ments and that were not life tested, selected and carefully handled as de-
vices would be for satellite use. With proper selection and handling
care, these older devices would almost certainly meet the requirements
for case II and possibly for case III. The results of accelerated aging of
the newer product lead to predictions of at least one order of magnitude
improvement in transistor reliability. Assuming that at least some of
this improvement will be realized under operating conditions, one ex-
pects that transistor performance is adequate for case III. The relia-
bility of diodes, which approximates that for transistors, is similarly
adequate for case III. Should transistor and diode failure rates indeed
turn out to be in the region of one per 109 hours, then more complex
satellites could be designed with life expectancy much longer than five

years.
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It further appears that traveling -wave tubes can be made that will
survive launch and should not limit the life in orbit. Finally, even under
the most pessimistic assumptions as to the nature of the Van Allen
belt, solar cell power plants can be provided, at a weight penalty, to
meet the required life. More precise design of solar cell power supplies
will only be possible when more precise and extensive data are availa-
ble on the nature of the Van Allen belt.

Adequately reliable communication satellites can therefore be made,
provided they incorporate components of proven integrity which are
used in a conservative design. The use of components of proven in-
tegrity involves expense for high -quality design, careful manufacture
and painstaking selection. The use of such components does not permit
the performance advantages that might be gained with use of develop-
mental components. In the final analysis, conservative design leads to
more weight per given function. Typical examples are the increased
weight of a rugged traveling -wave tube, the weight of solar cell protec-
tive covers, the weight of additional solar cells to allow for the inevitable
degradation in the Van Allen belt, and the additional weight of cir-
cuitry designed with ample margins.

Hence, limitations of weight in orbit and requirements of long life in
orbit both result in a limit on the complexity of the satellite. Communi-
cation satellites in the immediate future must be simple. As higher com-
ponent reliability is demonstrated and as improved vehicles permit
greater payloads, so can the complexity of the satellites increase.
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Automatic Stereoscopic Presentation of
Functions of Two Variables

By BELA JULESZ and JOAN E. MILLER

(Manuscript received September 21, 1961)

Spatial models of functions of two variables are often a valuable research
tool. Nomograms and artistic relief drawings in two dimensions are diffi-
cult to prepare and still lack the direct impact of a spatial object. It has been
demonstrated (see Ref. 2) that objects with a randomly dotted surface permit
the determination of binocular parallax and, thus, can be seen in depth even
though they are devoid of all other depth cues. This random surface presenta-
tion has the advantage that the random brightness points can be evenly and
densely placed, whereas the classical contour -line projection at equally
spaced heights may leave empty spaces between adjacent contour -lines. A
digital computer is used to generate the three-dimensional image of a given
z = f (x, y) function and to wrap its surface with points of random bright-
ness. The stereo projections of the function are obtained and, when viewed
stereoscopically, give the impression of the three-dimensional object as being
viewed along the z-axis. The random surface prevents the accumulation of
clusters of uniform regions or periodic patterns which yield ambiguities
when fused. Two stereo demonstrations are given of surfaces obtained by
this method.

I. INTRODUCTION

Pictorial representations and visual displays are invaluable aids in
conveying scientific or technical information. In particular, the problem
of presenting three-dimensional data is of interest both from the stand-
point of its wide range of applicability and the difficulty involved in the
production of such representations.

The methods usually employed to present functions of two variables
in the fields of applied mathematics, engineering, cartography, etc., fall
into two categories: 1) two-dimensional and 2) three-dimensional dis-
plays. The first has the obvious advantage of being suitable for the
printed page, thus permitting a wide circulation for the information so

663
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presented. The techniques of nomography, orthography, isarithmic
(contour line) representations (see Fig. 1) and relief drawings (see Fig.
2) belong to this category and are widely used despite the expense and
difficulty in their preparation. However, the greatest objection is perhaps
the failure of such displays to match the capabilities of human observers,
who are equipped to perceive a three-dimensional object in depth. The
second category - that of spatial models or sculpture - answers this
objection, but these models are usually much too difficult to execute and
much too limited in their applicability.

There is, therefore, a need for a technique which a) eliminates the
tedious effort required of draftsmen in producing such displays, b)
presents displays complete with the spatial effects inherently belonging
to three-dimensional objects and appreciated by human observers, and
c) generates displays suitable for the printed page. This first requirement
has already been met for two-dimensional representations by the de -

Fig. 1 - Isarithmic (contour -line) drawing (Example 1).
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Fig. 2 - Relief drawing (Example 1).
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velopment of oscilloscopic displays which automatically project onto
the screen of the oscilloscope the object surface defined by one dependent
voltage and two independent voltages.' The second and third require-
ment, however, seem of particular interest, and therefore this paper
discusses a method employing a computer to make stereoscopic presenta-
tions of functions of two variables.

II. METHOD

The technique to be described here may be outlined as follows: the
three-dimensional image of a given function z = f (x,y), which is sup-
plied as a table of corresponding x, y and z values, is stored in a digital
computer. The computer is programmed to generate a stereo picture
pair which, when fused, gives the subjective impression of the three-
dimensional object as being viewed along the z-axis perpendicular to the
base plane of x and y. This procedure for obtaining the stereo projections
of an object can be considered in three parts: 1) defining the function to
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be presented as a three-dimensional object, 2) "wrapping" the object
with a textured surface, and 3) generating a stereo pair by taking proper
projections of the object.

In practice, the variables x, y and z must be evenly sampled with a
given resolution. Therefore, the object can be defined only by approxi-
mation, and the various approximations differ in their fine structure.
The classical method is the contour -line approach shown in Fig. 3(a)

X --31.

(a)

.---11-411111:110.

11111111111111
1111111111111111111111

(b)

Fig. 3 - (a) Surface definition with even z-axis quantization (contour lines);
(b) surface definition with even x, y plane quantization.
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Here the z values are quantized into equal levels, and to any such z
level the corresponding x and y values are taken (rounded to their
nearest sample). This approximation yields uniformly distributed z
values but uneven coverage of the x and y values. If the surface rises
sharply toward the observer, the (x,y) points become densely packed,
whereas if the surface becomes flat, these points become farther apart,
resulting in gaps. Another possible approximation is shown in Fig. 3(b).
Here the evenly sampled x and y values are taken and the corresponding
z values are determined and rounded to their nearest sample. Hence, the
surface to be displayed is defined by a dense covering of points obtained
by projection up from the base plane. This second method of approxima-
tion is chosen since the object is to be viewed from above, and since the
dense covering will result in efficient use of the available stereo picture
area. In the case of multiple -valued functions or several functions con-
sidered in one display, the projection is made onto the maximum z value,
which is the point closest to the observer.

The surface of the object is thus defined but in a rather abstract sense.
In order that the object be visible, brightness values must be assigned
to every surface point. The use of identical brightness values for all
points would yield a surface of homogeneous texture when viewed per-
pendicular to the base plane. Such a surface would have no patterns,
shadows, or brightness changes due to different angles of reflection; that
is, it would have neither monocular nor binocular depth cues and thus
would be inappropriate for the purpose. Therefore, to obtain depth cues
each point must be printed at varying brightness levels. It has been
shown' that stereo picture pairs comprised of points of random bright-
ness and thus devoid of all cues except binocular parallax can be per-
ceived in depth when fused. Therefore, it is sufficient to assign randomly
to each point (x,y,z) a brightness level. The brightness selection on a
random basis is a simple procedure, eliminating any consideration for
appropriate monocular cues, and has the further advantage of avoiding
periodicities and regions of ambiguities. That is, a point domain seen by
the left eye may be fused with any periodically repeating domain seen by
the right, if such exists, thus producing confusion as to the correct binoc-
ular parallax. Therefore, random brightness patterns are used to produce
unique point domains which can be fused unambiguously. The question
of how many brightness levels to use in the random selection is answered
by the requirements of the system of output to be used. However, the
use of few levels increases the probability of occurrence of any one level,
and clusters of points of equal brightness can produce areas of indetermi-
nate depth on the surface to be viewed. For a photographic output proce-
dure requiring a small number of levels, it would be desirable, therefore,
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to apply rules to the random selection which would prevent these
clusters. Also, a useful monocular cue could be provided by regulating
the occurrence of certain brightness levels in a manner dependent upon
the z -level of the point domain. Thus, there are many possible refine-
ments to the basic procedure of giving texture to the surface by ran-
domly assigning brightness levels.

The object has been defined and its surface has been invested with
brightness levels, albeit random and uninformative when viewed mon-
ocularly. It remains now to produce a stereo pair in which the point
domains are given the proper parallax shift. The calculations for two
such pictures follow the simple formulas for projection, which are shown
in Fig. 4. The center of projection is considered at a distance H from the
base plane of the object. The centers of projection for the stereo picture
pair are separated by a base distance B and are positioned symmetrically
about the z-axis. The plane of the pair is at a distance F from the centers
of projection. The projections for each point (x,y,z) of the surface where
z = f(x,y) onto the left and right members of the pair are then given by
the relations

( , 1 F ( lk F
x i, x --1- 2 1 H - z

and
F

yL = yH - z YR = y1.

The total parallax for the point (x,y,z) is seen to be A = BF/ (H - z)
and is shared equally by the two pictures.

It should be pointed out that binocular parallax alone constitutes
only the perception of relative depth. Without other depth cues it is
not possible to determine absolute depth when fusing the pair obtained
by the above projections. That is to say, the perceived z -scaling, which
is some monotonic function of A = const./(H - z), is obtained by some
arbitrary selection for the value H. (In stereoscopic viewing the sup-
plementary depth cues determine the absolute distance of the plane of
the stereo pictures from the observer, which is subjectively substituted
for H.) If the function A = const./(H - z) is used, the parallax shifts
will be similar to those experienced by the human optical system and
thus will give rise to familiar percepts of z -scaling. Inasmuch as the
perceived depth is some monotonic function of the binocular parallax,
which is in turn a monotonic function of the height of the surface, it
suffices to choose any monotonic function A = f(z). For example, if the
range of z is limited, the function A = z gives a good approximation to
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Fig 4 - Projection of an object onto a stereo pair.
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the projection of Fig. 4. This function merely provides a different sub-
ective z -scaling. If a numerical z -scale is provided, which can be per-

ceived in depth together with the surface to be presented, and if both
are generated according to the same projection rules, then the problem
of a correctly labelled stereoscopic projection is solved.

Consequently, the parallax shift can be computed, having selected a
function A = f (z), which gives a new position to each point, and an
identical brightness level can be assigned at random to the corresponding
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points in the left and right fields. The stereo pair then results by use of a
suitable output medium, that is, a video transducer in which the x,y
positions correspond to the deflection, and in which the brightness values
correspond to the intensity of the beam in a cathode-ray tube display.
Inasmuch as a digital system is used, the video transducer generates a
sampled display. Since the projection can produce expansions and con-
tractions of point domains on the surface or parallax shifts which are not
integral multiples of the sampling intervals, over -sampling is required.
This, however, results in great strain on the storage capacity of available
computers and on the resolution requirements of video transducers.
Therefore, it is necessary to make compromises by trading resolution in
object definition for resolution in depth. In the present state of tech-
nology, however, there are devices available which will satisfy this
requirement.

III. INSTRUMENTATION

The above steps were carried out by quantizing the base plane into
10,000 points with the scale on the x and y axes running from 1 to 100.
An IBM 7090 computer was used to generate an array of corresponding
values z = f (x,y) and to assign a random number designating the bright-
ness for each of the points. For simplicity, the function A = z was chosen
for the parallax shift instead of the geometric projection and was ap-
plied in the x -direction only. That is, the coordinates of the point x,y
in the left and right pictures were

xh = x z/2 xR = x - z/2
and

YL = Y YR = y.

This corresponds to projecting the stereo pair with a cylindrical lens,
the axis of which runs parallel to the y -direction. This position and
brightness information was then written on digital magnetic tape and
put into a General Dynamics S -C 4020 microfilm printer, which served
as the output device for the stereo pair. Different brightness levels were
achieved by randomly employing each of the sixty-four type characters
available on the microfilm printer. The variation in density of each of
the characters gave sufficient variation in brightness level and provided
an efficient means for plotting brightness information. The grid size of
the microfilm output was 1024 x 1024 and provided, therefore, an
oversampling of ten to one for the chosen picture size. This oversampling
gave enough stereo resolution for most applications. In order that the
type characters did not overlap and totally obscure each other, the
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maximum shift permitted between two points was taken to be six micro -

positions. This limited the total parallax shift to twelve units. That is,
the maximum angle of rise between two points on the surface which could
be displayed was approximately 85°. The total range of the surface was
further restricted by the locations of the peaks and valleys relative to
the side boundaries of the grid. For the examples to be shown, a scaling
on the z -values of about 60 levels running from -30 to +30 was chosen.

An alternative semi -automatic method of output using an optical
system was also investigated. This technique resulted in the production
of a solid model of the surface to be displayed, which was then photo-
graphed by a stereo camera to obtain the desired picture pair. The model
was prepared in layers by printing the points belonging to each of the
quantized z -levels on transparent glass slides as black and white dots.
The slides were then stacked together in register to form a solid cube,
where the width of the glass plates determined the scale factor for the
z-axis. The prints for each level were obtained by writing the picture
information on magnetic tape in digital form as computer output and
by using a digital -to -analog converter and a slow -speed television moni-
tor to produce oscilloscope displays, which were then photographed.m.5
A secure mounting of the stack of glass slides in which the entire stack
remained transparent was achieved by making an air -tight seal between
each plate with a polyester resin having an index of refraction suffi-
ciently near that of the glass. * This technique results, therefore, in a
stereo pair in which the parallax shift corresponds to the geometric
projection, and furthermore, gives rise to a solid model which is a de-
sirable by-product.

IV. RESULTS

Example 1, generated and displayed automatically, is shown in Fig. 5,
and can be perceived in depth when viewed stereoscopically. Viewing
may be facilitated by use of Fresnel lenses accompanying the article
cited in Ref. 2. The following three surfaces are presented:

1) the hyperbolic paraboloid,

- 50y (I/ - 50V =z
30 k 90 ) 30 '

with saddle point at (50, 50, 0),

* The slide mounting techniques were developed by R. A. Payne of Bell Tele-
phone Laboratories.
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2) the elliptical paraboloid,

x - 50)2 + - 79)2 - (z - 2(1)
10 20 50 '

with vertex at (50, 79, 20), and
3) the torus,

- 42)2 z2 62,(1' (x - 50)2 (y -
centered at (50, 50, 0) and having a radius of 6. (Conventional two-
dimensional displays of Example 1 were given in Figs. 1 and 2.)

The reduction required for reproducing the stereo pictures here has
made the resolution of individual type characters very difficult. For
this reason, a presentation in depth of the numerical z -scale was omitted.
However, a very effective display can be achieved, including the z -scale,
by using a larger picture size.

In Fig. 6 the same surface is displayed by the optical method. Two

+30

+20

-00

-30

(b)

Fig. 6-(a) Semi -automatic stereoscopic presentation of a function (Example
1); (b) same as (a) , but with increased z-axis scaling.
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views are presented to show that variable scaling on the z-axis is possible.
The amount of depth is determined by both the width of the glass
plates and the base distance between the two lenses of the stereo camera
(or distance between two positions of a single-lens camera). Fig. 6 (b)
was produced with greater base distance, and consequently the surface
has greater stretching in the z -direction. The numerals on the right edge
of the displays indicating the z -levels were applied to the appropriate
slides by hand and were not generated as picture material. It will also
be pointed out that in this method, the points of the two pictures are
more clustered and less uniform in distribution. This demonstrates the
expanding and contracting of point domains produced by the trans-
formation of projection and provides a helpful monocular cue. All dis-
plays are far more evenly filled with brightness elements, however, than
if the contour -line method had been used.

Example 2 shown in Fig. 7 is that of a spiral given by the parametric
equations

with

x = p cos 0 + 50.5

Y = p sin 0 + 50.5

z = 10- - 30

0

p = 5 --1 0 .
27

This presentation is another display from the microfilm printer, illustrat-
ing the procedure in its completely automatic form. Approximately one
minute of time is required to generate and display the stereo informa-
tion.

V. SUMMARY

A method for automatically presenting three-dimensional information
in depth has been described. The advantages are threefold in that (i)
such presentations make possible displays which are very difficult if not
impossible to obtain by other means, (ii) they carry the spatial impact
enjoyed by human observers, (iii) and they are suitable for the printed
page. The technique has been outlined in three steps: definition of sur-
face, texturing of the surface with brightness elements, and generation
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of stereo projections of the surface. By use of digital computers and the
special-purpose output devices now available, this procedure can be
carried out in a completely automatic fashion, thus making possible a
simple and effective demonstration of three-dimensional data.
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Maximization of the Fundamental
Power in Nonlinear Capacitance

Diodes

By J. A. MORRISON

(Manuscript received October 6, 1961)

In this paper we consider the problem of determining the maximum
fundamental power in a nonlinear capacitance diode, when the charge
waveform has a given periodicity and (i) varies between prescribed maxi-
mum and minimum values, (ii) has a prescribed maximum and a pre-
scribed maximum slope. Under (i) the maximum obtainable fundamental
power is first determined. The charge waveform is then further restricted to
contain no higher than second harmonics, so that the diode is being used as
a frequency doubler, and the maximum power transfer is determined. The
maximum power transfer is also determined under (ii). Particular diodes
considered are the abrupt -junction and the graded -junction ones, with oper-
ation in the forward conduction region being permitted.

I. ENGINEER'S SUMMARY

This section of the paper is a summary which stresses some of the
contents of the introduction and summary that follow. It is hoped that
this will make it easier for the engineer who is involved in parametric
amplifier and varactor design to deduce the relevant applications of the
results contained in this paper.

In the first instance it should be emphasized that an idealized problem,
based on a mathematical model, is considered. The nonlinear capacitor
is assumed to he isolated from any external circuits, and we do not dis-
cuss how the power is fed into or taken from the device. Clearly there
will be some power lost in the external circuit, and the maximum ob-
tainable fundamental power determined in this paper is only a theoretical
maximum, but it would seem to be worthwhile to understand this
theoretical maximum. When the maximum power transfer from the
first to the second harmonic is considered, the charge waveform, and

677
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hence the current, giving this maximum is determined. Clearly there is
some relative phase between the first and second harmonics in the cur-
rent, and the reactance of the output circuit must be adjusted so as to
obtain this relative phase.

It is also important to stress that some of the results obtained hold
for a general, i.e., arbitrary single -valued, voltage -charge relationship,
and are accordingly applicable to any particular such voltage -charge
relationship in which the engineer may be interested. We have, for
simplicity, considered just the abrupt -junction and the graded -j unction
diodes as special cases, and have idealized the voltage -charge relation-
ship in the forward conduction region, but other particular diodes can
be considered as special cases of the general results. We discuss below
the results which are pertinent to the general voltage -charge relationship.

Firstly, we have derived the functional form of the charge waveform
(of given periodicity and varying between prescribed values) which gives
the maximum power in the fundamental. The charge waveform is
composed (see (33) below) of intervals in which it takes on either the
maximum or minimum prescribed value, or else follows a certain curve.
The form of the curve depends on the voltage -charge relationship and
involves parameters which are functionals of the charge waveform
throughout the entire period, and hence are not known a priori. These
parameters have to be determined for each particular voltage -charge
relationship, by solving simultaneous transcendental equations. It is also
necessary to allow for finite jumps in the charge waveform, and (36)
below must hold at such a jump. Of course, a jump is not physically
realizable, since it would correspond to an infinite current, and this
makes it evident that the maximum is a theoretical one, quite apart
from losses in the external circuit. It does, however, provide an upper
bound on the maximum realizable fundamental power.

In view of the fact that the maximum fundamental power has to be
determined separately for each specific diode, we derive upper and lower
bounds for the maximum fundamental power, (11) to (13), which apply
to a general voltage -charge relationship. For a wide class, the ratio of
the upper to the lower bound is 1.54. It turns out that, for the particular
diodes considered, the lower bound is quite close to the actual value.
Further use is made of the charge waveform giving this lower bound,
when the power transfer from the fundamental to the second harmonic
is considered, subject to the charge waveform containing no higher than
second harmonics. A good approximation to the maximum power
transfer is obtained by taking the Fourier approximation, up to second
harmonics, and suitably normalizing so that the approximating charge
waveform has the prescribed maximum and minimum values.
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In connection with maximizing the power transfer from the funda-
mental to the second harmonic, we consider the diode to be a harmonic
generator, there being input power in the fundamental only. In order to
make the mathematical problem more tractable, it is supposed that the
entire output is in the second harmonic. Equations (18) and (19) simply
state that the maximum power output in the second harmonic, when
there is input power in the fundamental only, is not greater than the
maximum obtainable fundamental power without such restrictions,
and is not less than the maximum fundamental power when there is no
output or input power in the third and higher harmonics. It is assumed
here that the charge waveform is continuous. We have already discussed
the maximum obtainable fundamental power.

The problem of determining the maximum fundamental power when
there is no output or input power in the third and higher harmonics is
still not very tractable, without additional restrictions on the charge
waveform, and it is thus further supposed that the charge waveform
contains no higher than second harmonics. The maximum subject to
this additional restriction is obviously not greater than the maximum
without it. The significant point about this restriction is that there is
then no power output or input in the third and higher harmonics, what-
ever the voltage -charge relationship. We thus determine a canonical
representation of the charge waveform which contains no higher than
second harmonics and has prescribed maximum and minimum values.
By suitable choice of the time origin, this representation contains just
two parameters which lie in a bounded region.

Now, it is a straightforward matter to compute numerically the funda-
mental power for any given voltage -charge relationship and a given
charge waveform. The numerical maximization of this power with re-
spect to the two parameters in the above canonical representation is
also a straightforward process. Thus it is clear that the above procedure
has general applicability. We add that in the numerical maximization
process, the two parameters which give the approximating charge wave-
form (obtained from the charge waveform giving the good lower bound
to the maximum obtainable fundamental power) are used for starting
values.

Consideration is also given to the current -limited diode, in which the
charge waveform has a prescribed maximum value and a prescribed
maximum slope (corresponding to maximum current magnitude).
Again, we determine a two -parameter canonical representation for the
charge waveform containing no higher than second harmonics, and the
numerical maximization of the fundamental power, for any given volt-
age -charge relationship, proceeds along the same lines as in the previous
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case, except that we no longer have predetermined starting values for
the two parameters. Lack of space has prevented inclusion of the de-
termination of the functional form of the charge waveform which gives
the maximum obtainable fundamental power (without restriction on
the harmonic content of the charge waveform) in the current -limited
case.

II. INTRODUCTION AND SUMMARY

2.1 Introduction

We will be concerned with various nonlinear capacitance diodes, these
being characterized by a nonlinear voltage -charge relationship. Specific
examples are the abrupt -junction diode and the graded -junction diode,
which are composed of diffused p -n j unctions. In the former case the
voltage difference, v, across the diode is proportional to the square of
the stored charge (per unit area), q, i.e., v cc q2, while in the latter case
v cc q1, provided, in both cases, that q > 0, which implies that operation
of the diode does not take place in the forward conduction region. Now
as electric field strength and barrier width increase, creation of electron -
hole pairs through secondary impact ionization by both holes and elec-
trons leads to avalanche multiplication, resulting finally in an effectively
infinite increase of current with added applied voltage, and this is termed
reverse breakdown. There is thus a maximum voltage v. , and a cor-
responding maximum value qmnx of the charge density (which may be
related to vmnx through the actual voltage -charge relationship), above
which it is not desirable to operate the diode.

We define the normalized voltage V and the normalized charge Q by

V = V ;

Vtrinx
Q= q

q.,..
(1)

Hence the normalized voltage -charge relationships for the abrupt -junc-
tion and graded -junction diodes, operated in the region between forward
conduction and reverse breakdown, are

V =
Q2,

Q',

(abrupt)
,

( graded )
0 5 Q 1. (2 )

It is also possible to operate the diodes partially in the forward conduc-
tion region, corresponding to Q < 0. The voltage is not very dependent
on the charge in this region and as an idealization we may assume that
it is zero throughout. A physical restriction is placed on the maximum
possible current magnitude, in that the electron velocity is limited by
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lattice scattering. Throughout most of our analysis we replace this
condition by a limitation on the minimum charge, so that

q groin = -m(qins.)

Thus, in the forward conduction region,

V = 0, -m Q O. (4)

We do, however, give some consideration to the current -limited diode
in which, instead of (3),

i I imax

(3)

(5)

We will consider charge waveforms that are periodic in time, t, with
angular frequency co. We define the normalized time x and the normalized
current I by

x = cot, I-
Wgmax

Thus Q(x) is periodic in x with period 27 and, since i = dq/dt,

I = dQ= (x).
dx

(6)

(7)

The average real and reactive powers (per unit area) in the nth har-
monic, pn and r , are given by

2 'w '(poi+ p.) = (1 (f dt) (1 v en' dt) . (8)
7 0 0

We define the normalized real and reactive powers in the nth harmonic,
P and R , by

27r (p jr,,)(P,,jRn) (9)
vinnoma.

We will be concerned with the maximization of the real fundamental
power, under various conditions, and summarize the results below. We
note that P,, is not affected by a time shift in the charge waveform, but
it is reversed in sign by a time reversal of the waveform.

2.2 The Maximum Obtainable Fundamental Power, When the Charge
Waveform is Subject to Bounded Variation

The functional form of the charge waveform which, subject to the
restriction -m Q(x) < 1, maximizes the fundamental power, P1 , is

found for the general voltage -charge relationship, V = V(Q). The
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specific form is determined for diodes of interest and the corresponding
value of max P1 , the maximum obtainable fundamental power, calcu-
lated. Thus, for the abrupt -junction diode operated in the region between
forward conduction and reverse breakdown, (2), max P1 = 0.687 and
the charge waveform Q(x) giving rise to this value is depicted in Fig. 1.
The corresponding value of the reactive fundamental power is R1 =
2.43. For the graded -junction diode, operated in the region between
forward conduction and reverse breakdown, it is found that max Pi =
0.408, with R1 = 2.48. The charge waveform giving rise to these values
is depicted in Fig. 2. The abrupt -junction diode is also considered when
the region of operation includes forward conduction. Thus, from (2)
and (4), V(Q) = [max(0,Q)}2, -m < Q(x) < 1. Fig. 4 depicts max P1
and the corresponding RI as functions of m. The charge waveform Q(x)
which gives these values when m = 1 is shown in Fig. 5. The somewhat
idealized voltage -charge relationship given by V(Q) = max (0,Q),
-m < Q(x) < 1, m > 0, may be treated analytically. It is found in
this case that

3
max Pi -

m;
= (m + 2). (10)

The charge waveform giving these values is composed of Q(x) = 1, 0
and -m in consecutive intervals of x of length 27/3.

It is observed that the charge waveform which gives rise to max P1 ,
for the various diodes, contains at least one discontinuity (or jump) in
a period. A jump, of course, is not physically realizable, since it would
correspond to an infinite current, so max P1 cannot actually be attained.

Finally, upper and lower bounds are obtained on the maximum ob-
tainable fundamental power, max P1 , for the general voltage -charge
relationship V = V (Q), with -m < Q(x) < 1. Thus, it is shown that

2
L < max Pi < 4(1 -I- m) U,

where

L = max [(p - 7)17(o-) (T - o)V(p) + (a - p)V(r), (12)
(cr,p,r).i"; 1

and

U = min { max [X0- - V(u)] - min [Xa - V(0-)]}. (13)
-m<cr<1

Moreover, it is shown that

L (1 ± m)U 2L. (14)
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The bounds in (14) cannot be improved without restriction on V(Q),
but if [(p m)V (1) - (m 1)V (p) (1 - p)V(-m)] does not
change sign in -m p < 1, then L = (1 m)U and the ratio of the
upper to the lower bound in (11) becomes 1.54. The class of voltage -
charge relationships

V(Q) = [max (0,Q)r, Q < 1; in >= 0, v > 1, (15)

which includes the particular diodes considered, satisfies the above
condition, and in this case

L = m (1 - -1) [(1 m)v]-1 (Y-1). (16)

For the particular cases considered, the lower bound in (11) is fairly
close to max P1

A lower bound is also obtained, for a general voltage -charge relation-
ship V = V (Q), with -n? < Q(x) 1, for P1 such that Pi + P2 = 0.
It is shown that

max [P1 1 Pi + P2 = 0] 1.87 )L. (17)

2.3 The Maximization of the Power Transfer in a Frequency Doubler,
With Bounded Charge Waveform

Here we are interested in maximizing the power transfer from the
fundamental to the second harmonic, when the diode is being used as
a harmonic generator. Thus there must be input power at the funda-
mental frequency only, i.e., P1 > 0 and P 0, n 2. In order to make
the problem more tractable we suppose that the entire power output is
put is in the second harmonic, so that P = 0, n > 3. It follows that
P1 + P2 = 0, provided that the charge waveform is continuous, since
then E,7-1 P = 0. We observe that

max [ - P2 I P < 0, n > 3]

max [P1 I P S0, n>3] max Pi ,

and

(18)

max [- 12 P 0, n 3] max [-P2 I P = 0, n>_3]
(19)

= max [P1 = 0, n > 3].

Even the problem of determining max [P1 P = 0, n 3], that is,
max P1 subject to P = 0, n >= 3, is not very tractable, without addi-
tional restrictions on the charge waveform. Thus, it is supposed that
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the charge, and hence the current, contains no higher than second har-
monics. The conditions Pi + P2 = 0 and P = 0, n z 3, are then iden-
tically satisfied, independently of the voltage -charge relationship V =
V(Q).

Now, a change in the time origin does not affect the power transfer.
Hence, the canonical representation of a charge waveform which con-
tains no higher than second harmonics and is such that Q(r) = Qmin =
-m and Q(2 tan -1 s) = Q. = 1, is constructed. In addition to the
parameter s there is the parameter y which is subject to the restriction
0 S y S (1 - 82), which of course also implies that 2 s 1. It is found
that P1 = 0 on y = 0 and on y = (1 - s2), independently of the vol-
tage -charge relationship. Moreover, Pi(s,y) = -P1( - s, y) and in
particular P1 = 0 on s = 0 also, so that it is sufficient to consider only
the region -1 < s < 0, 0 < y < (1 - 82) and to maximize I P1 I. The
abrupt -junction diode, operated in the region between forward conduc-
tion and reverse breakdown, may be treated analytically, and it is found
that the maximum power transfer is 0.281, as compared with the max-
imum obtainable fundamental power of 0.687. The correspondirig re-
active fundamental powers are 1.46 and 2.43, and the charge waveform
giving the maximum power transfer is depicted in Fig. 6, which should
be compared with Fig. 1.

In order to determine the maximum power transfer for a general
voltage -charge relationship, recourse must be made to numerical com-
putation. However, a prior step is the determination of a charge wave-
form which provides a reasonable approximation to the maximum power
transfer, and hence provides starting values for s and y in the numerical
maximization process. A good lower bound was obtained for the max-
imum obtainable fundamental power. Furthermore, for a wide class of
voltage -charge relationships V = V(Q), the charge waveform Q(x)
giving this lower bound satisfies Q. = 1 and Qmin = -m. The class
of voltage -charge relationships (15) falls within this class. Thus it would
seem feasible that a reasonable approximation to the maximum power
transfer will be obtained by taking the Fourier approximation, up to
the second harmonics, of the charge waveform giving the good lower
bound for the maximum obtainable fundamental power, and suitably
shifting and expanding (or contracting) the Fourier approximation so
that the resulting charge waveform Q(x) satisfies QmQx = 1 and Qtnin =
-m. This is the procedure adopted and, for the abrupt -junction diode,
operated in the region between forward conduction and reverse break-
down, it actually yields the charge waveform that gives the maximum
power transfer.
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The results of the numerical maximization process are tabulated in
Section 5.4. Tables II and III, for the cases v = 2 and v = I in (15), show
the values of max P1 , the maximum power transfer, and the correspond-
ing values of R1 and R. , the reactive powers in the fundamental and
second harmonic, /... , the maximum normalized current magnitude,
and (b2 c2) and (d2 e2 ) , the squares of the amplitudes of the first
and second harmonics in the charge waveform, for several values of m.
Tables IV and V show the values of -s and y which give max PI and
also y") and PI"), the value of P1 corresponding to the starting values
yO) and --.30) = 1/-0. It is interesting to observe how close Pi") is
to max P1, particularly for the smaller values of m. Table VI compares
max PI with the maximum obtainable fundamental power, max PI. , in
the case v = 2, for several values of m. It is also worth noting that in
the case v = m = 0 we have max Pi = 0.162, whereas max P1 =
0.408.

2.4 The Maximization of the Power Transfer in a Frequency Doubler,
for the Current -Limited Diode

We finally turn our attention to the current -limited diode in which
(5), instead of (3), holds. Thus, from (5) to (7),

I V(x) I
imax

( Wqmax )

For the P+N abrupt -j unction diode of germanium"

1.03 X 10"(N) -°*725 volts,

1.6 X 10-12N amps/cm2,

where N is the donor concentration in cm 2. But, from the voltage -
charge relationship,

(20)

(21)

2
gmax = 2e e Nv, , (22)

where e denotes electron charge. Hence,

glum, L"--i 2.16 X 10-9(N)"75 coulombs/cm2, (23)

and

K =
i

" x 0.74 X 1 0-3 0 .8625 -1. (24)

For N = 2 X 10", a reasonable value, K 1011 secs, which is in the
range of angular frequencies of interest.
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We consider the problem of maximizing the power transfer from the
fundamental to the second harmonic, when the diode is being used as
a frequency doubler, and, as previously, the additional assumption is
made that the charge waveform Q(x), and hence the current, contains
no higher than second harmonics. The first step is the construction of
the canonical representation of Q(x) such that Q. = 1, Q' (Or) =
Qm' in = -k and Q'(2 tan-' s) = Qmax =< k. In addition to the param-
eter s there is the parameter y which is subject to the restriction 0
y < 1(1 - 82), which of course also implies s2 < 1. It is found that
P, = 0 on y = 1(1 - 82), independently of the voltage -charge rela-
tionship. Since, if Q(x) = (2(7 - x), then Q.. = 1, Qua. = k and
Qmin k, it is sufficient to consider the above canonical representa-
tion and to maximize I Pi I, in order to maximize Pi subject to Qmax =
1, I Q' = k. We denote this maximum by II(k). For the abrupt -
junction diode operated in the region between forward conduction and
reverse breakdown, the determination of 11(k) is carried out analytically
for k sufficiently small that Qmin >= 0. It is found that II( k) = 0.731k2,

for 0 < k < 0.681. Combining this result with that obtained when the
charge waveform is subject just to bounded variation, 0 < Q(x) < 1,
it is shown that, from the viewpoint of maximizing the actual funda-
mental real power pi , the optimum operating frequency lies in the range

(wqm..)1.299 5 5 1.468, (25)
&max

and that

54(max pi) 2(4)1
1 < 1.06. (26)

&triaxVmax - 3

For the abrupt -junction diode which is allowed to operate partly in the
forward conduction region, the maximization of the power transfer is de-
termined by numerical computation. For the values of s and y which give
max I Pi I, i.e., II(k), the reactive powers Ri and R2, and Q. in , i.e.,
-M(k), were calculated, the results being given in Table VII (Section
6.4). It is shown that max Pi subject to Q. < 1 and I Q' m ax S k is at-
tained with Q.', = 1 and I Q' Imax = k. For k < 0.681 it can also be at-
tained with 1.468k < Q. < 1 and I Q' 'max = k. Optimizing with respect
to the frequency it appears that 20(max ,---, imaxvmax . Thus a consider-
able improvement is obtained by permitting operation in the forward
conduction region. The optimum frequency in this case is roughly one -
fifth that in the case when operation is not allowed in the forward con-
duction region, although close to max pi may be obtained at one-third
the frequency.
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In conclusion, we add that lack of space has necessitated the omission
of several aspects of this problem, and in particular of the determination
of the maximum obtainable fundamental power when the periodic
charge waveform is restricted only to have bounded slope.

III. THE CHARGE WAVEFORM WHICH, SUBJECT TO BOUNDED VARIATION,
MAXIMIZES THE POWER IN THE FUNDAMENTAL HARMONIC

3.1 The Functional Form of the Charge Waveform

From (1), (6), (7), (8) and (9),
2r 2w

P. + = (1 Q'(x) e1" dx) (f V[Q(x)] einx dx) . (27)
0 0

It is noted that P. is not affected by a time shift in the charge waveform
Q(x), but it is reversed in sign by a time reversal of the waveform. On
the other hand, R is not affected by either a time shift or a time re-
versal in the charge waveform. Integrating by parts the first integral
in (27), and remembering that Q(x) is periodic with period 27r, and
then separating real and imaginary parts,

P = n(a8 - On -Y); R = 13.60,

where
2w 2r

a = f Q(x) sin nx dx; 13. = fo Q(x) cos nx

2w 2r

7n = f V[Q(x)] sin nx dx; 6 = f V[Q(x)] cos nx dx.
I)

From (28) and (29) we may express P as a double integral,

(28)

(29)

1

JO
- P = Q(x)V[Q(y)] sin n(x - y) dx dy. (30)

0 0

To find the functional form of Q(x) which, subject to the restriction

-m < Q(x) < 1, (31)

maximizes P1 , we set

Q(x) = [(1 m) sech R(x) - m], (32)

so that the inequalities in (31) are satisfied. A variational procedure
applied to (30) then shows that for stationary values of P1 , we have,
for each x,
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Q(x) = -m, or Q(x) = 1, or

- (-yi cos x - (51 sin x)
(al cos x - 131 sin x) '

where al , /31 , , and Si are as defined in (29). This, then, is the func-
tional form of Q(x) which maximizes P1 . Evaluation of the integrals
in (29) will lead to four equations for the four unknowns al , 'Y ,

and S1. Note, however, that

d (71 cos x - Bi sin x)1 (ceial - Pal)
dx L(ai cos x - AL sin x) (al cos x - PI sin x)2

-P 1

(33)

(34)

(al cos x - 131 sin x)2'

from (28), is of one sign. Since we are not interested in P1 = 0, which
case arises in particular if Q(x) = const, it follows that allowance must
be made for discontinuities in Q(x), since we require that Q(x) be peri-
odic. Supposing that Q(x) is discontinuous at x = co, we obtain a con-
dition by integrating the equation

V'[Q(x)]Q'(x) - (-yi cos x - Si sin x) (35)
(al cos x - Pi sin x) '

from x = co -0 to x = + 0. This gives

(71 cos - 51 sin io)
[17[Q(x)]]:-+O - (al cos - sin co)

[(2(x)r,tO . (36)

3.2 The Charge Waveform for the Abrupt -Junction Diode

In normalized form the voltage -charge relationship for the abrupt -
junction diode operated in the region between forward conduction and
reverse breakdown is

V(Q) = Q2, 0 < Q(x) 5 1, (37)

so that m = 0 in (31). We make use of the fact that P1 is invariant
under the transformation Q(x) Q(x - 0), and choose 0 so that /31 =
0, since this leads to a simplification of the analysis. Let us define a and
b by the equations

= 2aot1 , Sl = 2ba1 ; 131 = 0. (38)

Then, from (28),
P1 = 2ba12. (39)

It is clear that max P1 > 0, and hence that b > 0. The functional form
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of Q(x) for max P1 is, from (33), (37) and (38),

Q(x) = 0, or Q(x) = 1, or Q(x) = (a - b tan x). (40)

Rejecting combinations which lead to P1 = 0, we are led to the con-
clusion that, within a cycle, Q(x) = 1 for an interval, it then follows
the curve Q(x) = (a - b tan x) and then Q(x) = 0 for an interval,
after which it jumps from 0 to 1 and the cycle is repeated.

Let cp be a value of x at which a jump in Q(x) from 0 to 1 occurs.
Then (36), (37), and (38) give

(2a - 1)
tan (7 - .

Thus we obtain max P1 by taking

1, for p < .t < r tan -1 [(a - 1)/b];

(a - b tan x), for r tan-' [(a - 1)/b] S x
Q(x) =

r tan-' (a/b),

0, for ,r + tan (a/b) < x < 2r 4- v,

where

-2 < tan-' [(a - 1)/b] < < tan-' (a/b) < 1 ,

and

(41)

(42)

(43)

Q(x + 2r) = Q(x), all x. (44)

Now a , /31, -yi , and (51 may be calculated from (29), (37), (42) and
(44). Substitution into (38) then leads to

(2a - 1) cos 0. = 2b1[(a - 1)2 + b2]1 - b2)11 ;

2b cos + sin 3br = { (a + 1)[(a - 1)2 + b2]1

- a(a2 b2)11;

(45)

sin 'p = {[(a- 1)2+b2]3- (a2 by),

where

r = b[tanh-1 {a(a2 b2)-6) - tanh-1{ (a - 1)[(a - 1)2 + bilk (46)

It would appear that we now have one too many conditions on a, b and
co because of the relationship in (41), which was obtained from the jump
condition at x = 'p, but it is observed that the first and last equations
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in (45) are consistent with (41). Since Iv < 7/2 and b > 0, (41) gives

cos co = 2b[(2a - 1)2 + 4b2]-1;

sin co = (2a - 1)[(2a - 1)2 + 4b2]-1.

Substituting into the first equation in (45), we obtain

(2a - 1 ) [( 2a - 1)2 4b2]-i - 1)2 + by. - (a2 2s)i). (48)

A solution to (48) is a = Z and, moreover, this is the only solution
since if a >1 the L.H.S. > 0 and the R.H.S. < 0, and vice versa. Thus,

a=a, =0. (49)

The second equation in (45), using the definition of r given in (46),
now leads to an equation for b, namely

3b2 tanh-1 [(1 4b2)-1] = [1(1 4b2)1 - (50)

and (39) and the expression for a1 give

(47)

P1 = 21)0. 2b tanh-1[(1 4b2)112 =
18b

[2b + 4b2)4]2, (51)

using (50). Equation (50) was solved numerically and it was found that

b = 0.14136; max P1 = 0.6868. (52)

The shape of Q(x) which gives this maximum value of P1 is shown in
Fig. 1. From (28) and (38) the corresponding reactive fundamental
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abrupt -junction diode operated in the region between forward conduction and.
reverse breakdown.
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power is given by

(Pb)
R1 = 2aa1

2

b
= = 2.429. (53)

Note that the reactive power is about three and a half times as large
as the real power.

3.3 The Charge Waveform for the Graded -Junction Diode

We now turn our attention to the second diode of interest, namely
the graded -junction diode, and suppose that it is operated in the region
between forward conduction and reverse breakdown. In normalized
form the voltage -charge relationship is

V(Q) = Q, 0 < Q(x) < 1. (54)

The determination of the maximum obtainable fundamental power,
max P1 , is carried out along the same lines as for the abrupt -junction
diode, although the details are more involved. The analytical form of
the charge waveform Q(x) which gives max P1 is

1, for 4 < x =< 7 + tan -1 [(a - 1)/b];

- b tan .02, for w + tan -1 [(a - 1)/b] S x

5 7r + tan -1 (a/b);

0, for 7r + tan-1(a/b) S x < 2r +

( 55 )

-2 < tan-' - 1)/b] < 11/ < tan (a/b) < 97r
,

(56)

and (44) holds. Here

3= aai ; 61 = bat 
2 '

Ou = 0, (57)

which leads to three equations for a, b and 1y. These equations are con-
sistent with the jump condition (36) which gives

tan ik = (3a - 2)/(3b). (58)

Elimination of # leads to two equations for a and b which were solved
numerically, giving

b = 0.11098; a = 0.67375. (59)
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These values lead to

max P1 = 0.4084; R1 = 2.479.

The corresponding charge waveform Q(x) is depicted in Fig. 2.

(60)

3.4 The Abrupt -Junction Diode When the Region of Operation Includes
Forward Conduction

In this case the normalized voltage -charge relationship is, from (2)
and (4),

V (Q) = [max (0,Q)]2, Q(x) S 1, m > 0. (61)

As previously, we translate Q(x) so that 131 = 0 and again define a and
b by (38), so that (39) for P1 also holds. From (33), (38), and (61),
the functional form of Q(x) for max P1 is

Q(x) = -m, or Q(x) = 1,

or max [0,Q(x)] = (a - b tan x).

Thus we are led to the conclusion that within a cycle Q(x) = 1 for an
interval, it then follows the curve Q(x) = (a - b tan x) until the point
at which Q(x) = 0 where it jumps to the value -m, and after Q(x) =
-in for an interval it jumps to the value 1 and the cycle is repeated.
Thus in this idealized case there are two discontinuities in Q(x) in one
cycle. Note that according to (36), together with (38), the jump of
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Fig. 2 - Charge waveform for maximum obtainable fundamental power in
graded -junction diode operated in the region between forward conduction and
reverse breakdown.
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Q(x) from 0 to -m occurs at x = where (a - b tan iti) = 0, since
V(0) = 0 and V(-m) = 0. Hence we obtain max P1 by taking

Q(x)

1,

(a-btanx),
for

for

co < x 5 7r ± tan-' [(a - 1)/b];

+tan -1 [(a - 1) /b] x
(63)

< + tan -1 (a/b);

-m, for 7 + tan-' (a/b) < x < 27r +
where (43) and (44) hold. In this case the jump condition at x = co,
gives

[2a(1 m) - 1]tan io -
2b(1 m)

The calculation of ai , yl , and ol , and substitution into (38),
leads to three equations for a, b, and v, which are consistent with (64).
The elimination of yo leads to two equations for a and b, which quan-
tities of course are functions of m. It was found to be possible to elim-
inate m analytically from these two equations, so that instead of solv-
ing the two simultaneous equations for a and b for given values of m,
the single relation between a and b which did not involve
for b for given values of a. Thus a parametric solution was obtained in
the form b = b(a), m = m(a). From this a and b were plotted graph-
ically against m and the results are shown in Fig. 3. It was shown ana-
lytically that

(64)

1 < 4a(1 m) < 2, (65)

the upper bound being attained for m = 0 and the lower bound being
approached for m -> 00 . Also, as m 00 it is found that

b max PI ^./ 3V:1 m; 3R, m,

where

2 2 '

where R1 is the reactive power in the fundamental. Fig. (4) shows
max P1 and the corresponding R1 as functions of m. It is interesting to
note that the ratio (max P1)/R1 increases with increasing m from its
initial value of 0.28, its asymptotic value being Na from (66). The
charge waveform Q(x) giving rise to max P1 is shown, for m = 1, in
Fig. 5.

3.5 The Charge Waveform for an Idealized Voltage -Charge Relationship

We now consider a special voltage -charge relationship which may be
handled analytically. Thus we suppose that the capacitance has a finite
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constant value for reverse bias and is infinite for forward bias, and
hence in normalized form

V(Q) = max (0,Q), -m < Q(x) < 1; m > 0. (67)

Since V' (Q) is constant except possibly at Q = 0, where it is indeter-
minate, we deduce from (33) that Q(x) has one of the values 1, 0, and
-m at each point. Omitting further details, it is found that max P1 is
given by

Also,

Q(x) =

Ii, 0 <x < 27r/3;

0, 27r/3 < x < 4r/3;

in, 47r/3 < x < 27r.

(68)

max P1 = 3 m; R13= - (m + 2). (69)
2

Note that, as might he expected, these values are asymptotically, as
m 00, the same as for the voltage -charge relationship in (61), as is
seen from (66).
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IV. BOUNDS ON THE MAXIMUM OBTAINABLE FUNDAMENTAL POWER

4.1 Lower Bounds

We now derive some lower bounds for the maximum obtainable power
in the fundamental, for a general voltage -charge relationship, by the
simple expedient of choosing specific charge waveforms. Any P1 which
we obtain is, of course, a lower bound for max P1. Thus we consider
the charge waveforms

on ri ;

011

(70)

where each r; (j = 1,2,3) is a finite collection of nonintersecting inter-
vals, open at the left and closed at the right, and furthermore

3

n ri, = 0, j k; U = (0,2r]. (71)
i-1

From (28), (29), (70) and (71),

P = nL(cr,p,T) [(I cos nx dx) (f sin nx dx)I r,

- (f sin nx dx) (j.
2

where

)cos nx dx
(72)

L(cr,p,r) = [(p - r)V(o) (r - o-)V(p) + - p)V(7-)]. (73)

The significant point here is that we can choose the intervals r, and
I', to make PI as large as possible, for the waveform class of (70), in-
dependently of the functional form of the voltage -charge relationship,
V = V(Q). This is still true if we wish to make P1 as large as possible
subject to the condition P1 -I- P2 = 0, say, since the factor containing
V, namely L(o-,p,r), occurs in each P.. Note, from (73), that L(a,p,r)
vanishes unless a, p, and r are unequal. Also, if (o-,p,r) undergo a cyclic
permutation then L(o-,p,r) is unaltered, but if (o-,p,T) undergo an anti -
cyclic permutation then L(a,p,r) is reversed in sign. We suppose that
the charge waveform has bounded variation as in (31) and define

L = max [L(r,p,r)] >= 0. (74)
-m5(e,p,)51
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Also from (72) it is seen that P1 changes sign if F1 and r, are inter-
changed, which is equivalent to an anticyclic permutation of (cr,p,r).

Thus we are interested in making the modulus (or magnitude) of the
bracketed expression following the factor L( cr,p,r) in (72) as large as
possible, in order to obtain as large as possible a lower bound for
max P1 . We will restrict ourselves to special r; and find the maximum
modulus of the bracketed expression in (72) for these subclasses. In par-
ticular, we consider

Pl = (0,X];

Then, from (72),

where

P2 = (p.,v], 0 < X < /2 < P < 2r. (75) .

P. = 1

- L( cr,p,r)F(nX,ng,nv) (76)

F(X,µ,v) = [sin (v - X) - sin (µ - X) + sin 1.1. - sin v]
(77)

= 4 sin [(v - /4/2] sin (X/2) sin [(v X)/2].

We first set X = u and determine /2 and v to maximize F(µ,/z,v) which
from (75) and (77) is seen to be positive. The stationary values of
[sin ( v - + sin y - sin v] are given by

cos A = cos (A - P) = cos P. (78)

Hence /7(12,/i,v) is a maximum for µ = 2r/3, v = 47r/3 and from (74),
(76), and (77) the corresponding maximum of P1 is

P1
3 3- L. (79)

2

Now for the voltage -charge relationship (37) it is readily verified that
L(a,p,r), as defined in (73), has a maximum value of 4 which is attained
for a = 1, p = z, r = 0, and hence in this case we obtain the value

= 0.650, which is quite close to the value of max P1 given in (52).
We now consider the maximization of F(X,I2,v) subject to the con-

dition

F(X,p,v) iF(2X,2ii,2v) = 0, (80)

corresponding to P1 + P2 = 0. Using the second part of (77), (80)
becomes

1 + 4 cos [(v - /412] cos (X/2) cos [( p - X)/2] = 0, (81)
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supposing that F(X,A,v) 0 0. It is interesting to note that (81) cannot
be satisfied with X = A. It is found that F(X,A,v) is maximized, subject
to (75) and (81), by

X = 2(r - 0); A = 0; v = (2r - 0), (82)

where

cos 0 = (27-/3 < 8 < r),

and the corresponding value of P1, with P1 -I- P2 = 0, is

P1/(4L) = [1 - (2)x]3 = 0.468.

(83)

(84)

4.2 An Upper Bound, and its Relationship to a Lower Bound

In Appendix A we give the derivation of an upper bound, for a gen-
eral voltage -charge relationship, on the maximum obtainable funda-
mental power, using the fact that the charge waveform is of bounded
variation, (31). It is shown that

max P1 < 4(1 + m)U, (85)

where

U = min( max [Xa - V(0-)] - min [X7 - V(0-)]1. (86)
-msusi 1

In the previous section we showed, by example, that

max P, 323 L, (87)

where L is defined by (73) and (74). From Appendix A, we have

1 S (1 + m)U/L 5 2, (88)

and these bounds cannot be improved without restriction on the voltage -
charge relationship. However, there is a large class of voltage -charge
relationships for which the lower bound is attained, namely those for
which [(p m)V(1) - (m + 1)V (p) (1 - p)V( -m)] does not
change sign in -m < p 5 1. From (85) and (87) it follows that

30 c max P < if L = (1 + m) U (89)
2 L 4'

Also, for the above class, L in (74) is given with o = 1, T = -m, or
vice versa, and U in (86) is given with X = [V(1) - V(-m)]/(1+ m).
A class of voltage -charge relationships of interest is

V(Q) = [max (0,Q)]Y, -m < Q 1; m 0, P 1, (90)
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of which we have already considered the cases v = 2, v = 1, and v =
4 (with m = 0). It is readily seen that this class satisfies the above
condition, and hence

L = max [ (p m) - (1 m) [max (0,p)]`'} ;

I

= max

Thus,

[max (0,p)r}

- min
{(1 m)

- [max (0,p)r}.

(91)

L = m (1 -1[(1 m) v1-11 = (1 + in) U, (92)

and the bounds on (max P1) /L in (89) hold. From (69) and (92) it is
seen that the lower bound is exact for the case I) = 1, m > 0. For v =
4 and m = 0, 30 L/2 = 0.385 as compared with max P1 = 0.408.
For v = 2, L = (2m + 1)2/[4(1 m)], and Table I shows the ratio
2(max P1)/(301) for several values of m, and it is noted that the
lower bound improves with increasing m.

TABLE I (V = 2)

m 0 0.589 1.20 1.89 3.07 5.50
2(max P,)

1.058 1.042 1.027 1.018 1.012 1.00630L

V. THE MAXIMIZATION OF THE POWER TRANSFER FROM THE FUNDA-
MENTAL TO SECOND HARMONIC, WITH BOUNDED CHARGE WAVEFORM

5.1 The Canonical Representation of the Charge Waveform

We wish to consider the problem of maximizing the power transfer
from the fundamental to the second harmonic, when the charge wave-
form contains no higher than second harmonics, so that

Q(x) = a + b sin x c cos x d sin as e cos 2x. (93)

We also impose the conditions

Qmax = 1; Qmin = -m- (94)

Note that it does not follow a priori that the maximum power transfer
subject to (94) is equal to the maximum subject to Q. < 1, Qmin
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-m. We observe, however, that for the voltage -charge relationship
(90),

(P+1)= 7. max [P1 I Qmax = 1, Qm in = -q/r], 0 < r 1,

as may be deduced from (28) and (29). Thus it is sufficient to deter-
mine max [P1 I Q. = 1, Qmin = -m], that is, max P1 subject, to the
conditions of (94), for a range of values of m.

A canonical representation of Q(x) is found in Appendix B. In addi-
tion to the two conditions in (94) it is supposed, by a suitable choice
of time origin, that

max [P1 I Qmax = r, Qm in
(95)

Q(7) = Qmin = (96)

Thus the five coefficients in (93) are given in terms of two parameters
and it is found that

a= [(c - e) -m]; b 2d = (1 + in)sy;

c = (1 -I- m)[1(1 - 84) - 4]; (97)

e = 4(1 m)[y(1 - 2) - 1(1 s2)21.

The parameter s arises from the equation
Q(2 tan' s) (98)= Qmax 1.

The parameter y is subject to the condition

0 y (1 - s2), (99)

which of course also implies that s2 < 1. Thus we have a two -parameter
canonical representation of Q(x), and these two parameters lie in a
bounded region. Moreover, it is shown in Appendix B that, independ-
ently of the voltage -charge relationship V = V(Q),

Pi ly=0 = 0; P1 Y=(1-82) = 0, (100)

so that P1 vanishes on the boundary of this region. Also it is seen, from
(93) and (97), that changing the sign of s is equivalent to the trans-
formation Q(x) - Q(27 - x), and hence

P1( -8,Y) = -Pi(s,Y); P1 = 0. ( 1 01 )

5.2 The Abrupt -Junction Diode

We now consider the abrupt -junction diode operated in the region
between forward conduction and reverse breakdown. From (28), (29),
(37), (93) and (97), with m = 0, it follows that

2

P1 =4 s(1 2)2,4(1 - s2) (102)
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The maximum of (102) subject to (99) is
4,r2

max PI =
81V:-3

- 0.2814 , (103 )

being given by s = -(1/-0), y = 3. Thus a charge waveform giving
max Pl is

1

Q(x) =
.3

3[2 sin ( + + sin 2 (x + (104)

and the corresponding fundamental reactive power is found to be

472Rl = = 1.462. (105)

Q(x) = O(x - (2113)) is depicted in Fig. 6. It is interesting to com-
pare (52) and (103), and Figs. 1 and 6. We comment that the above
results may be obtained quite elegantly, without using the canonical
representation of the charge waveform.

5.3 A Charge Waveform Which Provides an Approximation to the Maxi-
mum Power Transfer

In Section IV we obtained a lower bound to the maximum obtainable
fundamental power, (87), and it was seen to be a close bound in the
particular cases considered. The charge waveform giving this lower
bound is one which has values a-, p, and T on consecutive intervals of
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x of length 21r/3. Here o-, p, and r are those values which, subject to
-m < (cr,p,r) 5 1, maximize L(a,p,r), as defined in (73). It was also

pointed out that if [(p m)V(1) - (1 ± m)V(p) + (1 - p)V( -m)],
i.e., L(1,p,-m), does not change sign in -m < p S 1, then L(a,p,r)
is maximized with a = 1, r = -m (or vice versa) and a suitable value
of p. The class of voltage -charge relationships given in (90) satisfies
this condition and then

P = [( 1 ± m) v] -1/c-1> (106)

Now the Fourier coefficients, up to the second harmonic as in(93), of
the charge waveform giving the close lower bound to the maximum
obtainable fundamental power, are

a = (cr p r) ; b = 2d = (a - 7) j2r

c= -2e =N/5 (cr T 2p) .

2r .

(107)

We will restrict ourselves to that class of voltage -charge relationships,
V = V(Q), for which L(o-,p,r) in (73) attains its maximum, subject
to -m S (a,p,r) 5 1, when

a = 1, r= < p < 1. (108)

It would seem feasible that we might obtain a reasonable approxima-
tion to the maximum power transfer from the fundamental to the second
harmonic, by suitably shifting and expanding (or contracting) the
above Fourier approximation, so that (94) is satisfied. Setting a = 1,
r = -m in (107) and carrying out this procedure, we obtain the ap-
proximating charge waveform

0(x) = -1 (1 p - m) -
9

(1 + m) (2 sin x sin 2x)
3

+
9
-1 (1 - na - 2p) (2 cos x - cos 2x).

(109)

If we define 0(x) = (2[x (27/3)], then (96) is satisfied and in the
canonical representation of 0(x), (97), we have

1 - p
= y - 2(1

± m)
(110)

3(1 )

For the abrupt -junction diode operated in the region between forward
conduction and reverse breakdown, p = 1, setting m = 0, v = 2 in
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(106). Hence, from (110), s = -(1/V3) and y = 1/3, so that, from
the previous section, the approximating charge waveform is actually
the one which gives the maximum power transfer.

5.4 The Numerical Computation of the Maximum Power Transfer, for
Particular Diodes

We have already obtained a two -parameter canonical representation
of the charge waveform containing no higher than second harmonics
and satisfying (94). The two parameters s and y lie in the bounded
region given by (99), and P1 vanishes, independently of the voltage -
charge relationship, on the boundary of this region. Also, since P1 is
antisymmetric in s, it is sufficient to consider only half the region and
to maximize I P1 I. The maximization was carried out numerically for
particular diodes, by means of the iterative process of fitting a quadric
surface. As a starting point sm,y(t) in the process, that point correspond-
ing to the approximating charge waveform, derived in the previous
section, was used.

The results of the numerical computations for the voltage -charge
relationship of (90), with v = 2 and v = I, and several values of m,
are tabulated below. Tables II and III give the values of the maximum
power transfer, max P1, together with the corresponding values of the

TABLE II- (v = 2)

m max P1 R, R, 'max (b2 + c2) (d2 + es)

0 0.2814 1.462 0.7310 0.7698 0.1482 0.0370
1 0.7773 1.966 1.060 1.160 0.3289 0.0865
1 1.284 2.300 1.300 1.549 0.5947 0.1573
2 2.198 2.921 1.561 2.310 1.451 0.3484
I 3.366 3.854 1.679 3.422 3.616 0.7414
5 4.371 4.788 1.642 4.515 6.869 1.250
7 5.544 6.020 1.474 5.951 12.92 2.097
9 6.586 7.228 1.230 7.372 20.95 3.096

TABLE III - (P =

m max P1 R1 Rs Ima. (b2 + c2) (c12 + e2)

0 0.1623 1.514 0.7389 0.7684 0.1499 0.0366
0.6782 2.137 1.182 1.162 0.3257 0.0878

1 1.246 2.428 1.529 1.560 0.5635 0.1652
2 2.271 3.023 1.882 2.330 1.367 0.3682

7i-
3.575 4.034 2.006 3.445 3.479 0.7703

5 4.691 5.115 1.907 4.533 6.710 1.277
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reactive powers in the fundamental and second harmonic, R1 and R2 y
and the maximum current 'max associated with the charge waveform
Q(x), that is the maximum value of I Q'(x) I. It is worth noting that
R2 does not continue to increase with m. Also included are the squares
of the amplitudes of the first and second harmonics in the charge wave-
form, (b2 + c2) and (d2 e2). These, together with the real and re-
active powers, determine the normalized impedances. Tables IV and V
give the values of -s and y which given max P1 , and also y") and Pi"),
the value of P1 corresponding to y(1) and -s(1) = 1/V3 = 0.5774. It
is interesting to note how close P1(1) is to max P1 , except for the larger
values of m. Table VI compares max P1 with the maximum obtainable
fundamental power, max PI , as obtained in Section III, for the case
v = 2 and several values of m. It is also worth comparing the value of
max P1 = 0.162 for the case v = m = 0 with the corresponding value
of max P1 = 0.408.

TABLE IV (v = 2)

ffi -s y(I) y P1(1) max A,

0 0.5774 0.3333 0.3333 0.2814 0.2814
i 0.5839 0.2963 0.2942 0.7770 0.7773
1 0.5848 0.2500 0.2426 1.283 1.284

2 0.5716 0.1852 0.1782 2.192 2.198
0.5465 0.1317 0.1301 3.307 3.366

5 0.5246 0.1019 0.1046 4.199 4.371

7 0.5008 0.0781 0.0844 5.197 5.544

9 0.4816 0.0633 0.0717 6.047 6.586

TABLE V =

In -s y(I ) y PO)  max P1

0 0.5742 0.3704 0.3704 0.1622 0.1623

i 0.5871 0.3566 0.3562 0.6775 0.6782

1 0.5977 0.2963 0.2829 1.241 1.246

2 0.5875 0.2112 0.1989 2.262 2.271

1 0.5591 0.1449 0.1419 3.518 3.575

5 0.5331 0.1097 0.1130 4.536 4.691

TABLE VI (v = 2)
m 0 i 1

max P1 0.281 0.777 1.28

max PI 0.687 1.83 3.02

2 I

2.20
5.50

3.37
9.33

5

4.37
13.15
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5.5 On the Power Transfer From the Fundamental to the Third Harmonic

Breitzer et a13 were also concerned with the abrupt -junction diode
operated in the region between forward conduction and reverse break-
down and considered charge waveforms containing no higher than third
harmonics. They treated in detail the power transfer from the funda-
mental to the third harmonic, subject to P2 = 0, and obtained a max-
imum value of

P1 = (0.0242)r2 = 0.238 = -P3 , (111)

making allowance for the difference in notation. This value of P1 arose
from two distinct charge waveforms. One was

Q(x) = (0.5) + (0.310) sin x + (0.168) sin 2x + (0.155) sin 3x, (112)

and the other was quite close to this. We saw previously how by taking
the Fourier approximation, containing up to second harmonics, of a
charge waveform which gives a good lower bound for max P1 subject
only to restrictions on Q.. and Qmin , and suitably shifting and ex-
panding (or contracting) so that the restrictions on Qmax and Qmin are
satisfied by the approximating charge waveform, we could obtain a
good approximation to the maximum power transfer from the first to
second harmonic, when no higher than second harmonics are allowed.
In the case of the abrupt -junction diode operated in the region between
forward conduction and reverse breakdown, which is the diode that
we will consider in this section, it was found that the charge waveform
so derived was precisely one that gives the maximum power transfer.

Now, it is found that the best mean square approximation containing
up to third harmonics, and subject to P2 = 0, to the charge waveform
which gives the good lower bound to the maximum obtainable funda-
mental power is

Q(x) =

where

(113)

f(x) = [(0.4) sin x + (0.25) sin 2x + (0.2) sin 3x]. (114)

We shift and contract Q(x) by setting

Q(x) = -1
2
[1 +f l M = max [1(x)] , (115)

so that Q,,,.. = 1 and Q., = 0. For this charge waveform,
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P1 = (0.0075)7-2/M3 = -P3 ; P2 = 0. (116)

It is found that

M = 0.680; P1 = 0.235, (117)

and Q(x), as given by (114) and (115) is plotted in Fig. 7(a). The value
of P1 in (117) is very close to the maximum value obtained by Breitzer
et al, (111), and it is interesting to compare Fig. 7(a) with Fig. 7(b)
which depicts Q(x) as given by (112).
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(b)
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0 77
3

277
3

77 477
3

577
3

277

Fig. 7 - Charge waveforms giving (a) approximately, and (b) exactly, the
maximum power transfer from fundamental to third harmonic in abrupt -junction
diode operated in the region between forward conduction and reverse breakdown.
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VI. THE MAXIMIZATION OF THE POWER TRANSFER FROM THE FUNDA-
MENTAL TO THE SECOND HARMONIC, FOR THE CURRENT -LIMITED
DIODE

6.1 The Canonical Representation of the Charge Waveform

We are concerned with charge waveforms as in (93) and impose the
restrictions

= 1, I (2' Imax = (118)

We observe that,, for voltage -charge relationships of the form given by
(90),

max [P1 I Qum. = p, I Q =

= p(v+1) max [P1 I Qmax = 1, I Q I max 0 < p 1 .
p j

(119)
,

In Appendix C we determine a canonical representation of Q(x), sub-
ject to the conditions

Qmax = 1 ; Q:nax k; Qmin = -k, (120)

by making use of the canonical representation obtained in Section 5.1,
when the charge waveform has prescribed maximum and minimum
values. Note that if 0(x) = Q(7r. - x), where Q(x) satisfies the con-
ditions of (120), then

Qiiiax = 1; Q:iia. = k; Qmin -k. (121)

From Appendix C, the five coefficients in (93) are given in terms of
two parameters s and y. It is found that

kw kz
- - (wk. -8y z)

- 4e , (122)b - 2d =(w - z) ' (w - z) ;

where

iv = - 84) - s2y]; z = 4[y(1 - 82) - 1(1 + s2)2], (123)

and that

a = [1 - max (b sin x c cos x d sin 2x e cos 2x)], (124)

which in general has to he determined numerically. The waveform is
translated so that
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Q' (Tr) = -k = Qmin.

The parameter s arises from the equation

Q'(2 tari-1 8) = Q:nax k, (126)

and the parameter y is subject to the condition

0 y 1(1 - 82), (127)

which of course also implies that s2 < 1. It is shown in Appendix C that

P1=0 for y = 1(1 - 82). (128)

In order to maximize Pi subject to (118), it is sufficient, in view of
the correspondence between (2(x) and Q(x) = Q(ir - x) given by
(120) and (121), to use the above canonical representation and to
maximize I P11.

(125)

6.2 The Abrupt -Junction Diode

We now consider the abrupt -junction diode operated in the region
between forward conduction and reverse breakdown, for which the
voltage -charge relationship is V(Q) = Q2, 0 5 Q =< 1. We first maxi-
mize Pi I subject to the conditions of (120), and suppose that k is
sufficiently small that Qn.in >= 0. Using the canonical representation ob-
tained in the previous section, Pi may be expressed in terms of s and y.
Omitting the details, it is found that I Pi I is maximized, subject to the
restriction (127), for s2 = 3, y = 0. The charge waveform giving this
maximum is

where

Q(x) = 1 + k[S(x) - SnruXl, (129)

- (4 sin x - sin 2x)
6

(130)

It is readily verified that Sm.. = g = - , where

(1 + .0)
= = 0.734. (131)

2V2(3/
Thus (2,,,h, = (1 - 2gk), so that anin > 0 for 2gk S 1. This Q(x) ac-
tually gives a negative value of Pi , so that Q(x) = Q(ir - x) maxi-
mizes P, , and it is found that

2

27

72
max P1 =

3

-2= 0.73110, for k -= 0.681. (132)

Fig. 8 depicts S(ir - x).
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Fig. 8 - Shifted and normalized charge waveform for maximum power trans-
fer from fundamental to second harmonic in current -limited abrupt -junction
diode, with maximum current less than a critical value.

The fundamental reactive power corresponding to max P1 is

H1
2= 8r (1 - gk)k2. (133)

But, for the voltage -charge relationship V (Q) = Q2, the addition of a
constant to the charge waveform does not affect P1 . Hence, if instead
of requiring an. = 1 we just require 0 < Q(x) 5 1, we have

8r2= ak2 8.78ak2; a < (1 - gk). (134)

6.3 The Optimum Operating Frequency

So far, no discussion has been made of the angular frequency co of
the actual periodicity of the charge waveform. We here consider this
factor in the case of the abrupt -junction diode operated in the region
between forward conduction and reverse breakdown. Now the physical
limitation placed on the maximum current magnitude takes the form

V(x) I -K , (135)
co

from (20). Also, the actual fundamental power pl is, from (9), propor-
tional to 0.1P1 . We thus consider the maximization of coPi as w varies,
where the charge waveform Q(x), containing no higher than second
harmonics, is subject to 0 < Q(x) 1 and the condition in (135). We
make use of results from Section V, as well as from the previous section.

Thus, we define

max [P1 I Qmax = 1, Qmin = -m} = P(M), (136)
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and let the value of I Q' Amax for the charge waveform which gives P(m)
be denoted by K(m). Then, remembering that the addition of a con-
stant to the charge waveform does not affect P1 , since V (Q) = Q2, we

obtain from (95) and (103),

P(m) =
81- y

47r2,3 (1 + m)3,

and also, from (104),

(137)

K(m) = (1 + m)K(0) = 3-0-4 (1 + m). (138)

Similarly, we define

max [Pi I Q. = 1, Q' lina. = = 11(k), (139)

and let the value of Qmin for charge waveforms which give 11(k) be de-
noted by -M(k). Then, from the previous section,

11(k) = 27k3; M(k) = -(1 - 2gk), (140)

where g is given by (131).
Now if Q(x) is subject to just the restriction 0 Q(x) < 1, then

max P1 = P(0), from (137). But, from (138), if (w/K) 6 (31/3)/4
then the Q(x) which give this value of max P1 satisfy (135). Hence,

) max Pi = 0.2814 (1, 0 (w) 5 1.299. (141)(
Note that if (w/K) > 1.299, then this gives an upper bound on
(w/K) max P1 . Also, if (co/K) > 1.299, then max P1 >= P(m) if K(m) =
(K/ (.0), and hence, from (137) and (138),

(- 2

max P1
K

0.617 (- (2) 1.299. (142)

From (140), setting k = (K/ (.0), we have
2

(CO (W)max = 0.731 (-:,) , 1.468, (143)

and if 0 < (co/K) < (1.468) = 2g, then this provides an upper bound
on (w/K) max P1. Also, if 0 _C_ (co/K) < 2g, then max P1 >= 11[1/(2g)],
from (140). Hence,

(co )
max P1

co
0.231 ( 0 <(°) 1.468. (144)

K K
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Fig. 9 shows (w/K) max P1 as a function of (w/K). For

1.299 6 (1 6 1.468, (145)

the curve lies between the dashed lines. Thus, from the viewpoint of
maximizing the actual fundamental real power, the optimum operating
frequency, when the diode is not allowed to operate in the forward
conduction region, lies in the range given by (145). Also, we can assert
that

2(41 )1720.3655 =
7

max [(1) Pi - 8]
- 0.387. (146)

6.4 Maximization of the Power Transfer, When the Region of Operation
Includes Forward Conduction

In a previous section we obtained a canonical representation of a
charge waveform Q(x), containing no higher than second harmonics,
for which Qmax = 1, Qmax < k and (Li. = -k. This canonical repre-
sentation is given by (93), (122), (123) and (124), and involves two
parameters s and y which lie in a bounded domain given by 0 < y
2(1 - 82). It was shown that, independently of the voltage -charge
relationship, P1 = 0 on y = 1(1 - s2). Moreover, it was seen that in
order to maximize P1 subject to = 1 and I Q' I n,ax = k, it is suffi-
cient to consider this canonical representation and to maximize I Pi I.

0.4 08 12 16 20 2.4 28 3.2 3.6 40
4.)/K

Fig. 9 - Maximum power transfer from fundamental to second harmonic in
current -limited abrupt -junction diode operated in the region between forward
conduction and reverse breakdown, vs. frequency.
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The maximization was carried out analytically for the abrupt -junction
diode when k is sufficiently small that the diode does not operate in the
forward conduction region. We treat here, by means of numerical com-
putation, the abrupt -junction diode when partial operation in the for-
ward conduction region takes place, the normalized voltage -charge
relationship being given by (61).

Again, the maximization process was that of fitting a quadric surface,
and this time it was also necessary to calculate a in (124) numerically.
Further, it was desirable to first compute the value of Pi over a rough
grid, and then to pick appropriate values sal) and y(1), as a starting point
in the maximization process. Thus, for several values of k, max I P1 I,
i.e., 11(k) in the notation of (139), was computed in the manner de-
scribed above. For the values of s and y which gave max I P1 I, the cor-
responding values of R1 and H2 , the reactive powers in the fundamental
and second harmonic, and of Qmin , i.e., -M(k) in the notation of the
previous section, were calculated, together with (b2 c2) and (d2 e2),

the squares of the amplitudes of the first and second harmonics in the
charge waveform. The results of the numerical computations are tabu-
lated in Table VII. We note that the values of P1 corresponding to the
given values of s and y are negative. If Q(x) is the charge waveform
corresponding to s and y, (93), (122), (123), and (124), then the posi-
tive value of P1 , that is 11(k), is obtained from the charge waveform
Q(x) = Q(7 - x), or any translation thereof.

Now, from (119) with v = 2, and from (139),

max [P1 I Quiax = p, I Q' I max = 11 = p311 (I) , 0 < p < 1. (147)

For QInnX < 0 we have P1 E., 0, from (61). We may write

(148)
_311(i (i)

p) p)\p) \ (1)

11(k) /-311(1) 11(k) 

The quantity k -31-1(k) is depicted in Fig. 10(a), and it is seen to be a
nonincreasing function of k. It follows, from (147) and (148), since
11(k) is a strictly increasing function of k, that max P1 subject to Qmax
1 and Q' Imax < k is attained with Q... = 1 and I Q' I. = k. For
k < 1/(2g) = 0.681, it can also be attained with 2gk < Q. < 1 and
Q' I. = k. We comment that for the voltage -charge relationship

V(Q) = max (0,Q), max P1 subject to Q. S 1 and I Q' 1. -5 k is
not attained with Q.... = 1, for sufficiently small k, since in this case
P1 = 0 if Q,,, l,, > 0.
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Let us now consider the frequency factor, as we did at the end of the
previous section, so that (135) holds. Hence, setting k = (K/co).

max [°2 /31] = max [IT] . (149)

The curve in Fig. 10(b) depicts 11(k)/k and it is seen to be an increas-
ing function of k in the range shown, although it is to be expected that
it tends to zero as k -> co . It appears that max [I1(k)/k] ,---, 1, so that,
from (146), a considerable improvement is obtained if the diode is per-
mitted to operate in the forward conduction region. We must bear in
mind, however, that we have idealized the voltage -charge relationship
in the forward conduction region.
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0.2
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0 0.5 1.0 1.5
k

20 25 3.0

Fig. 10 - Maximum power transfer from fundamental to second harmonic
divided by (a) the cube of the maximum current, and (b) the maximum current,
for current -limited abrupt -junction diode with operation in forward conduction
region permitted, vs. the maximum current.
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TABLE VII

k 11(k) R1 R2 M (k)

0.75 0.3058 2.167 0.3033 0.0896

1.0 0.6159 2.440 0.5075 0.3980

1.5 1.265 2.840 0.8274 1.027

2.25 2.169 3.483 1.058 2.013

3.0 2.979 4.153 1.135 3.024

k -s y (b2 + c2) (d2 + e2)

0.75 0.5988 0.0018 0.2404 0.0169

1.0 0.6647 0.0288 0.3653 0.0393

1.5 0.7035 0.0834 0.7159 0.1124

2.25 0.7058 0.1354 1.613 0.2775

3.0 0.6996 0.1663 3.006 0.5039

VII. ACKNOWLEDGMENTS

The writer takes pleasure in thanking J. M. Early, who posed this
problem, for his several discussions and helpful comments. He is also
grateful to C. F. Pease for programming the numerical maximization
processes, and to Mrs. .J. D. Root and Miss M. A. Lounsberry for pro-
gramming the numerical computations in connection with the maximum
obtainable fundamental power.

APPENDIX A

From (28) and (29), for any X (which we take to be real),
2r

Pi = (I {XQ(x) - V[Q(x)]1 sin x dx) (f Q(x) cos x dx)

2r 2,r

- {XQ(x) - V[Q(x)]) cos x dx) Q(x) sin x dx) (150)
0 0

= A

f2r
{XQ(x) - V[Q(x)]) sin (x - 0) dx,

where
2w

sin 0 = fo2w Q(X) sin x dx, A cos 0 = fo Q(x) cos x dx. (151)

Hence,
2r

A = fo Q(x) cos (x - 0) dx. (152)
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Now, max Pi = max j P1 I. Since

Jv (x) sin (x - yo) dx 2(max f - min f), (153)

(31), (150) and (152) lead to (85) and (86) in Section 4.2. We next
derive the inequalities (88), where L is defined by (73) and (74). Now,

L max L(cr,1,-711)
-m<as 1

= max [(1 m)V(a) - + c) V(1) + (0- - 1)17( -in)]
(154)

= -(I + m) mm Ian' (1) -V ( -m)]
-m4aV (1 +m)

- [mV(1) V(-m)].

Also,

L > max L(1,p,- m)
-mg p51

= (1 + m) max fP(V(1) V(-m)] - l'(p
-mgpg 1 (1 ± in)

[mV(1) + V( )1.

(155)

Hence, from (86), (154) and (155),

2L > (1 + m)U. (156)

Also, from (73) and (74),

L = max [ (T - P) [Au -V (a)] + (a - [X p -V (P)]
(cr,p,r)51 (157)

(p - 0 -) [XT - V(T)ii,

for any (real) A. In view of the remarks preceding (74) we may assume
either that -m < v < p < T < 1, or that -m < T < p < v < 1,
without loss of generality. In the former case

(r - p)[X - Tr(o)l (o- - - (p)] (p - (r)[Ar - V(T)]
(T- p) max [XK - 1-00] ( - r) min [AK - V(K)]

-1111(<1

(p - o-) max IXK - 1'(K)] (158)

= bfr)f max [AK - l'(0] - min [AK - V (K)J} .

-711sc51 -m<x<1
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Hence

(T - p)[Xo- - V(o)] + - T)[Xp - V(P)] + (p - o-)[XT - 17(T)]

6 (1 + m)( max [AK- V(K)] - min [AK - V(K)]1.
(159)

Equation (159) may be derived, in a similar manner, when -m
p 5 u < 1. Thus, from (157),

L S (1 + m){ max [AK - V(K)] - min [AK - V(K)]}. (160)
-msggi

But this is true for all (real) A. Hence, from (86)

L =< (1 m) U. (161)

If we do not restrict the voltage -charge relationship then the bounds
given by (156) and (161) cannot be improved. This is demonstrated
by considering the (somewhat artificial) relationship

r 1, Q = [(1 + m)a - m];

V(Q) = -1, Q = [1 - (1 + nt)a]; (162)

0, otherwise; m > -1, 0 < a < 1.
It may be verified that in this case

L = (1 + m) = (1 - a)(1 + m)U. (163)

We now find a class of voltage -charge relationships for which the
bound in (161) is attained. If a > T, then, by the definition of U in
(86 )

(a - T)U = 5 max [V(a) - V (T)]p - - T)17 (P)}

- mill 1[V (a) - V (T)]p - (a - T)17(p)].

Let -m :5_ T 0' 1. Then,

L > max [(p - T)V(a) - a)17(P) (u - P)V(r)]
-m5p5I

max { [V(a) - V( T)lp - (a - T)V(p)]

[6V (T) - TV (Q)]

> (a - T)U + [o-V(T) - TIr(o-)j
+ min 1[V(a) - (T)Ip - (a - r)1'(p)}

-mspsi
=(a- r)U

+ min [(p - (a) + (r - a)V(p) (a - p)V(T)].

(164)

(165)
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Q(7/2) = [1(3 - 2y)(1 In) - m] = R - 1(1 2y)(1 m)], (181)

so that Qmax > 1 for 8 = 0, y < -1 and Qmin < -m for s = 0, y > 2.

Hence 0 1 for y < 0, and Quii. < -m for y > (1 - 82). The...max > re-
gion of interest, i.e., Qin. = 1 and Qmin = -m, is given by

0 < y (1 - 82). (182)

We next consider the fundamental power when the charge waveform
Q(x) contains no higher than second harmonics. From (28), (29) and
(170),

2w

P1 = 7 f V[Q(x)](b cos x - c sin x) dx. (183)
0

We determine conditions under which P1 = 0, independently of the
voltage -charge relationship V = V(Q). This is clearly the case if
b = 0 = c, or if Q(x), as given by (170), is a single -valued function
of (b sin x c cos x), for then the integrand in (183) is the derivative
of a periodic function. Noting that

2 (b sin x c cos x)2 (b2+ c2) 2bc sin 2x+ (c2 - b2) cos 2x, (184)

it follows from (170) that the latter condition holds if
d = 2Xbc; e x(c2 - b2), (185)

for some X. Combining this condition with b = 0 = c,

2bce d(b2 - c2) = 0 Pl = 0. (186)

We now consider the canonical representation of Q(x), with Qmax = 1
and Qmin = -m, wherein the coefficients in (170) are given by (97).
Then condition (186) becomes, upon reduction,

y = 0, or y= (1 - 82), or s=0 P1=0. (187)

APPENDIX C

We here determine the canonical form of Q(x), as given by (170),
such that

Qmax = 1; Qin,. 5. k; Qmin = (Pr) = -k. (188)

Now, when the charge waveform Q(x) is subject to Om.. = 1 and
Qmin = -m, the five coefficients corresponding to those in (170) are
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given in terms of two parameters s and y, from (97), by

a= [(c -e) -m]; 6 = 2d = (1 + m)sy,

= (1 + m)w; e = (1 + m)z,

where

(189)

w = [1(1 - s4) - 82Y]; z = 4[y(1 - 82) - 1( 1 + 82)1. (190)

The charge waveform is translated so that Q(r) = -m, which may be
done without loss of generality. The parameter s arises from the condi-
tion 0(2 tad-' s) = 1, and the parameter y is subject to the condition
0 y < (1 - 82), which of course also implies s2 S 1. If, in addition,
a = 0, then

(1 + m)(w - z) = m, (191)

and hence, from (190),

2y(1
382) [(1 + 82)(5 - 3s2) - +

Now 0 =< y < (1 - 82), hut if we require m > 1 then

0 y 1(1 (m 1). (193)

Turning to a charge waveform Q(x), as given by (170), which satis-
fies the conditions of (188), we may write

Q'(x) = m > 1, (194)

(192)

where (191) and (193) hold. Hence,

k[sy(sin x -I sin 2x) w cos x z cos 2x]
(i(x) (195)(w - z)

Integrating, and remembering that 0 = 1,

Q(x) = {1 k[S(x) - 8,x11, (196)

where

iwsin x ± s n 2x - sy(cos x ± 1 cos 2x)
2 (197)S(x) - .(w - z)

In general, Sm.. = max[S(x)] is determined numerically.
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We now turn to the fundamental power, P1 , when Q(x) has the above
canonical representation. From (170), (186), (190), (196) and (197),
we find that P1 = 0, independently of the voltage -charge relationship,
if

[(1 -s2)- 211]{ (1 - ) (1 + 382) - 82[(1 -s2) 2y]2) =0. (198)

In view of (193), the second factor vanishes only if 82 = 1, y ='0
Hence we conclude that

P1=0 for y = 1(1 - 82). ( 199 )
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The Design and Analysis of Pattern
Recognition Experiments

By W. H. HIGHLEYMAN
(Manuscript received March 2, 1961)

A popular procedure for testing a pattern recognition machine is to
present the machine with a set of patterns taken from the real world. The
proportion of these patterns which are misrecognized or rejected is taken as
the estimate of the error probability or rejection probability for the machine.
In Part I, this testing procedure is discussed for the cases of unknown and
known a priori probabilities of occurrence of the pattern classes. The differ-
ences between the tests that should be made in the two cases are noted, and
confidence intervals for the test results are indicated. These concepts are
applied to various published pattern recognition results by determining the
appropriate confidence interval for each result.

In Part II, the problem of the optimum partitioning of a sample of fixed
size between the design and test phases of a pattern recognition machine is
discussed. One important nonparametric result is that the proportion of the
total sample used for testing the machine should never be less than that
proportion used for designing the machine, and in some cases should be a
good deal more.

PART I - ON ANALYSIS

INTRODUCTION

There are two distinct and consecutive processes usually involved in
the feasibility study of a pattern recognition method or machine. The
first process is the actual design of the machine. This might be based
upon a set of sample patterns which the experimenter has gathered,
from which he estimates the parameters of the machine. Alternatively,
the experimenter may base his design on some a priori knowledge con-
cerning the pertinent characteristics of the pattern classes under study.
The second process is then the testing of this machine either in its hard-
ware form or by its simulation on a general purpose computer. A differ -
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ent set of sample patterns from that used in the design is used in this
stage.

The popular procedure for interpreting the test results is to take the
proportion of patterns in the test data which have been misrecognized
or rejected by the machine as the estimates of the error probability and
rejection probability, respectively, for the machine. There are several
questions which might be raised concerning this testing procedure, such
as:

1. Are these estimates the best estimates?
2. If so, how good are these estimates?
3. How does the estimate improve as the sample size is increased?
Questions such as these are discussed in Part I of this paper. Two

cases are considered; one is the case in which the a priori probabilities
of class occurrence are unknown, and the other case assumes full knowl-
edge of the a priori probabilities.

Case 1. Unknown a priori Probabilities - Random Sampling

Let the number of allowable pattern classes be c. It will be assumed
that, for each allowable class i, there exists an a priori probability of

of error ei , and a probability
ri . (For the rest of this paper, the term "error" will refer to an unde-
tected error; all detected errors will be assumed to be rejected.) These
probabilities are unknown to the experimenter, who is interested in esti-
mating the overall probability of error for the machine.

e = E wie,

and the over-all probability of rejection,

= 2_, coin .
i=1

(1)

(2)

Let him perform the following experiment, which will be called random
sampling. Consider the patterns to be randomly generated by a "pattern
source" according to the a priori probabilities of occurrence. He takes a
pattern from the source, identifies it, and then lets his pattern recogni-
tion machine attempt identification. He notes which of the three possible
outcomes occurs: correct recognition, misrecognition, or rejection. This
experiment is repeated n times, resulting in me samples which have been
misrecognized and me samples which have been rejected.

Since these outcomes are mutually exclusive, and each experiment
independent, then the resulting random variables, me and m clearly
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are distributed according to the multinomial probability distribution.
That is, the joint probability distribution of me and mr , P(me ,m,), is
given by

P(nte , mr) = menntr e'er"' (1 - e -r) n-me-mr
.( (3)

The maximum -likelihood estimates for e and r, denoted by e and P, are
then'

mee = -,
n

(4)
mr=

which are the estimates in common use. Further, each of these estimates
is proportional to a single random variable having a binomial distribu-
tion; therefore, ne and nit are themselves binomially distributed. The
mean value of each estimate is the parameter for which it is an estimate;
the variance of each is'

2 1 2 e(1 - e)
,creCr n -

n-

2 r(1 - r)
n

0; -

(6)

(7)

Because it is known that ne and nP are binomially distributed, con-
fidence intervals can be applied to these estimates.* These confidence
intervals require rather involved computations, but fortunately have
been plotted for several values of n by various people.3'4 In Fig. 1 is
shown such a plot of intervals for a 95 per cent confidence level computed
by C. S. Clopper and E. S. Pearson. The use of this graph is fairly simple.
A vertical line extended upward from the observed value of the estimate
given on the abscissa will intersect the pair of curves pertaining to the
particular sample size used. Projecting these two intersections horizon-
tally onto the ordinate axis gives an interval for the parameter being
estimated. The probability is 0.95 that the interval drawn in this manner
includes the parameter. For instance, if a sample size of n = 250 yielded
50 errors, then the estimate of the probability of error is 0.20. Using
Fig. 1 it can be stated that, with probability 0.95, the true probability
of error is included in the interval from 0.15 to 0.27.

* Mattson2 has used a similar argument for determining convergence of an
adaptive system. However, he used Tchebycheff's inequality to obtain confidence
intervals which are necessarily larger than if he had used such intervals pertaining
to the binomial distribution.
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Fig. 1 - 95 per cent confidence intervals for a binomially distributed variable.

Case 2. Known a priori Probabilities - Selective Sampling

It is now assumed that the a priori probability of occurrence for each
class, wi , is known. To take advantage of this knowledge, the experi-
menter takes ni samples from each class i such that

ni
-n = (8)

where n is the total number of samples. This process will be referred to
as selective sampling.* (It will be assumed that. the coi are such that (8)
can be fulfilled with the desired sample size, n.)

* This sort of sampling dichotomy has been previously noted by others. For
instance, Bowleys and Neymane have referred to these two methods as "unre-
stricted" and "stratified" sampling.
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The machine is again allowed to attempt recognition of these patterns,
resulting in me, samples from class i being misrecognized, and m sam-
ples from class i being rejected.

For any class i, the joint probability distribution for mei and m again
is multinomial:

P(moi , mr1) = mein im, eimei rimy` (1 - ei - ri)ni-mei-mri. (9)(
Since each of these distributions is independent of the others in this ex-
periment, then the joint probability of the outcome for all c classes is
the product of the individual probabilities (9) :

P(inel Mee Mri ,  )1nrc)

= II(Meinimr,)eimei rimri (1 - ei -
(10)

i=i

This is no longer a multinomial probability distribution. However, since
the maximum -likelihood estimate of a sum of independent variables is
the sum of the maximum -likelihood estimates, then these estimates for
e and r are

e -

-

E me,

n

E mr,

n

( 12)

which again agree with the popular practice of using the proportions as
estimates. The random variables of which ire and nil are values are not
now binomially distributed, since a sum of binomially distributed vari-
ables is not itself a binomial distribution in general.

The mean of each estimate is again the particular parameter being
estimated. The variance of each of these estimates can be computed:

-'2 _ -
- m

E n.e.(1 - ei) = 1- E iei(i -ei), (13)
- n2 a' - 2 i=1 n i=1

in which use of (8) is made, and the prime distinguishes this variance
from that for random sampling. Similarly,

/ 2 1 "Ce-,= win(1 - ri). (14)

It is of interest to compare these variances for selective sampling
with those obtained for the case of random sampling. Since the variance
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for has the same form as g in both cases, it is necessary to consider
only one of them, say 6. First note that a: can he written, using (1) and
(6), as

From (13),

2 1= (Lt wie) (1 - E cokek)
n i=1 k=1

2 12 1 c 2 1
2

Cfd = - E - - (E wie) .

n i=1 n i=i

(15)

(16)

Noting that E-1 wi = 1, (16) can be written as

2

c 2
c

ag - 0-e/2 = 1
2_, cwt.ei - E cokek =

1- E coi(ei - c)2 = 0-,..2 .. 0. (17)
n i=1 k=1 12, i-i

Hence, the variance in the case of random sampling is greater than
the variance in the case of selective sampling, the difference being what
might be interpreted as the variance of the class errors. That is, if ei is
treated as a random variable with probability distribution wi , then

2a, is the variance of ei . (A similar derivation holds for the variance
of the rejection probability estimates.) That the selective sampling
variance should be smaller than the random sampling variance might
be expected, since in selective sampling more information is used, namely
the a priori probabilities.

Although statements have been made concerning the mean and
variance of the estimates in the selective sampling case, nothing has
been said yet concerning confidence intervals. This is a much more
complicated problem than that in the case of random sampling, since
the estimates do not have a simple distribution function. In fact, the
confidence intervals will in general depend on the particular set of
ei's (or ri's) pertaining to the machine, and not simply on e (or r).

However, for small probabilities, the binomial distribution is quite
closely approximated by the Poisson distribution, the fit becoming
perfect as the probability approaches zero. For any reasonable recog-
nition machine, one would expect the probabilities of error and rejec-
tion to be small; consequently, the marginal form of (9) for ma; or mri
may be approximated by a Poisson distribution. The estimates given
by (11) and (12) are now sums of random variables with Poisson
distributions (approximately) which are then themselves Poisson
distributed. If the over-all error is also small, as is usually the case, the
binomial -Poisson approximation can now be used in reverse, and one
may state that, for small error rates, the error and rejection estimates
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(11) and (12) are approximately binomially distributed. Consequently,
one can use Fig. 1 to obtain 95 per cent confidence intervals for the
error and rejection probabilities. Further, from (17), we would expect
this confidence interval to be on the safe side, that is, the actual 95
per cent confidence interval should be slightly smaller than this.

APPLICATION TO PUBLISHED RESULTS

To illustrate the ease of determining these confidence intervals, some
published results in pattern recognition are listed in Table 1 along with
the 95 per cent confidence intervals as determined from Fig. 1. It should
be emphasized that Table I is not meant to compare one method against
another, since the methods obviously treat problems of various com-
plexities. Rather, the table is meant to compare the accuracies of the
various evaluating experiments.

Three points of caution should be noted concerning the validity of the
confidence intervals in this table. First, the author is not positive that
the test data is different from the design data in every case. Second, to
the best of the author's knowledge, in every case the number of samples
taken from each allowable pattern class was predetermined. This is
selective sampling; therefore, it is assumed that the proportion of samples
taken from each class represents its a priori probability of occurrence.
The third assumption is that the patterns used to test the machine are
a reasonable sampling from the real -life world of patterns, and are not
biased toward either well -formed or poorly -formed (noisy) patterns.

CONCLUSION

Two important cases concerning the testing of pattern recognition
methods or machines have been considered: Random sampling for the
case of unknown a priori probabilities of class occurrence, and selective
sampling for the case of known a priori probabilities. The most pre-
dominant form of testing in the present day art is to assume that the
pattern classes have equal a priori probabilities of occurrence, and conse-
quently to use equal sample sizes for each class; this is a special case of
selective sampling.

It has been shown that, for both cases, the maximum -likelihood esti-
mate for the error probability or rejection probability is simply the
proportion of samples misrecognized or rejected. In the case of random
sampling, the estimates are binomially distributed, and accurate confi-
dence intervals can be obtained. In the case of selective sampling, tighter
estimates are obtained which are approximately binomially distributed
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for small error rates. Conservative confidence limits may then be ob-
tained for these estimates.

Using these notions, the experimenter can now determine the sample
size required to obtain results which he deems significant. Alternatively,
if he has a limited sample size, he can determine the significance of his
results. Note that in both cases considered, the variance is inversely
proportional to the sample size. This does not mean that the confidence
interval is inversely proportional to the square root of the sample size,
however, since a binomial rather than a normal distribution pertains.
However, perusal of Fig. 1 seems to indicate that this is a good rule of
thumb. Note also that the total number of samples required to obtain a
certain confidence in the results seems to be independent of the number
of allowable pattern classes. This is an interesting philosophical point
to ponder.

PART II - ON DESIGN

INTRODUCTION

Part of this paper was concerned with the estimation of the per-
formance of a given pattern recognition machine. There it was shown
how confidence intervals could be found for these estimates. These
results are nonparametric in that they hold for any categorization
machine (or procedure) regardless of its structure.

We now consider the following problem. An experimenter desires to
solve a particular pattern recognition problem. He has at his disposal a
set of different methods for solving this problem, but it is not clear to
him which is the best to use. Consequently, he desires to estimate the
performance of each method when applied to this problem, and choose
the best. Let us assume that each method is characterized by certain
key parameters which, when known, completely determine the recogni-
tion machine. To evaluate any particular recognition method, the experi-
menter plans to design the corresponding machine by estimating its
parameters on the basis of one sampling from the real world of patterns,
and then to test this machine based on another sampling (either by
constructing the machine or by simulating it).

However, in many practical applications, the total sample size avail-
able to the experimenter for design and test purposes is limited. For
instance, he may be interested in building a machine to read hand -
printed numbers, but he may not have an automatic scanner available
to him. Since simulating a scanner by hand is very tedious, he may not
be willing to scan more than a certain number of samples.
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Or, he may be interested in distinguishing between radar returns
caused by missiles and those caused by decoys. Since it is expensive to
actually run the sort of experiment required to gather data for this
problem, budget limitations will certainly place a limit on the number
of available samples.

Another example is in the field of automatic diagnosis of diseases.
The experimenter may, for instance, be interested in building a machine
which would determine the presence of cancer based on a list of symp-
toms. However, records have been maintained for only a certain number
of people who have contracted this disease, and the sample size is thus
definitely limited.

The following problem then arises. If the total sample size is fixed,
what is the optimum partitioning of this sample between the design and
test phases? This is a rather loose, but concise, statement of the problem.
A more accurate one follows.

Assume that the experimenter is concerned with the study of a par-
ticular pattern recognition method as applied to some particular prob-
lem. The optimum pattern recognition machine based upon this method
would have an error probability eo . The experimenter is interested in
estimating eo so that he can decide whether the particular 'method
under study is adequate for the solution of his problem, or alternately
whether it is better than another method. To do this, he takes a sample
of a certain size t from the real -life world of patterns. He desires to use
part of this sample to design a machine according to the particular
method under study. The machine which he thus designs will have an
actual error probability e > eo (both quantities are unknown to the
experimenter). He then uses the remaining part of his original sample
to test the machine (according to the procedures of Part I). He thus
obtains an estimate of e, which will be denoted by 4. It will be shown
that 6 is a biased estimate of eo , and that the bias can be computed.
Consequently 6 can be adjusted so that it gives an unbiased estimate,
eo , of eo . The optimum partitioning of the total sample will be defined as
that partitioning which minimizes the variance of 60 . Thus, if the
experimenter follows this procedure, he will obtain an unbiased minimum
variance estimate of eo , the optimum error probability. Of course, if he
finally decides that a particular method is applicable, he can then re-
design the corresponding machine with the entire sample size.

OPTIMUM SAMPLE PARTITIONING

We are interested, then, in minimizing the quantity
6e.2 - e0)2]

E[6,02] - e02, (18)
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where E[x] and a2 denote the expected value and variance of x, re-
spectively.

Let us first digress and consider the biased estimate 4. Since a is

discrete (it is the proportion of test samples misrecognized), its expected
value can be written

E[e] = E eP(e),

where the summation is over all values of '4, and p(x) denotes the proba-
bility of x. But

p(e) = f p(e I e)p(e) de,

where p(e I e) is the probability of a given e, and the integral is over all
(continuous) values of e (by definition eo e 5 1). Hence

E[e] = E e f p(e I e)p(e)de = f [E ep(e e)] p(e)de.

Let us henceforth consider only the case of random sampling. Then
is proportional to a binomially distributed variable (ne) with parameter
e. Therefore the term in brackets, which is the expected value of e
given the parameter e, is just e. Then

E[e] = f ep(e)de = E[e]. (19)

E[e] is a function only of the parameters of the problem and the design
sample size; it is not a random variable.

We next determine E[62]. By going through a process analogous
to the above, and by making use of (19), we obtain

Q@2 = ERO - E[e])2] = E[e] - (E[e])2 =
E[e(1 - e)]

where n is the size of the test sample. Hence

E[e(1 - e)]E[e] - (E[e])2. (20)

We now determine E[e]. Let the optimum machine be described by
c different parameters Sot , 1 < i < c. The design of the machine con-
sists of estimating the parameters Sot by making measurements on a
set of sample patterns (the design sample). Let the estimates of these
parameters be denoted Si , 1 < i < c. Then the error probability e
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of the resulting machine is a function of the estimates of the true param-
eters:

e = e(81 ,62 ,  ,Oc)

One can now expand e in a Taylor series expansion about its minimum
point, ea . Since this is a minimum point, all the coefficients of the
linear terms will be zero. If the error deviation (e - e.) is small, terms
above the second order term may be neglected:

a2e

e eo E E n, (3i - boi:)(6.; - Ooj).
2 i=1 1=1 ao io)

The expected value of the error for the resulting machine is then
c c ate

E[e] = e E[(6i kJ) (6.; - &i)].
i=i ab,u,

If it is assumed that the estimates are unbiased, i.e., E(151) = boi , then
the above equation may be written, as

where

E[e] = e E E
i=1

ate= aji - abia; Oo

(21)

0-i; is the covariance of the estimates for Soi and 60; , and Crii = C/i2 is the

variance of the estimate for Soi . (21) is valid for small values of the
quantity (e - e.)

It may be worth -while to digress here to a simple example which may
help to clarify the definitions of the above terms. Zachary Oglethorpe
is not only a crafty fisherman, but is also a good gadgeteer. He has
decided to try to build equipment which will determine each day
whether he should use a surface bait or a deep water bait in order to
catch the maximum number of fish. He has means available to meas-
ure the water temperature, the magnitude of surface ripple, and the
atmospheric pressure, and therefore decides to use these as his measure-
ments. He denotes values of these measurements by mi. , m2 , and m3
respectively.

Mr. Oglethorpe has been recording values of these measurements
every day for the past six months, and has noted on each day whether
he was more successful with surface or deep water bait. He thus has a
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total sample size of roughly 180 samples, some from one pattern class
(surface bait), and some from the other pattern class (deep water bait).
Since each sample was taken without a priori knowledge of the class
to which it belonged, then this constitutes random sampling; that is,
the proportion of samples in each class is an estimate of the a priori
probability of occurrence of that class.

Our crafty fisherman decides to build a decision making, or pattern
recognition, machine by building a correlator for each of the two possi-
ble decisions (or pattern classes). That is, the machine will make the
following two calculations:

Surface bait = 61m1 62m2 63m3 ,

Deep water bait = -4m1S 4- -6m2 56m3--I-

The class achieving the highest value represents the desired decision.
Let us assume that, according to some theory, the optimum values of
the Si are the means for each measurement within the appropriate pat-
tern class, normalized so that the sum of the squares of the coefficients
of each linear form is unity. That is, Si is proportional to the mean
water temperature when surface bait should be used, and so forth,
and is normalized with 82 and 83 so that 512 + 822 832 1.

Thus the parameters Si completely characterize this pattern recogni-
tion machine in that, given values for each Si , 1 S i < 6, the machine
may be built. The optimum values for each oi are the appropriate nor-
malized means, which are the Sat of the previous equations. Mr. Ogle-
thorpe obtains estimates of these optimum parameters by taking
normalized averages over a portion of the appropriate data. These
estimates are the 6, of the previous equations, and are the actual num-
bers on which he would base the construction of his machine. Note that,
in this case, these estimates are unbiased and efficient, and may very
well he independent of each other (e.g., the probability distribution of
the water temperature when surface bait should be used may be inde-
pendent of the values of surface ripple magnitude and atmospheric
pressure).

Having thus designed his fisherman's aid with a portion of his data,
he now tests it with the remainder of the data to determine its accuracy.
He does not want to use it if there is a good probability that it is less
accurate than he has found his own intuition to be. This then leads
us to the basic problem being studied: How should Zachary Oglethorpe
split his total sample between the design and the testing of his machine
to obtain the best estimate of the accuracy of the machine? Again, if
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the estimated accuracy of his machine were sufficient, he would then
be wise to redesign it, basing the new design on the entire sample.

We now return to the study of this sample partitioning. Let each
parameter be estimated with m samples.* If each of these estimates is
an efficient and unbiased estimate, and if the estimates are independent
(either because the estimates are statistically independent, or because
different samples are used to estimate each), then all 0 -ii = 0, i j,
and all 0-i2 will be proportional to 1/m. Hence one can rewrite (21) as

E[e] = eo
m-b'

(22)

where b is some constant calculated from (21). (Often, E[e] is in the
form (22) even if the estimates are not independent.)

Let t be the total sample size, and p be the number of sets of m sam-
ples used to design the machine. p is chosen to be the smallest number
which insures that EH is of the form (22). It is often simply the num-
ber of allowable pattern classes, since, of course, parameters of different
classes must be estimated with different samples. If n is the test sample
size, then

From (19) and (22),

t = n + pm. (23)

= E[e] = e. . (24)

Consequently, a is a biased estimate of eo . The adjusted estimate 6° ,
given by

A b6,, = e - -
m

(25)

is an unbiased estimate of eo , with variance given by (18). This variance
can now be rewritten using (25) :

A 2
Cre.2 = E [eo - (o2

ERe e:

= E[62] - 2 -b E[e] + (112 - e02.
m

* This is not always desirable, since some parameters may be easier to estimate
than others, or there may be more data available for some parameters than
others. However, this condition is assumed here for simplicity, as are the following
assumptions of efficiency, unbiasedness, and independence.
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From (20) and (24),

E[e(1- e)]ado - (E[e])2 - 2 _beo -m-by - eal .

- E[e(1 - e)]
( Efen2 - .

n in

Thus, from (24),

2 E[e(1 - e)]
17e. - (26)

If b/m < 1 (which will certainly be true for any reasonable design),
then

2 E[e(1 - ea)] eo
pb

cre -n (1-ea) = (1 - eo) I -n , (27)
n n

where the relation (23) was used.
We wish to choose n such that (27) is minimized. Differentiating

(27) and equating to zero, one obtains

eot
., -o - 1n

t

pb 1 -
no 2 ,

t

(28)

where no is that value of n satisfying (28); it is the optimum test sample
size in the sense previously discussed. no/t is of course the proportion of
the total sample used for the test. One interesting r3sult is immediately
obvious: no/t must be greater than 0.5 for all cases. The equation (28) is
plotted in Fig. 2, from which the following general statements can be
made.

1. The proportion of the total sample that should be used to test
the machine should never be less than 50 per cent.

2. If eot/pb < 0.1, then the proportion used for design should be
about 50 per cent.

3. The proportion of the total sample that should he used to test the
machine becomes larger as:
a. The total sample size increases,
b. the error of the optimum machine increases,
c. the effectiveness of the design increases (pb decreases).

Here 1/pb is taken as a measure of the effectiveness of the design,
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Fig. 2 - Optimum sample partitioning.

since pb is the product of the expected deviation from optimum, Ele - e01,
and the design sample size, pm.

These results indicate just how a sample should be split between the
design and test stages of a feasibility study of a pattern recognition
method. If the experimenter follows this procedure, he will obtain an
estimate go of co which is unbiased and has minimum variance.

The value of this minimum variance can be expressed as

2 e0(1 - eo)
O'd

no1 - -t
1 +

no2 T - 1

which was obtained by eliminating pb between (27) and (28). Note that
this is the variance that would have been obtained if the optimum
machine were tested with n samples, increased by a factor which accounts
for the design error.

AN EXAMPLE OF OPTIMUM SAMPLE PARTITIONING

As an illustration of these ideas, consider the following example
( perhaps the simplest of the n -dimensional problems). A pattern recog-
nition machine is to be designed using the optimum decision function15'16
which will distinguish between q classes. The occurrence of each class is
equally probable a priori, and all costs of misrecognition are the same.
The receptor makes a set of k measurements m; , 1 < j < k, on each
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input pattern. It is known that each measurement is normally dis-
tributed with variance a, and that all measurements are independent.
Further, it is known that the distances between the mean vectors in
measurement space* are all equal. (Consequently, there can be no
more than k 1 pattern classes. The tips of the mean vectors are the
vertices of a regular polytope.)

It can then be shown that the optimum decision function partitions
the measurement space into polytopes which are bounded by those
hyperplanes which are the perpendicular bisectors of the line segments
joining all pairs of means. The hyperplane separating two classes, say
classes 1 and 2, is the set of all points (x1 ,  ,xk), represented by the
vector 7, which satisfy

(171 - i72) = +(µI. - (29)

where Ai is the mean vector of class i.'3
The design procedure consists of estimating each mean vector from

a sampling; denote the estimated mean vector for class i by . The
distribution of the estimate of a mean vector from a normal distribu-
tion with covariance matrix [V] is also normal with covariance matrix
1/m [V], where m is the sample size used in the estimate.° Since the
measurements are independent in this case, then so will be the estimates
of the means of the various measurements. Furthermore, each estimate
will have a variance of a2/m. Consequently, only one set of samples of
size m from each pattern class is required to insure that the form (22) is
valid, and p is hence equal to the number of allowable pattern classes, q.

It is shown in the Appendix that b is given by

q(q - 1) Ail (Ati.b = N
4 2..cr 20-) '

where Aµ is the distance between any pair of mean vectors, and N( 4/20
is the value of the standard normal density function for the variable
611/2a. The equation (28) then becomes

4eot

q2(q - 1) °±4 N(Am)\2,./
(30)

* A geometric interpretation of categorization problems is often useful. By
measurement space, we mean a k -dimensional space in which each coordinate
represents one of the k receptor measurements. Thus any set of measurements
which have been made on an input pattern may be represented as a point in
measurement space. The decision function may be thought of as partitioning the
measurement space into regions corresponding to the different allowable pattern
classes and into rejection regions.
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Fig. 3 - Optimum sample partitioning for symmetric Gaussian case.

Some curves representing (30) are plotted in Fig. 3 in which the pro-
portion of the total sample to be used in the test, no/t, is shown as a
function of t, the total sample size, with the number of allowable pattern
classes, q, as a parameter. eo was held constant at 0.03 (which involves
the choosing of the proper value of AA/20- for each q).

From Fig. 3 it is seen that, for many cases, the sample should be split
evenly between design and test, as one might intuitively suspect. How-
ever, there are some drastic deviations from this. For instance, if the
categorizer is to separate only two classes, and 1000 samples are avail-
able, then only 50 of these should be used to design the machine, and
950 should be used to test it. Consequently, it is seen that intuition may
go wrong in some cases.

CONCLUSION

This paper has begun an analysis of some of the problems which arise
in the design and analysis of pattern recognition experiments. In Part II,
the problem of optimum sample partitioning between the design and
test phases of a pattern recognition machine was investigated for the
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case of a fixed total sample size and no overlap between the design and
test samples. The general relation between the optimum partitioning
and the total sample size, optimum error rate, and design efficiency was
derived. From this, it was apparent that the test sample size should
never be smaller than the design sample size. These results are non -
parametric in the sense that they do not depend on the detailed structure
of the recognition machine. It is only necessary that the deviation of the
designed machine from the optimum machine be small, and that the
design of the machine be done in such a way that (22) holds.

However, the actual computation of the optimum sample partitioning
does depend strongly on the detailed structure of the machine through
the quantity b. Since this computation is quite difficult even in the
simplest of cases, the interesting question arises as to the possibility of
estimating b from the sample. Another interesting phase of this problem
which has not been attacked here concerns the case when the design
sample and test sample overlap - that is, some of the sample patterns
from the design sample are also used in the test sample. In the limit,
this reduces to using the total sample for both design and test purposes.
In this case, the results of the test are usually not very reliable. Conse-
quently, there may be some sample partitioning with overlap which is
better (in the sense discussed in this paper) than for either the case of
no overlap or the case of total overlap.
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APPENDIX

We determine here the coefficient b in (22) for the example discussed
in this paper. If the mean vectors are more than about 3a apart, then
only a small error is made if the total error is approximated by adding
the errors of each hyperplane taken alone. That is, the integrals on the
wrong side of the hyperplane that are counted more than once will be
quite small compared to the integrals counted only once.

Due to the symmetry of the problem, the error associated with each
hyperplane for the optimum decision function is identical, and the deriva-
tives of (21) will also be identical for each hyperplane. Since there are
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q(q - 1)/2 hyperplanes, b may be expressed (from (21) and (22)) as

b = q(q - 1 t Fa2 en 82e12

m 2 2 i=1 LHi? u1,p2 vi'21 111

2

(31)

where the hyperplane separating classes 1 and 2 is taken as typical,
and the independence of the estimates is used. e12 is the error associated
with this hyperplane, Ai and 1/2 are the mean vectors of these classes,
and xl and x2 are the estimates of the mean vectors.

There is no loss in generality if mi is taken as zero, and all the com-
ponents of µ2 4112 , J.Ik9) are taken as zero except for /212 . That is,

= (0,0, ,0)

112 = /1,0, ,O)

where Ai2 is denoted /2, > 0. Consequently, the optimum boundary is
given by

xi = p/2.

A sampling of size m is taken from each class, and the mean vectors
are estimated, giving

xl = X11 ylt21 y

t2 = (1712 ,C1,22 , Jk2 ) 

A boundary given by (29) is computed based on the above estimates,
and this, together with the other estimated boundaries, determines
the structure of the machine.

The error el associated with this particular boundary for class 1 is

e1 = 1(4) 1 exp - 1 2(1-

f: 0exp --,)2 ,

51,x2,rik) ro 2

where 11(x2 , ,sk) is the value of x1 on the boundary, and is given by
(from (29))

Ek 2 2 \- /
(X2 , X ) = ;1'2 ±

i=2 X11 - t12 i=1 x11 - 1;12

k t- 2 - -
xi2 I

2

t.32 1E - -
2 2 i-2 211 - X12
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Then

aei 1 1= exp - x 
(1.1.;

aX:i1 -00 2 6

(1
exp (s1

(1:11 --`5Tro

-
82,

e
1 1 exp -exp 1 dr

9 uaxil 1=2 V2ra -\/2;icr

a2e1

ati? 't P2

[6. x1 - xil
til -

(
/1

1 (1/2))
eXp

A9
-

rff 2 J

II ,7-Traexpv
1

2a2

2 <i n,

(Xj

2 < 1 <

CI))

(1.17j

2 <

ii.

fl.

[ 11
90.2

11

where N(µ/2a) is the value of the standard normal density function
for the variate /1/2o. In a like manner,

a2e2

axii2

= 1 1

AI .P2 per \ 2o- µQ V20 -
9 < i < n,

where e2 is the error associated with this boundary for class 2. Since the
total error for this boundary is e12 = el + e2 , then

a2 e12

axa2

a2ei a2e2

=
I a,- 2 =0, 2 < i n.

PI .P2 UX ir PI .P2 Pi.P2

A like result holds for 82e12 , 2 5  i -_ n. Going through this same
procedure for Ai , ati:

r 2
1 1 (X aei -

k

exp - -2-) dx ; I N Mi
aril .i=.ri

i.
2 -.2 N/Kro- 2 0- )

Lo-
0-

.32e.1 k

j
ro. x;()2 6

01= -II 1
x_e p - dx [- I- (-) NHi? j=2 -. V2rcr 2 a 3 4cr o-2

82e1

IL

1 At

IV
jo. (1.1- -ax..2 8 a' -T)

PI,P2

=
.-0-
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Similarly,

82e2
= N (11

011,A2 8a'' 2o-at -2

Hence

.92e, 1
=

1 µ

=

N 17)o-)

(

11v (

ax,12

It would also be found that

gen
ax122 P1 .P2 4 Cr - 20)

This analysis is perfectly general for arbitrary mean vectors. providing
that µ is merely interpreted as the distance between a pair of mean
vectors (all such distances being assumed identical). This distance will
henceforth be written Atc to indicate that it is a difference of means.
Therefore, from (31), we find that

b - q(q - 1) N (Am)
4 2o- 2o-/
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Lined Waveguide*

By H. G. UNGER
(Manuscript received October 19, 1961)

The existing approximate analysis of wave propagation in lined wave -

guide is, under practical conditions, limited to linings thinner than 0.025
per cent of the waveguide diameter. A more exact analysis is presented
here for the straight and curved waveguide and for all practical linings.
In the case of anisotropic or sandwiched linings, the boundary value problem
is formulated using wall impedances. The single isotropic lining is taken
as an example to prove this formulation useful for typical cases.

The exact analysis shows that neither the thickness nor the permittivity
of the lining can increase the phase difference between TM11 and TE01
beyond a certain limit. The curvature coupling between these two waves is
enhanced slightly by the lining.

I. INTRODUCTION

Round waveguide with dielectric lining shows promise as a communi-
cation medium.' The circular electric wave loss in perfectly straight
and round metallic waveguide decreases steadily with frequency. Any
deformations of the cross section or curvature of the guide axis degrade
these ideal transmission characteristics.

The TMI. waves in particular are coupled by curvature to TEon
and since they propagate with nearly equal phase velocity, there will
he large mode conversion. A dielectric lining close to the wall changes
the Thin waves appreciably with almost no change to TEon . The phase
velocities are now different and, despite curvature coupling, mode con-
version stays small.

When the lining is made lossy it will serve still another purpose.'
Circular electric wave loss is increased only very little, while all other
waves suffer an effective dielectric loss. This mode filtering loss will
reduce the degrading effects of mode conversion and reconversion.

* This work was performed under a Letter Contract with Bell Telephone Labo-
ratories at the Institut fuer Hoechstfrequenztechnik, Technische Hochschule
Braunschweig.
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To serve both purposes best, the lining should be made anisotropic
or sandwiched from different materials.3 The circular electric wave loss
will then remain very low, yet all other waves will suffer high loss and
also curvature loss will stay small.

Wave propagation in straight and curved lined waveguide has been
analyzed elsewhere." Likewise, imperfections in the lining and cross-
sectional deformations have been calculated.4'5 However, the lining was
always assumed to be very thin, and so far only a first -order approxi-

mation has been found.
On the other hand, it has been shown both theoretically and experi-

mentally that these approximations do not in general hold for any
practical linings.' Linings which are designed optimally change wave
propagation much more than could be described by a first-order ap-
proximation.

An analysis of wave propagation in lined waveguide will be presented
here which is sufficiently general and accurate to hold for all practical
cases. Sandwiched and anisotropic linings will also be considered.

Circular electric wave transmission is most strongly degraded in curved
waveguide. Therefore, the lined waveguide will be assumed to have

curvature. Cross-sectional deformations and imperfections of the
lining will be analyzed with corresponding accuracy in another paper.'

II. NORMAL MODE FIELDS

Normal modes of straight round waveguide with a single isotropic
lining have been analyzed before.' To adapt this analysis to an investi-

Fig. 1 - Lined waveguide with curvature.
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gation of bends in lined waveguide and of waveguides with an irregu-
lar lining, the boundary value problem will be repeated and generalized
here.

The waveguide structure to be considered is shown in Fig. 1. The
dielectric lining will later on be assumed to be heterogeneous or aniso-
tropic or irregular. At present, however, a single uniform and homo-
geneous lining is assumed.

The electromagnetic field in the waveguide can be derived from two
sets of scalar functions T. and T' given by:

T,, = Nn Jp(x.r) sin pp

T' = N Jp(xr) cos pso

and

for 0 < r < a

AOT. = Nn2s1_,- J (k
H

)
HP")(xner) - cHp("(xner)

Xne (2)(k e) -cli(1)(kne) S111P2 n

(1)

for a < r < b (2)

2 (2) e yr (i) e

7',, = N x", .1 (1c.) °cn r)r P x. r)
Hp(2)(kne) - c'Hp(D(kne) Cos PP

The T functions satisfy the wave equation:

OT 1 r a (?. aT) a (ei aT) - x T (3)ele2 Lau el au av e2 av

in a general orthogonal curvilinear coordinate -system (u,v,w), in which
the element of length is:

dS2 = et2du2 e22d.v2 + e32dw2. (4)

The curved waveguide may be described in these coordinates when,
according to Fig. 1:

where

= r, =so) = Z

= 1, e2 = r, r3=1 -FE

i
o=-c

(5)

(6)

(7)
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The field components are written in terms of the field functions (1) and
(2)

E = EV[a " + d a71e2av1
e,au

T

Ivnra21 - aTni
Leoveon]

T" - "h 2 aT '1 = -zi[a d
e2av k2 elateEH

I-1,, ---- II[aT" + d h"2 aT"1E.
elan, k- e2aV

Maxwell's equations are:

1 [-0 a
(eaE,,) - -au) (e2E ,,)] = -jcopol I 

C2e3 av

eel o

aw1 [
e-,(elE) -a-au ( 3E01 = -jwilcH r

1 [ a- - (e2E,,) - a , \- l 7;,
ei19 //4

ele2 au1ay .

e2e3 av
-1 [-a (e31-1.) -

aw -
(e,>11,.)1 = jalefoEa

-1--

[-a (e11-1) -
a
-au (e3II,)] = jcoff,,E ,.

egi au)

= -icomoH,

[a , a , u- e2riLi. v.\ - - k u =-- sicoe0E, .

eie2 au av

(8)

ito and eo are permeability and permittivity of free space. e is the rela-
tive permittivity of the respective cross-sectional part of the waveguide.

Substituting from (8) into (11) and (14) and taking advantage of

(3) the longitudinal field components are obtained:

H,,, = icouoIV  d k2
T

2

, = javADZI,,?k- T
2

where k = coV 0110 is the intrinsic propagation constant of the medium
in a particular cross-sectional part of the guide. e and k have constant
but different values for the different cross-sectional parts of the guide.

(15)
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In (8), this dependence on the cross-sectional part of the guide is
not only true for e and k, but until we learn more, also for d .

The quantities d , c, c' and the separation constants x and xe must
be chosen so that the boundary conditions of the lined waveguide are
satisfied.

These boundary conditions are, at the surface of the lining:

Ewi = Ewe (16)

Hu,l = Hwe (17)

Evi = Eve (18)

= Hy' (19)

and at the metal surface

Ew = 0

E, = 0.
(20)

(21)

The superscrips i and e indicate the internal and external field com-
ponents at the surface of the lining.

To satisfy (20):

where

and

To satisfy (21)

Hp(2)(pkne)c -
7,(1) (pke)

P =
a

I.. = xa
k,, = x,, c.

c - Hp(2)' (pkne)
Hp(1)" (pke).

(22)

(23)

(24)

(25)

The prime at the Bessel functions denotes differentiation with respect
to the argument.

The condition of Ew being continuous across the surface of the lining
is satisfied by virtue of the formulation of the T -functions in (1) and
(2). To satisfy (17)

di = de.
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d is therefore independent of the cross-sectional area of the guide and
needs no superscript.

To satisfy (18)

knkno J;(k.) k. Hp(2)' - (kne)] (26)
d,, pk2a2(e - 1)1_4(k.) kne Hp(2)(kne) - c'11,01(kne)

The remaining condition (19) leads to the following (characteristic)
equation of the lined waveguide:

r (k)
p(k)

k .11,(2)' (kne )
kne Hp(2)(ke)

[J; (k.)

- c'Hp(1)' (kne)
- C'Hp(1)(kne) J

k Hp (2) (kne) - CH p(1)' (kne)]
Jp(k) kne Hp(2)(kne) CHp(I)(ke)

e

p2(e - 1

The characteristic equation (27), together with

= (w2eop10 - h2 ) a2

kne2 (.02e0120 _ hn2 a2

determines the separation constants k and kne.
The transverse field components of any two different modes are or-

thogonal to each other in that'

)2

hn2a2k2a2

k.21Ce4

(27)

1 Efs (1" X II b) dS

r 6

[(aT. dnaTn) (a77, dmh,2 arr,')
ev3u e2av elau k2 coat,

(aT
do

a2L.) (1211., h2 aT'
e2av elan e2av k2 elan

The integration is to be extended over the entire cross section of the
guide. The quantity 5, is the Kronecker delta. To satisfy (29) for
n = m requires N to have a certain value, which is to be determined
from (29).

(28)

(29)

III. GENERALIZED TELEGRAPHIST'S EQUATIONS FOR CURVED WAVEGUIDE

All quantities in (8) and (15) have now been determined except the

current and voltage coefficients I and V . To find relations for them,
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(8) is substituted for the field components into Maxwell's equations.
Then

is added to

_ et, ("1 _ 41'62 arm') E times (9)
e2av k2 el81.1

a T. hm
e3 + , 2 aT-1)

e times (10)
Clan /,2 e2av

and the result is integrated over the cross section. Using the orthonor-
mality condition (29), the wave equation (3), and the boundary con-
ditions (16), (19), and (20), one obtains:

. 14.2
2 2- = jo.v.43ZI {f EX" 'c

nm

2T T dSdw coeo n S IC2

f tee 8T (aT , dmh2 aT,,,'\
keov k2 eiau) e,av k2 eiau

aT hn2 a T n')
U

(a T h,2 aT,n A
0
cy- } .

elati k2 e2aV elait k2

Similarly

a T
d.43-7:") times (12)

era a e2dv

is added to

(aT, aT,n)- e3 -deav eau times (13)2l
and the result is integrated over the cross section:

dl,,, 2 2

dwiWelYm = iCOE01:, {fs e ddnix" X; T dS

aT')(aT, da T.'_ f Raeov - -n elan 02) - m
elan,

+ (aT
elOu

dnaT') 1,37!")] dS}.
e2av eiatt c2avk

(30)

(31)

Equations (30) and (31) are the generalized telegraphist's equations
for the curved waveguide with a dielectric lining.
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Introducing traveling waves

with

V m = VIC(am bm)

1

Im - (a, - bm)

hMKm = --
(Amo

(32)

the more convenient form in terms of amplitudes of forward (am) and
backward (bm) traveling waves is obtained.

dam
+-j/Gidw+

 L
nam = ( Cmnan CI7M-bn)

dbm,

d-e-v
- jh,,,b,,, = -A (c,+ b cma)

The coupling coefficients in (33) are

Cmn =

w2µ00_ r
EE

Fla Tn d 122 aTn'\ (aTm 12 aTmi

2Vh.hJs L eou k2 e2a0 keiau u k2 e2av

(aT. dni±,12_a2L,:\ (aTm 411.2 aT,nyi
e2av k2 eiau ke2av k2 eiauk

Vh,h, f ,( (aTn dnaT,!\ (aT, aT,')

dna
elan e2av eialle2 av

e2av j2 is L \elan e2av f eiali

q 2 2

± 2vh,h is '' /C2 n In
dSW-1100 e 2 Xn Xm T T

2 2Vh h
nm± f to d d xnxm T n 'Tm ' d8 

To analyze circular electric wave propagation, it is sufficient to con-
sider only coupling between circular electric and other waves. Let m
denote the TEom wave; then

(33)

T. = 0

(34)
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and (34) reduces to

d,112 f (aT
-

11.2 aTn')
." 2C"" J. e2av k ei9u -)u dS

aT aT+ - -Vh h d [f aT - d "
'
dS (35)

s e2av eiau eiOu

d r
+ xa,2moeo .2X,27 T, (IS].

To find the z -dependence of the wave -amplitudes a. and b, for cer-
tain initial conditions, requires the solution of the generalized tele-
graphist's equations (33).

They are a system of simultaneous first -order and linear differential
equations and can be solved by standard methods. From this point of
view, (33) with (35) and all the preceding definitions represent the
formal solution to propagation of circular electric waves in round wave -
guide with a single uniform lining. But this formal solution is still to be
reduced to a practical form accessible for numerical evaluation. Also,
heterogeneous or anisotropie linings have yet to be considered.

IV. A FIELD APPROXIMATION IN THE LINING

Before proceeding any further, an approximation will be made, which
is justified for all practical linings in round waveguide for circular elec-
tric wave transmission. In all practical cases, the lining is thin compared
to the radius of the guide

P - 1 o<< 1. (36)

Furthermore, it can be seen from (35) that there is only coupling be-
tween TEom waves and waves of first circumferential order, i.e. p = 1.
For these waves it may be safely assumed that

p2 << Xe2r2 (37)

for all

a < r < b
within the lining, since I xer ke I and, according to (28),

k2a2 [e h 21

Under conditions (36) and (37), the wave functions (2) for the lin-
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ing may be simplified, by replacing the Hankel-functions by their
asymptotic expressions. The result is:

k2 sin (p
1.)

1.

aT = N--1.1p(k) ( p - 1)ke sin pp

k 2 COS (p - e
aN k,ez J p(k) COS pp.

cos (p -

The characteristic equation may now also be simplified to:

hn2k2a4

(Yn - iz-e tan , (y cot 5 ke) = p2( -1)2o (39)

where

Jpi(k)
?i kap(k).

Likewise, using (39) and the simplified form of (26), the factor d may
be written:

(38)

(40)

kn2kne2 ed 6 cot a h; + y) . (41)
p(e - 1)162a2 /

The orthonormality condition (29) determines the normalization
factor N. . Using the asymptotic expressions (38) for the field functions
within the lining, the integration in (29) results in:

2 2

7 N.2k2.1,2(k) {(1 +d 5-) (1 - P
2

± k2y2 ± 2y)
0 L

h

- 2 d 1±[(1 /1-1 -
k2

1 +
do'

4

ke
(42)

n k 2
+

± s e
sine 5 kne

+ dk2 (25ke + sin 25kne 2 h2 2ake - sin 26 kne)}
k2 cos2 5 kne

= 1.
e2k

For circular electric waves with p = 0, the integration results in:

7rN,2 d.2k.2./02(k.,) Ti [1 + k,y, + 2y.16,2
2 2

+ "`
km2 26k3 e - sin 25

kme 2 cos2 5 kme j
(43)
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The asymptotic expressions (38) have also been used to calculate
the coupling coefficients (35) for circular electric waves. Instead of
y , another abbreviation

J1(1c)X. - k Jo(k)

has been used to facilitate numerical evaluation:

km2 dmNm N h,c, = h k i(k.) Jo(k) (1 ± 11) 1 + (1,,
2 in n k,n2 -n, h

k2 km2[1 - 2 '-SL2-1)
2kn2 I) 1+(

d.
k2

- km2 .1 k2 - k ,
k2 km2 - kne tan kme 6- dnk,,2X, e -7e -7i 4 1k k --kme tan ke 6
k 2 k e2- (idint [1 - - tan kne d - tan k 6)

elc2a2 n kme

d. 1-'22 [(I ± T2k ie,e2) kki2k,ne2kme tan km' (5

(lc,2 h-h: k.2) xm -112' (fl - 1)1fh x

(44)

(45 )

Equations (39) to (45) reduce the problem to as simple analytical
expressions as seems to be possible at this time. Any further simplifica-
tion would only be brought about by replacing the trigonometric func-
tions and the Bessel-functions by their Taylor series expansions for
small arguments, respectively arguments k close to the roots of Bessel-
functions for the empty guide. Such simplification, however, would
lead to a first -order approximation for very thin lining, which has been
studied in detail elsewhere.'

The present aim is for a better approximation. Therefore, numerical
methods starting with expressions (39) through (45) will have to do
the rest.

To this end the characteristic equation (39), which in implicit form
determines the separation -constant k , will first have to be solved.
For a lossless or low -loss lining, the relative permittivity is real or may
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be assumed real. Then all the quantities in (39) are real. An iterative
procedure for this solution has been found earlier.'

For the sake of completeness it will be repeated here using the present
symbols. Equation (39) may be written as:

4
)cot alcne = -

2
1 ± 1

FZe

where

(46)

F=
1

(4Z)
kneyn c kw* kne

A value for the relative permittivity e of the lining is now specified.
For a free -space propagation constant k = 27/X, a wave propagation
constant h. is assumed and in calculating

kn2 k2a2 hn2a2

kne2 de2a2 - hn2a2
(48)

for lack of knowing the true radius of the lining, a is replaced by b,
the radius of the guide. Using (47), a first approximation for the rela-
tive thickness is found. In general, according to the two signs of the
square root in (46), there will be two such values of relative thickness
which will lead to the same propagation constant h .

The first approximation for 8 is used to correct the radius a of the
lining in (47) and (48). The calculation is then repeated. Since for
small values of 8, a change in S affects the right-hand side only slightly,
this method converges rapidly.

For typical values of b/A and E the phase constants of four normal
modes have been plotted in Fig. 2.* The modes shown in Fig. 2 de-
generate into TEn TMI, TE12 and TM12 when the lining is very thin.
Of all the modes, these four are most strongly coupled to TEN by curva-
ture. The broken lines represent first -order approximations as they
have been found earlier.' Note that the first -order approximations
hold only for extremely thin linings. In the case of the TEI1 wave, in
particular, the lining should be less than 0.05 per cent of the wave -
guide radius. Here the first -order approximations are of no use what-
soever.

Note also that the T1VIII phase constant does not increase as expected
from the first -order approximation. The curve levels off, and eventually

* These and most of the other numerical results have been obtained by H. P.
Kindermann.8
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Fig. 2 - Change in phase constant of normal modes in lined waveguide, b/X
4.70, e = 2.5 - solid line exact; broken line approximate.

a heavier lining will not change the TAIii phase. According to Fig. 3,
at higher frequencies the TMil phase levels off at even lower values.
Also, a higher permittivity will not change these relations.

This is, of course, very unfortunate since to reduce curvature losses
the TNIII phase should differ most from the TEN phase.

Having solved the characteristic equation, curvature coupling is
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Fig. 3 - The phase constant of TNIn is, over a wide range, nearly independent
of a and e.
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obtained by substituting numerical values into (45). For the TE01
characteristics first -order approximations may be substituted. Even a
very heavy lining does not change these characteristics very much. For
example, with S = 0.03 and e = 2.5 the relative change in phase con-
stant of TE01 according to this approximation is only:

AP. =
Om

The coefficients of curvature coupling between TE01 and TEn TM11
and TE12 are plotted in Fig. 4. Note again that any first -order approxi-
mations hold only for extremely thin linings.

The coupling between TE01 and TM11 is at first increased by the lining
and then stays almost constant. The increase in TE01-TM11 coupling
disagrees with another first -order approximation.4 The present result
has to be considered correct, however, since the corresponding shielded
helix waveguide curvature coupling is about equally enhanced.'
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Fig. 4 - Coefficient of curvature coupling in lined waveguide b/X = 4.70,  =
2.5 - solid line exact; broken line is wall impedance representation.
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Curvature coupling between TEm and TE11 decreases substantially
in lined waveguide as is shown by the solid line in Fig., '4. The broken
line will be referred to later. TE01-TE12 coupling is nearly independent
of the lining.

V. A WALL IMPEDANCE REPRESENTATION

The preceding analysis of lined waveguide considers only the simplest
case, of a single isotropic and uniform lining. Yet this analysis could
only be reduced to analytical expressions which are still quite involved
and require a lot of computation for numerical evaluation. It is even
more difficult to analyze a waveguide with a more complicated lining
by the same methods. Further simplifications are necessary to facilitate
the analysis of anisotropic or heterogeneous linings.

Such simplifications are brought about when the effects of the lining
are described by wall impedances which the lining presents to the
waveguide interior. Looking in radial direction, two wall impedances
may be defined which are associated with the two different polarizations
of the fields:

Z. = - Z =H v

Ev (49)
(50)

For a mode n represented by one term n of the series expansions (8)
and (15), these wall impedances can be expressed by the field functions
(38):

Z = j
WEE() p 14,2 (51)

cot kneo do
kne

1Xne

Z, = j Wµ0[tan
kne8 - npknd (52)

xne

For circular symmetric modes p = 0 and
c

Zw0 = j X-- tan kne 5 (53)
wee()

. W/ -i0Zvo = - tan kne 8. (54)
Xn

The characteristic equation can be derived with these wall impedances.
Instead of satisfying the boundary conditions (16) through (19), the
two conditions (49) and (50) will now be substituted. The ratio
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-(E,/H) and E/H, of the- field components in the waveguide inte-
rior adjacent to the lining will be required to be equal to the wall im-
pedances Z. and Z,, presented by the lining:

1-- zw
( 55 )

= Z. (56)E .k2a2 P
H. weoa \Yn kn2 doi

After the factor do has been eliminated from (55) and (56) one equa-
tion, the characteristic equation, remains:

(Yn coeuaZ,) (Yn co -af =lov

(57)

This equation is still exact to the same order as are the wall impedances.
If expressions like (51) and (52) for the wall impedance were sub-
stituted, the same equation as before, that is (39), would result.

Instead of (51) and (52) wall impedance values for circular symmetric
modes as given by (53) and (54) will now be substituted into (57).
But for the rest, the circumferential index p will be kept general in
(57). One obtains:

(yn, --1 tan ö k) (y - cot kne) =p2
h.2

(58)
ke kn4 k2

This expression is quite similar to (39).
The left-hand sides of (58) and (39) are identical, and there is only

a small difference on the right-hand sides of these equations. The right-
hand side of (39), for example, may he written as:

hn2p2 k4a4(, 1)2 162p2 1 )2

k2kn4 kne4
-

k2kn4 h)2 
CE - k2

(59)

All modes of interest are those which have nearly the same propaga-
tion constant h,, as the circular electric wave. Since under practical
circumstances the circular electric wave propagates nearly as in free
space, h will also be nearly equal to k. If under these circumstances the
right-hand side of (39) according to (59) is compared with the right-
hand side of (58), the difference is found to be very small indeed.

To determine the normal modes in a straight waveguide with a single
dielectric lining, it therefore seems well justified to use (58) as charac-
teristic equation instead of (39).
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As further -.confirmation, this approximation (58) has been solved
numerically and compared with solutions of (39).

Let 6' be the thickness of the lining. Solving (58) will give a certain
phase constant for a particular mode. To obtain the same phase constant
from (39), the thickness has to be S. Plotted in Fig. 5 for the three modes
is the relative error (6' - 8) /6 that results from using (58) instead of
the exact form (39).

An analytic expression for this error can be given for a very thin
lining, when the modes in lined waveguide may be considered first -order
perturbations of modes in metallic waveguide. Under these conditions
for TM modes

a' - - o
a

and for TE modes
- S kne

k

(e - 1)k2a2
[2 -

Ii' -a?

where J,;(ko) = 0.
In the numerical example of Fig. 5 the error is largest for the TE12

mode and very thin lining. For the other two modes the error stays
generally below 1 per cent.

The wall impedance representation, therefore, holds for single iso-
tropic linings of any practical dimensions.
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Fig. 5 - For the same phase constant, the thickness of the lining is 6 according
to (39) and 0' according to (58), b/A = 4.70, E = 2.5.
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The characteristic equation (58) for the waveguide with a single
isotropic lining is not the only form to which the more gpneral expres-
sion (57) can be reduced. It can be utilized in much more general cases.
As long as we are able to determine the wall impedance Z, and Zt, , we
can use (57) to determine the normal modes of the structure for any
lining such as anisotropic lining or heterogeneous linings.

The example of a single isotropic lining has taught us that it is suffi-
cient to use wall impedance values of the corresponding circular sym-
metric modes. It is relatively easy to find these wall impedances even
for quite complicated jacket structures. We will then be able to determine
the normal modes characteristics of waveguides with such complicated
jacket structures.

To make full use of the wall impedance representation in our analysis
of the curved waveguide, some approximations are necessary for the
coefficient of curvature coupling (35) and the normalization factor
N.

To obtain these two quantities, products of field components and other
functions had to be integrated over the total cross section. The range of
integration included the lining.

In our present representation we do not explicitly determine the field -
distributions within the lining, but the effect of the lining is taken into
account by only considering the input impedances as seen from the
waveguide interior. In this representation we therefore cannot calculate
the contributions to the various integrals by extending them over the
lining. We will consider the effect of neglecting these contributions.

Under practical circumstances, the area of the lining is always very
much smaller than the total cross section. The components of the mag-
netic field, since they are continuous across a dielectric boundary, are of
the same order of magnitude within the lining as in the empty space of
the waveguide. Except for a possible change of the order e, the same is
true for the components of the electric field.

In summary, then, the integrals of products of field components over
the area of the lining are always very much smaller than the correspond-
ing integrals over the total cross section. They consequently might be
neglected.

Under these circumstances, (42) reduces to

ib,n\ /
2t.[(i±d2

AV n it'n
n k2

2

-
/- - 2 yn -1- kn2 yn2) - 2 (1 + d 71] = 1kn2

(60)
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and (43) for circular electric waves to:

7 Nm2 dm2 km2 J02 (km) -1;"7-: (1 + 21/m + km2 yn!) = 1. (61)

For the coefficient of curvature coupling we get instead of (45)

cmn± d k2 N
Jo

a
" km2 - k2

(1 h± ) 1 d do k2
2k,,2

k2 kk2 - km2 x/

kn2 (1 - 2 x -S)

(1 d.
kn 2 - k,2

d k2 s,
tin

[(2

,, m2 , 7, ( h 1
k n m

Vng

7- (

(62)

The factor d in all these equations can be determined from (55) or
(56). For example from (55) we get:

2 k2 j ,7)p h2 coeoabw
(63)

After the characteristic equation (57) has been solved for a particular
combination of wall impedance values Z., and Z , all the other quanti-
ties and eventually the coefficient of curvature coupling C,± can be
found by straightforward evaluation of (60) to (63). The wall imped-
ances Z., and Z. may of course be determined from the circular sym-
metric field components.

The approximations which have been made to obtain (60) to (63)
have been examined more closely by numerical evaluation. The coeffi-
cient of curvature coupling has been calculated using these equations
and compared with the plots in Fig. 4. For TM11-TE01 and TE12-TEo1
coupling the differences are small enough not to show in Fig. 4. The wall
impedance representation fails only for TE01-TE11 coupling and ö > 0.8
per cent. The corresponding coefficient of curvature coupling is shown
by the broken line in Fig. 4. Fortunately the coupling is then so small
and the phase constants of the waves differ so much that there is no
significant interaction between TE01 and TE11
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The explanation of why the two methods of calculation result in
different values in just this case is as follows:

The TEn wave in round waveguide is most strongly modified by the
lining. Even in a thin lining, the TEn field tends to be concentrated
within the lining. In the present numerical example, it takes only a
relative thickness of ö = 0.4 per cent for the radial propagation constant
kn to become imaginary and consequently the TEll fields to be evanes-
cent towards the center of the guide. When this happens because
of very weak TEn fields within the guide, the curvature coupling to
TE01 will be very weak too.

The wall impedance representation fails for calculating the coupling,
because it entirely neglects any field interaction within the lining,
which is more and more significant for TEn and a thick lining. This
phenomenon is limited to TEn ; coupling to all other modes is accurately
described by the wall impedance representation.

VI. WALL IMPEDANCE OF ANISOTROPIC AND HETEROGENEOUS LININGS

It has now been established that the wall impedance representation
is a useful method in analyzing wave propagation in straight and curved
sections of lined waveguide. To use this method for waveguides with
anisotropic or heterogeneous linings we need to know the wall imped-
ances of these linings.

6.1 Anisotropic Lining

Flock coating shows promise as a lining for circular electric wave -
guide. Resistive fibers of the flock are parallel to the electric field of
unwanted modes but perpendicular to circular electric fields. A flock coat
is anisotropic, and in an (x,y,z) system identified by

u = x, av = y, w = z

it may be described by the permittivity tensor

ex 0 0

E,

0

II II =

(64)

(65)

Wall impedances of circular symmetric modes are used in the wall
impedance representation. In our present system of coordinates, cir-
cular symmetry corresponds to a/ay = 0.



LINED WAVEGUIDE 765

Assuming furthermore a z -dependence of Clhz, Maxwell's equations
may be written in the following form:

j h = jcoAcilx

-j h Ex - -aEz = -jwitHy
ax

19Ey- = -jcokcHz

j h Hy j ex Ex

-j h H. aHz = j co ez

aH, = jwezEz.
as

(66)

Eliminating the field components Ex , Ey and Hx , Hy from (66) we
get:

a,Ez
(co2µ ex - h2) Ez = 0

as2 ex

a2H,
(w- h2) H, = 0.

ax2

The general solution of these equations has the form

Ael" Be" -x

where for (67)

and for (68)

X = xx V --ez = -2 (c.)212 ex - 112)
ex ex

(67)

(68)

X = Xz = \/0)21.ie, - h2

are the propagation constants in .r- or radial direction.
A wave traveling in positive x -direction or outwardly in the cylindrical

system is represented by the second term. For such waves

a
as = -ix
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and we obtain from Maxwell's equations and (67)

j ez = V!! Hy
ex

and from (68)

X.Z=Z
Cs) -Vfxf:

-jcoµ Hz = -j xz

Z - (4" .
Xz

Zz and Z are the wave impedances of an anisotropic medium. The wall
impedances of the anisotropic lining are input impedances of a radial
transmission line of length (b - a) short-circuited at the end. In our
present approximation:

(69)

Z. = tan xx
ez (b - a)

v esez ez

Xz (b - a).
xz

(70)

(71)

To make Z,,, and Z,, constants of the waveguide, independent of a par-
ticular mode, we consider only modes which are sufficiently far from
cutoff to propagate nearly as in free space. Then

X. = Tt
2r Vex .,

E0

VEa
eo

- 1.
(73)

For circular electric waves only Z,, enters the boundary condition.
Note that in (72) Z. is independent of ex . Resistive components in
the flock coat will cause a loss factor only of ez . Such resistive com-
ponents leave the circular electric wave loss unaffected.

6.2 Double Lining

A base layer of dissipative material and a top layer of low -loss ma-
terial provide mode filtering for TE01 transmission and reduce TE01 loss
in bends.3

Let the base lining have a relative permittivity eb and thickness b - a,
the top lining et and al - a.
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Input impedances of the base lining are

where

x coZ i . /.4.1= tan xi(b - a) , Zy1 = - tan xi(b - a)
wfoo

= k - 1.
These input impedances are transformed by the second lining accord-

ing to ordinary transmission line theory

7,,, j loo VEt - 1 ft -V,eb tan cob + Eb VE, - 1 tan cot
(74)

Eu Et Eb V Et - 1 - Et N/ Eb - 1 tan 'Pb tan 'Pt

1 - 1 tan pb Eb - 1 tan got= (75)
Eo VE, - 1 VEb - 1 - VEI - 1 tan Cpb tan cot

where

and

b-al'Pb = 2r Veb - 1

sot = \/, _ - a
X

For a thin base layer epb << 1 and

2r tan tpt- (b - al) +
Zn = µu

X
1/Et - 1 (76)

eo 2r1 - - (b - a1) V
X

et - 1 tan

Note that in (76) Z is independent of the permittivity in the base
layer. Any loss in the base layer will not significantly raise circular
electric wave loss.

VII. CONCLUSION

In previous first -order approximations, normal modes of lined wave -
guide were considered perturbed modes of plain waveguide, and coeffi-
cients of curvature couplings were assumed the same as in metallic
waveguide. In some respects these approximations hold only for ex-
tremely thin linings, thinner for example than 0.05 per cent of the
waveguide radius. The present more exact analysis shows that the
TEI1 wave has a phase constant much higher than would be expected
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from these approximations. Neither 11w thickness nor the permittivity
of the lining can increase the phase difference between TM11 and TE01
beyond a certain limit. The phase difference eventually is almost inde-
pendent of 8 and e and is small for high frequency.

Curvature coupling between TE11 and TE01 is substantially smaller
in lined waveguide than in plain waveguide, while it is nearly inde-
pendent of the lining between TE12 and TEN . Between TAII, and TEN ,
however, it first increases and then stays constant.

Waveguides with sandwiched or anisotropic linings may be analyzed
by using a wall impedance representation. Wall impedances which the
lining presents to fields of circular symmetry may be used in this analy-
sis. They may easily be calculated for flock coatings and double linings.
The wall impedance representation is found to be accurate for all typi-
cal cases.
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Some Traffic Characteristics of
Communications Networks with

Automatic Alternate Routing
By J. H. WEBER

(Manuscript received August 23, 1961)

As a first step in the investigation of communications networks with
automatic alternate routing, a simulator has been prepared using the IBM
7090 high-speed digital computer. The simulator is capable of being applied
to a large class of networks, the principal restrictions being that blocked
calls are cleared, and no congestion or delay is encountered at the switching
points. Although the first version of the simulation program requires that
the alternate routing plan be fixed in advance (i.e., before a run), the program
design is such that traffic -dependent alternate routing doctrines can easily be
provided.

The simulator has so far been used to examine the behavior of small
networks of various sizes, configurations, and alternate routing doctrines
under normal and abnormal conditions of load. Several criteria are intro-
duced and used to evaluate the relative performance of different networks,
leading to conclusions regarding the merits of certain alternate routing
procedures and the areas of profitable application of the networks studied.
The overload capabilities of these networks are of particular interest and are
examined in some detail.

I. INTRODUCTION

The recent rapid expansion of long-distance communications facilities
to serve increasing civilian and military demands, along with the evolu-
tion of cheaper trunking facilities and more sophisticated switching
techniques, continues to bring the problem of network design and engi-
neering to the attention of communications engineers. Although methods
have been developed for engineering certain types of networks for the
most economical distribution of trunking facilities, several critical prob-
lems remain.

769
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One of these is the lack of understanding of the behavior of alternate
routing networks under overload conditions, whether the overload is
local or system wide. Local disasters, such as storms, earthquakes, etc.,
have caused severe deterioration of service in certain regions owing to
increased loads directed toward the affected area. At other times, such
as Christmas Day in the United States, the pattern of traffic shifts
radically; again causing serious overloads and long delays in completing
calls. Finally, some concern is felt for the behavior of the system under
the impact of some widespread disaster, where overloads may appear
everywhere simultaneously.

Such considerations lead in turn to two questions. First, how shall
networks be designed to be efficient during normal operation and yet
not deteriorate catastrophically under overloads, and second, given a
network design, can the switching pattern be altered for the duration of
an overload to improve performance, and if so, how?

Another problem is our present inability to engineer any but the
limited class of alternate routing networks of a "hierarchical" nature
which have been widely used in the Bell System and elsewhere.

Since no analytic techniques appeared to be available or soon forth-
coming to answer these questions, a simulation study was undertaken in
the hope that some insights might be provided into the operation of such
networks which would be helpful in their design and in the development
of theoretical models to predict their characteristics.

Accordingly, a program was written for the IBM 7090 computer
which enables various alternate routing philosophies to be simulated and
compared. In line with the general nature of the problem being studied,
the program was designed to accept a large variety of networks and be
easily expandable to encompass more sophisticated alternate routing
procedures as they evolve.

The capabilities and limitations of the simulator are outlined in some
detail in the next section, followed by a description of the first experi-
ment using the program. Finally the results are presented and analyzed,
and some general characteristics of alternate routing networks of the
types studied are set forth.

II. SIMULATOR CHARACTERISTICS

Although many of the problems which arise when alternate routing
networks are overloaded are caused by switching delays and shortages,
it was decided, as a first step, to consider only the effects of trunking,
since the switching problems are unique to particular systems, and would
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in any event considerably complicate both the program and interpreta-
tion of the results. Accordingly, the program was constructed under the
following restrictions:

(1) No blocking or delay is introduced by any switching point.
(2) Calls which do not receive service immediately are cleared from

the system and do not return. (If setup time is assumed negligible,
and there are no delays, the lack of retrials is not likely to mate-
rially affect the nature of the results.)

If the network is considered to consist of nodes (corresponding to
switching centers) and links connecting them (corresponding to direct
trunk groups), then each link may be assigned an originating traffic, a
trunk group size and an alternate routing pattern. In addition, calls
which overflow the direct route and are to be alternate routed may be
assigned a directionality, or originating node, which allows one of two
alternate routing configurations to be hunted over, depending upon the
direction of the call. Every trunk group is a "two way" group, so no
direction need be assigned to calls which are carried on the direct route.

The simulator will accept systems which contain as many as 63
switching points, each of which may be connected to any other switching
point by up to 511 trunks. Calls which do not find an available trunk in
the direct route may overflow through one of two sets of up to 63 specified
routes, depending upon the direction of the call. Each alternate route
may contain as many as 7 links, which implies switching through up to
6 intermediate nodes. (A modification of the program allows the alternate
routes to be chosen on a "step by step" basis, where the first node in
the alternate route chain is specified, and the call proceeds from node
to node according to the alternate routing specification at the last node
through which the call was switched. "Ring -around -the -Rosy" and
"Shuttling" are prevented by keeping records of where the call has al-
ready been switched and not allowing it to use the same node twice.) It
should be emphasized that the program as described here requires that
the entire alternate route be specified at the originating link, and failure
to connect on any link of an alternate route allows an entirely new route
to be selected.

An over-all maximum size of the system, set by the limitations of the
computer memory, is

(13 X Number of links) + Total number of trunks

+ Total number of alternate routes = 22,013.

For example, if a system has 40 nodes, (and therefore 780 links), and if
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there is a total of 3900 trunks in the system, (corresponding to an average
of five trunks per link), then 7973 alternate routes, or about 10 per link,
can be specified. This is a rather large system, and in fact the simulator
allows for experimentation with a wide range of possible trunk, node,
and alternate route configurations.

In order to estimate the reliability of the simulation results, outputs
may be printed out at subintervals of the run. Furthermore, since the
system starts empty, equilibrium may be attained before records are
kept by running the program for a number of subintervals and discarding
their records. The number of subintervals to be printed out, as well as
the number to be discarded, can be specified in the input, along with the
average holding time per call, the total time the simulation should be
run in holding times, and indications as to what sort of alternate routing
scheme is to be used. The holding times of all calls are assumed to be
exponentially distributed with identical means, and traffic levels are
varied by altering the average time between calls offered to each link.
Pseudo -random numbers to specify the input are generated by a multi-
plicative congruential technique which gives a cycle of 2" numbers
before a repeat. The random number generator is not cleared after every
simulation, so that if several experiments are made successively, they
will not utilize the same sequence of random numbers. Thus runs can be
repeated identically if desired, or, alternatively, a different set of random
numbers can be used for the same system configuration by the simple
expedient of reordering the experiments.

The information which is printed out, in addition to that derived
directly from the inputs, (number of nodes, number of trunks and loads
per link, alternate routing patterns, etc.) is as follows:

(1) An estimate of the probability of loss (blocking) from each link; i.e.,
the proportion of calls directly offered to a specific link which are
unable to be served at all.

(2) An estimate of the probability of direct overflow; i.e., the propor-
tion of calls which overflow the direct route, although they may
be served on an alternate route.

(3) Number of calls offered to each link, both directly and as an
alternate route.

(4) Load in erlangs carried by each link, both from direct and alternate
routed traffic.

(5) Calls carried by each link, both from direct and alternate routed
traffic.

(6) Over-all average blocking; i.e., E aim/ E aj where a is the load
i-1

offered to link i, and pi is the blocking experienced by ai .
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(7) Total carried load, which is really total calls multiplied by holding
times. That is, a call is assumed to provide the number of erlangs
its holding time would represent, regardless of how many links
are used. This quantity is derived indirectly, by multiplying the
total offered load by one minus the overall average blocking.

For moderate sized systems this program will process calls at the rate
of about 1,200,000 calls per hour. A sample output is shown in Fig. 1.

NETWORK SIMULATION

RESULTS FOR FIRST 5 5 TH$

NUMBER OF NODES AVERAGE HOLDING TINE
1000.00

ALTERNATE RC/TING PLAN NUMBER OF HOLO TIMES
200.

INITIALIZING SUBGROUPS

LINK IFFERD NUM LOSS PR CIR C OFF A OFF T OFF DIRECT ALTERN TOTAL ID CAR A CAR T CAR
NUM LOAD TKS PROM OVRFLO CALLS CALLS CALLS CAR LD CAR ID CAR ED CALLS CALLS CALLS
1

1

2

3

8.750
61.250

3 0.2)36
57 0.2889

0.7045
0.2809

1041
12648

0

5051
1041
18459

2.66
43.55

O.

11.17
2.66
54.76

544
8994

0

2326
544

11320
I 4 26.250 15 0.3330 0.5645 5442 2065 8107 11.57 2.79 14.36 2370 616 2986
15
2 3

17.500
35.000

9 0.2777
19 0.2837

0.5836
0.5342

3475
7273

90
1030

4460
8303

7.26
16.54

1.10
1.62

8.36
18.16

1447
3388

248
297

1695
3645

2 4

5

41.750
70.000

25 0.3478
64 C.3395

0.5479
0.3355

8829
14454

4340
5256

13177
23710

19.67
46.58

4.62
15.55

24.29
62.13

3992
S547

965
3193

4957
12/40

3

3

4

5

78.750
52.500

75 0.3714
31 0.3514

0.3714
0.5482

16409
IC598

14051
5725

30460
16323

50.97
23.61

22.42
6.58

73.39
30.20

1C315
4788

4548
1389

14063
6177

4 5 87.500 Al 0.3583 0.3583 18C43 15297 33340 56.17 23.23 79.48 11578 4705 16283

OVERALL AVERAGE BLOCKING  0.335161

TOTAL CARRIED LOAD 319.95

LINK NUMBER I

ALTERNATE ROUTE PATTERN

2. FIRST OIRECTIIN TRAFFIC SO PER CENT

S 0 0 0 0 0 4 C 0 0 0 0 4 5 0 0 0 0 3 0 0 0 0 0 3 S 0 0 0 0
1 4 0 0 0 0 3 4 5 0 0 0

3 0 0 0 0 0 4 0 0 0 0 0 3 4 0 0 0 0 5 0 0 0 0 0 3 S 0 0 0 0
S 0 0 0 0 3 4 S 0 0 0

LINK NUMBER 1 3. FIRST DIRECTION TRAFFIC 0 PER CENT

LINK NUMBER 1 4. FIRST CIRECTION TRAFFIC 100 PER CENT

3 0 0 0 0 0

LINK NUMBER I 5. FIRST DIRECTION TRAFFIC SO PER CENT

4 0 0 0 0 0 3 0 0 0 0 0 3 4 0 0 0 0

3 0 0 0 0 0 4 0 0 0 0 0 3 4 0 0 0 0

LINK NUMBER 2 3. FIRST DIRECTION TRAFFIC 50 PER CENT

4 0 0 0 0 0 5 0 0 0 0 0 5 4 0 0 0 0

S 0 0 0 0 0 4 0 0 0 0 0 5 4 0 0 0 0

LINK NUMBER 2 4. FIRST DIRECTION TRAFFIC 100 PER CENT

5 0 0 0 0 0

LINK NUMBER 2 5. FIRST CIRECIIAN TRAFFIC 0 PER CENT

LINK NUMBER 3 4. FIRST CIRECTION TRAFFIC C PER CENT

LINK NUMBER 3 5. FIRST 01RECTION TRAFFIC 100 PER LENT

4 0 0 0 0 0

LINK NUMBER 4 5. FIRST DIRELTION TRAFFIC 0 PER CENT

Fig. 1 - Sample computer output.
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Clearly, the flexible nodal structure upon which the program is based
allows certain things to be done by expending extra nodes which are not
directly programmed. For example, if it is desired to have two one-way
groups in a link, it is necessary merely to assign no trunks to the direct
link, and have each of the alternate route patterns contain one node,
which is assigned for the purpose. So, a single link would then have 4
nodes and 4 links with trunks assigned, as shown below.

I AND 2 ARE
ORIGINAL NODES

3 AND 4 ARE
SUPPLEMENTAL NODES

Another possible use is the simulation of progressive graded multiples.
Suppose it is desired to simulate the simple multiple shown below.

t
a,

t
82

This is clearly equivalent in terms of loads carried and blocking to the
following nodal structure.

In this analogue, al has links 1-4 and 3-4 as an alternate route, while a2
overflows through 2-4 and 3-4. Thus, if links 1-4 and 2-4 are provided
with more trunks than 3-4, they can introduce no blocking and the
system corresponds to the graded multiple above where link 3-4 is
equivalent to the common group. This sort of flexible structure, then,
appears to be useful in many ways, and may in fact come to have applica-
tion beyond its original intent.

This program was primarily designed as a tool for the evaluation of
alternate routing networks and as an aid in formulating principles for
their design and administration, although one of the purposes was to
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assist in the solution of real problems as they arose. Accordingly, studies
have been begun with the aim of codifying classes of networks and deter-
mining the significant parameters, advantages and disadvantages of each.

III. ANALYSIS OF NETWORKS

As a first step in the study of alternate routing communications net-
works it is desired to compare the behavior of several alternative con-
figurations under normal and overload conditions. The variables which
seem most likely to be significant in determining network performance
are:

(1) Number of switching points in the network.
(2) Overall size of the network, perhaps best described as a measure

of the average load or number of trunks per link.
(3) Alternate routing procedure used. Thus, a system which allows all

traffic to overflow in some specified manner will probably perform
differently than one which considers some routes to be "high
usage" and from which traffic is alternate routed, and others to be
"finals," from which no alternate routing is permitted.

(4) Type of overload encountered. A uniform (system wide) overload,
for example, may cause a behavior quite different from an over-
load which is confined to a particular portion of the network.

In order to estimate the performance of networks when these parameters
vary, and yet keep the results simple enough so that they can be easily
interpreted, eight different networks were studied, each having two
different alternate routing plans. In each case both uniform and non-
uniform overloads were considered.

The eight networks studied consisted of two networks with three,
two with four, two with five, and two with six nodes. The loads were ad-
justed so that the average load per link varied from three and one half
erlangs per link in the most lightly loaded network to about 28 erlangs
per link in the most heavily loaded configuration.

For purposes of convenience, the following terminology will subse-
quently be used :

(1) A link is a connection between two nodes, which may have any
number of trunks, including zero.

(2) A node is a switching center, characterized by two or more links
terminating at it.

(3) If network A is larger than network B, it has more nodes.
(4) If network A is heavier than network B, it has more offered erlangs

per link on the average.
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(5) A hierarchical alternate route network is one in which at least
some of the trunk groups are high usage; i.e., traffic which is not
carried can be overflowed to other groups, at least some of which
are finals, which have no alternate routes.

(6) A symmetrical alternate route network has only high usage groups.
(7) A simple network has only final routes; i.e., no alternate routing

is allowed.
The procedure which was followed in all cases was to postulate loads

offered to each link in the network. For the sake of generality, these
loads are ordinarily unequal, although in some cases equal loads are
used in places where it is thought that this will not prejudice the results.
Each network was engineered for a loss of 1 per cent on the worst link
for simple, symmetrical and hierarchical networks. Loads were then
applied corresponding to (a) 25 per cent, 50 per cent, 75 per cent, and
100 per cent uniform overload and (b) 25 per cent, 50 per cent, 75 per
cent, and 100 per cent overload on all routes terminating at node 1.
The selection of node 1, of course, is quite arbitrary, but this choice
appears to be immaterial in the symmetrical case, and is likely to be
most typical for hierarchical networks. (The heaviest loads in the
hierarchical networks were reserved for the final routes, since this will
allow most effective use of the hierarchy and seems to correspond to
actual practice.) The simulations ran for 200 holding times for heavy
networks and 1000 holding times for light networks, with an additional
20 per cent of this time (i.e., 40 or 200 holding times) discarded at the
beginning of each run to remove the initial transient. Results were
printed out at f i ve subintervals of the total run, and examined to deter-
mine that the initial transient had been removed and the run was long
enough to yield results sufficiently accurate for the purposes of this study.

Sketches of the networks are shown in Figs. 2 to 9 along with tables
indicating the link loads and trunks assigned for each of the alternate
routing doctrines. (Two sketches of each network are provided, one of

which can be easily related to a symmetrical alternate routing philosophy
while the other suggests a hierarchical doctrine. The dashed lines in the
hierarchical sketch denote high usage groups, while the solid lines repre-
sent final routes. Since all links are high usage in the symmetrical system
this distinction is not needed, and identical solid lines were used through-
out.) The simple networks were engineered using the Erlang B tables,
while the hierarchical networks were engineered using conventional
methods with the sort of hierararchy used in the Bell System, allowing
about 0.7 erlangs (25 ccs) on the last trunk in a high usage group. The
(hierarchical) configurations were then checked experimentally using the
simulator, and adjustments were made where required. The symmetrical
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NETWORK PARAMETERS, 3 NODES - LIGHT

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 2 7 6 1

1-3 4 10 8 13
2-3 6 13 11 16

Total 12 30 25 30
Ave/Link 4 10 8.35 10

3

1 2

HIERARCHICAL SYMMETRICAL

Fig. 2 - Three -node network models with table of link loads and trunk as-
signments for light loading.

NETWORK PARAMETERS, 3 NODES - HEAVY

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 5 11 11 4
1-3 10 18 16 21
2-3 15 24 21 27

Total 30 53 48 52
Ave/Link 10 17.65 16 17.35

3

1 2

HIERARCHICAL

3

SYMMETRICAL

Fig. 3 - Three -node net work models with table of link loads and trunk assign-
ments for heavy loading.



NETWORK PARAMETERS, 4 NODES LIGHT

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 1 5 4 0
1-3 4 Ill 8 Ii5

1-4 2 7 5 2

2-3 3 8 6 3

2-4 5 11 9 15

3-4 6 13 10 17

Total 21 54 42 50
Ave/Link 3.5 9 7 8.33

3 4

....... i....... .........

/i 2

HIERARCHICAL

3 4

SYMMETRICAL

2

Fig. 4 - Four -node network models with
ments for light loading.

NETWORK PARAMETERS 4 NODES - HEAVY

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 5 11 12 3
1-3 20 30 27 37
1-4 10 18 18 9

2-3 15 24 22 14

2-4 25 36 32 43
3-4 30 42 38 52

Total 105 161 149 158
Ave/Link 17.5 26.8 24.8 26.35

3 4

...

...... ..........j/
1 2

3 4

2

HIERARCHICAL SYMMETRICAL

Fig. 5 - Four -node network models with table of link loads and trunk assign-
wtek ets, rs hnnysyr inorlincr



AUTOMATIC ALTERNATE ROUTING 779

NETWORK PARAMETERS, 5 NODES - LIGHT

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 1 5 4 0
1-3 5 11 9 17
1-4 2 7 5 1
1-5 2 7 5 1
2-3 3 8 6 2
2-4 4 10 7 3
2-5 6 13 10 19
3-4 6 13 10 21
3-5 4 10 7 4
4-5 7 14 11 23

Total 40 98 74 91
Ave/Link 4 9.8 7.4 9.1

4..,,,,
/ ,.,

/
...... ...."''''s-,...<./. .-_-.0' /..s..,.

(3
,G....'-----,----> 2

/"--°s--,, .....'''''
V...,*"..
...."

HIERARCHICAL SYMMETRICAL

Fig. 6 - Five -node network models with table of link loads and trunk assign-
ments for light loading.

networks were designed to allow each parcel of traffic to overflow through
all other nodes in turn and were engineered entirely with the simulator by
trial and error. A first estimate of trunk quantities was made using a
fixed differential between the load in erlangs and the number of trunks
in each link, and corrections were then made as required.

Having established this framework, or procedure for evaluation, a
critical question is, What criteria can be used to compare the perform-
ance of various types of networks? It is desirable to take account of the
efficiency (carried load per dollar of investment) of the network at all
times, as well as the grades of service which are provided to each group
of customers. Although grade of service here can no longer be interpreted
as the small percentage of blocked calls that is ordinarily encountered at
normal engineered loads, it is nevertheless incumbent upon the network
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NETWORK PARAMETERS, 5 NODES - HEAVY

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simiik Symmetrical Ilicrarchical

1-2 5 11 13 3

1-3 35 47 43 57

1-4 15 24 23 15

1-5 10 18 18 9

2-3 20 30 28 19

2-4 25 36 33 25

2-5 40 53 48 64
3-4 45 58 53 75
3-5 30 42 38 31

4-5 50 64 58 81

Total 275 383 355 379
Ave/Link 27.5 38.3 35.5 37.9

(3

4
--7

..- - 2

HIERARCHICAL SYMMETRICAL

Fig. 7 - Five -node network models with table of link loads and trunk assign-
ments for heavy loading.

designer to consider the extent to which service is degraded on any partic-
ular link. Similarly, one would expect the efficiency under overload con-
ditions to be higher than that encountered during normal operation, but
the relative efficiencies of networks using various alternate routing doc-
trines (to carry the same loads) may be rather different. It is clear, for
example, that if a call uses a trunk in each of two links, there is a possi-
bility of lower network efficiency being obtained than if it used a trunk
in only one link. It is one of the purposes of this study to determine at
what overload point such a loss in efficiency takes place, and what if any
remedial action can be taken.

Thus, two rather different criteria appear to be important, one of
which is essentially an economic variable, and the other a service vari-
able. They are both further complicated by the fact that the first de-
pends on the relative costs of trunks in different links, and the second
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NETWORK PARAMETERS, 6 NODES - LIGHT

781

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 1 5 4 0
1-3 5 11 8 16
1-4 1 5 4 1

1-5 3 8 7 3
1-6 2 7 5 2
2-3 2 7 5 2
2-4 6 13 9 18
2-5 3 8 6 3
2-6 4 10 7 4
3-4 4 10 7 4
3-5 6 13 9 21
3-6 4 10 7 4
4-5 5 11 8 5
4-6 7 14 11 23
5-6 7 14 11 24

Total 60 146 108 130
Ave/Link 4 9.75 7.2 8.67

4

HIERARCHICAL SYMMETRICAL

Fig. 8 - Six -node network models with table of link loads and trunk assign-
ments for light loading.

has a different value for every parcel of traffic in the network. In order
to simplify these complexities and reduce the number of variables which
enter into the measure of performance, only the worst blocking in the
network will be considered as the service criterion. This is, of course,
conservative, and reflects the difficulties which might occur when alter-
nate routing is canceled and a small parcel of traffic has no trunks in the
direct path. The blocking on such a parcel would then be unity, and it
would quickly be noticed that a parcel of traffic is isolated.

The problem of assigning costs to trunks is more difficult, of course,
since there is no apparent logical worst or best case. Thus the assump-
tions made here for the relative costs are quite arbitrary and oversimpli-
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NETWORK PARAMETERS 6 NonEs - HEAVY

Link Number Engineered Loads-
Erlangs

Engineered Trunks

Simple Symmetrical Hierarchical

1-2 5 11 15 3

1-3 40 53 48 67
1-4 10 18 19 9
1-5 20 30 28 22
1-6 15 24 24 13

2-3 10 18 19 9

2-4 40 53 48 67
2-5 20 30 28 18
2-6 25 36 33 27
3-4 30 42 38 27
3-5 45 58 53 82
3-6 30 42 38 30
4-5 35 47 43 35
4-6 50 64 58 90
5-6 50 64 58 97

Total 425 590 550 596
Ave/Link 28.3 39.4 36.7 39.7

(3

HIERARCHICAL

2

4

2

SYMMETRICAL

Fig. 9 - Six -node network models with table of link loads and trunk assign-
ments for heavy loading.

fled, but may still be useful in evaluating network performance. Two
different assumptions will be made. The first is that all trunks have the
same cost. This might be a reasonably realistic assumption in a network
where the designers are likely to think of symmetrical alternate routing
doctrines. In effect, it states that the distance between any two nodes is

not sufficiently different from the distance between any other two nodes
to materially affect the cost of trunking facilities between them. Al-
though this may appear to represent an unrealistic geographical situa-
tion, it may not he too far in error if the economics of long haul, large
cross section trunking facilities are considered. In such systems, the ter-
minal costs make up a large portion of the total trunk cost, and these,
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of course, are independent of the length of haul. The second assumption
is that some routes are half as expensive as the others. For example, in
Fig. 4, routes 1-3 and 2-4 are each considered to be half as long as each
of the other routes in the network, all of which are assumed to be vir-
tually the same length (all lengths here, of course, refer to costs, which
are ordinarily roughly proportional to lengths). This assumption is geo-
graphically reasonable, and is, in fact, the kind of layout that is often
encountered and which may well have prompted the development of
hierarchical alternate routing procedures. Although neither of these
weighting schemes may exactly represent an actual case, using each as-
sumption in its logical place may yield more realistic comparative results
than would using the same assumption throughout.

Having reduced the parameters for evaluation to two (worst blocking
and load carried per dollar of investment), they can be combined into
one by the following argument. Both of these parameters, which will be
called B (blocking) and E (efficiency) generally increase with increasing
loads (although E may occasionally decrease in a non -simple network).
A large value of E is generally desirable, but, of course, a large value of B
is not. In fact, quite the reverse is true, and so a high value of (1 - B)
is a desirable goal. Furthermore, the two factors will increase under differ-
ent circumstances. For example, a highly efficient network may readily
yield a very high value of E, but will also cause very high blocking. Thus
B will be high and (1 - B) low. Conversely, a loosely engineered net-
work is likely to provide good service under overloads, yielding a rela-
tively low B and high (1 - B), but in turn be inefficient, with a low E.
In both of these cases, the product E(1 - B), will take on some inter-
mediate value. Accordingly, a figure of merit for networks, called the
Performance Measure, will be defined as M = E(1 - B). This number
may be dimensioned to lie between zero and one and will pass through
a maximum as the load is increased. At engineered levels it will es-
sentially represent the network efficiency, and as the load is increased
it will indicate when service or efficiency or both are deteriorating. A
high M is clearly a mark of a well performing system, with efficient trunk
usage and at least tolerable service, while a low or rapidly decreasing M
will show a system which is either being inefficiently used or is providing
poor service or both. If M = 0 an intolerable situation exists; i.e., either
some parcel of traffic is unable to be served or no load is being carried
by the network. If a network can be designed to be efficient under nor-
mal conditions and to maximize M during moderate or partial overloads,
and steps can be taken to prevent too rapid a degradation of this quan-
tity during severe overloads, then it is a reasonable assumption that this
design will be satisfactory for its purposes. That is, it will provide
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efficient communications facilities at normal loads, and will also allow
the continuation of at least tolerable service between all points under
adverse conditions.

One more modification was made in the results before analysis was
undertaken. Since large trunk groups are more efficient than small ones,
the group size would naturally affect the values of E and M, both at
normal loads and under overload conditions. Accordingly, E and M were
then plotted for each network relative to the E and M of the correspond-
ing simple networks. The simple network was chosen as a convenient
reference point, since it is easily engineered and requires no compli-
cated switching equipment for implementation. Thus, one of the strong
changes in efficiency which is not caused by the alternate routing pat-
tern is largely removed, permitting comparisons among the latter to be
more readily made.

IV. RESULTS

In order to investigate the effects of various parameters on network
behavior, the network efficiencies, E, and performance measures, M,
were calculated for engineered loads and for the various overload con-
ditions which were tested. The relative values of E and M (relative
to a simple network designed to carry the same loads) were then plotted
versus the degree and kind of overload experienced by the network. Thus
Fig. 11 shows the values of M for symmetrical networks, for loads rang-
ing from engineered to 100 per cent overload where the overloads occur
uniformly throughout the network. Fig. 13 exhibits the same informa-
tion for hierarchical networks. Figs. 12 and 14 show the behavior of M
with load when the overloads occur only on those links which terminate
at node 1 with all other loads remaining at engineered levels. Finally,
Figs. 15 through 18 are graphs of efficiency (E) versus load for the same
situations as pertain to Figs. 11 through 14. The points from which the
(smoothed) curves were plotted are shown in Figs. 12 to 18. They are
omitted in Fig. 11 for the sake of clarity.

In order to keep the comparisons between symmetrical and hierarchi-
cal networks on a somewhat realistic basis, it is necessary to make some
adjustment for the probable differences in geography which are likely
to encourage consideration of one or the other type of network. Accord-
ingly, as was mentioned above, certain trunks were considered to cost

twice as much as others, which introduced a weighting factor into the
values of E and hence into M as well. For example, in the 4 node case
shown in Fig. 4, trunks in links 1-3 and 2-4 were considered to be only
half as expensive as trunks in the remaining four links in the network.
This reduced the cost of the trunk plant to 0.805 times the value which
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would result if all trunks were assumed to be of equal value in the case
of a simple network, and to 0.720 times its former value for the hierarchi-
cal case. Thus the relative efficiency of the hierarchical network is in-
creased by a factor of 0.805/0.720 or 1.119. This sort of adjustment was
made in all calculations relating to hierarchical networks, while all trunks
in symmetrical networks were assumed to be of equal value. The weight-
ing factors obtained for the various networks are tabulated in Fig. 10.

The symmetrical networks which were studied in detail operated in
the following fashion. Traffic which was blocked from any link was over-
flowed to an alternate route consisting of two links in tandem. If the
call was blocked on this route it was offered to still another two -link
route, and so on until all such routes were exhausted. No call was per-
mitted to use a route which required more than two links in tandem.
Some experiments were made on networks which allowed three tandem
links to be used, but is was found that they were at best marginally more
efficient than the two -link maximum network at engineered loads and
deteriorated much more violently under overloads. Therefore, they are
not considered further in this paper. The order of selection of alternate
routes was arranged to approximately equalize the load overflowed to
each route. Although this is probably not the most efficient arrangement,
it should be adequate to illustrate the behavior of symmetrical networks.

The hierarchical networks operated in a manner similar to the Bell
System toll network, with the difference that whereas in the Bell System
the routes are selected link by link, in the simulation the routes are en-
tirely preselected at the originating node. If a network is drawn as shown
in the hierarchical sketches in Figs. 2 to 9, the route selection is made by

OVERALL SYSTEM CHARACTERISTICS

Case
Engd.
Load/
Link

Trunk Value
Adjustment for

Hierarchy

Average Number of Links/Call

Engineered Load 100% Uniform
Overload

100% Local
Overload

Hier. Symmet. Hier. Symmet. Hier. Symmet.

3 Nodes, light 4 1.194 1.155 1.014 1.156 1.128 1.203 1.124
4 Nodes, light 3.5 1.119 1.181 1.034 1.185 1.229 1.251 1.184
5 Nodes, light 4 1.181 1.288 1.074 1.305 1.305 1.372 1.210
6 Nodes, light 4 1.194 1.263 1.117 1.328 1.363 1.324 1.245

3 Nodes, heavy 10 1.121 1.076 1.034 1.073 1.164 1.138 1.180
4 Nodes, heavy 17.5 1.064 1.088 1.040 1.121 1.271 1.140 1.202
5 Nodes, heavy 27.5 1.071 1.100 1.062 1.147 1.309 1.151 1.274
6 Nodes, heavy 28.3 1.085 1.134 1.074 1.205 1.364 1.203 1.322

Fig. 10 - Over-all system characteristics.
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hunting up the hierarchy, starting from the terminating office, in the dis-
tant region, and then down the hierarchy in the home region. (A region
can be thought of as all centers whose final routes ultimately terminate
at the same highest level switching center.) Thug, for onamplo, in thn
four node network shown in Fig. 4, the alternate routes for traffic offered
to link 1-2 are:

For half the traffic, 1-4-2, 1-3-2, 1-3-4-2; and for the remainder of the
traffic, 1-3-2, 1-4-2, 1-3-4-2.

4.1 General Observations

In order to draw conclusions from this study as to the relative merits
of various types of alternate routing systems under different load condi-
tions, Figs. 10 to 18 will be examined and the significance of the results
discussed.

As a very first step, a cursory examination of all figures reveals the
following:

(1) The relative effectiveness of alternate routing networks, whether
measured by E or M, tends to decrease with overload, with the
decrease occurring more rapidly under uniform than under local
overload. Although in some cases the network remains superior to
a simple network even for 100 per cent overload, the relative per-
formance at such overloads is almost always poorer than at en-
gineered loads. This is due, of course, to the fact that the average
number of links per call increases with overload, causing a de-
crease in efficiency which may outweigh the gains yielded by the
larger effective access provided by the alternate route system.
(See Fig. 10.)

(2) Light networks (those with less traffic), gain more from alternate
routing than do heavy networks. This seems to occur because
systems designed for large parcels of traffic use large efficient
groups. Thus providing alternate routes in heavy networks, which
increases the effective access somewhat, does not materially
increase the efficiency, while the degradation caused by using
several links per call is nevertheless present. In lighter networks,
the increase in efficiency owing to the larger effective access is
substantial, overriding the degradation and causing a considerable
gain in effectiveness.

Perhaps to this list should be added :
(3) As mentioned above, symmetrical systems do not appear to

benefit from allowing more than two links in tandem to be used
by any call. This effect is apparently caused by the decrease in
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efficiency which results from using many links per call overriding
the gain yielded by increased access. In this situation, of course,
the increase in link occupancy may be substantial, while the
increase in effective access is likely to be small.
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form overloads.
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4.2 Symmetrical Networks

The curves shown in Figs. 11 through 18, when studied closely, reveal
much information regarding the characteristics of the networks con-
sidered. In Fig. 11, the high relative performance measure of light
symmetrical networks at engineered loads and the rapid decline as the
load is increased uniformly is clearly indicated. The heavier networks
exhibit a lower relative value of M at engineered loads and also decline
rapidly, bringing their performance measure down to very low relative
values at high overloads. Such a rapid decrease in M, it would appear,
would make it impracticable to install symmetrical systems in many
actual applications, were it not for the fact that M can be kept relatively
high by canceling alternate routing at some appropriate point. The
dotted lines in Fig. 11 indicate the relative performance measure if
alternate routing is canceled, and it is clear that this factor can be kept
above 0.9, regardless of the size of the network and even for 100 per cent
overload. In any event, it does appear that for extremely heavy net-
works the decline is so precipitous that this method of alternate routing
might well prove to be inapplicable. Fig. 12, however, illustrates the real
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Fig. 13 - Relative performance measure of hierarchical networks under uni-
form overloads.

strength of the symmetrical routing doctrine. The relative performance
measure is shown to be almost constant under local overloads, and
remains above unity for all but the largest, heaviest networks. Further-
more, this sort of alternate routing structure is likely to be quite efficient
at engineered loads in systems where call setup time and switching
delays are no longer negligible, since it generally uses a relatively small
number of links per call, as evidenced in Fig. 10.

A symmetrical network structure then can be devised which has the
following characteristics:

(1) Performance measure (and thus efficiency) are high at engineered
loads.

(2) Local overloads are well tolerated, with the network remaining



790 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

I
cc

cc
wI

1.4

uj 1.3

a_

(7)

1.2

1.0

0.9

08

- ....
---C)--- 4 NODES LIGHT

NODES HEAVYCD 4

---6----_
---,...

- --------- --(9--tea_----- - - --.....
--,_

---,--
----..._ -- ....- -, -,,,,

ENGINEERED 25 50 75
OVERLOAD IN PER CENT

LOAD OFFERED

100

Fig. 14 - Relative performance measure of hierarchical networks under local
overloads.

efficient and not allowing any parcel of traffic to suffer excessive
blocking.

(3) If alternate routing can be canceled at the appropriate point,
then the performance measure can be maintained at a tolerable
level even under severe uniform overloads.

(4) The average number of links per call is quite low at engineered
loads, increasing rapidly as overloads are applied.

An important practical question in (3), however, is whether a net-
work control can be devised to cancel alternate routing easily, and how
the control can determine the degree of overload. Another disadvantage
of such networks is the unavailability, at present, of any but the very
crudest methods of trunk engineering. However, this type of network is,
in principle, capable of satisfying the four points listed above, all of
which are desirable and often are difficult to attain concurrently.
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Fig. 15 - Relative efficiency of symmetrical networks under uniform over-
loads.

1.3 Hierarchical Networks

In Fig. 13, the relative performance measure of hierarchical networks
under uniform overloads is shown. A comparison with Fig. 11 indicates
that the relative M is higher at engineered loads for symmetrical than
for hierarchical light networks and not too different for heavy networks,
although the decline with uniform overload is more rapid in the former
case. In the hierarchical system, however, the relative M cannot be
increased by complete cancellation of alternate routing, since this in-
creases the blocking on some parcels of traffic which are offered to high
usage groups to a high level. Fig. 13 then shows that, although light
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networks retain their effectiveness up to 100 per cent overload, large
heavy networks show a decline with uniform overloads to a quite low
value of relative M.

The behavior of such networks under local overloads is shown in Fig.
14. In these circumstances the relative performance measure declines
slowly from the value at engineered load as the local overload is in-
creased. The decline is sufficiently gradual to enable the lighter networks
to retain an M greater than unity for all overloads considered. The
heavier networks, however, are unable to do this, and the value of
relative M for the worst network declines almost to 0.8 for the greatest
local overload.

The essential operating characteristics of networks of this basic design
then appear to be as follows:

(1) The performance measure (and thus efficiency) tend to be high
at engineered loads (if the variation in trunk costs is taken into
account).

(2) The performance measure declines at a moderate rate under
uniform overload, reaching rather low values for large, heavy
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networks. No simple corrective measures are available to improve
the situation but no special measures are needed to prevent
catastrophic performance degradation. (Certain more complicated
corrective measures, such as selective cancellation of alternate
routing, might prove effective, but this sort of procedure was not
studied.)

(3) Local overloads are moderately well tolerated, with the relative
performance measure showing a gradual decline with increasing
load, and dipping below unity for some cases.

(4) A relatively large number of links are used per call at engineered
loads, and this number increases gradually with overloads.

This is then essentially a moderately well behaving network, providing
neither superlative nor intolerable service at any level of load. It requires
no complex controls to keep operating reasonably well, and is relatively
simple to implement without the need for sophisticated switching equip-
ment at the tandem points. In a real system, with switching delays and
appreciable call setup time, however, this type of network may behave
badly under overloads, since some calls use many links in tandem, and
therefore can tie up a great deal of equipment when processing a call,
even though the call is not completed. In fact, the large number of links
used per call in hierarchical systems even at engineered loads is a source
of inefficiency in such systems.

An apparent peculiarity in all the curves is the superiority of large
light networks over small light networks at engineered loads, with the
situation reversing as the load increases, so that at 100 per cent overload
the small light networks are generally superior. A qualitative explanation
of this would again involve the average number of links per call, which
increases more rapidly in large networks than in small ones. The heavy
networks do not exhibit this effect at all, and the larger heavy networks
always appear to perform less well than the smaller ones. Since the larger
(heavy) networks were designed to be more heavily loaded than the
smaller ones, however, (see Fig. 10), this effect is more likely to be a
result of network load than size.

4.4 Efficiency Curves

Figs. 15 to 18 portray the network efficiencies in the several cases
studied. In general, these curves display a somewhat shallower slope
than the corresponding curves for M. This implies that as the load is
increased, not only does the relative network efficiency decrease, but the
blocking encountered by the most poorly served group of customers also
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increases more rapidly when alternate routing is in effect than when it is
not. The only exception to this is the symmetrical system under local
overload (Figs. 12 and 16). In this case the relative efficiency and the
relative performance measure decline at about the same rate, which
implies that in this system the blocking remains at essentially the same
level whether a symmetrical or simple system is in use. This is an im-
portant consideration in favor of symmetrical networks, particularly
since both efficiency and performance measure remain reasonably high
for all types of overloads considered.

V. CONCLUSIONS

The foregoing discussion of various types of alternate routing net-
works may be of use in determining whether alternate routing structures
should be incorporated into particular switching systems and, if so, of
what sort they should be. Many of these factors have long been known
and used by network designers, and the present study should provide
additional documentation. In the case of factors not previously con-
sidered, this study may provide justification for their incorporation into
future designs. Some of these are as follows:

( I ) I f the overload capability of the system is not important, some
sort of alternate routing system is almost certainly justified on
economic grounds.

(2) If local overload capability is important, then strong considera-
tion should be given to a symmetrical alternate routing network,
since this configuration allows the blocking to be kept to a mini-
mum under local overloads while retaining a high network effi-
ciency.

(3) If uniform overload capability is an important consideration,
then alternate routing structures should be contemplated with
caution, but can still be used if the average load per link is small
and appropriate action, such as cancellation of alternate routing
(either uniformly or selectively) can be taken as required.

(4) If the average load per link is small, alternate routing almost
always is advantageous, while if it is large, the advantage is some-
times questionable.

(5) If the initial efficiency is an important criterion, then the selection
of the type of alternate routing may well depend upon the geog-
raphy of the particular system. Thus, in certain situations, where
small towns communicate primarily with nearby cities, a hierarchi-
cal structure may be preferable, while if there is a large group of
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approximately equal -sized cities spread over the country, then a
symmetrical system could prove to be superior.

(6) If switching equipment is expensive or call setup time is long,
symmetrical networks may prove to be Superior tfQ
structures at engineered loads regardless of the geography. This
would come about because of the large number of links per call,
and hence the large amount of switching equipment used by
hierarchical networks. Clearly, long setup time in this case would
lead to inefficient trunk usage, since trunks in one link would be
held while the call progressed along a multi -link path.

(7) Although not shown specifically in these results, a multi -alternate
route structure provides service protection, which a simple layout
does not, and a well connected symmetrical network is likely to be
less vulnerable to damage than a hierarchical system.

Most actual systems, of course, must be designed to be efficient at
engineered loads, and yet must also be able to accept either uniform
or local overloads without excessive degradation of service. Furthermore,
real networks usually serve many small towns communicating primarily
with larger cities, which in turn communicate with each other on a
roughly equal basis. Therefore, the network designer must decide which
of these often conflicting criteria are most important, and develop a
system which satisfies these as closely as it can within the limitations
imposed by the switching and signaling equipment and the available
methods of trunk engineering. It is quite likely that the best system in
most situations is some combination of symmetrical and hierarchical
networks, not necessarily of the particular kinds studied here. Further-
more, the advent of electronic switching systems and high speed signaling
devices has made alternate routing doctrines which are dependent on the
state of the system feasible, and these may well prove to be superior than
any system with a completely prespecified alternate routing structure.
However, an analysis of the basic characteristics of simpler networks is

likely to be useful in predicting the behavior and influencing the design
of specific, more complex systems. It was this potential application
which motivated the studies described in this paper.



Contributors to this Issue

M. R. AARON, B.S. in E.E., 1949 and M.S. in E.E., 1951, University
of Pennsylvania; Bell Telephone Laboratories, 1951-. He first worked
on analysis, design and synthesis of transmission networks for L3 and
submarine cable systems. From 1954 to 1956 he supervised a group con-
cerned with design of networks for the L3 system. Since 1956 he has been
in charge of a group engaged in systems analysis of PCM. Member
I.R.E.

LEE G. BOSTWICK, B.S.E.E., 1922, University of Vermont; American
Telephone and Telegraph Company, 1922-26; Bell Telephone Labora-
tories, 1926-61 (Ret.). Mr. Bostwick's first assignment was on early
Bell System public address and program transmission projects. After
becoming a member of the Laboratories in 1926, he participated in re-
search initially on free field acoustic measuring techniques and later on
the advance development of electroacoustic instruments including wide
range loud speakers for theatres. During World War II, he contributed
to the development of electrodynamic forms of underwater sound
projectors, underwater acoustic measuring techniques, and sonar sys-
tems. During the years following he worked in apparatus development
on the vibrational mechanics of switching apparatus and on tuned reed
filters and selectors. Fellow, Acoustical Society of America, American
Association for Advancement of Science; member I.R.E., American
Institute of Physics, Phi Beta Kappa.

CHARLES J. BYRNE, B.S.E.E., 1957, Rensselaer Polytechnic Institute;
M.S., 1958, California Institute of Technology; Bell Telephone Labora-
tories, 1958-. At the Laboratories he has investigated fast transistor
logic, instrument noise in seismometers, and synchronization of digital
systems. Member I.R.E., Sigma Xi, Eta Kappa Nu, Tau Beta Pi.

S. GELLER, A.B., 1941, and Ph.D., 1949, Cornell University; DuPont
Postdoctoral Fellow at Cornell, 1949-50; Du Pont Company, 1950-52;
Bell Telephone Laboratories, 1952-. At the Laboratories he has special-
ized in studies of crystal structure, with emphasis on crystal chemistry

797



798 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

studies and the relation of the properties of crystals to their structures.
He is one of the American co -discoverers of ferrimagnetic garnets, and
took part in work which led to the discovery of Nb3Sn, an intermetallic
compound used in a superconductor electromagnet. Member American
Crystallographic Association, American Physical Society, Mineralogical
Society of America, Summit Association of Scientists (of the Research
Society of America), Sigma Xi, Phi Kappa Phi.

A. JAY GOLDSTEIN, B.S., 1948, and M.A., 1951, Pennsylvania State
University; Ph.D., 1955, Massachusetts Institute of Technology;
faculty, Polytechnic Institute of Brooklyn, 1954-57; Bell Telephone
Laboratories, 1957-. At the Laboratories he first engaged in research
on information theory and on noise problems. More recently he has been
concerned with quantization, timing and synchronization problems in
pulse code modulation systems. Member American Mathematical
Society, Sigma Xi.

JAMES R. GRAY, B.S. in E.E., 1954, and M.S.E., 1955, University of
Florida; Bell Telephone Laboratories, 1955-. He was first engaged in
repeater design for pulse code modulation systems. Since 1958 he has
concentrated on PCM transmission impairment studies.

WILBUR H. HIGHLEYMAN, B.E.E., 1955, Rensselaer Polytechnic
Institute; M.S., 1957, Massachusetts Institute of Technology; D.E.E.,
1961, Polytechnic Institute of Brooklyn; Bell Telephone Laboratories,
1958-. At the Laboratories he first engaged in the problem of character
recognition. More recently, he has been concerned with the development
of data communication equipment and the study of new devices and
techniques for data communication problems. He presently serves as .a
lecturer at the Polytechnic Institute of Brooklyn. Member Tau Beta Pi,
Eta Kappa Nu, Sigma Xi, I.R.E.

JOHN C. IRvIN, B.A., 1949, Miami University; M.A., 1953, and Ph.D.,
1957, University of Colorado; Bell Telephone Laboratories, 1957-. He
first engaged in the study of properties of silicon, including photoelastic
investigations and the variation of resistivity as a function of impurity
doping and temperature. For the past two years he has been concerned
with the development of varactor diodes, including germanium, silicon
and gallium -arsenide models. Member American Physical Society, Phi
Beta Kappa, Sigma Xi, Omicron Delta Kappa.



CONTRIBUTORS TO THIS ISSUE 799

BELA JULESZ, Dipl. in Electrical Engineering, 1950, Budapest (Hun-
gary) Technical University; Kandidat in Technical Sciences, 1956,
Hungarian Academy of Sciences; Telecommunication Research Institute
(Budapest) 1950-56; Bell Telephone Laboratories, 1956-. He first
worked on problems of network theory and microwave systems. At the
Laboratories he was first engaged in studies of systems for reducing
television bandwidth. At present, Dr. Julesz is working in visual re-
search, particularly on problems of depth perception and pattern
recognition. Member I.R.E., A.A.A.S., Psychonomic Society, Optical
Society of America.

HENRY KATZ, B.S. in Chemical Engineering, 1948, Drexel Institute of
Technology; M.S. in Chemistry, 1955, University of Pennsylvania; Bell
Telephone Laboratories, Summer, 1959. Mr. Katz is studying toward
the Ph.D. degree at the University of Pennsylvania, where he is working
on a crystal structure problem. Member American Chemical Society,
American Crystallographic Association.

PAUL KISLIUK, B.S., 1943, Queens College; M.A., 1947, and Ph.D.,
1952, Columbia University; Brookhaven Laboratory, 1947-48; Bell
Telephone Laboratories, 1952-. At the Laboratories, he has engaged in
research in contact and surface physics. His studies have included
problems at relay contacts and adsorption of gases on metals. Most
recently his work has concerned optical masers. Member American
Physical Society, Sigma Xi.

DAVID A. KLEINMAN, S.B., 1946 and S.M., 1947, Massachusetts
Institute of Technology; Ph.D., 1952, Brown University; Brookhaven
National Laboratory, 1949-53; Bell Telephone Laboratories, 1953-.
Mr. Kleinman has worked in the areas of neutron scattering in solids,
semiconductor electronics, electron energy bands, and the infrared prop-
erties of crystals, and is currently working on problems related to the
optical maser. Member American Physical Society.

JOAN E. MILLER, A.B., 1953,1VIount Holyoke College; M.A., 1956,
Indiana University; Bell Telephone Laboratories, 1957-. Miss Miller
has engaged in speech analysis and synthesis, computer simulation of
speech transmission, and experiments on depth perception. Member
Acoustical Society of America.



800 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

J. A. MORRISON, B.Sc., 1952, King's College, London University;
Sc.M., 1954 and Ph.D., 1956, Brown University; Bell Telephone Labora-
tories, 1956-. He has been engaged in mathematical research involving
mostly differential and integral equations arising in a variety of fields,
including electromagnetic problems, multi -velocity electron beams and
plasmas, nonlinear diffusion and space charge processes, signal theory
and satellite orbits. Member American Mathematical Society, Sigma Xi.

IAN M. Ross, B.A., 1948, Gonville and Caius College; Ph.D., 1952,
Cambridge University; Bell Telephone Laboratories, 1952-. He has
specialized in the research and development of a wide variety of semi-
conductor devices. He is director of exploratory and intermediate de-
velopment of transistors, diodes and other semiconductor components.
His laboratory is responsible for the study of radiation damage to semi-
conductor devices used in satellites, and for the specific design of satellite
solar cells. Senior member I.R.E.

DAVID SLEPIAN, University of Michigan, 1941-43; M.A., 1947, and
Ph.D., 1949, Harvard University; Bell Telephone Laboratories, 1950-.
He has been engaged in mathematical research in communication theory,
switching theory, and theory of noise, as well as various aspects of ap-
plied mathematics. He has been mathematical consultant on a number of
Laboratories' projects. During the academic year 1958-59, he was
Visiting Mackay Professor of Electrical Engineering at the University of
California at Berkeley. Member A.A.A.S., American Mathematical
Society, Institute of Mathematical Statistics, I.R.E., Society of In-
dustrial and Applied Mathematics, U.R.S.I. Commission 6.

HANS-GEORG UNGER, Dipl. Ing., 1951 and Dr. Ing., 1954, Technische
Hochschule, Braunschweig (Germany) ; Siemens and Halske (Germany),
1951-55; Bell Telephone Laboratories, 1956-. His work at Bell Labora-
tories has been in research in waveguides, especially circular electric
wave transmission. He is now on leave of absence from Bell Laboratoires
while professor of electrical engineering at the Technische Hochschule in
Braunschweig. Senior member I.R.E.; member German Communication
Engineering Society.

JOSEPH H. WEBER, B.E.E., 1952, Rensselaer Polytechnic Institute
M.S.E., 1959, George Washington University; Hazeltine Electronics
Corp., 1952-53; U.S. Navy 1953-56; Bell Telephone Laboratories,



CONTRIBUTORS TO THIS ISSUE 801

1956-. At the Laboratories, he has been engaged in telephone traffic
studies and systems engineering of electronic switching systems. He
presently heads a group concerned with traffic analysis, programming
and simulation for the Universal Integrated Communications System
(UNICOM) under development for the U.S. Signal Corps. Member
A.I.E.E., I.R.E., Operations Research Society of America, Association
for Computing Machinery, Sigma Pi Sigma.



1


