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Introduction 

THE subject of this talk is "Physical Limitations in Electron Bal- 
listics". It is pleasant to have a chance to talk about such physical 
limitations, because there is so little we can do about them. And, 

although these limitations are apt to be discouraging, a knowledge of them 
is very valuable, for it keeps us from spending time trying, like the in- 
ventors of perpetual motion machines, to do the impossible. 

As electron ballistics is particularly subject to physical limitations, there 
are so many that it is impossible to discuss all of them thoroughly at this 
time. Also, many of the limitations are of a rather complicated nature, 
and to deduce them from basic principles in a quantitative way requires 
much thought and patience. I think the best I can do is to try to mention 
most of the chief limitations, as a warning to the uninitiated that rocks lie 
ahead in certain directions, but to concentrate attention on only a few of 
them. I have chosen this evening to devote particular attention to lim- 
itations that bear on the production and use of electron beams in which 
considerable current is required, such as those used in cathode ray tubes 
and high-frequency oscillators, and to mention only briefly as a sort of 
introduction problems pertaining more closely to low-current devices such as 
electron microscopes. 

The Wave Nature of the Electron 

One of the most important limitations in electron microscopy is the dual 
nature, wave and corpuscular, of the electron. Without making any 
attempt to justify or explain the combination of wave and particle con- 
cepts which is characteristic of modern physics, we may describe its con- 
sequence at once; very small objects don't cast distinct shadows. This 
cannot be explained merely in terms of the physical size of the electron and 
the object. When an electron beam is reflected from a surface of regularly 

* A lecture given under the auspices of the Basic Science Group of the New York Sec- 
tion of the A.I.E.E., as a part of an Electron Ballistics Symposium, Columbia University, 
March 21, 1945. 
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spaced obstacles (the atoms in a crystal lattice, for instance) diffraction 
patterns are obtained, similar to those which may be obtained with waves 
of X-rays or light. It appears that electrons get around sufficiently small 
objects just as sound waves get around telephone poles, automobiles, and 
even houses, and if the objects are sufficiently small their effect on the 
electron flow will either be absent or will consist of a few ripples which are 
meaningless in disclosing the shape or size of the object. 

The electron wave-length, which varies inversely as the momentum of the 
electron, may be simply expressed in terms of the energy V in electron volts. 
A simple non-relativistic expression which is only 5% in error at 100,000 
volts (a high voltage for electron microscopes), is* 

X = X 10~8 cm (1) 

Thus for 30,000-volt electrons the wave-length is 7 X 10-10 cm or about 
1.4 X 10-7 times the diameter of a hair and 1.2 X 10_5 times the length 
of a wave of yellow light. 

In terms of this wave-length X and the half angle of the cone of rays 
accepted by the objective, a, we can express the distance d between point 
objects which can just be distinguished in an electron microscope. This 
distance is 

d — .61X/sin a (2) 

For small values of a 

la = 1/f (3) 

where / is the well known photographic / number, the ratio of the focal 
length to the lens diameter. We see that, just as with cameras, the smaller 
the / number the better. In electron microscopes a small / enables us to 
distinguish smaller objects. 

Aberrations 

Just as in cameras, the limitation to the / number is imposed by lens 
aberrations. But in electron lenses the aberrations are much more severe. 
Why is this so? Because with electroa lenses we have less freedom of design 
than with optical lenses. 

Consider an electric lens. The quantity analogous to the index of 
refraction for light is the square root of the potential with respect to the 
cathode. Now suppose that with a light lens we know the index of re- 
fraction at every point along the axis. Suppose, for instance, that the in- 
dex of refraction is 1 everywhere along the axis except for a space L long 

* The relativistic expression is 

X = (\/rsb7F/Vl + -98 X lO-o F) X lO"8 cm 



PHYSICAL LIMITATIONS IN ELECTRON BALLISTICS 307 

where it is 2, as in Fig. 1. Our lens may be converging or diverging; strong 
or weak. In the analogous electric case, however, the potential throughout 
the lens space must satisfy Laplace's equation, and this means that if it is 
specified along the axis it is known everywhere. We can easily see this by 
writing down Laplace's equation for an axially symmetrical field. 

id / dv\ . aV 
r dr \ dr / dz2 = 0 (4) 

LIGHT-CONDITIONS OFF 
AXIS NOT FIXED BY 
CONDITIONS ON AXIS 

ELECTRIC FIELD-FIELD 
OFF AXIS SPECIFIED BY 
POTENTIAL ON AXIS 

cTT 
v=-Jr / F(5+ir cos e)dL© 

Fig. 1—Contrast between optical and electric focussing conditions. 

The field near the axis may be expanded in powers of / 
dF . = ar + ... 
dr 

(5) 

Substituting this into (4), 

1 d (or2) = 2a = 
— dV 

(6) 

r dr ' dz2 

dV _ -1 d2 V 
dr 2 dz2 r 

As a matter of fact, the potential V (z,r) remote from the axis can be 
expressed in terms of the potential F0(z) on the axis as 

V = - f Fo(3 + ir cos 0) dd (7) 
TT Jo 

If we could introduce charges into our lens, Laplace's equation would no 
longer hold and we would have more freedom of design. The methods 
proposed for the introduction of charges comprise the use of free charges 
(space charge) which are largely uncontrollable, and the use of curved grids, 
which do more damage than good. In other words, the cures are worse 
than the disease. 
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Similar limitations apply to magnetic lenses, and in the end we find that 
because of the simplest form of aberration, spherical aberration, best def- 
inition is achieved in electron microscopes with / numbers of 100 or greater, 
while the / number of a light microscope objective corrected for spherical 
aberration and other defects as well may be around unity. Thus the elec- 
tron microscope is severely handicapped, and this handicap is overcome 
only because electron waves are much less than 1/100 the length of light 
waves. 

xq 
<£r 
uo 

W= 2L0, etvv= 02w2 

e2=V2L 

Fig. 2—Approximate relation between beam size and angular spread. 

Thermal Velocities oe Electrons 

In many electron-optical systems, and particularly in such devices as 
cathode ray tubes, it is desirable to focus an electron beam into a small 
area, so as to produce a very small spot on a fluorescent screen, or to pass a 
considerable current through a small aperture. We might think at first 
that if our focusing system were good enough, that is, if it had very small 
aberrations, we could focus a current from a cathode of given area into as 
small a space as we desired. This, unfortunately, is not so. The obstacle 
is the thermal velocities of the electrons emitted by the cathode. 

A simple example will show the sort of thing we should expect to take 
place. Figure 2 shows a plane cathode and near to it a positive grid so 
fine as to cause no appreciable deflections of the electrons which pass through 
it. Farther on we have an aberrationless electron lens designed to focus 
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the electron stream at a spot a distance L beyond it. The electrons will 
leave the cathode with some slight sidewise velocity components; so, elec- 
tron paths will pass at several angles through a given point on the lens. The 
lens will bend these paths approximately equally, and hence we can see that 
at the point where the beam is narrowest it will still have some appreciable 
diameter Wi. 

Now consider the beam at the lens. Suppose that through a given point 
all the paths lie within a cone of half angle Q. Then the width Wo 
is approximately 

W2 = 2Lel (8) 

We can also see that the paths at Wo will lie within an angle approximately 

02 = Wi/2L (9) 

Hence we see that approximately 

OlWi = 02^2 (10) 

In other words, we can have a small spot through which electrons pass 
over a wide angular range', or we can have a broad beam in which all paths 
are nearly parallel, but we can't have a narrow spot and nearly parallel 
rays. 

We see that the actual width of spot will depend on the thermal veloc- 
ities, which are proportional to the square root of the cathode temperature, 
and on the forward velocity, which is proportional to the square root of the 
accelerating voltage. By using more involved arguments we discover 
that for any point in an electron stream, where the beam is wide, narrow, or 
intermediate, the current in an arbitrary direction chosen as the x direction 
can be expressed4'* 

.. AkT . (l/frr)(eV-mv-12) 11] /n\ 
dj =  JqVx e dvx dvy dvz (11) 

TVVl 

v = vl + vl -\- v: 

when v> \/2eV/m; (12) 

or dj = 0 (13) 

when v < V2eV/ni (14) 

Here jo is the cathode current density, V is voltage with respect to the 
cathode, T is the absolute temperature of the cathode in degrees Kelvin, 
and vx, vu, and v2 are the three velocity components; dj is the element 

* This expression neglects the effects of electron collisions, which may actually make 
the current density smaller. 
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of current density carried by electrons which have velocity components 
about vx, vu, vz, lying in the little range of velocity dvx dVy dvz. 

The reason for restriction (12) is that if an electron starts with zero 
thermal velocity from the cathode, it will attain the velocity given by the 
right side of (12) by falling through the potential drop V. As electrons 
cannot have velocities smaller than this, we have (13) and (14). 

By integrating (11) with appropriate limits we obtain a more specialized 
but very useful expression 

n600V\ . 2Q 
—=— 1 sin20 T ) 

For usual values of voltage, unity in the parentheses is negligible, and we 
can say that if all the electron paths approaching a given point in an electron 
beam lie within a cone of half angle 0, the current density j at that point 
cannot be greater than a limiting value jm which is proportional to the 

i < jr. = jo + (15) 

ELECTRON DEFLECTING 
LENS PLATES 

CATHODE 
A 

oM'l 

Fig, 3—Parameters important in determining spot size in a cathode ray tube. 

cathode current density, to the voltage, to sin20, and inversely proportional 
to the cathode temperature. 

Let us see what this means in some practical cases. Figure 3 shows a 
cathode ray tube. The electron stream has a width W at the final electron 
lens, and is focused on a screen a distance L beyond the lens. The half 
angle of the cone of rays reaching the screen cannot be greater than 

sin d= d = W/2L (16) 

Suppose the spot must have a diameter not greater than d. Let the spot 
current be i. Then from (15), 

. 
io ^1 + 11600A (W/2Lf, 

T 

i < ^ io ( 1 + io 
116^QF^ {W/2L)2. (17) 
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Thus if for a given spot size we want to increase the spot current, and if we 
are limited to a given cathode current density because of cathode life, 
we must make V larger, W larger or L smaller. 

Making W larger increases both lens and deflection aberrations. Making 
L smaller means that for a given linear deflection we must increase the 
angular deflection, and this too tends to defocus the spot. Because of these 
limitations, it is necessary to avail ourselves of the remaining variable and 
raise the operating voltage V. 

Another illustration, perhaps a little more subtle, of the effect of thermal 
velocities, lies in the analysis of the properties of a type of vacuum tube 
amplifier known as the "deflection tube". In such a device, illustrated in 
Fig. 4, an electron stream from a cathode is accelerated and focused by a 
lens and deflected by a pair of deflecting electrodes so as to hit or miss an out- 
put electrode. Such a device may be used as an amplifier. 

Now it is obvious that as the output electrode on which the beam is 
focused is moved farther away from the deflecting plates, a given deflecting 
voltage will produce a greater linear deflection of the beam at the output. 

CATHODE 
v<xc: 

ELECTRON1 ^ELECTRODE 
LENS DEFLECTING 

PLATES 
Fig. 4—Amplifying tube making use of electron deflection. 

As this at first sight seems desirable; it has been seriously suggested not 
only that this be done, but that an elaborate electron optical system be 
interposed between the deflecting plates and the output electrode to amplify 
the deflection. 

The merit of a deflection tube is roughly measured by the deflecting, 
voltage required to move the beam from entirely missing the output elec- 
trode to entirely hitting the output electrode, and, of course, moving the 
output electrode farther away or putting lenses between the deflecting 
plates and the output electrode doesn't reduce this voltage at all. As we 
improve the deflection sensitivity by these means, we simply increase the 
spot size at the same time. Focusing our attention on the beam between 
the deflecting plates, we appreciate at once that the electron paths through 
each point will be spread over some cone of half angle 0, and that to change 
from a clean miss to a clean hit we must deflect the electrons through an 
angle of at least 26, regardless of what we do to the beam afterwards. 

Returning for a moment to equation (15), we see that it says the current 
density can be less than a certain limiting value depending on 6. Yet 

r\ I IT Ol IT 
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expression (15) was obtained by integrating a supposedly exact expression. 
What does this inequality mean? 

The answer is that for the current to have the limiting value, electrons 
of all allowable velocities must approach each part of the spot from all angles 
lying within the cone of half angle d. When the average current density in 
the spot is less than the limiting current density, the possibilities are 

(a) Electrons are approaching each point in the beam from all angles, but 
along some angles only electrons which left the cathode with greater than 
zero velocity can reach the spot. 

(b) Electrons leaving the cathode with all velocities can reach the spot, 
but at some portions of the spot electrons don't come in at all angles within 
the cone angle d. 

Fig. 5—Relation between nearness of approach to limiting current density and fraction 
of current utilized. 

Thus, we can have less than the limiting current either because electrons 
do not reach the spot with all allowable velocities or from all allowable 
angles. Of course both factors may operate. 

We can easily see how lens aberrations, which we know are present in all 
electron-optical systems, can prevent our attaining the limiting current 
density. There is a more fundamental limitation, however. It can be 
shown that even with perfect focusing, we must sort out and throw away 
part of the current in order to approach the limiting current density, and 
we can even derive a theoretical curve for the case of perfect focusing re- 
lating the fraction of the limiting current density which is attained to the 
fraction of the cathode current which can reach the spot. Figure 5 shows 
such a curve which applies for voltages higher than, say, 10 volts. 

Usually, the failure to approach the limiting current density is chiefly 
caused by aberrations, and in ordinary cathode ray tubes the current 
density in the spot may be only a small fraction of the limiting value. A 
very close approach to the limiting current density has been achieved in a 

0 l. 
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special cathode ray tube designed by Dr. C. J. Davisson of the Bell Tele- 
phone Laboratories. 

When we become thoroughly convinced that these equations expressing 
the effects of thermal velocities very much cramp our style in designing 
electron-optical devices, as good engineers we wonder if there isn't, after all, 
some way of getting around them. I don't think there is. The suggestion 
illustrated in Fig. 6 is a typical example of such an attempt. We know 
that in a strong magnetic field electrons tend to follow the lines of force. 
Why not use a very strong magnetic field with lines of force approaching the 
axis at a gentle angle to drag the electron stream toward the axis? 

An electron off axis traveling parallel to the axis certainly will be dragged 
inward by such a field. The catch is that the field pulls the electron in 
because it makes the electron spiral around the axis. As the beam con- 
verges and the field becomes stronger, the pitch of each spiral decreases and 
the angular speed of each electron increases. Finally, if the field is strong 
enough, all the kinetic energy of the electron is converted from forward 

ELECTRON -s, 
PATH ^ 

MAGNETIC' 
LINES OF 
FORCE 

Fig. 6—Reflection of an electron by a magnetic field with strongly converging lines of 
force. 

motion to revolution about the axis; the electron ceases to move into the 
field and bounces back out. It may be some small consolation to know 
that very high-current densities can be achieved by this means, but only 
because in their flat spiralling the electrons approach a spot at much wider 
angles with the axis than the small inclination of the lines of force. 

Space Charge Limitations 

In electron beam devices using reasonably large currents, the space 
charge of the electrons is a very serious source of trouble both in compli- 
cating design of the devices and in limiting their performance. 

Let us begin our consideration right at the electron gun, the source of 
electron flow in many devices such as cathode ray tubes and certain high- 
frequency tubes. Electron guns are sometimes designed on the basis of 
radial space charge limited electron flow between a cathode in the form of a 
spherical cap of radius r0 and a concentric spherical anode a distance d from 
the cathode. It can be shown that by use of suitable electrodes external to 
the beam, radial motion can be maintained between cathode and anode along 
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straight lines normal to the cathode surface. A hole in the anode electrode 
will allow the beam to emerge from the gun. Because of the change in 

7/V 

67 

Fig. 7—Electron gun utilizing rectilinear flow. 
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Fig. 8—Relation between perveance, angle of cone of flow, and cathode anode spacing. 

field near the hole, the hole acts as a diverging electron lens.11 Figure 7 
illustrates such a gun.15 The curves shown in Fig. 8 relate to this sort of 
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electron gun. They are plots of a factor called the perveance, which is 
defined as 

P = I/Vm (18) 

(that is, current divided by voltage to the 3/2 power) as a function of 9, the 
half angle of the cone of flow, and d/r0, the ratio of cathode-anode spacing 
to cathode radius. In getting an idea of the meaning of the curves, we may 
note that a perveance of 10_0 means a current of 1 milliampere at 100 volts. 
It is obvious from the curves that to get very high values of perveance, that 
is, high current at a given voltage, 9 must be large and the cathode-anode 
spacing must be small. Making 9 large means that electrons approach the 
axis at steep angles; aberrations are bad and the beam tends to diverge 
rapidly beyond crossover. Moving the anode near to the cathode means 
that the hole which must be cut in the anode to allow the beam to pass 
through must be large, and cutting such a large hole in the anode defeats 
our aim of getting higher perveance; we can't pull electrons away from the 
cathode with an electrode which isn't there. Further, for ratios of spacing 
to cathode radius less than about .29, the lens action of the hole in the 
anode causes the emerging beam to diverge, which would make the gun 
unsuitable for many applications. 

When we build guns for small currents at high voltages, such as cathode 
ray tube guns, space charge causes little trouble; when we try to obtain 
large currents at lower voltages, we find ourselves seriously embarrassed. 

Suppose we now turn our attention to the effect of space charge in beams 
when the beam travels a distance many times its own width. Consider, 
for instance, the case of a circular disk forming a space charge limited 
cathode. Suppose we place opposite this a fine grid, and shoot an electron 
stream out into a conducting box, as illustrated in Fig. 9a. We immediately 
realize that there will be a potential gradient away from the charge forming 
the beam. In this case, the gradient will be toward the nearest conductor; 
that is outwards, and the electron beam will diverge. 

How can we overcome such divergence? One way would be to arrange 
the boundary conditions in such a fashion that all the field would be di- 
rected along the beam instead of outwards; this might be done by sur- 
rounding the beam by a series of conducting rings and applying to them 
successively higher voltages as in 9b, the voltages which would occur in 
electron flow between infinite parallel planes with the same current density. 
Another way in which the same effect may be achieved is through use of 
specially shaped electrodes outside of the beam, as shown in Fig. 9c.11 In 
maintaining parallel flow by these means, the electric field due to the elec- 
trons acts along the beam, and increases continually in magnitude with 
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distance from the cathode. We can in fact calculate the potential at any 
distance along the beam by the well known Child's law equation 

I = 2.33 X 10~6AV3I2/X2 

V = 5,690xil3I2'3/Am 

a 

CATHODE 

(19) 

v ^ x4/3 

I I l~l I I I I I I I 

 ,Y\\I.\f, , ,'f tx\\d w" J\\"."i v\ ^ - "vAl\ \ vl\ v^—i—,A/- 

'I 'I 'hp- 

Fig. 9—Avoiding beam divergence by means of a longitudinal electric field. 

Here V is the anode voltage, a; the cathode-anode spacing, I the current 
in amperes and A the cathode area. 

Suppose we take as an example 

A = 1 cm2 

I = .01 amp. 
x = 10 cm 
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Then 
V = 5,700 volts 

Thus to maintain parallel motion of the modest current of 10 milliamperes 
spread over an area of one square centimeter requires 5,700 volts. More- 
over, the requirement of distributing this voltage smoothly along the beam 
would make it very difficult to put the beam to any use. 

One means for mitigating the situation is to use an electron lens and 
direct the beam inward. Of course, the beam will eventually become par- 
allel and then diverge again, but by this means a fairly large current can be 
made to travel a considerable distance. Some calculations made by Thomp- 
son and Headrick12 cover this type of motion, with an especial emphasis on 
the problem in cathode ray tubes, in which the currents are moderate. 

In order to confine large currents into beams, an axial magnetic field is 
sometimes used, as shown in Fig. 10 Here a cathode-grid combination 
shoots a beam of electrons into a long conducting tube. A long coil around 
the tube produces an axial magnetic field intended to confine the electron 

Fig. 10—Avoiding beam divergence by means of a longitudinal magnetic field. 

paths in a roughly parallel beam. The radial electric field due to space 
charge will cause the beam to expand somewhat and to rotate about the 
axis. As the magnetic field is made stronger and stronger, the electrons 
will follow paths more and more nearly straight and parallel to the axis. 
For a given current and voltage, there is one sort of physical limitation in 
the strength of magnetic field we need to get a satisfactory beam. It is 
another effect that I wish to discuss. 

Suppose we have a very strong magnetic field, in which the electrons 
travel almost in straight lines. We know, of course, that the radial electric 
field is still present, and this means that the potential toward the center of 
the beam is depressed; this in turn means that the center electrons are 
slowed down. This slowing down of course increases the density of electrons 
in the center of the beam. The result is that if for some critical voltage or 
speed of injection we increase current beyond a certain value, the process 
runs away, the potential at the center of the beam drops to zero, and another 
type of electron flow with a "virtual cathode" of zero electron velocity at 
the center of the beam is established. Thus, although the magnetic field 

COIL mxyxYyxxvyy Z Z X TTT 

CONDUCTING 
TUBE 

CATHODER^^—» 
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has overcome the diverging effect of the space charge, we still have a space 
charge limitation of the beam current. C. J. Calbick has calculated the 
value of this limiting current.13 If the beam completely fills a conducting 
tube at a potential V with respect to the cathode, the limiting beam current 
is independent of the diameter of the beam and is 

If the beam diameter is less than that of the conducting tube, the limiting 
current is lower. 

But perhaps we can completely overcome the effects of space charge. 
Suppose we put a very little gas in the discharge space. Then positive ions 
will be formed. Any tendency of the electronic space charge to lower the 
potential and slow up the electrons will trap positive ions in the potential 
minimum and so raise the potential. Thus the gas enables us to get rid 
of the the slowing up effect of the space charge as well as its diverging 
effect. 

Before we congratulate ourselves unduly, it might be well to make sure 
about the stability of an electron beam in which the electronic space charge 
is neutralized by heavy positive ions. Langmuir and Tonks, in their work 
on plasma oscillations, introduced a concept, extended later by Hahn and 
Ramo, which enables us to investigate this problem. The concept is that 
of space charge waves. It is found that in a cloud of electrons whose net 
space charge is neutralized by heavy, relatively immobile positive ions, 
small disturbances of the electron charge density produce a linear restoring 
force; and this, together with the mass of the electrons, makes possible a 
type of space charge wave which may be compared roughly with sound 
waves, although much of the detailed behavior of space charge waves is 
quite different from that of sound waves. We may express a disturbance in 
an electron beam in terms of these space charge waves and then examine the 
subsequent history of the disturbance as a function of time. This has been 
done14 and the perhaps surprising result is that even when the electronic 
space charge is neutralized by heavy positive ions, the flow tends to collapse 
if the current is raised above a limiting value 

It is true that this current is 6.5 times the limiting current in the absence of 
ions, but it is a limit nevertheless. 

If this limit in the presence of ions seems unnatural, perhaps we should 
recall a mechanical analogy. Consider a vertical long column subjected to 
a load F. If we subject it to a sidewise force aF proportional to i7, as shown 
in Fig. 11a, the behavior on increasing F will be a gradual deformation 
(analogous to the space charge lowering of potential in the absence of ions) 

I = 29.3 X 10-6F3/2 (20) 

/ = 190 X 10" V/2 (21) 
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ending in collapse. However, even if, as in lib, there is no sidewise loading 
and no bending during loading, we know from Euler's formula that beyond a 
certain loading the column will still collapse. This behavior is analogous to 
that of an electron beam in which the electronic space charge is neutralized 
by positive ions and there is no depression of potential in the beam. 

This space charge limitation either in the presence or absence of ions 
allows the passage of quite a large current through a tube, as the table 
below will show: 

Voltage Current, amperes, no ions Current, amperes, ions 

1000 .927 6.01 
100 .029 .190 

10 .009 .060 

We might therefore feel that the space charge is disposed of in a practical 
sense, and so it is in many cases.* 

<kF 

1 

1=29.3 xlO"V/2 

rfh 

I-l90xlcrV/2 

O b 
Fig. 11—Comparison of limiting stable beam currents with and without positive ions. 

Power Dissipation Limitations 

Having talked about various limitations imposed by wave effects, aber- 
rations, thermal velocities and space charge on the electron flow in the 
beam itself, I want to close by discussing briefly a topic which seems hardly 
included in electron ballistics but yet is vital to any application in that 
held. I refer to the problems associated with power dissipation when 
electrons strike something and stop. This is a good deal like the problem 
imposed by suddenly coming down to earth while studying the sensations 
of a free fall. It is inevitable and may be fatal unless satisfactory provision 
is made for the dissipation of kinetic energy. 

What I want chiefly to bring out are the consequences of scaling a given 
electronic device down in size. If we change the size of each part of an 

* It appears that in many gas discharges, including those in which plasma oscillations 
are observed, the current is too high to allow persistence of the homogeneous flow upon 
which the plasma oscillation equations are based. 
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electron device in the ratio R, if we keep all voltages the same, and if we 
change all magnetic fields in the ratio \/R, electron current will remain the 
same (provided the cathode is still capable of giving space charge limited 
emission). Electron paths will remain exactly similar, though smaller; 
the power into the electron beam will remain the same, but what will happen 
to the power dissipation capabilities of the device and what will happen to 
the temperature? 

In a device cooled by radiation alone and with cool surroundings, the 
radiating area varies as i?2, and since the radiation per unit area varies as 
T4, the temperature will vary as R 

In considering a case of cooling by conduction alone, think of a rod 
carrying a certain amount of power away. If all the dimensions of a rod 
are changed by a factor R, the length will be changed by a factor R, the cross 
sectional area will change by a factor R2, and if the thermal conductivity 

CURRENT, 
VOLTAGE, POWER 
/ 

TEMPERATURE, 
RADIATION 

COOLING 

^TEMPERATURE, 
R LINEAR DIMENSION ^OOLlilG0^ 

MAGNETIC FIELD 
Fig. 12—Variation of magnetic field and temperature in scaling an electronic device. 

remains constant the temperature will vary as R'1. This is a faster rate of 
variation than in the case of cooling by radiation, and hence as the system 
is scaled to a smaller and smaller size, cooling by conduction will become 
negligible and radiation cooling only will remain effective and will determine 
the temperature. 

Figure 12 gives an idea of the variation of various quantities discussed. 
We want to make electronic devices smaller for a number of reasons; 

perhaps chiefly to reduce transit time and so to secure operation at higher 
frequencies. In doing this, we encounter the fundamental limitation of 
reduced power dissipation capabihties and increased temperature. What 
is the trouble? We have scaled everything. Or have we? The answer 
is, we have not. The electrons, atoms, and quanta are still the same size. 
Had we been able to scale these, we should have increased the heat con- 
ductivity and the radiating power of our device, and all would have been 
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well. As it is, if we make a tube for given power smaller and smaller, using 
the most refractory materials available we eventually reach a size of tube 
which will, despite our best efforts, melt, thaw, and resolve itself into a dew. 

CONCLUSION 

Perhaps after these somewhat gloomy words concerning physical lim- 
itations in electron ballistics, you may wonder how it is at all possible to 
surmount the difficulties mentioned. It certainly is not easy; all electronic 
devices represent compromises of one sort or another between fundamental 
physical limitations of electron flow on the one hand and structural com- 
plications on the other. In working with vacuum tubes one is perhaps 
troubled more by physical limitations, difficulties of construction, inade- 
quacy of materials and the lack of quantitative agreement between compli- 
cated phenomena and relatively simple theories than in any other part of 
the electric art. It is for this reason that a friend of mine twisted an old 
aphorism into a new one and said, "Nature abhors a vacuum tube". 
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Electron Ballistics in High-Frequency Fields* 

By A. L. SAMUEL 

THIS, the final lecture of a series on Electron Ballistics, is not a summary 
of the material which has been previously presented but rather it is an 

attempt to show how the ballistic approach can be extended to the analysis 
of high-frequency devices. Much that might otherwise be said about ultra- 
high frequencies cannot be said because of secrecy requirements. However, 
there is considerable material which can be presented, within the limits of 
the necessary security regulations, which may be of interest to those who are 
not already well acquainted with the subject. I will, perforce, not be able 
to say anything specific about actual devices utilizing the principles to be 
discussed. 

Many of the ultra-high-frequency devices which have come into use 
during the last few years have employed electron beams of one sort or 
another. These devices can be analysed in any one of a number of ways. 
For example, we can write the equation of space-charge flow. This ap- 
proach considers the electric charge as a continuous fluid subject to Poisson's 
equation. The small-signal theory of Peterson and Llewellyn is an example 
of this type of analysis. Or if we wish we can consider the various types of 
wave motion which can exist in a space-charge region. The space-charge- 
wave analysis of Hahn and Ramo as applied to velocity-variation tubes is an 
example of this. In addition there is an electron-ballistic approach to the 
problem and it is with this method that we will be concerned in the present 
lecture. 

Before we become involved in the details of the analysis, we should perhaps 
spend a few moments considering the relationship between these various 
methods. If we have an interaction taking place between electric fields 
and moving charges, we know at once from Newton's second law that the 
forces acting on the electrons must of necessity be equal and opposite to 
those acting on the fields. It is therefore a matter of small concern whether 
we consider the forces acting on the electrons and the effects of these forces 
on the electron motion or whether we consider the alteration in fields which 
the electron motion produces. We can, if we wish, compute the energy 
transfer to an electric field by the motion of an electric charge or we can 
compute the change in energy of the electron which accompanies this trans- 

* Originally presented on April 11, 1945 as the concluding lecture of a symposium on 
Electron Ballistics sponsored by the Basic Science Group of the American Institute of 
Electrical Engineers. 
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fer. I was tempted to say "which results from this transfer" but this implies 
a cause and an effect, a notion which has no place in the present discussion. 
The dual aspect of any energy-transfer problem must always be kept in 
mind. Much needless discussion frequently arises between proponents of 
one point of view and those preferring the other when the only difference 
is one of language and both groups are really saying the same thing. The 
electron-ballistic approach yields a simple physical picture; it is capable of 
being applied to widely differing situations, but it is not well suited for a 
determination of the reactive contributions of an electron stream. 

Basic Concepts 

There are several concepts which we will find useful in our analysis. 
These concepts are extremely simple, so simple in fact that one is tempted to 
assume that they are well known. However, these concepts are so basic 
to the subject, and their results so far reaching that we must pause to 
consider them. 

The first is the concept of total current, as distinguished from its com- 
ponents. One way of writing Kirchhoff's second law is 

Div. / = 0 (1) 

This simply says that the total current entering or leaving any differential 
region in space is zero. This expression must of course be generalized by 
including displacement currents as proposed by Maxwell if applied to 
alternating currents. The current J is the total current density as here 
defined. An important consequence of equation (1), actually only an 
alternate way of stating it, is that the total current always exists in closed 
paths. Let us take a simple case of a two-element thermionic vacuum tube 
connected to a battery. Visualize the situation existing if but a single 
electron leaves the cathode and travels to the plate. The electron takes a 
finite time to cross from the cathode to the plate. During this time a current 
exists, the magnitude being given by the relationship 

I = ev 

and according to our premise this current is the same in every part of the 
circuit. The current begins at the instant that the electron leaves the 
cathode and it ceases when the electron arrives at the plate. In the appar- 
ently empty region ahead of the electron there must exist a displacement 
component, numerically equal to the conduction, or perhaps we should say 
convection component accounted for by the moving electron. An ammeter, 
were there one sufficiently sensitive and fast, connected in the external leads 
would read a current during this same interval of time. 

I have chosen to talk about but a single electron to emphasize the electron- 
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ballistic aspect; however, the concept is much broader than this since it is 
not at all dependent upon a corpuscular concept of the electron. As a result 
of this property of the total current, the current to any electrode within a 
vacuum tube does not necessarily bear any relationship to the number of 
electrons which enter or leave it. Obviously then, currents can exist in the 
grid circuit of a three-element tube even though none of the electrons are 
actually intercepted by the grid. This current may have any phase rela- 
tionship to an impressed voltage on the grid so that the grid may draw power 
from the external circuit, or it may deliver power to the external circuit, 
all without actually intercepting any electronic current. The grid-current 
component resulting from the electronic flow between cathode and plate 
may equally well bear a quadrature relationship to the impressed voltage, 
in which case it will either increase or decrease the apparent interelectrode 
capacitance. If these effects seem queer it is because one is still confusing 
the electronic component with the total current. 

A second basic concept once stated becomes self-evident. This is to the 
effect that the only one thing which we can do to an electron is to change its 
velocity, that is, if we are to confine ourselves to the classical concept of 
an electron. We can change its longitudinal velocity, that is, alter its speed 
but not its direction other than possibly to reverse it, or we can introduce a 
transverse component to its velocity, that is, alter its direction as well as its 
speed. Thought of in this light all electronic devices in which a control is 
exercised over an electron stream are velocity-modulated devices. It might 
be argued that one could equally well say that all ive can do is to change the 
electron's acceleration [derivative of velocity) or its position {integral of velocity). 
The singling out of velocity is in a sense arbitrary. It does, however, have 
some very interesting ramifications. 

I might digress for a moment to elaborate on this idea. Since some of 
the newer devices have been labeled velocity-modulation tubes, there is a 
perfectly understandable tendency on the part of the uninitiated to assume 
that these tubes differ from earlier known devices, such as, for example, the 
space-charge-control tubes, the Barkhausen tube or the magnetron in the 
fact that they employ velocity modulation. The real difference lies else- 
where as we shall sec in a few moments. At the same time that these newer 
devices were introduced, there was introduced a new way of looking at 
something which is very old in the art. This newer viewpoint, to my way of 
thinking, constitutes a far greater fundamental contribution than do the 
specific devices which have received so much attention. The pioneers in this 
new approach: Heil and Heil, Bruche and Recknagel, the Varian Brothers, 
Hahn and Metcalf, to mention a few, and the many other workers who lost 
in the race to publish their independent contributions in this field all of 
these people deserve the greatest of praise for their stimulating contributions 
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to our thinking. My only point in all this discussion is to emphasize that 
the basic method of acting on the electron stream has not really been changed 
at all. The entire matter is summarized in the original statement that the 
only thing which we can do to an electron is to change its velocity. 

Before going on to the next aspect of the problem there is a closely related 
concept which should be mentioned. This concept is that a change in the 
component of the velocity of an electron along one space coordinate does not 
introduce components of velocity in directions orthogonal to the first. For 
example, if an electron beam is deflected by a transverse electric field, there 
will be no accompanying change in the longitudinal velocity. The difficulty 
in the way of doing this in a practical case has nothing to do with the concept 
but only with the problem of producing unidirectional fields. Analyses of 
deflecting field problems which ignore the longitudinal components of the 
fringing fields are apt to be wrong. The problem of high-frequency deflect- 
ing fields has been treated in great detail in the literature and frequently 
with more acrimony than accuracy. 

One further note should be added at this point. In an earlier lecture it 
was pointed out that the magnetic effects of an electromagnetic field are in 
general very much smaller than the electric effects. We will not stop to 
prove that this is still true at the frequencies which now interest us but will 
accept it without further discussion. 

For our next concept we leave electron flow for a moment and consider the 
fields within a resonant cavity. You may very properly object that this 
has nothing to do with electron ballistics, and indeed it does not. However, 
we will find it necessary to discuss problems involving cavity resonators, and 
a failure to understand some of the properties of these circuit elements can 
cause a great deal of trouble. There are two conflicting approaches to this 
problem which I will attempt to reconcile. 

The physicist when first presented with the problem of a resonant cavity 
is inclined to say: This is a boundary value problem. The solution consists in 
writing Maxwell's equations subject to the conditions that the tangential com- 
ponent of E must be zero along the conducting walls. While a scalar and a mag- 
netic vector potential can be defined, the field is not related to the former in the 
simple manner used in electrostatic problems. 

The engineer, on the other hand, is inclined to say: This looks like an 
extension of the usual resonant circuit. A capacitance exists between the top 
and bottom walls of the cavity; charging currents will flow through the single 
turn toroidal inductance formed by the side walls. I would like to know 
what voltage difference exists between the top and bottom walls, and what 
currents exists in the side walls. 

Now, actually, I am maligning both the physicist and the engineer by my 
statements; nevertheless, there are these two approaches. Which is cor- 



326 BELL SYSTEM TECHNICAL JOURNAL 

rect? Well, they both are. It is not correct to speak of an electrostatic 
potential within a resonant cavity; nevertheless, we may and do talk about 
the voltage between the top and bottom of a resonant cavity. What do 
we mean? Simply the maximum instantaneous line integral of the electric 
field taken along some specified path. In any practical device utilizing 
electron beams we are naturally interested in the path taken by the elec- 
trons. The fact that the line integral is different for different paths is of no 
great concern. We are interested in but one of these paths. We shall 
therefore have occasion to talk about voltages in cavities but we must always 
remember what is meant, and we must never for one instant forget that this 
voltage is not unique but that it depends upon some assumed path. 

The second peculiarity of this voltage must also be emphasized. The line 
integral must be taken at a specified instant in time. In effect one takes a 
photograph of the field at some instant in time and then at one's leisure 
performs the integration. 

Now, of course, an electron when projected through such a cavity will 
perform yet another type of integration. The change in squared velocity 
of the electron as expressed in volts will be given by the line integral of the 
field encountered by the electron; that is, integrated not instantaneously 
but with the electron velocity. This is not a simple process, because the 
electron velocity is continuously being changed by the field interaction and 
therefore the velocity with which the integration is performed depends 
upon the integrated value of the field up to the point in question. This 
has nothing to do with the concept of voltage in a resonant cavity. The 
cavity voltage can, however, be considered as the maximum change in 
squared velocity expressed in volts which an electron could receive if its 
entrance velocity was very large so that the transit time was small compared 
with the period of the cavity field. 

The four basic concepts which I have chosen to recall to your mind are, 
by way of summary: (1) the total current is the same in all parts of a circuit, 
that is div. J = 0; (2) the only way we can act on an electron is to change its 
velocity; (3) the changes in the velocity .component of an electron along 
any one rectangular coordinate have no effect on the velocity components 
along any other coordinate; and (4) for convenience, a voltage can be defined 
in a resonant circuit as the line integral of the electric field taken along some 
prescribed path. 

Transit Angle 

Since we are to deal with the interaction of electrons and high-frequency 
fields, we frequently find it convenient to measure electron velocity not 
directly but in terms of the equivalent potential difference through which an 
electron must fall to obtain the velocity in question, and the unit of measure 
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will be a volt. Instead of measuring the time required for an electron to 
traverse any given distance in seconds, it is also convenient to use, as a 
unit of time, one radian of angle at the operating frequency. We frequently 
refer to the transit angle of an electron rather than the transit time, although 
both terms are used. In fact, we may on occasion measure distances in 
terms of transit angle, and this usage is extended to measure dimensions 
transverse to the direction of travel of the electron beam. When used in 
this fashion, we mean that the dimension in question is such that were an 
electron to be projected in this direction with a velocity equal to that of the 
electrons in the main beam, the high-frequency field would change through 
the stated number of radians during the transit time. 

The Five Functions in an Electronic Device 

With this preliminary discussion out of the way we can now answer the 
question which has probably been troubling quite a few of you. If the only 
thing we can do to an electron is to change its velocity, then in what basic 
way does the velocity-modulation tube differ from the conventional negative 
grid tube or from the magnetron? 

Well, this is an involved story. If we are to make any use at all of an 
electron beam we must in general perform five distinct operations or func- 
tions. First we must produce the beam. Then we must impress a signal 
of some sort onto the beam. From what I have just said this can be done 
only by varying the velocities of the electrons contained in the beam. The 
third operation consists in converting this variation into a usable form. 
It is in this way that the diverse forms of electronic devices differ to the 
greatest degree. We will go into this matter in more detail shortly. The 
fourth operation consists in abstracting energy from the beam, and the final 
operation consists in collecting the spent electrons. While these operations 
are distinct from an analytical point of view, in many actual devices they 
are performed more or less simultaneously and more than one operation 
may be performed by certain portions of the tube structure. In fact, in 
some devices, for example in the space-charge-control tube, the confusion 
is so great as to make the separation seem rather forced. This very confu- 
sion may partly explain why vacuum-tube engineers who were steeped in 
the art were so slow to realize the advantages of this new way of looking 
at things which I will call the velocity-modulation concept. 

By way of mental exercise in this new way of thinking let us see how 
we can analyze a simple space-charge-control triode. Well, first of all we 
have to identify the electron gun which produces the beam. The electrons 
most certainly come from the cathode, but where is the first accelerating 
electrode? Actually there isn't any unless we think of the combined d-c 
field resulting from the d-c potentials on the grid and plate as assisted by 
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the initial emission velocities as performing this function. The next func- 
tion, that of varying the electron velocities, is performed by the grid which 
varies the potential gradient in the vicinity of the cathode and hence the 
velocity of the electrons as they approach a potential minimum or virtual 
cathode which is formed a short distance in front of the cathode by the 
action of space charge. This virtual cathode performs the third function, 
that of conversion, by sorting out the electrons and allowing only those elec- 
trons with emission velocities greater than some specific value to pass. 
This, then, is one of the conversion mechanisms which we will call virtual- 
cathode sorting. In this example the virtual cathode occurs very close to 
the real cathode but this is not always the case. The fourth function, 
that of utilization, is performed by allowing the sorted electrons to traverse 
an electromagnetic field between the virtual cathode and the plate. This 
operation is completed by the time the electrons have reached the plate. 
Of course in the triode the plate then performs the final operation, that of 
collecting the spent electrons and dissipating the remaining energy as heat. 
It should be clearly realized, however, that this last function need not neces- 
sarily be performed by the same electrode which provides the output field. 
Indeed the so-called inductive-output tube proposed by Haeff is a space- 
charge-control tube in which these two operations are separated. 

Conversion Mechanisms 

But now to get back to a cataloguing of the different kinds of conversion 
mechanisms. The first general type involves sorting. The first kind which 
we have mentioned is by virtual-cathode sorting. A second kind of sorting 
might involve deflecting the electron beam in proportion to its longitudinal 
velocity instead of reflecting or transmitting it. Various deflection tubes 
have been proposed from time to time using this mechanism. We shall 
be forced to neglect this phase of the problem this evening because of time 
limitations but those of you who are interested will find the literature filled 
with detailed discussions. Still a third type of sorting, sometimes called 
anode sorting, is used in certain Barkhausen tubes when the plate is oper- 
ated at or near the cathode potential so that fast electrons are collected while 
slow electrons are reflected and caused to retraverse a high-frequency field. 
There are still other types of sorting mechanisms but I will not burden 
you with these. 

A second general type of conversion mechanism I will call bunching, to 
distinguish sorting in which electrons are separated according to their 
velocities from bunching in which electrons of differing velocities are brought 
together. Now it just happens that many of the older devices used sorting, 
while many of the newer devices use bunching but this is not universally 
the case. For example, the magnetron as used at high frequencies and the 
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cyclotron both employ a combination of sorting and bunching. A peculiar 
property of the motion of an electron in a magnetic field lies in the existence 
of the so called Larmor frequency. You will recall that the angular velocity 
of an electron in a magnetic field depends only upon the field-strength and 
not at all upon the electron's linear velocity. This time in seconds is 
given by 

, _ 0.357 X 10~6 

I — - 
H 

or in radians 

10600 
= 2 TT 

Electrons of widely differing velocity can thus revolve together in spoke- 
like bunches with the faster electrons going around larger circles than the 
slow ones, but just enough larger to keep them together. This, then, is 
one kind of bunching, which for simplicity we shall call magnetic bunching. 
It is used in the magnetron and in the cyclotron. We will have more to say 
on this subject a little later. 

A second kind of bunching was used in some of the early Barkhausen 
tubes where the plate electrode was operated at a fairly high negative poten- 
tial so that none of the electrons were able to reach it. Under such condi- 
tions a uniformly spaced stream of electrons with varying velocities is re- 
flected as a bunched stream, the slower electrons being reflected almost at 
once and the faster electrons penetrating the retarding field for a greater 
distance and hence taking longer to return. This same type of bunching is 
used in a newer form of oscillator, commonly referred to as a reflex tube 
which was suggested by Hahn and Metcalf in 1939, and by others at about 
the same time. The reflex tube differs from the Barkhausen tube, not in 
the basic mechanisms so much as in the fact that the conversion mechanism 
occurs in a different region in the tube from the region devoted to velocity 
modulation and to energy abstraction. A second kind of bunching is then 
reflex bunching. 

A third type of bunching was used in the diode oscillators of Muller and 
of Llewellyn. The mathematical research done by W. E. Benham may be 
mentioned as of interest in this connection. In these tubes a uniform stream 
of electrons becomes bunched simply through the fact that faster moving 
electrons overtake slower ones which precede them. In these earlier forms 
of tubes we again have the case where this conversion is performed simul- 
taneously with one or more of the other processes so that it is very difficult 
to separate them. However, in 1935 Heil and Heil proposed a tube in 
which the conversion region was separated from the other regions of the 
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tube. This tube, the velocity-modulation tubes of Hahn and Metcalf, and 
the klystron tubes of the Varian Brothers, are alike in their use of transit- 
time bunching in a relatively-field-free drift tube. Since this separation of 
functions renders these devices much easier to analyze and since the struc- 
tures are quite interesting in any case we will spend most of our time con- 
sidering them and will, I fear, rather neglect some of the other types of tubes. 

We will, of course, keep our analysis as general as possible so that the 
results may be applied to a variety of different devices. 

Input Gap Analysis 

Let us begin by a small-signal consideration of a uniform electron stream 
entering a region in which there is a longitudinal field defined as some func- 
tion of the distance and of time. This can be the entire Llewellyn diode 
or it can be the input region of a klystron. We ask ourselves with what 
velocity will the electrons leave this region and what will be the net exchange 
of energy between the electrons and the field. At any point within the field 
a typical electron will experience an acceleration given by 

y = ^E + riKy)m (!) 

where 77 is proportional to the maximum amplitude of the hi. field, but con- 
tains a numerical constant so that y is expressed in centimeters per second 
per second. Now in the usual case /(/) will be a simple sine function but 
f(y) may assume a variety of forms. Again, by way of simplifying our 
work we will assume that it is also a sine function. Let us consider how 
we can go about solving this apparently simple equation. Unfortunately 
this expression can not be solved directly because the value of t at any plane 
(that is, the time of arrival of an electron at this plane) depends upon the 
interchange of energy between the electron and the field. Here we are 
forced back to the time-honored mathematical device of assuming a solu- 
tion in the form of a series and then evaluating these coefficients. There is a 
large number of ways in which this can be done, and consequently a large 
number of different solutions which look very different but which all give 
comparable answers. Usually when such solutions are published, the arith- 
metical work is omitted leaving one with the feeling that there is something 
involved that is not within the ken of ordinary mortals. The fact is that 
the work is usually extremely tedious but actually very simple. It will be 
instructive to follow through one form of such an analysis in just enough 
detail to see the amount of work involved. 

Since we are interested in the energy which is proportional to f- we will 
write at once 

(y2)t=a = K = Ko + T] Kx + V
2K2 + r/^Ks -f 
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where the if's are a function of the transit time, of the field distribution and 
of the entrance phase, and we will proceed to evaluate these coefficients. 
The average energy per unit of change as expressed in volts is then simply 

tl? 
— at the end of the field while the gain is: 

V„ = (i/2)(K - Ko) = ^ + ^ + ■ ■ ■ 

where the bar means that we are averaging over all values of the entrance 
phase. 

It is of interest to evaluate the value of velocity y2 which individual elec- 
trons receive as a function of the entrance phase. For small signals it is 
usually sufficient to evaluate y2 maximized with respect to the starting 
phase, then 

= ((/2)(K - Ko)m„ = ^ + max. 

We can further define the ratio of Vmax to the largest value it can have as a 
coefficient |0, sometimes called the modulation coefficient. 

But now to evaluate the K's. There are many ways of doing this as I 
have intimated. We will proceed by writing 

y = yo(t) + vyi(i) + + wW + • • • 

where the y's are coefficients depending upon the transit time t which in 
itself is a function of the applied field thus 

/ = /o + Jy/i + ifh + 1]% + . ... 

We can then expand each function of time into a series remembering that 

fix + i) = fix) +f^ • • • 

or for our particular case 

yo(to)[vti v'12 v3h • • •] yo(t) = yo(lo) + 
1! 

■ yo(<o)Mi r/3(3 • • "J2 . 
21 "1" 

Now we can expand yi{l), y^it) etc. in exactly the same way. Finally we 
get a collection of terms which can be grouped in like powers of rj thus 

y = yo(to) + v [terms in y, y, h,h, etc.] + t?2 [ ] . . . 

The coefficient of the 7/ is in fact yo(/o) ti -f yi(/o). We will not bother to 
write the rest. This expression can then be differentiated to get y and then 
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squared. However, we still have some undetermined coefficients the ti, 
h etc. terms. These we can evaluate by noting that we wish these values at 
y =z a, where fl is a fixed distance in the actual device. At this distance 
the t coefficients in the expression for y must have such values that the value 
of y does not change with the value of 77. This can only be true if the 
individual expressions multiplying each power of rj are each equal to zero. 
Equating these expressions to zero one can evaluate all of the t's. For exam- 
ple the first term yields 

yo(to)h + yi(to) = 0 

or 

yi(M 
h — 

yM' 

Introducing these values, differentiating and squaring, one finally gets an 
expression for (y2)y = 0 as a power series in y, the coefficients all being of a 
form easily evaluated for any specified field distribution. Since we have by 
definition called these coefficients Ka,Ki, etc. these values are then 

K, = yl 

Ki = 2(y0y - yoyi) 
.. ? 

Ki = {yl — 2yiyi + 2yoy2) — 2yoy2 + 
yo 

This then constitutes the formal solution of the problem. We must 
now particularize our problem to some specific field distribution and evaluate 
the y coefficients. Suppose, for example, that there is a uniform d.c. field 
{E of equation 1) and an alternating field which varies as some cosine func- 
tion of distance. Then the latter is 

f(y) = = cos{f+c) 

and 

y = | E + ?7 cos (co/ + v5) cos T" 

we must eliminate the y which appears in this expression and replace y by 
its equivalent 

y = yo + vyi + '723'2 + • • • 

and expanding 
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cos(? + c) = cos(t0 + <:) + 

6 S'n 7,2 ^ J   
IT 

and as before equating like powers of 77 with y defined as 

y = % + r]yi + 1]'% + .. . 

we finally arrive at 

yo = | £ 

yx = cos {wt + «p) cos + c^j 

y* = —ynr/b cos (ut + (p) sin 

Now we need only integrate these expressions to obtain the values of the y's 
and the y's needed to evaluate the K's. 

If we average y2 over all values of the starting phase we can write the 
energy contributed by the field to the electron's velocity. When this is 
done one finds that the odd powers of 77 are identically zero leaving only the 
even powers to be considered and for small signal analysis purposes we need 
only consider Kz. The energy per electron expressed in volts is 

V = 2.49 X lO~sE?\2f(d) 

where f(6) = uPK* , and the power is obtained by multiplying this expression 
by the beam current in amperes. 

The end results can be expressed as curves of f{6) against 0 as shown in 
Fig. 1. Three examples are shown: the uniform field case and two different 
harmonic distributions as indicated by the smaller plot in the lower left- 
hand corner. You will note that there exist regions of positive/(0) where 
the net transfer of energy is from the field to the electron and regions in 
which the transfer is in the other direction; the former portions are of con- 
siderable interest in connection with the input gaps in velocity modulation 
tubes, and for that matter in the cathode grid region of the negative grid 
tube although this is more complicated than is here indicated, as this trans- 
fer of energy constitutes a loss to the field which loads the input circuit. 
The latter portions may be utilized as was done in the Muller and Llewellyn 
diodes to obtain sustained oscillations. 

If, as I have indicated, we maximize y2 as a function of the starting phase 
we can evaluate the modulation coefficient. The value for the uniform field 
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For future reference we will • o • • i o sin 0/2 case, as shown in Fig. 2, is simply, /3 = ^ . 

write the loss expression for this case as 

/(0) = 2 (1 — cos 0) — 0 sin 0. 

Drift Space Analysis 

Now let us consider the conversion region in a typical velocity-variation 
tube. Figure 3 is a drawing of several such devices with the conversion 
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Fig. 1—The energy transfer between an initially uniform electron stream and a longitudi- 
nal electromagnetic field as a function of transit angle. 

regions indicated. We will assume for the moment that the electrons enter 
this region with a small variation in velocity and at a perfectly uniform rate. 
Since the total number of electrons entering the region must be equal to the 
number of electrons leaving the region we may write 

or 
ii dt\ — 

. dio 
H = 70 -77 • 

dh 
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Fig. 2—The (velocity) modulation coefficient between an initially uniform electron stream 

and a uniform electromagnetic field as a function of transit angle. 
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Fig. 3—Typical velocity variation devices employing transit-time bunching. 
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However, a relationship exists between h and to, 

Where 

Now if a « 1 

and 

and finally 

but 

so that finally 

— A) + - • v 

v = Vo Vl + a sin coti, 

C 
li — lo-\- 

V1 + « sin co/j 

^ ^ /o + ~ ^ sin ^ ^ ) 

dto . , C au . -? = 1 + - — cos a>/i 
dti Vo 2 

* = io 0 + ^ 005 

■fco 
^0 

= to + y COS . 

This says that the velocity variation impressed on the beam at the en- 
trance to the drift space or conversion region has resulted in a current varia- 
tion at the output. For those of you who think in vacuum tube parameters 
it is of interest to differentiate this expression with respect to the a-c voltage 
and obtain the transconductance 

dii 
Gm - 

rewriting 

dVa.c , 

11 = '°(1 +w) 

dii 
dVa, 

dip 
2V' 
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This result is obtained by neglecting all of the higher order terms and is 
therefore only a small signal theory of a very restricted sort. 

Now let us consider what we have done. Well, we have followed a small 
interval of time through the drift tube. At the input this time dto had a 
current i0 associated with it; at the output the size of this unit of time is 
different—it is now dh and the current associated with it is ii. The physi- 
cal picture corresponding to this phenomenon is that of a uniform distribu- 
tion of electric charge becoming bunched with time as it traverses the drift 
space. 

The next step in the analysis is to carry our approximation a step further 
and consider higher-order terms. Expanding the expression for ii and using 
our nomenclature the desired expression is 

h = io |^l+2 ^/i ^y^cos 0)1 + /2(2f)cos 2ul + Jn ^^cos . 

This equation is not exact since it neglects space charge effects but it does 
indicate the presence of harmonics in the beam current and it reveals cer- 
tain non-linear effects which can also be illustrated by the so-called phase- 
focusing diagrams of Bruche and Rechnagel. 

Phase-Focusing Diagrams 

Bruche and Recknagel pointed out that an analogy exists between the 
focusing in space of a parallel light beam and the focusing in phase of the 
electrons in a uniform electron beam. In fact a small-signal theory can be 
developed entirely in terms of optical equations. We will not go into 
this aspect in detail but we will use their diagram (Fig. 4) to illustrate the 
bunching effect graphically. A uniform beam of electrons is represented by 
a series of parallel lines in distance and time coordinates, focus being indi- 
cated by a crossing of these lines after they have been deflected by the veloc- 
ity modulation. 

This general type of diagram has been popularized in this country by the 
Varians, anft their associates under the name Applegate diagram, the only 
difference being an interchange of axis. Figure 5, taken from a recent paper 
by Dr. A. E. Harrison, illustrates this version of the Bruche and Recknagel 
diagram. 

Now if instead of judging the current density by the density of the lines 
on the diagram, we make a plot of the current density as a function of time 
for different fixed distances from the input gap, the pictures are somewhat as 
shown on Fig. 6. Figure 7 represents a plot presented by Kompfner and 
combines in one illustration the type of presentation used by Tombs. 
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Phase Focusing in a Reflex Tube 

It might be well to pause for a moment in our discussion of transit time 
bunching to consider how the phase focusing diagrams can be applied to a 
reflex tube. The elements of a modern reflex tube are shown in Fig. 8 

r 

■/- 

r 

Fig. 4—The phase-focusing diagram of Bruche and Recknagel showing the analogy to 
optical focusing. 

which was taken from a recent I.R.E. paper by Dr. J. R. Pierce. Electrons 
from the cathode pass through an input gap defined by two grids where they 
are modulated in velocity. In traveling in the retarding field produced by 
the repeller those electrons which passed the gap when the field was becom- 
ing progressively less accelerated, become bunched; the faster electrons 
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1'ig. 5 Applegate's version of the phase-focusing diagram (Harrison). 
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Fie. 6—The conduction-current distribution at different distances along the beam as 
predicted by the phase-focusing diagram. 
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Fig. 7—Kompfner's presentation of the bunching effect. 
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Fig. 8—The elements of a modern reflex tube (Pierce). 
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penetrating the field to a greater extent and waiting, as it were, for the 
slower electrons which follow to catch up. The electrons which pass across 
the gap while the field is becoming progressively more accelerating are 
spread out. If the retarding field is uniform it can be likened to the earth's 
gravitational field and the phase-focusing paths on our time-distance plot are 
parabolas. Figure 9, taken from Pierce's paper, illustrates this while Fig. 
10 is such a plot taken from the paper by Harrison. One interesting and, 

T/U£ w* 

v 
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Fig. 9—The gravitational-field analogy to reflex bunching (Pierce). 

REFLECTION 

ACCELERATION VOLTAGE RESONATOR VOLTAGE 

Fig. 10—The phase-focusing diagram for a reflex oscillator (Harrison). 

in a way, unfortunate difference between reflection bunching and direct 
transit-time bunching is the fact that for reflection bunching the slow elec- 
trons catch up with the fast ones while the reverse is true for the other type. 
This means that if both types of bunching are present as shown in Fig. 11, 
(also taken from Harrison's paper) one will tend to undo the effect of the 
other. 

Another way of combining effects of separate bunching actions is to build 
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a cascade transit-time-bunching amplifier in which a series of three gaps is 
used together with two drift spaces. The first gap velocity modulates the 
beam; this modulation is converted into a current modulation in the first 
drift space. The beam then excites the second cavity, which again velocity 
modulates the beam in quadrature with the original modulation. This 
action of course occurs in the output gap of a two-gap tube but it is not 
there used. Here this second and larger velocity modulation is converted 
to current modulation in the second drift space. The output is finally 
taken off the beam by the third gap. A phase-focusing diagram of this 
sort (again taken from Harrison's paper) is shown in Fig. 12. 

Space-Charge-Wave Analysis 

This phase-focusing approach is rather intriguing as one feels that one 
has a physical picture of what is going on. The picture is, however, very 
inexact except under certain highly specialized cases, as it completely ignores 

Fig. 11—Diagram showing reflex bunching combined with field-free transit-time bunching 
(Harrison). 

space-charge effects. These space-charge effects are of two sorts: a d-c 
effect, if you will, and an r-f effect; that is, the presence of the electrons of 
the beam will alter the average velocity of the electrons at different parts of 
the beam, and will tend to undo the bunching action. Because of this 
second effect, the electrons are effectively prevented from passing each other 
as the graphical solution suggests. Instead, as the density of the electrons 
in the bunch becomes greater, the mutual repulsion forces tend to prevent a 
further concentration of charge. The electron bunch then tends to disperse. 
The action could be likened to the propagation of a sound wave in a moving 
column of air. While there are several approximate ways to handle this 
problem, Hahn was the first to propose a really satisfactory theory. Inci- 
dentally it should be noted that the Benham, Muller, Llewellyn and Peter- 
son type of theory is capable of treating this aspect of the problem in a 
rigorous way and including all space-charge effects, but unfortunately these 
theories are limited in that they have been applied only to the parallel- 
plane case, and of course they are only small-signal theories. 
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Hahn's analysis starts by treating an infinitely long electron beam, using 
cylindrical co-ordinates and is limited to a small signal theory where the a-c 
motions are small compared to the d-c but it does not ignore the r-f effects 
of the space charge forces. The electron beam is thought of as a moving 
dielectric rod which is capable of propagating axial waves much as a dielec- 
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ACCELERATION VOLTAGE INPUT GAP 
VOLTAGE 

Fig. 12—Diagram for a cascade amplifier (Harrison). 

trie wave guide will do. He assumes an axial magnetic field and a stream of 
positive ions having the same velocity axially and the same charge density. 
These ions are assumed to have infinite mass. The solution is much too 
complicated and involved to present here even in abstract. It involves the 
complete solution of Maxwell's equations subjected to the stated assump- 
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tions as restricted by the assumed boundary conditions at the edge of the 
beam. 

It is found that two waves are possible, one traveling slightly faster than 
the electron beam and the second traveling slower. A point where the 
velocity components are in phase will correspond to the input to the beam, 
while points where the current components are in phase correspond to the 
desired positions for the output. The propagation constants for these two 
waves in a simplified special case where the magnetic field strength is 
infinite are given by Hahn, as well as expressions for the optimum drift 
tube length. He goes on to consider the case where the magnetic field is 
zero and finds that for this case the density of the charge does not vary much 
but instead the beam swells in and out so that instead of being lumps of 
charge with spaces between, the lumps appear in the outer boundary. Hahn 
has extended his general method of analysis to consider the modulation 
coefficient of gaps through which the beam must pass. His results are a 
great deal more general than those we have presented. 

Ramo has reformulated Hahn's theory by means of retarded potentials 
for the most important case. This results in some simplification of the 
theory. He computes the more important design constants for a velocity 
modulated tube, such as the optimum drift tube length and the amount and 
phase of the transconductance. Those of you who are particularly inter- 
ested are referred to the original paper. An interesting aspect brought 
out rather forcibly by Ramo's analysis is the existence of higher-order waves 
on the beam, always occurring in pairs, one faster and the other slower than 
the beam velocity. 

The Magnetron 

In what time remains I want to say just a very few words about the mag- 
netron. This is a very complicated subject and one which cannot be ade- 
quately dealt with in an entire evening, and certainly not in the time 
remaining. 

As you all know, the magnetron was invented and named by Dr. A. W. 
Hull. Habann, Zacek, Okabe and others pioneered in the use of the mag- 
netron as an ultra-high-frequency oscillator. As envisioned today a 
magnetron is a two-element device, usually cylindrical with a centrally 
located cathode and a surrounding anode. The anode may be continuous 
or it may be split into a number of segments as suggested by Okabe, and 
these segments joined together either externally or internally by resonant 
circuits. 

The basic ballistic problems of the magnetron, and hence the only prob- 
lems which directly concern us at this time are (1) that of determining the 
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electron paths within the magnetron and having determined these paths (2) 
that of getting an understanding of the mechanism whereby electrons in 
traversing these paths are able to deliver energy to the connected high- 
frequency circuits. One might think that the first problem would be a 
relatively easy job. As a matter of fact the literature is surfeited with 
papers purporting to give the answer. Unfortunately almost all of the 
published work ignores the effect of space charge. A few moments' thought 
will suggest that space charge may be a controlling factor because of the 
long electron paths which are sure to result in crossed electric and magnetic 
fields, and indeed more detailed computations bear this out. Nevertheless 
the neglect of space charge greatly simplifies the problem. There are those 
who believe that the no-space-charge theories have no bearing on the way 
actual magnetrons work and that any correspondence between the predic- 
tions of such theories and the actual behavior of magnetrons is simply the 
result of an unfortunate coincidence. In fact Brillouin points out that 
the simplified form in which the Larmor theorem is applied by many, is in 
itself an approximation which was perfectly valid as originally applied by 
Larmor to the electronic orbits within the atom but which does not apply 
to conditions as they exist in the magnetron. 

A number of recent workers have attempted to include the effects of 
space charge but have unfortunately largely restricted themselves to small 
signal theories while the magnetron is seldom operated under small signal 
conditions, at least not intentionally. Most theories are further restricted 
to a consideration either of the coaxial case where the cathode radius is 
small compared to the anode radius or of the plane case. Most practical 
structures are intermediate between these extremes. 

As an example of the difficulties involved, Fig. 13, reproduced from a 
paper by Kilgore, shows the electron paths as computed neglecting space 
charge and also shows experimental proof that these paths actually exist. 
This illustration has been frequently reproduced and widely accepted. 
The experimental picture was obtained in the presence of gas, to make 
the electron beam path visible, and unfortunately the ionization which 
makes the beam visible also tends to neutralize space charge effects. The 
experimental arrangement departs still further from reality in that the 
electron emission from the cathode was restricted to a limited region so 
that the space charge forces were still further reduced. Now it is probably 
true that some magnetrons operate with electron paths as shown; still it is 
not true that all magnetrons operate in this way. 

Contrasting with this picture which was until recently commonly ac- 
cepted, Brillouin, Blewett and Ramo, and others have shown that stable 
distributions are possible in which a space charge of almost uniform density 
rotates with a uniform angular velocity about the axis. Brillouin goes so 
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far as to label the curves due to Kilgore as wrong, and pictures the possible 
electron trajectories as shown in Fig. 14. 

One of the earliest papers to consider this newer picture of the electron 
paths in the magnetron was published by Posthumus in 1935. This was 
definitely a ballistic approach and hence suitable for discussing tonight. 

ELECTRON 
PATH 

ELECTPCN / dATH 

ELECTRON PATH 

+ 50 
b 

Fig. 13—Typical electron paths in a two-segment magnetron showing how electrons arrive 
at the plate-half of lower potential (Kilgore). 

Posthumus limits his discussion to but one type of oscillation which can be 
obtained in the split-anode magnetron. Those of you who are familiar 
with the early literature on the magnetron will recall that two distinct types 
of oscillations were frequently described. One type usually called "elec- 
tronic" was found to occur under conditions when the magnetic field was just 
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high enough to cut off the anode current under static conditions. This field 
has the value computed by Hull: 

6.72 \/V 
II = 

R 

Hull's first computation, by the way, was made neglecting space charge, 
but, strangely enough, the result is not changed by space charge. These 
electronic oscillations were assumed to be related in frequency to the time 
of transit of an electron from the cathode to the anode, and at cutoff this is 
inversely proportional to the field strength, as expressed by the empirical 
relationship 

\H = 13,100. 

B 

o 

Electronic trajectories for different magnetic fields 
A—small magnetic field L^>>b 
B—moderate magnetic field L~b 
C—strong magnetic field L<3\6 
D—critical magnetic field L = 0 

Fig. 14—Eleclronic trajectories for different magnetic fields varying from weak fields to 
the critical field shown to the right (Brillouin). 

In general, it was found that best operation occurred when the magnetic 
field was not quite perpendicular to the electric field. The efficiency and 
outputs as reported for this type of oscillator were always low, in spite of 
the large amount of effort devoted to it by an equally large number of work- 
ers. A second type of oscillation, usually referred to as negative resistance 
oscillations, has also been the subject of considerable study and some practi- 
cal use has been made of it at relatively low frequencies. 

Contrasting with this, Posthumus described a third kind of oscillation 
which he called rotating field oscillations. As in the electronic oscillations 
the preferred frequency is determined by the magnetic field-strength and the 
anode potential, the frequency being inversely proportional to the magnetic 
field-strength. Contrasting with the electronic oscillations, the rotating 
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field oscillations occur with the magnetic field-strength very much above the 
critical cutoff value and the efficiency on occasion reached as much as 70%. 
While a careful reading of the literature will reveal that some of the earlier 
experimenters were occasionally dealing with these oscillations, Posthumus' 
observations represent a new departure in magnetron theory and practice 
and one which we might do well to investigate. 

Posthumus' approach consisted in studying the electron paths in a mag- 
netron in detail in order to find the conditions under which electrons may 
reach the plate with considerably less energy than that corresponding to the 
plate potential. He assumed a magnetron having k pairs of plates and 
based his calculations on the supposition of a rotating electric field with k 
pairs of poles. In reality there exists a simple alternating field but this 
can be resolved into two rotating fields rotating in opposite directions. 
Power engineers will recognize this as identical with the procedure used in 
analyzing single-phase rotating machinery. Posthumus neglected the field 
opposite to the static angular velocity and considered only one component. 
This is an approximation but a fairly plausible one which can be partially 
justified. 

In the absence of oscillations there is a radial electric field independent 
of the angular position and inversely proportional to radius (for the coaxial 
cylindrical case). When oscillations are present there is an additional radial 
field which varies as some periodic function of the angle and with a period 
27r, and a tangential component of the same general type. For simplicity 
these functions are taken to be simple harmonic functions and can therefore 
be split into two circular rotating fields. 

Posthumus writes the two simultaneous differential equations determining 
the path of an electron, neglecting space charge, and inquires if a solution 
is possible for an elecron path which travels at approximately the same 
angular velocity as the rotating field but lags it by an angle a. An equally 
satisfactory way of looking at this is to say that we transform our coordinates 
from a fixed system to one rotating with the field and inquire if a solution 
is possible where a the angular motion is always small. He finds that such a 
solution is indeed possible and that for the electron motion to be stable the 
value of a must be such that the electrons are somewhat behind the line for 
which the field has its maximum retarding value. The electrons are thus 
in a position to lose energy to the field and to spiral out toward the anode. 

Posthumus defined the value of the electron's radial velocity squared at 
the anode as P and the total velocity squared at the anode as Q. Nor- 
malized plots of these two parameters are shown in Fig. 15 as a function of 
frequency. The upper plot shows the radial velocity. Obviously for elec- 
trons to reach the plate at all they must have a positive velocity at the plate. 
Electrons can therefore reach the plate with any given field value, say 7=2, 
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Fig. 15—Electron velocities in the magnetron according to Posthumus. 

that is with a field equal to twice the cutoff value, for all frequencies less 
than the equivalent value defined by the intercept of the Z = 2 line with 
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the abscissa axis. The line for P = 0 appears on the lower curve as the 
dotted line 5. Here the ordinate is the total velocity squared, normalized 
with respect to the value without oscillation. Efficiencies can therefore be 
put on the plot directly as shown by the right-hand scale in per cent. The 
line x is therefore a plot of the maximum possible efficiency. This refers 
to what we might call the electronic efficiency since no account is taken of 
circuit losses. Now in any physical device there are some circuit losses and 
hence a lower value of electronic efficiency for which sustained oscillations 
are not possible. The dotted line p is Posthumus' experimental value for 
this lower limit. Between the lines p and s, then, oscillations are possible 
at frequencies given by the abscissae and with field values shown on the 
solid lines. Actual data for an experimental tube are shown on the plot, 
oscillations occurring at the wavelengths indicated and over the ranges in 
field shown by the lines terminating in arrows. 

One additional line t is shown on the plot connecting points on the different 
Z lines for which the efficiency is a maximum. The optimum design would 
be one based on the intersection of this line with the p line. Still other facts 
will appear from a detailed study of these results but we shall not be able 
to devote any more time to this interesting subject. 

Conclusion 

In concluding a talk of this sort and particularly in concluding a series of 
talks, it is usually appropriate to look ahead to the future and predict the 
trend of affairs, or perhaps to point out certain fruitful fields of research. 
I find this a singularly difficult thing to do. However, it is not revealing 
any military secrets to say that much of the progress of the last few years 
has been in the direction of making things work and not toward getting a 
clearer understanding of the underlying theory. If, for example, an il- 
luminating approach could be devised which would make the problems 
associated with transverse fields, both electric and magnetic, appear as 
simple and straightforward as do longitudinal-electric-field problems, as a 
result of the velocity-modulation concept, then I believe even more striking 
advances could be made in the ultra-high-frequency field than those which 
the war years have brought forth. 
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Dynamics of Package Cushioning 

By RAYMOND D. MINDLIN 

Introduction 

MECHANICAL damage is a common occurrence in the transportation 
of packaged articles. The causes of failures are generally inadequate 

protective cushioning, lack of ruggedness of the outer packing container, 
or occasional abnormal weakness of the packaged article. The first of these 
difficulties is the subject of this paper. 

One of the major influences in reducing the incidence of mechanical failures 
of packaged articles in recent years has been the use of the drop test. The 
drop test is performed simply by raising the package to a specified height and 
dropping it to the floor. The package and its contents are then examined 
for damage. This is a go-no-go test and requires a large number of samples 
before a reliable estimate of quality can be made. An adequate number of 
tests is prohibitive when the article packaged is costly. In such cases it is 
important, and in any case it is useful, to supplement the drop test data with 
measurements and calculations. It is also possible to evolve rational pro- 
cedures for designing packages, as described in the present paper, so that 
a particular product will survive a drop test at any specified height, with a 
known factor of safety and with a minimum amount of space assigned for 
cushioning. The drop test then becomes only a check instead of playing an 
integral role in a cut and try design procedure. 

Assuming that the outer container is adequate, the survival of a packaged 
article in a drop test still depends upon a large number of factors descriptive 
of the mechanical properties of both the cushioning medium and the pack- 
aged item. However, the more important properties can be grouped so 
that they may be replaced by knowledge of only the following factors: 

(1) The magnitude of the maximum acceleration that the cushioning 
permits the packaged item to reach. 

(2) The form of the acceleration-time relation. 
(3) The strengths, natural frequencies of vibration and damping of the 

structural elements of the packaged article. 
Part I of this paper is concerned primarily with methods for predicting 

maximum acceleration of the packaged article with emphasis on non-linear 
cushioning. Part II deals primarily with the prediction of the form of the 
acceleration-time relation. Part III deals with the effect of acceleration on 
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the packaged article and gives methods for determining whether or not the 
strength of the packaged article will be exceeded. The strength deter- 
minations themselves are not dealt with here; but the information in Part III 
is essential in interpreting and applying the data obtained in strength meas- 
urements. In Part IV some consideration is given to the influence of dis- 
tributed mass and elasticity. 

It cannot be emphasized too strongly that the determination of the mech- 
anical properties of the packaged article, not dealt with in this paper, is an 
essential preliminary to a rational design procedure for packaging. The 
whole purpose in designing package cushioning is to limit the forces which 
may act on the packaged item. If one does not know to what values to 
limit the forces, a rational design procedure cannot be applied. 

It is interesting to observe that the methods described here for analyzing 
and designing package cushioning are directly applicable to the design of 
shock mounts intended to protect equipment from the effects of a sudden 
change in velocity. All of the principles, formulas and design curves given 
here may be used in the shock mount problem with the simple substitution 
of V2/2g for h, where h is the height of drop in the packaging problem, g is 
the acceleration of gravity and V is the velocity change in the shock mount 
problem. 

This paper is essentially a report on a study undertaken at the Bell Tele- 
phone Laboratories, Inc., in the Electronic Apparatus Development 
Department. The results have been applied to the packaging of large 
vacuum tubes and all of the examples used to illustrate the analysis and 
design procedures in the paper are taken from vacuum tube applications. 

Miss H. A. Lefkowitz, Member of the Technical Staff, Bell Telephone 
Laboratories, assisted in the mathematical studies. The oscillograms, used 
as illustrations, were prepared under the supervision of Mr. F. W. Stubner, 
Member of the Technical Staff, Bell Telephone Laboratories. Figure 
3.8.2 was taken from a thesis submitted by Mr. C. Ulucay in partial fulfill- 
ment of the requirements for the degree of Master of Science in the Depart- 
ment of Civil Engineering at Columbia University. The calculations for 
Figs. 3.5.1 to 3.5.6 and Fig. 3.2.2 for > 0 were performed on the Westing- 
house Mechanical Transients Analyzer under the supervision of Dr. G. 
D. McCann, Transmission Engineer, Westinghouse Electric and Manu- 
facturing Company. 

Assumptions 

The procedures to be described for the analysis and design of package 
cushioning are based on applications of a few simple laws of mechanics to 
an idealized mechanical system representing the package and its contents. 
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Essentially, a package consists of 
1. Elements of the packaged article which are susceptible to mechanical 

damage. 
2a. The packaged article as a whole. 
2b. A cushioning medium (excelsior, cardboard spring pads, metal springs, 

etc.) 
3. An outer container (cardboard carton, wood packing case, etc.) 

The four major components are illustrated schematically in Fig. 0.2.1. 
The system is further idealized by "lumping the parameters"; for example, 
the outer container is considered as a single mass, the cushioning is con- 
sidered as a massless spring with friction losses. The result of this idealiza- 
tion is to lose some of the fine detail of the real distributed system such as 
wave propagation through the cushioning and higher modes of vibration in 

3 

Fig. 0.2.1—Schematic representation of a package. 
1. Element of packaged article 

2a. Packaged article as a whole 
2b. Cushioning 

3. Outer container 

the package structure and in the packaged article. Some consideration of 
these details is given in Part IV. 

The idealized system is illustrated in Fig. 0.2.2. The major components 
of the system are as follows: 

1. A structural element of the packaged item is represented by a mass 
(wi) supported by a linear massless spring with or without velocity 
damping. The mass mi is assumed to be small in comparison with 
the mass of the whole packaged item. 

2a. The whole packaged item is represented by a mass m*. 
2b. The cushioning is represented by a spring which may have a linear 

or non-linear load-displacement characteristic and which dissipates 
energy through velocity damping or dry friction. Permanent de- 
formation of the cushioning is not considered, that is, in a repetition 
of the drop test it is assumed that the package has the same properties 
as before the first test. A properly designed package will have essen- 

O1 
2a 
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tially this characteristic. The mass of the cushioning is assumed to 
be small in comparison with mi, except in Section 4.2. 

3. The outer container is represented by the mass . The impact of 
mz on the floor is assumed to be inelastic and during contact the rela- 
tive displacement between mz and the initial position of the floor 
is assumed to be small in comparison with the relative displacement 
between mi and mz. In other words, no spring action is assigned to 
the outer container and the floor is considered rigid. 

Element of 
Packaged 

Item 

Packaged 
Item 

Cushion F 

E Outer 
Container 

.ma 

H 

m3 
Tx Poor 

7T7 //// 

Height 
of drop h 

(a) (b) (c) 
Fig. 0.2.2—Idealized mechanical system representing a package in a drop test. 

PART I 

MAXIMUM ACCELERATION AND DISPLACEMENT 

1.1 Introduction 

Most of Part I is concerned with the prediction of the maximum accelera- 
tion that the cushioning permits the packaged article (W2) to attain. In 
many instances this will be all the information necessary for judging the 
suitability of a cushioning system. It will be all that is necessary if the 
shape and scale of the acceleration-time function satisfy certain criteria 
which are treated in detail in Parts III and IV. If these criteria are satisfied, 
the effect of the drop on the packaged article is found by multiplying the 
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dead load stresses (obtained in the usual manner) by the ratio of the maxi- 
mum acceleration to the acceleration of gravity. If the criteria for the use 
of maximum acceleration alone are not satisfied, then Parts II and III will 
supply a numerical factor (the Amplification Factor) by which the maximum 
acceleration should be multiplied, and the remainder of the procedure is the 
same as before. 

The determination of the maximum acceleration is founded on a knowledge 
of the load-displacement characteristics of the cushioning. When the cush- 
ioning system is simple enough, the load-displacement relation may be found 
or designed by purely analytical procedures. The tension spring package, 
discussed in Sections 1.7 and 1.8, is an example where such a treatment is 
possible. In many instances, as with distributed cushioning, the load- 
displacement relation is more easily found by test. 

A load-displacement test is made by applying successively increasing 
forces, with weights or in a load testing machine, to the packaged item 
completely assembled in its package, and measuring the corresponding 
displacements. The force is applied usually by means of a rod inserted 
in a hole cut through the outer container and the cushioning to the packaged 
item. It is convenient to use a low loading rate in the test, and, in doing so, 
the effect of resisting forces that depend on velocity is lost. These forces 
are often of little importance but, in certain designs, it is necessary to con- 
sider them. This is clone for velocity damping in Sections 2.5, 2.6, 3.2 and 
3.5. 

Most of Part I is concerned with cushioning having non-linear load-dis- 
placement characteristics. Linear cushioning is rarely encountered, but 
it will be treated first because of its simplicity and because it will be con- 
venient later to express the maximum acceleration in non-linear cases in 
terms of the maximum acceleration in a hypothetical linear case. 

1.2 Derivation of Equations of Motion 

To introduce the method of analysis that will be used in Part I, the sim- 
plest possible system is considered first. The mi system is omitted entirely, 
the mass of the outer container (w3) is neglected, and the cushioning is 
assumed to have no damping or friction. There remain only the mass 
w, (the mass of the packaged item alone) and the supporting spring, as 
shown in Fig. 1.2.1. If the spring is linear its displacement is proportional 
to the applied load throughout the range of use (see Fig. 1.4.1). The spring 
rate (k*) of a linear spring is a constant usually expressed in terms of pounds 
per inch. The force (P) transmitted through a linear spring is therefore 
given by 

P = kox.2, (1.2.1) 
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where xi is the displacement of mi measured downward from its position at 
first contact of the spring with the floor (see Fig. 1.2.1). For a non-linear 
spring P will be some other function of #2: 

P = Fix.). (1.2.2) 

To write the equation of motion for the mass m*, we consider the forces 
acting on it at any instant. These are (see Fig. 1.2.2(b)) the spring force 
P and the weight where g is the acceleration of gravity. When X2 
is positive (i.e., a downward displacement of m-i from its position at first 
contact of the spring with the floor) the spring exerts an upward force P 

floor 
//// 
(a) (b) 

Fig. 1.2.1—Elementary system. 
(c) 

m2 g 

(a) (b) 
Fig. 1.2.2—Free body diagram for elementary system. 

(a) Spring not in contact with floor. 
(b) Spring in contact with floor. 

on the mass, opposing the weight. The total downward force on m-i is 
thus mig — P. By the second law of motion, the product of the mass and 
its acceleration at any instant is equal to the applied force: 

W2X2 = m^g — P, (1.2.3) 

where the symbol x*, representing the acceleration of mi, stands for the 
second derivative of displacement with respect to time {d2xi/dt2). Equation 
(1.2.3) is the law governing the motion of mi as long as the spring is in con- 
tact with the floor. When the spring is not in contact with the floor, it can 
exert no force on the mass so that, in writing the equation of motion that 
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governs before or after contact, the free-body diagram of Fig. 1.2.2(a) should 
be used. Then 

xz = (1.2.4) 

Equation (1.2.4) holds (neglecting air resistance) from the instant the 
package starts to fall until the instant it strikes the floor and from it we 
can find the package velocity at the instant of first contact. Integrating 
(1.2.4) with respect to time, we find 

X2=gt-\-A, (1.2.5) 

where ^ is the velocity {dxi/dl) and .4 is a constant of integration whose 
value is found from the initial condition that when ( = 0 (the instant of 
release) .i-2 = 0. Thus yl = 0 and 

x2 = gi. (1.2.6) 

Integrating again, 

x2=±gt2+R (1.2.7) 

The value of the integration constant B is found from the initial condition 
that X2 = —h (the height of drop) when t — 0. Hence B = —h and 

x2=hgt2-h. (1.2.8) 

At the instant of contact, *2 = 0 and, from (1.2.8), the time at first contact 
is given by tl = 2h/g. Substituting this value of / in (1.2.5) we find, for the 
velocity at first contact, 

feU-o = \/2gh. (1.2.9) 

We now have the initial conditions for finding the values of the integration 
constants in the solution of equation (1.2.3), which we proceed to obtain. 

First multiply both sides of (1.2.3) by dx^/dt and write .i:2 = ^ 

dxo d /dx2\ . T1 dxi dx-i . . 
mi-rr + P-jr = nhg-r: (1.2.10) 

dt dt\dt / dt ' dt 

or 

, d / dxX' . „ dx2 dx2 
^dt\-dt)+FTt

=m^Tf 

Multiplying by dl and integrating once: 

\m2x\ + J F dxz = J m2gdx2 + C, (1.2.11) 
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where C is a constant of integration whose value is determined by the initial 
conditions that x\ = 2gh and .V2 = 0 at the instant of contact. Hence 

f0 

C = m2g/i-h P dx'>. 

Substituting the above value of C in (1.2.11), we have 

^m-ixl + f P dx2 = m2g{h + X2). (1.2.12) 
Jo 

It may be observed that (1.2.12) is an energy equation in which the 
terms have the following meanings: 

§W2.i'2 is the instantaneous kinetic energy of ni2, 
pi* 
/ P dx2 is the energy stored in the spring at any instant. It is also 

Jo 
equal to the area under the load-displacement curve up to 
the displacement ^2, 

m2g(h + X2) is the potential energy of the mass at its initial height h + X2 
above the instantaneous position X2. 

Hence (1.2.12) expresses the law of conservation of energy. 
Ordinarily h is very much larger than X2 so that we may write, with good 

accuracy, 
(•*2 

\m2X2 + / P dxo = niigh. (1.2.13) 
Jo 

To the same approximation, equation (1.2.3) becomes 

+ P = 0. (1.2.14) 

Equation (1.2.14) and its first integral, equation (1.2.13), are convenient 
forms for calculating events at any time during contact. Their use will be 
illustrated in Part H. For calculating only maximum displacement and 
acceleration, the equations become simpler. Let 

W2 — weight of the packaged article ( = W2g), 
dm = maximum displacement of the packaged article, 
Gm = absolute value of maximum acceleration of the packaged article 

in terms of number of times gravity (Gm = \ X2/g |max), 
Pm = maximum force exerted on packaged article by cushioning. 
We shall limit our study to the practical regions where P > 0 when 

*2 > 0. Then it may be seen from (1.2.13) that X2 is a maximum when 
^2 is zero, hence 

\mpdx2 = W2h, (1.2.15) 
Jo 
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and, from (1.2.14), 

G- = W' (1-2-16) 
Wi 

where Pm is the maximum value of P. If P{x^) is a monotonic function, 
Pm may be obtained from (1.2.2) by substituting dm for x*: 

Pm = P{dm). (1.2.17) 

In the unusual case where Fix*) is not monotonic, the maximum value of P 
in the interval 0 < Xo < dm must be chosen instead of equation (1.2.17). 

The general procedure is to calculate dm from {1.2.15), Pm from {1.2.17) 
and then Gm from {1.2.16). If P can be expressed analytically in terms of ^ 
and if the integral in (1.2.15) can be evaluated in terms of elementary func- 
tions, simple formulas can be found for dm and Gm • If this is not possible, 
then the integration can be performed graphically or numerically. Both 
of these procedures will be illustrated. In either case the maximum accel- 
eration and displacement are obtained in terms of the weight of the pack- 
aged item, the height of drop and parameters descriptive of the load-dis- 
placement characteristics of the cushioning. 

1.3 Linear Elasticity 

For cushioning with a linear load-displacement relation, equation (1.2.1) 
applies. Substituting this value of P in (1.2.15), and performing the in- 
tegration, we find 

im = (1.3.1) 

From (1.3.1) and (1.2.17), 

Pm = s/2hWi k,, (1-3.2) 

and, from (1.3.2) and (1.2.16), 

Notice that equation (1.3.3) holds only if there is space available for a 
displacement d,,, and if the cushioning is linear and capable of transmitting 
a force Pm. Also, from (1.3.3) and (1.3.1), 

2/l /A ■, A\ 
dm = — (1-3-4) 

and 
, _ WiGm _ 21m 

2 2hl dl. 
(1.3.5) 
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Example: Find the properties of the linear cushioning required so that 
the maximum acceleration will be 50g in a 3 ft. drop of a 20 lb. article. 

From (1.3.4), 

From (1.2.16) 

Maximum force Pm = 20 X 50 = 1000 lbs. 

1.4 Cushioning with Non-Linear Elasticity 

In practice it is rarely that a packaging system has linear spring charac- 
teristics. Departure from linearity may be due to 

1. Non-linear geometry, such as in the tension spring package described 
in Section 1.7. 

2. Non-linear characteristics of distributed cushioning materials such as 
excelsior and rubber. 

3. Abrupt change of stiffness such as occurs if the packaged item can 
strike the wall of the container. 

For the purpose of developing design formulas it is desirable to have 
analytical functions to represent load-displacement characteristics. It is 
not feasible to have only one family of functions with adjustable parameters 
to fit all possible shapes of load-displacement curves. Therefore, all the 
practical shapes have been divided into six general classes, most of which 
are associated with simple functions having one or two adjustable param- 
eters. The six classes are as follows: 

Class A—Linear Elasticity. This has already been treated. Its load- 
displacement function is 

necessary travel, dm = ^ = 1.44 inches. 

From (1.3.5), 

+ , 20 X (50)2 ^ ]U .. spring rate, ki = 2 x = lbs/m- 

p 

x2 

Fig. 1.4.1—Linear elasticity. Class A. 

P = kiXi. (1.4.1) 
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Class B—Cubic Elasticity. This includes cushioning which does not bot- 
tom in the anticipated range of use, but the slope of the load-displacement 
function generally increases with increasing displacement as in the curved 
full line of Fig. 1.4.2. A suitable load-displacement function is 

P = ko .1-2 + rxo. (1.4.2) 

ko is the initial spring rate of the cushioning, as shown by the slope of the 
dashed straight line in Fig. 1.4.2, and r determines the rate of increase of the 
spring rate. The same function can be used if the slope of the curve de- 
creases gradually with increasing load as shown by the curved dashed line 
in Fig. 1.4.2. In this case the parameter r is negative. 

•J1 2 
Fig. 1.4.2 Fig- 1A-3 

Fig. 1.4.2—Cubic elasticity. Class B. 
Fig. 1.4.3—Tangent elasticity. Class C. 

Class C—Tangent Elasticity. Cushioning that bottoms, but not very 
abruptly, can be represented by the load-displacement function 

2kodb irXi 
P =  tan — . 

TT Idb 
(1.4.3) 

Referring to Fig. 1.4.3, ko is the initial spring rate and db is the maximum 
available displacement. The figure shows how the stiffness of the cushion- 
ing (i.e., the slope of the curve) increases as the displacement approaches 
the maximum available {db) at hard bottoming. The shape of the curve 
is typical of load-displacement curves for a great variety of packages with 
distributed cushioning. 

Figure 1.4.7 illustrates the wide variety of shapes of non-linear cushioning 
characteristics that can be obtained with the single function given by equa- 
tion (1.4.3) simply by varying the parameter ^o; and a similar set is given by 
each value of db. Although these families of curves do not include all pos- 
sible shapes, one of them can usually be found to fit a practical shape for 
cushioning of this class over the anticipated range of use. 

Class D—Bi-lincar Elasticity. This is characterized by a load-displace- 
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ment curve consisting of two straight line segments. The load displacement 
function is (see Fig. 1.4.4) 

P = hx2 0 ^ .t2 ^ ds 

P = kbXi — {kb — k^ds .To ^ ds 

(1.4.4) 

It is useful especially in situations where very abrupt bottoming is possible. 
Class E—Hyperbolic Tangent Elasticity. When the mechanism of the 

cushioning is such as to limit the maximum force that can be transmitted 
over a considerable displacement range, the load-displacement function 

P = Pn tanh 
k0Xi 
To 

(1.4.5) 

is useful. Po is the asymptotic value of the force and kv is the initial spring 
rate (see Fig. 1.4.5). 

& 

v 
7jh 

i 
i 

ds 

Fig. 1.4.4 Fig. 1.4.5 
Fig. 1.4.4—Bi-linear elasticity. Class D. 

Fig. 1.4.5—Hyperbolic tangent elasticity. Class E. 

Class F—Anomalous Elasticity. In occasional instances the load-dis- 
placement curve of the cushioning cannot be matched accurately enough 
by any of the five preceding functions. In such cases a numerical integra- 
tion procedure can be used, as described in Section 1.15. 

1.5 Cushioning with Cubic Elasticity (Class B) 

Substituting (1.4.2) in (1.2.15) and performing the integration, we have; 

Now, let 

+ r-P = W-Hi. 
2 4 

, ZlWoh 
= i/fe ■ 

(1.5.1) 

(1.5.2) 
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that is, do is the displacement that would take place if the elasticity were 
linear (see equation (1.3.1)) with a constant spring rate k0 equal to the initial 
spring rate of the cubic elasticity. Also let 

iW*hr (1.5.3) B = 
ko 

Then, from (1.5.1), (1.5.2) and (1.5.3) 

dm 
To 

-g(-i + Vi + 5) (1.5.4) 

Equation (1.5.4) is plotted in Fig. 1.5.1 which shows graphically how the 
maximum displacement dm compares with the "equivalent linear displace- 
ment do" as the parameter B is varied. Note that B depends on the weight 
of the packaged item, the height of drop and the shape of the load displace- 
ment curve (as determined by ko and r). 

Fig. 1.4.6—Anomalous elasticity. Class F. 

Similarly we can compare the maximum acceleration Gm with the maxi- 
mum {Gd) that would obtain if the load displacement curve were linear with 
spring rate ko. The latter acceleration is given by 

_ /2hko 
70 " V It: 

(1.5.5) 

and the former is obtained by finding Pm from (1.2.17) and then, from 
(1.2.16), 

Gm 
Go /y

/|(l + .B)(-l +Vl + s)- (1-5-6) 

Equation (1.5.6) is plotted in Fig. 1.5.2. 

1.6 Procedure for Finding Maximum Acceleration and Displacement 
for Cushioning with Cubic Elasticity 

If the load-displacement curve of a cushioning system has the general 
appearance of Fig. 1.4.2 (where the slope increases or decreases gradually 
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with displacement) the following procedure may be used for estimating the 
effectiveness of the cushioning. 
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Fig. 1.4.7—Family of load displacement curves for cushioning with tangent elasticity. 

a. Select the point on the load-displacement curve for which the load 
is equal to the weight of the packaged item multiplied by the allowable 
Gm. Call this load P->. and the corresponding displacement di. 
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Fig. 1.5.1—Maximum displacement for cushioning with cubic elasticity. See 
equation (1.5.4). 

T 

4Wphr 
B="P~ * o 

Fig. 1.5.2—Maximum acceleration for cushioning with cubic elasticity. See 
equation (1.5.6). 
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b. Select another point (rfi, Pi) about half way toward the origin from 
(</2,P2). See Fig. 1.4.2. 

c. Calculate 

dx (fa 
^0 — ,2 .2 02 — CL\ 

and 

P2 _ Pi 
(^2 

r =: j2 "72 . "2 — ^1 

d. Using the known weight, IF2, of the packaged item, the specified height 
of drop h, and yfco and r from (1.6.1) and (1.6.2), calculate P, (fo and Go from 
(1.5.2), (1.5.3) and (1.5.5). Then calculate the maximum acceleration Gm 

and maximum displacement dm from (1.5.6) and (1.5.4) or find their values 
from Figs. 1.5.1 and 1.5.2. 

Example: A large vacuum tube, weighing 22.5 lbs, was packed in a 1" x 
71" x 15" carton which was supported on corrugated cardboard spring pads 
in a 10|" x 11^" x 18^" carton. The latter was, in turn, packed in 28 pounds 
of excelsior in a 25" x 25" x 30" carton. The tube is rated at 50g and the 
package is intended for a drop of three feet. 

A rod was inserted through a hole cut through the three cartons to the 
tube. Load was applied to the rod and the displacement of the tube was 
measured. The data obtained were 

p 
(load in lbs) 

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 

The data are plotted in Fig. 1.6.1. The resulting curve is suitable for 
classification as either Class B or Class C cushioning. Considering it, for 
the present, as Class B, we take P2 = 22.5 X 50 = 1225, and from the curve, 
dt = 1.9 inches. Also, from the curve, take di = I inch and Pi = 365 

(1.6.1) 

(1.6.2) 

[displacement in inches) 
0 
F 8 1 8 

1A 
n 
u 
1A 
U 
n 
ih 
n 
1H 
2 
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lbs. Substituting these values in (1.6.1) and (1.6.2), we find k0 = 255 and 
r = 108. Then 

„ AW2hr 4 X 22.5 X 36 X 108 
B= ui = w = 5-4' 

_ ./2^o /2 X 36 X 255 , 
Go- yiv2 

= V 2Z5  = 28-6- 

Entering Fig. 1.5.2 with B = 5.4 we find Gm/Go = 1.9. Hence 

Gm = 28.6 X 1.9 = 55 

This is close enough to the 50g rating of the tube to call the cushioning 
safe insofar as maximum acceleration is concerned. 

1400 

1200 

1000 

800 
P 

600 

400 

200 

0 0.2 0.4 0.6 0,8 1.0 1.2 1,4 1.6 1,8 2.0 
X2 

Fig. 1.6.1—Experimental load-displacement curve for a corrugated cardboard spring pad 
and excelsior cushion. 

The maximum displacement, obtained by entering Fig. 1.5.1 with B = 
5.4 and finding dm/d0 = 0.75. Then dm = 0.75 X 2h/Go = 1.95 inches. 
Hence, the package is much larger than necessary since approximately 8 
inches of cushioning thickness is supplied to accommodate 2 inches of 
displacement. 

1.7 The Tension-Spring Package (Class B) 
The tension spring package is useful when the allowable Gm is so small 

and height of drop so great that a large displacement (say dm > several 
inches) is required. The decision as to whether or not a tension spring 
package is indicated may be made on the basis of a preliminary estimate 
of displacement based on the linear case. Suppose the height of drop is 
to be 60 inches and the allowable acceleration for the packaged item is 

y 

) 

/ / 

/ 
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20g. Then, from Equation 1.3.4, the approximate displacement that will 
be required is 

(1.7.1) 2 X 60 , . , 
dm = ——— = 6 inches. 

The actual maximum displacement in a tension spring package will prove 
to be somewhat more than 6 inches, but the preliminary calculation shows 
the displacement to be large enough to warrant the use of this type of 
cushioning. 

Xn 1 T .t-—-- 

TTi / /1 ii , H. i'/ 

——JR 

>2 

Fig. 1.7.1—^Schematic diagram of a tension spring package. 

A schematic diagram of a typical tension spring package is shown in Fig. 
1.7.1 and a photograph of one design is given in Fig. 1.7.2. The packaged 
item is suspended on eight identical helical tension springs which diverge 
to the outer frame. The analysis and design procedures described in this 
and the following section apply equally well if the springs converge from the 
packaged item to the outer frame. With a slight modification, indicated 
in the next section, the procedure also applies if four of the springs (say, 
BJ, DL, EM, OG in Fig. 1.7.1) are omitted. 

In all cases, however, we shall consider only systems having reflected 
symmetry about each of three mutually perpendicular planes through the 
center of gravity of the packaged article. 



DYNAMICS OF PACKAGE CUSHIONING 371 

W . w)i ii 
Fig. 1.7.2—A tension,spring package. 

The load-displacement cliaracteristics of the spring system may be found 
by statical considerations. We shall examine, first, the displacement in the 
vertical direction in Fig. 1.7.1, using the following notations: 

P = force applied to the suspended object. 
.Ta = displacement of suspended object, 
.vo = perpendicular distance {IR, Fig. 1.7.1) from inner spring support 

point (/, Fig. 1.7.1) to nearest plane, perpendicular to displacement 
direction and containing four outer spring support points (/I, B, C, 
A Fig. 1.7.1); 
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A = distance {IA) between spring support points when suspended article 
is in equilibrium position, 

1 = projection of A on plane A BCD, 
f = t minus length (between hooks) of unstretched spring, 
k = spring rate of each spring. 

Consider, first, the action of one pair of springs, say EM and GO of Fig. 
1.7.1, independent of the remainder of the suspension. Since EM and GO 
lie in parallel vertical planes and the points M and 0 remain in the initial 
planes of their respective springs during a vertical displacement, the two 
springs may be considered to lie in the same plane, and to be translated hori- 
zontally in this plane so that their outer ends are separated by a distance 2A 
Hence Fig. 1.7.3 may be used to represent the independent action of this 
pair of springs and it is required to find the force Q' needed to transform Fig. 
1.7.3(a) to Fig. 1.7.3(b). Initially there are two springs, each of length ^ - / 

OUMJUU 
E 

F 
^ . 

= 1 

Q 
a b 

Fig. 1.7.3—Diagram used in discussion of tension spring package. 

and spring constant k, with no initial tension in them. One end of one spring 
is fixed at point E and one end of the other spring is fixed at a point G 
distant 21 from E. The springs are then stretched so that the two initially 
free ends are located at a point Y equidistant from E and G and distant a'o 
from line EG. The axis of each spring makes an angle a with EG, where 

sin a = ^2 
n *2 vV + 

In this state the axial force F in each spring is 

F = - '+/] 

(1.7.2) 

(1.7.3) 

and the force Q', required to equilibrate the two forces F is 2F sin a. Con- 
sidering the force Q' as a function of the displacement ^ , we write 

e'(^) = ^==r2 we + *?-< + /] 
Vt -f- ^2 

(1.7.4) 
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or <?'(*') =2ke 1/ + (1-7-5) 

where 3' = -2 

t ' 

Consider, next, the configuration shown in Fig. 1.7.4(a), where one end of 
each of four springs is fixed at a corner of a rectangle of length 2^ and width 
2.To . Each spring is again of length t — f. The four free ends of the springs 
are drawn together at a common point X at the center of the rectangle (see 
Fig. 1.7.4(b)). The system is in equilibrium in this position. A force Q 
is then applied at X in the plane of the rectangle and normal to the side 2(. 

f f 

— L 2X, 

f f 
a 

jnooimnp »- 

'—   

t 
X 
t 
X 

X„/X 

b c 
Fig. 1.7.4—Action of springs in a tension spring package. 

The common point X is displaced a distance #2 to X' (see Fig. 1.7.4(c)). 
Writing z = Xi/t, a = x^/l, we observe that 

(?(2) = (T(z + o) + <3'(2 - a), (1.7.6) 

or, from equation (1.7.5), 

m = ^-^(vi+V+a)2 + Vi+i°-*)•]}■ (1-7-7) 

The standard tension spring package has two sets of four springs so that 
the force P required to displace the common point X a distance is 

P(z) = 2Q(z). (1.7.8) 

If X2 is small in comparison with ( (i.e., 3 is small in comparison with 
unity), equation (1.7.8) may be written approximately as 

(1- W2 -^]. (1.7.9) = P{z) = 4M 23 - 
(1 + o2)3'2 

Even when becomes almost as large as (, equation (1.7.9) has been found, 
experimentally, to be remarkably accurate. 
Writing 

* = 8*[I-(TL=AJ (1.7.10) 
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and 
2x3/2 

u -r c c = 
a, 
-±±L - i, (1.7.11) 
1—6 

equation (1.7.9) becomes 

P = Ke(z + |) . (1.7.12) 

It is seen, by comparison with (1.4.2) that this is Class B cushioning 
(cubic elasticity). A' is the initial spring rate and c determines the rate of 
increase of stiffness with displacement. With the notation 6o, r of Section 
1.5, we see that 

*o = A (1.7.13) 

r = — . (1.7.14) 
2cr- v 

Hence equations (1.5.6) and (1.5.4) may again be used to calculate maximum 
acceleration and displacement. B has the same meaning as before (Eq. 
1.5.3). 

To predict the performance, in the vertical direction (Fig. 1.7.1), of an 
existing tension spring package the same procedure as outlined in Section 
1.6 may be used, except that it is not necessary to have a load-displacement 
curve for calculating 6o and Instead, these parameters may be calculated 
directly from equations (1.7.10), (1.7.11), (1.7.13) and (1.7.14). The 
remainder of the procedure is the same as in Section 1.6(d). 

To predict the performance perpendicular to another face, say AEHD 
of Fig. 1.7.1, it is only necessary, in the calculation of ko and r, to substitute 
.ro for x0, C for i (see Fig. 1.7.1) and, in place of h\ 

6' = 1 - i (1 - 6). (1.7.15) 

The initial spring rate A' for any direction of acceleration may be calcu- 
lated from the initial spring rates Ai, Ao, A'3 in the three directions normal 
to the faces of the frame by using the relation 

1 S2 t' U' * <s\ 
—; = —s 4- —o 4- —s, (1.7.16) 
A K\ K\ K\ 

where s, /, u are the direction cosines of the acceleration direction with 
respect to the normals to the faces of the frame. It is seen, from (1.7.16), 
that the spring rate is given by the radius to the surface of an ellipsoid whose 
principal semi-axes are Ai, A2, A3. 
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The displacement direction does not necessarily coincide with the acceler- 
ation direction. The angle 9 between them is given by 

^e-K[k + K, + 3 (1-7-17) 

where K is defined by equation (1.7.16). 
The spring characteristics may be made the same in all directions and the 

displacement direction may be made to coincide with the acceleration 
direction by setting 

/ // 
Ao = Xo = XQ = 

and 

(=('=(' 

V2 

(see Fig. 1.7.1). This makes b = b' = b", c = 0.828 and k/K = 0.274 
in the calculations of the next section. 

1.8 Procedure for Designing Tension Spring Packages 

The design of a tension spring package, as contrasted with the analysis of 
one, must proceed without initial knowledge of values for the parameters kQ 

and r, since these cannot be known until the springs are designed. There- 
fore equations (1.5.4) and (1.5.6) cannot be used directly. For design pur- 
poses they are transformed to the following set of formulas: 

(1.8.1) 

r, = V2(-l + VMTB) (1.8.3) -s/cC 

W 21 
2hK B = N = = + Vl +B) (1.8.4) 

^ - 4 = -1 + /j/l + (1.8.5) 

These formulas have been converted to design curves which are given in 
Figs. 1.8.1 to 1.8.5. The curves are for use in connection with the following 
routine procedure which has been found useful in designing the springs for 
tension spring packages. Reference should be made to Table I. 
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1. Enter, on Line 1, Table I, the weight (TT2) in pounds, of the sus- 
pended item. This includes the weight of the cradle or other holding 
arrangement and one-third the estimated weight of the springs. 
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X 

Fig. 1.8.1—Tension spring package design curve. Equation (1.8.1). 

2. Enter, on Line 2, the height of drop {h) in inches. 
3. Enter, on Line 3, the maximum allowable acceleration (G„,) in units 

of "number of times gravity." This should be determined before- 
hand from tests on the item to be packaged. 

4. Enter, on Line 4, the dimension .ro (inches). 
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5. Enter, on Line 5, the dimension t (inches). For a package to have 
the same spring rate in all directions, I = xo\/2 is a necessary con- 
dition. 

6. Enter, on Line 6, the value chosen for b. As b becomes greater than 
zero, the stiffness of the whole suspension increases for a given stiff- 
ness of individual springs. The reverse happens for b less than zero. 
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1.0 o 0.1 02 03 04 0.5 
L 

Fig. 1.8.2—Tension spring package design curve. Equation (1.8.2). 

7. Calculate xo/t. 
8. Enter Fig. 1.8.1 with Xo/t and find Vc. 
9. Calculate L = ///(\/c ^Gm). 

10. Enter Fig. 1.8.2 with L and find N. 
11. Calculate K = (W^Gm

2)/(2hN). This is the initial spring rate of the 
suspension in the direction of Xo. 

12. Calculate/ = 3.13 (K/Wz)*- This is the natural frequency of vibra- 
tion (cycles per second) of the suspension for small amplitudes in the 
Xo direction. This should not be close to the natural frequency of 
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vibration of any element in the packaged item, which should be 
determined by test beforehand (see, also, Section 4.2). In any case 
it is advisable to provide damping for the suspension. 

fL K 
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\ 
b = 0.2 \ \ 

N 

L =0.3 

Fig. 1.8.3—Tension spring package design curve. Equation (1.7.10). 

13. Enter Fig. 1.8.3 with V and find k/K. If a four-spring package is 
desired, instead of an eight-spring package, (see Section 1.7) the 
value of k/K found on Fig. 1.8.3 should be multiplied by two before 
entering it on Line 13 in Table I. This is the only change required 
in the procedure. 

14. Calculate k = This is the spring rate of each of the springs in 

pounds per inch. 
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15. Calculate B = {2W.Ji)/{Kc(2). 
16. Enter Fig. 1.8.4(a) or (b) with B and find dm/{s/c(). 
17. Calculate dm/C = y/c- dm/y/cf. 
18. Calculate dm = t-dm/t. 
19. Calculate {dm/l) + {xq/C). 
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B 

Fig. 1.8.4(a)—Tension spring package design curve. Equations (1.8.3) and (1.8.4). 

20. Enter Fig. 1.8.5 with {dm/ () + (.Vo/f) and find (e/C) - b. e is the 
stretch of each spring (in inches) when the displacement is dm inches. 

21. Calculate Fm = k-(c/()-(. This is the maximum load (in pounds) 
on each spring. 

22. 23, 24, 25, 26. These are the coil diameter, wire diameter, number of 
turns, fiber stress and length of coils. These quantities are calculated 
from the ordinary formulas, charts or slide rules for helical springs, 
using the values of k and Fm from Lines 14 and 21. 

27. The length inside hooks is entered on Line 27 to group all of the spring 
specifications. 

Liii 
5^ 

«in- 

Liiii 
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Fig. 1.8.4(b)—Tension spring package design curve. Equations (1.8.3) and (1.8.4). 
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Fig. 1.8.5—Tension spring package design curve. Equation (1.8.5). 
380 
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r As an example of the calculations, Table I contains the entries for the 
design of springs for a 21 pound article (including | the estimated spring 
weight) which is to be packaged so as not to exceed 35g in a five-foot drop. 

TABLE I 
Compulation Form for Tension Spring Packages 

1. w* (lbs.)  n 
2. h (ins.)  60 
3. Gm-    35 
4. .ro (ins.)  5 
5. I (ins.)  7.07 
6. b  0 
7. Calc. xo/1  0.707 
8. Find Vc from Fig. 1.8.1  0.91 
9. Calc. h/VclG,,, = L  0.269 

10. Find N from Fig. 1.8.2  1.265 
11. Calc. IFiGm2/2hN = K (lbs/in.)  169.0 
12. Calc./ = 3.13 (.K7W2)» (cyc./sec.)  8.9 
13. Find A/AT from Fig. 1.8.3  0.274 
14. Calc. k = K • k/K (lbs/in.)  46.5 
15. Calc. B = 2W2Ii/KcP  0.368 
16. Find dm/y/c I from Fig. 1.8.4  0.575 
17. Calc. y/c ■ dmly/ct    0.518 
18. Calc. dm = C • dm/1 (ins.)  3.68 
19. Calc. dm/t + Xo/C  1.220 
20. Find e/t from Fig. 1.8.5 and line 6  0.580 
21. Calc. Fm = k ■ e/(. • / (lbs)  191.0 
22. Coil diameter (ins.)  1.40 
23. Wire diameter (ins.)    0.207 
24. Number of turns  19 
25. Fiber Stress (Ibs./sq. in.) ■ 10-3  80 
26. Length of Coils (ins.)    3.93 
27. Length inside hooks (ins.)    7.07 

1.9 Cushioning with Tangent Elasticity (Class C) 

This is one of the most frequently encountered classes of cushioning since 
it includes a very common type of bottoming (Figs. 1.4.3 and 1.4.7). The 
load-displacement function (equation (1.4.3)) takes into account the fact 
that the cushioning can be compressed only to a definite amount db. 

To find formulas for maximum acceleration and displacement, we pro- 
ceed as follows. Substitute equation (1.4.3) in (1.2.15) and perform the 
integration, obtaining 

Ak^db . Trdm Tt t i r\ *\ 
—— log cos = -Wih, (1.9.1) 

TT Mb 

which may be written as 

-S-v-dof)-1 
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Equation (1.9.2) can then be substituted into (1.4.3) to obtain the maximum 
force Pm in accordance with (1.2.17): 

Pm = 

1 1 

- - 

ill: 

:::: Gm 
si ;; 

5: lii: 
' . 

mm. 
m. 

wttw   ur 5 si • 

Fie. 1.9.1—Curve for finding maximum acceleration for cushioning with tangent elasticity. 
See equation (1.9.4). 

The maximum acceleration is then obtained from (1.2.16) and may be 
written in the form 

G... 2db 

TT(il i/expS0J_ 
(1.9.4) 

where do and Go are defined just as in (1.5.2) and (1.5.5). Go is the maxi- 
mum acceleration that would obtain if the cushioning did not bottom, that 
is, if the spring rate remained constant at its initial value ^o • do is the 
maximum displacement that would be reached under the same linear con- 
ditions. Hence G„./G0 is a multiplying factor to be applied to a hypothetical 
linear cushioning to take into account the effect of bottoming. The multi- 
plying factor depends only on the ratio (db/do) of the amount of space 
actually available to the amount of space that would be used under linear 
conditions. 
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The ratio Gm/Go is plotted against the ratio db/do in Fig. 1.9.1. It may 
be seen that the multiplying factor increases very rapidly as the displace- 
ment ratio {db/db) falls below unity. For example, if the cushioning, with 
tangent elasticity, reaches hard bottoming {db) when only 80% of the 
required displacement (</o) is attained, the acceleration is multiphed by 
3.5; if only 60% of the required displacement is available, the acceleration 
is multiplied by 11.5. 

Example: To illustrate with a numerical example, consider the case already 
discussed in Section 1.3, where we found that a spring rate of 694 lbs/in 
and a displacement of 1.44 inches were required to limit a 20-pound article 
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Fig. 1.9.2—Curve for finding maximum displacement for cushioning with tangent elasticity. 

Sec equation (1.9.5). 

to an acceleration of 50,? in a 3-foot drop with linear cushioning. Let us 
suppose that only 1.15 inches are available, instead of 1.44 inches, and that 
the cushioning has tangent elasticity starting with a spring rate of 694 
Ibs./in. Entering the curve of Fig. 1.9.1 at db/do = 1.15/1.44 we find 
Gm/Ga = 3.5. Hence the maximum acceleration will be 175? instead of the 
required 50?. This illustrates the wide variations in acceleration that may 
occur as a result of minor variations of dimensions in high G packages. 

It is not necessarily true that the 175? test is 3.5 times as severe as the 
50? test for all elements of the supported structure, since the severity de- 
pends also on the shape and scale of the acceleration-time relation. The 
factor may be more or less than 3.5 but it will be very close to this value for 
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all high-frequency elements of the structure. This subject is treated in 
detail in Parts II and III. 

The maximum displacement dm , in the case of tangent elasticity, may be 
calculated from equation (1.9.2) or, in terms of db/do, from 

dm 2 —1 — = - cos exp 
db TT 

[_l(dX- 

L 8 \db) _ 
(1.9.5) 

The ratio dm/db is plotted against db/do in Fig. 1.9.2. 
The use of Fig. 1.9.2 can be illustrated with the example already calcu- 

lated, in which db/dv = 1.15/1.44 = 0.8. Entering the abscissa of Fig. 
1.9.2 with db/do = 0.8 we find dm/db = 0.915. Hence the maximum dis- 
placement will be 0.915 X 1.15 = 1.05 inches. 

1.10 Optimum Shape of Load-Displacement Curve for Tangent 
Elasticity 

It is possible to choose the best shape for the load-displacement curve 
of the cushioning from those represented in Fig. 1.4.7. This will be, of 
course, not the best of all possible curves, but only the best among "tangent 
elasticity" curves. The best shape is defined as the one that yields the 
smallest maximum acceleration (G,,,) for a given weight (IFo), height of drop 
(//) and available space {db). This leaves the initial spring rate (^o) as the 
only remaining variable. To find its optimum value (say ^o), set equal to 
zero the derivative of Gm (equation (1.9.4)) with respect to ko, remembering 
that Go and are functions of . The result is 

/ TT2 Wo l'\ (T2 IFa /i ini\ 
(U0-1) 

from which 

(1.10.2) 
db 

Substituting (1.10.2) in (1.9.4) we find the minimum value (Gl) of maxi- 
mum acceleration to be 

G;=^~. (1.10.3) 
db 

To illustrate the application of equations (1.10.2) and (1.10.3), consider 
again the case of the 20-pound article dropped from a height of three feet. 
We found that a linear spring, with a spring constant of 694 lbs/in, would 
limit the maximum acceleration to 50g if 1.44 inches of displacement were 
available. If only 1.15 inches of displacement are available, and the initial 
spring rate is kept at 694 lbs/in, we Tound the maximum acceleration to be 
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175g if the cushioning bottoms with tangent elasticity. Now, according to 
equation (1.10.2), the best initial spring rate for cushioning with tangent 
elasticity would be 

,/ 3.1 X 20 X 36 
=  {1 IS)2  = 6 lbs/in. 

In this case, equation (1.10.3) gives, for the maximum acceleration, 

^ 3.9 X 36 _ 
G" Os - 122g- 

Hence, confronted with a space limitation less than that required for a 50g 
linear spring, it is better to use an initial spring rate higher than that for the 
50g linear spring in order to strike an economical balance between displace- 
ment and bottoming. The best balance, among cushionings having tangent 
elasticity, is obtained by using equation (1.10.2). 

If no factor of safety is considered, it would be still better not to use a 
bottoming type of cushion at all. From equations (1.3.5) and (1.3.3) 
it can be seen that a linear spring with a constant of 1090 lbs/in will give 
only 63g with a displacement of 1.15 inches. Such a spring, though, would 
bottom very sharply at a drop slightly higher than 3 ft. and would give 
an acceleration much greater than cushioning with tangent elasticity which 
bottoms more gradually. This may be important if there are high-fre- 
quency, brittle elements in the packaged article (see Part III). 

1.11 Procedure for Finding Maximum Acceleration and 
Displacement for Cushioning with Tangent Elasticity 

(Class C) 

To illustrate the use of the equations and curves for Class C cushioning, 
the same example used for Class B will be used, as it was observed that the 
experimental load-displacement curve in that example (Fig. 1.6.1) is a 
border line one which can be treated as either B or C. 

By laying a straight edge along the first part of the curve (Fig. 1.6.1), 
the average initial spring rate is found to be 305 lbs/in. This value is taken 
as ko in the present case. 

The next step is to find a value of db such that a graph of F/db vs Xo/db 
will fall slightly above the curve = 30(0) in Fig. 1.4.7; db must be greater 
than 2 inches, since that displacement was obtained in the experiment. 
As a trial take db = 2.25 inches and test it at one point, say the experi- 
mental point F = 300 lbs., Xz = | in. Then P/db = 133 and x^/db = 
0.39. The point (0.39, 133) falls below the curve ko = 30(0) in Fig. 1.4.7. 
Next try db = 2.5 inches. In this case, for the experimental point P = 
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300, *2 = I we find P/db = 120, xo./db = .35. This falls slightly above the 
ko = 30(0) curve as required. The whole experimental curve is then 
plotted to the coordinates P/2.5 vs ^2/2.5 and is found to fit as closely as 
necessary. Hence the parameters are adopted as ko = 305, db = 2.5. 

We can now calculate the maximum acceleration that the tube will 
receive in, say, a three-foot drop test. First calculate, from equations (1) 
and (2), 

. /2MiT . /2 X 36 X 22.5 _ 0 ?1 
= V 305 2-31' 

. /2hko . /2 X 36 X 305 _ ^ a 
Go= VW^ - V 22J5 31•,5• 

Then db/do = 1.08. Entering Fig. 4 with this value we find Gm/Go = 1.82. 
Hence the maximum acceleration is: 

Gm = 31.3 X 1.82 = 57g. 

Finally, entering Fig. 5 with db/do = 1.08 we find dm/db = 0.8. Hence the 
maximum displacement is dm — 0.8 X 2.5 = 2.0 inches. This indicates 
that the load-displacement test was carried far enough to cover the range 
up to a three-foot drop. 

It may be observed that the results obtained, by treating the same data 
as Class B or Class C cushioning, agree within a few per cent. This is 
because, in the example chosen, both B and C curves can be made to fit the 
experimental load-displacement curve. 

1.12 Consequences of Abrupt Bottoming (Class D) 

It is useful to examine cushioning systems that can bottom more abruptly 
than Class C cushioning. Abrupt bottoming is possible, for example, in a 
tension spring package lacking a snubbing device. An estimate of the 
increase in acceleration can be made by studying the case of bilinear elasticity 
(Fig. 1.4.4). Here we have a spring rate ko up to a displacement ds, follow- 
ing which the cushioning has a different spring rate kb. ko represents the 
average spring rate before bottoming and kb can represent the much greater 
stiffness of the wall of the container. 

If do > ds, that is, if 

\/n^>l1-' (U2-I) 

the suspended article will bottom and the maximum displacement and 
acceleration are obtained by using both of the equations (1.4.4) in evaluating 
the integral in (1.2.15). Thus, 

[ koXz dxo + [ [khX* — {kh — ko)d^ dxo = Woh. (1.12.2) 
•'o hs 



DYNAMICS OF PACKAGE CUSHIONING 387 

The remainder of the procedure for finding Gm is the same as before. 
The value of dm found from (1.12.2) is substituted for Xi in the second of 
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Fig. 1.12.1—Curves for finding maximum acceleration as a result of abrupt bottorain" 
See equation (1.12.3). 

(1.4.4) and the value of Pm , thus obtained, is used, in (1.2.16), with the 
result: 

G-~GWt+%{x-ki)' ^ 

where Go is the acceleration that would be reached if a displacement do 
were available: 

Go - 
2hko 
W 2 ' (1.12.4) 

The ratio Gm/G0 is plotted against ds/do in Fig. 1.12.1 for several values 
of kb/ko. Since, in practice, kb might be thousands of times as great as , 
it may be seen that the increase in maximum acceleration can be very large 
even when </, is only slightly less than do. It is apparent that a snubbing 
device is desirable in a tension spring suspension. This is especially true 
when considering high-frequency elements of the packaged article. It will 
be shown, in Part III, that low-frequency elements are not affected as much 
as might be expected from consideration of maximum acceleration alone. 
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1.13 Cushioning with Hyperbolic Tangent Elasticity (Class E) 

In the preceding sections, there have been considered four types of elas- 
ticity (linear, cubic, tangent and bilinear) that lit the load-displacement 
characteristics of the more common cushioning materials and devices. 
There now remains the problem of finding more nearly ideal shapes of 
elasticity. By "more nearly ideal" is meant a shape which will result in a 
smaller maximum displacement for a given maximum acceleration. This is 
important in the packaging of very delicate articles if shipping space is 
limited. 

It may be observed (equation (1.2.15)) that the total area under the 
load-displacement curve is equal to the maximum energy of the system. 
The maximum ordinate of the enclosed area is proportional to the maxi- 
mum acceleration. Hence, if we wish to (1) limit the maximum acceleration 
(2) accomodate a given kinetic energy and (3) have as small a displace- 
ment as possible, the best shape for the load displacement function is P = 
constant, where the constant is the product of the supported mass and the 
maximum allowable acceleration. 

It is not practical to obtain this ideal shape exactly, for there will always 
be a finite initial spring rate and a rounding off of the load-displacement 
curve to the limiting maximum load. A function which represents this 
practical condition (and also includes the ideal case) is the hyperbolic 
tangent function mentioned in Section 1.4; 

The formulas for maximum acceleration and displacement are found in 
the same way as for the other classes of cushioning with the results: 

P = Po tanh (1.13.1) 

(1.13.2) 

or 

(1.13.3) 

and 

(1.13.4) 

or 

(1.13.5) 
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where, as before 

j _ ./ihWt r _ /2hk0 

y "S-' G°~Vwi- 
Equations (1.13.3) and (1.13.5) are plotted, in Figs. 1.13.1 and 1.13.2, 
against the dimensionless parameter Fq/WsGo . The latter is the ratio of 
the maximum force, that the hyperbolic tangent cushioning will transmit, 
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Fig. 1.13.1—Maximum displacement for cushioning with hyperbolic tangent elasticity. 
See equation (1.13.3). 

to the force that linear cushioning would transmit under the conditions 
specified. 

To find the value of bo which yields the minimum value of acceleration 
for a given maximum displacement, differentiate (1.13.4) with respect to ko 
and set the result equal to zero; 

sech2 = o. (1,13.6) 
Fo 

This is satisfied by ^ 00, which represents the rectangular load dis- 
placement curve and confirms the conclusion reached from energy 
considerations. 

[Hi 

y 

HH 
HiiiiHi 
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Taking the limit of (1.13.4) as ^, we find the optimum acceleration 
to be 

r' — (1.13.7) 

The corresponding maximum displacement is found, from (1.13.2) to be 

W*h '' (1.13.8) 
To G' 

iiiiii 

2.5 3.0 2.0 1.5 I c 

w2g0 

Fig. 1.13.2—Maximum acceleration for cushioning with hyperbolic tangent elasticity. 
See equation (1.13.5). 

1.14 Minimum Space Requirements for Various Classes of 
Cushioning 

It is interesting to compare the minimum amount of space for displace- 
ment that can be attained with the various kinds of cushioning that have 
been discussed. 

Hyperbolic Tangent Elasticity 

Linear Elasticity 

Tangent Elasticity 

"m — 

dm = 

dL = 

2h 
Gm 

3.9h 

gL 
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Cubic elasticity will give a dm somewhat more or less than 2h/Gm depending 
upon whether the parameter r is positive or negative. 

It is seen that a factor of almost four can be gained, in the linear dimensions 
of the cushioning space required, by replacing the tangent type of cushioning 
with the hyperbolic tangent type. 

There are several ways of obtaining a load-displacement curve with a 
shape similar to the hyperbolic tangent curve. One of the most interesting 
is suggested by the fact that the load-displacement curve of a strut has 
approximately this shape. Hence a bristle brush has the proper 
characteristics. 

TABLE II 

1 2 3 4 5 6 7 8 

n A(X!)n (*l)n Pn AA„ = JA(X2),. X (Pn + P„-l) A„ = An-l 
+ AAn 

, A„ 
"" = W* G" = r, 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.500 
0.100 
0.100 
0.100 
0.100 
0.100 
0.050 
0.050 
0.050 
0.025 
0.025 
0.0125 
0.0125 

0 
0.500 
0.600 
0.700 
0.800 
0.900 
1 .000 
1.050 
1.100 
1.150 
1.175 
1.200 
1.2125 
1.225 

0 
120 
150 
205 
290 
410 
585 
730 
950 

1370 
1680 
2240 
2620 
3200 

0 
30 
13.5 
17.0 
24,8 
35.0 
49.8 
32.9 
42.0 
58.0 
38.1 
49.0 
30.4 
36.4 

0 
30 
43.5 
61.3 
86.1 

121.1 
170.9 
203.8 
245.8 
303.8 
341.9 
390.9 
421.3 
457.7 

0 
1.6 
2.4 
3.3 
4.7 
6.6 
9.2 

11.1 
13.3 
16.4 
18.5 
21.1 
22.8 
24.7 

0 
6.5 
8.1 

11.1 
15.7 
22.2 
31.6 
39.5 
51.4 
74.0 
91.0 

121.0 
141.5 
173.0 

1.15 Numerical Method for Analyzing Class F Cushioning 
The numerical method to be described is one that has been adapted from 

a graphical one used by the Committee on Packing and Handling of Radio 
Valves of the British Radio Board. The method has advantages of sim- 
plicity in concept and ease of application, especially when the load-displace- 
ment curve of the cushioning does not resemble closely one of the Classes A 
to E described above. It has the disadvantage that it does not yield, 
directly, numerical factors by which the spring rate or depth of cushioning 
should be changed in the event that the analysis reveals inadequate or more 
than adequate protection. 

The method is based on the fact that the area under the load-displace- 
ment curve of the cushioning represents the energy stored in, or absorbed 
by, the cushion. The total amount of energy that must be transferred is 
equal to the product of the weight (IF2) of the suspended item and the 
height (//) of drop. By finding the abscissa (.Vo) and its ordinate (P) which 
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include an area WJi, the maximum displacement is immediately x* and the 
maximum acceleration is the quotient P/W2, in accordance with equations 
(1.2.15) and (1.2.16). 

As actually apphed in the present instance, the British method was 
modified slightly to make the procedure a routine numerical one. The 
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Fig. 1.15.1—Experimental load-displacement curve for Table II. 

computing form is given in detail in Table II, in which the data are taken 
from an experimental load-displacement curve (Fig. 1.15.1) for the end spring 
pads of a vacuum tube package. The load-displacement data are listed in 
Columns 3 and 4 of Table II. The meaning of each column in the table is as 
follows. 
Column 1. «(= 1, 2, 3 - • •) is the number that identifies the displacement 

(and corresponding load) up to which the area under the load- 
displacement curve is to be calculated. 
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Column 2. A^n is the increment of displacement between (a^n-i and 
{x^n ■ A(.%-2)„ = (^2)n - (^n-i, see Fig. 1.15.2. Note that, 
as the curve becomes steeper, A(.V2)n is taken smaller for better 
accuracy. 

Column 3. {x^)n is the displacement associated with the «th point (see Fig. 
1.15.2). 

Column 4. Pn is the load that produces displacement {xi)n . 

n-1 

N 
AA AA AA AA AA 

(X,) 

A(X2)1 

(X2)2 (><2)3<><2)4 |\p<2)n 
^—4^ ur-(x2x,.1 VA(X2) A(X2)? A(X2)3 A(X2J 

X2 = DISPLACEMENT 

Fig. 1.15.2—Graphical illustration of numerical method of calculating area under load- 
displacement curve. See Table II. 

Column 5. AAn = %A(x2)n(Pn-i + Pn) is the area of the trapezoid with 
altitude A^n and bases P„_i and P„ . It is approximately the 
energy absorbed by the cushioning in displacing from (0:2)„_i 
to (0:2) „ . 

Column 6. Aln is the sum of all the trapezoidal areas from ^ = 0 to .^2 = 
(0:2)n . It is approximately the total energy the cushioning can 
absorb in displacing an amount (a^n beginning at zero dis- 
placement. Note that ylo is always equal to zero. 

Column 7. //„ = A„/W2 is the height of fall that will cause the cushioning 
to displace an amount (a^n • I" Table II, W2 = 18.5 pounds. 

Column 8. Gn = Pn/Wo is the maximum acceleration experienced by the 
suspended mass when dropped from a height //„ . 
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Fig. 1.15.3—Maximum acceleration vs. height of drop for an 18.5 pound article supported 
on cushioning with the load-displacement curve of Fig. 1.15.1. Sec Table II. 

From the last two columns of the table a curve of height of drop vs. the 
corresponding acceleration may be plotted as in Fig. 1.15.3. 

PART II 

ACCELERATION-TIME RELATIONS 

2.1 Introduction 

In Part I we were concerned primarily with the maximum acceleration of 
the packaged item. In this part we shall study the details of the variation 
of acceleration with time in order to have this information available for our 
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study, in Part III, of its influence on the response of elements of the packaged 
item. 

The first case to be considered will be the simple single mass and linear 
spring example described in Sections 1.2 and 1.3. Following this the 
phenomenon of rebound of the package will be considered. The influence 
of velocity damping and dry friction will be studied; and, finally, the effects 
of non-linearity of the cushion elasticity on the acceleration-time relation 
will be investigated. 

2.2 Acceleration-time Relation for Linear Elasticity 

Returning to the elementary example studied in Sections 1.2 and 1.3, we 
first write the equation of motion for the mass f»2 , on its linear spring of 
spring rate kz (see Fig. 1.2.1.). Equation (1.2.3) becomes 

vizx* + kiXo = nizg. (2.2.1) 

Using the initial conditions 

Nt=o = 0, (2.2.2) 

[»2]«=o = y/lgh, (2.2.3) 

the solution of (2.2.1) is 

^ _ Vf + iuleh s.n {oiil_a) + L (2 2 4) 

Wo W2 

or 

/WS Wo x2 = \/ ji+ dl sin (coot - a) + —2, (2.2.5) 

where 

- = l/| == I (2-2-6) 

and 
o n 

a = tan-1 7=7 = tan-1 r—f (2.2.7) 
wiV2gh ko dm 

wo is the circular frequency,/o is the frequency and To is the period of vibra- 
tion of the mass Vh on its spring; dm has the same definition as in Section 1.3 
(equation (1.3.1)). 

Now, W2/ko is the static displacement of the mass mo on its spring. This 
is usually very small in comparison with the maximum displacement (dm) 
during impact. Hence Wi/ko will be neglected, and (2.2.5) becomes 

Xo = dm sin uot. (2.2.8) 
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Differentiating (2.2.8) twice with respect to t, we find, for the acceleration 

^2 = —Uidm sin uit = —102"%/2gh sin uzt. (2.2.9) 

Hence the absolute magnitude of the maximum acceleration is 

^   | ^2 [max _ (Oj dm _ /2/^2 ^2 2 10) 
g g y w* 

as before. 

Gm AAAAAAyVW. 

Fig. 2.2.1 Fig. 2.2.2 
Fig. 2.2.1—Half-sine-wave pulse acceleration. See equation (2.2.9). 

Fig. 2.2.2—Oscillogram of a half-sine-wave pulse obtained with a piezo-crystal 
accelerometer. 

Equation (2.2.9) shows that the acceleration varies sinusoidally with time. 
It rises from its initial zero value to its maximum in a time7r/2co2, at which 
time the displacement also reaches its maximum value. The acceleration 
returns to zero again at time ir/wz . At this time the displacement is also 
zero. This is the end of the range of applicability of equation (2.2.9); for 
when I becomes slightly greater than t/(02 , a tension in the spring is required. 
Since no mechanism, such as a large mass W3 (Fig. 0.2.2), has been supplied, 
to allow a tension in the spring to develop, the system will rebound from the 
floor at the end of the half period 77/(02 • The acceleration is thus a half- 
sinusoidal pulse of duration 7r/co2 = 7V2 and amplitude Gvlg as illustrated 
in Fig. 2.2.1. An oscillogram of such a pulse obtained with a piezo-crystal 
accelerometer is shown in Fig. 2.2.2. 

2.3 Package Rebound. 

The presence of the mass of an outer container will affect the acceleration 
after the first half cycle of displacement. The outer container is represented 
by the mass ms in the general idealized system illustrated in Fig. 0.2.2 and in 
the simpler system (Fig. 2.3.1) that we shall consider now. 
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Two pairs of equations are necessary to describe the action of the system; 
one pair applies during the time of contact of with the floor and the 
second pair applies if rebound occurs. 

The mass W3 is assumed to be inelastic (see Section 0.2) so that, during the 
interval of its contact with the floor, the equation of motion for mt will be 
the same as before (2.2.1). In addition, there will be an equation of equili- 
brium for the mass m3 : 

R = hxz + msg , 

where R is the upward force exerted by the floor on nts. 

(2.3.1) 

m2 

1 

m3 

*77777777777-777 
1 
X3 

Fig. 2.3.1—Two-mass system representing packaged w tide, linear cushioning and 
outer container. 

Equations (2.3.1) and (2.2.1) will hold as long as dispositive. Tofind out 
when d > 0, solve (2.2.1) for and substitute in (2.3.1): 

d — Wi -f- Wa — miXi . (2.3.2) 

That is, a necessary condition for rebound is that the mass of the cushioned 
article, multiplied by its maximum acceleration, exceeds the total weight 
of the package. The condition for rebound may be written 

Gm > 
W2 + Wa 

Ws 
(2.3.3) 

This is a necessary, but not a sufficient, condition for rebound because there 
will be energy losses as a result of damping and permanent deformation. 
Gm will generally have to be considerably greater than the right hand side 
of (2.3.3) for rebound to occur. 

If rebound does not occur, equation (2.2.9) continues to apply, except for 
damping which will be considered in Section 2.5. 
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2.4 Motion After Rebound 

If rebound occurs, the equations of motion for the two masses, m2 and W3, 
are 

mzxi + kiix-i — X3) = nizg, (2.4.1) 

1)13X3 — k 2(^X2 — xa) — "hg- (2.4.2) 

Multiplying (2.4.1) by W3 and (2.4.2) by m* and subtracting, we find 

my + kzy = 0, (2.4.3) 

where 
y = X2 — ^"3 > (2.4.4) 

m = 
W2W3 (2.4.5) 

fWa + W3 

Fig 2 4 1—Oscillogram illustrating the half-sine pulse followed by the higher frequency, 
lower amplitude vibration of the packaged article in a rebounding package. 

Equation (2.4.3) is the equation governing the vibration of the two-mass 
system as a simple oscillator. The circular frequency of the vibration is 

c = i A2 (2.4.6) 
\ m 

and it may be noticed that this frequency is always greater than 012 (equation 
(2.2.6)). This fact is important in estimating the effect of vibrations on 
elements of the packaged item (Section 3.5). 

co is also the frequency of vibration of the packaged article during the 
interval of free fall. This vibration (usually of small amplitude) is initiated 
by the sudden release of the dead load displacement of the packaged article. 

As an intermediate step in obtaining the acceleration after rebound we 
shall find the magnitude of the relative displacement (y) of the two masses. 
To do this it is necessary to solve equation (2.4.3) with the appropriate 
boundary conditions. Calling /r the time at which W3 leaves the floor, we 
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must find y and y at t = /r. Since m3 is motionless at / = /r, the relative 
displacement and velocity at that time are identical with x* and .To respec- 
tively. The former is simply the stretch of the spring necessary to just 
pull the mass nis off the floor, i.e., 

Ml.,. = W,.,. = (2.4.7) 

To lind the velocity at / = /r, substitute (2.4.7) in (2.2.4) and also substi- 
tute tr for t in the latter. This gives an equation for determining/r. Then, 
returning to (2.2.4), differentiate it once to obtain and substitute for I the 
value tr just found. The result is 

fel,.,. = M,-i, - - . (2.4.8) 

The solution of (2.4.3) with initial conditions (2.4.7) and (2.4.8) is 

y = -i yV sin (co/ - f), (2.4.9) 

where f = co/r — tan-1 . 

We are now in a position to find the acceleration of the packaged item 
after rebound. Substitute y of (2.4.9) for x* — X3 in (2.4.1) to obtain 

*2 = g+- A/lgh - sin (co/ - f). (2.4.10) 
co y ki 

To obtain a simple formula for the ratio of the maximum accelerations 
after and before rebound, let us assume that both are much greater than 
gravitational acceleration. Then if 

Gr = maximum number of g's after rebound, (maximum of (2.4.10)) 

Gm = 4/ = maximum number of g's before rebound, 
y h 2 

we find, from (2.4.10), neglecting the term g outside the radical, 

tfl =    a/i — (2 4 11) 
Gm W2 + W3 V 2hh" ( 

Hence, the maximum acceleration after rebound is always less than the 
maximum acceleration before rebound. Therefore, conditions after re- 
bound need only be examined when the frequency after rebound (see equa- 
tion (2.4.6)) is near the natural frequency of vibration of a critical element 
of the packaged item (see Section 3.5). 
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The complete acceleration history of a rebounding package with un- 
damped linear cushioning is thus a half sine wave pulse of amplitude Gm = 
■\/Ihki/Wz and duration 7r/a)2 followed by an oscillating acceleration of 
amplitude given by (2.4.11) and frequency given by (2.4.6). Such a wave 
shape is shown in Fig. 2.4.1. 

2.5 Influence of Damping on Acceleration 

The presence of damping in cushioning is always desirable to prevent the 
building up of large amplitudes as a result of periodic disturbances. How- 
ever, damping also has an effect on the maximum acceleration that is at- 
tained in a drop test. From the latter point of view there is an optimum 
amount of damping and an amount that should not be exceeded if the maxi- 
mum undamped acceleration is not to be exceeded. 

We shall consider the case of a linear cushion with damping proportional 
to velocity. The system is represented in Fig. 2.5.1. With the addition 

///'/////"> ~7~7 
Fig. 2.5.1—Idealization of linear cushioning with velocity damping. 

of the damping term the equation of motion of m-i, during contact of the 
package with the floor, is 

nizXi d- C2X2 "F ^2^2 =:: 0, (2.5.1) 

in which C2 is the damping coefficient of the cushioning. Equation (2.5.1) 
is more conveniently expressed as 

(2.5.2) d'2 ~F 2^2(^2X2 "F 022X2 — 0, 

where 

0J2 

02 = 
C2 

2^2032 

(2.5.3) 

(2.5.4) 

052 is the undamped circular frequency of vibration of W2 on its spring and 02 
is the fraction of critical damping. 02 = Q means no damping and 02 = 1 
means just enough damping so that there will be no oscillation if the pack- 
aged article is displaced and released. 
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The acceleration solution of (2.5.2), with the initial conditions of the drop 
test (see (2.2.2) and (2.2.3)) is 

x-i = — cos (a,., ^-y/l — /3o + 7) (2.5.5) 
Vi - pi 

where 

tan 7 = 
2pl - 1 

2p2v^pr 
(2.5.6) 

\ 

\ 
V 
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/ .5 1.0 ^2.5 
s 

3.0 \ 3.5 
A 

% 4,5 5.0 
'13? = ,75 
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Fig. 2.5.2—Acceleration-time curves for linear cushioning with various amounts of 
damping (no rebound). See equation (2.5.5). 

The acceleration is thus a damped sinusoid with an abruptly reached 
initial value whose magnitude depends upon the amount of damping. For 
small damping, the initial acceleration is small and then the acceleration 
increases, but never reaches the value that would be reached without any 
damping. For high damping {@2 > 0.5) the initial value is greater than 
without any damping and falls off thereafter. Figure 2.5.2 shows the shapes 
of the acceleration time curves for several values of P2. All of the curves 
are for no rebound. It may be seen, from equation (2.5.5) and Fig. 2.5.2 
that the addition of damping changes the shape of the acceleration-time 
relation in three ways. First, a damped sinusoid replaces the pure sinusoid; 
second, the frequency is reduced; and, third, the initial phase is changed. 

It is useful to consider in detail the effect of damping on maximum accel- 
eration. Let 

Gm = maximum number of g's with damping 

Go = /</ irr2 = maximum number of g's without damping. 
y W2 
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Fig. 2.5.3—Influence of velocity damping on maximum acceleration. See equation (2.5.5). 

Then, from (2.5.5), aU = 0 

Gm 
Go 

= 2/3o 

and, after I = 0, 
G 
Go 
^ = 

where /„., the time at which the maximum occurs, is given by 

tan C02 /», /1—^2 = (1 -^)V1 -p\. 
v 1 ^ ^2(3 - 4^2) 

(2.5.7) 

(2.5.8) 

(2.5.9) 

The largest value of Gm/Go from (2.5.7) and (2.5.8) is plotted against /?2 
in Fig. 2.5.3. It is shown there that, as the damping is increased from zero, 
the maximum acceleration first decreases to a minimum of 80% of Go and 
then increases to Go at 50% of critical damping. In this interval the maxi- 
mum acceleration occurs after / = 0. For damping greater than ^2 — 
0.5 the maximum acceleration occurs at the instant of contact and increases 
in direct proportion to fa . 

2.6 Influence of Damping on Rebound 

In considering rebound without damping, it was found that rebound does 
not occur unless the product of the maximum acceleration and the sus- 
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pended mass exceeds the total weight of the package. It was not necessary 
to distinguish between maximum acceleration on the first downstroke and 
first upstroke, since these are the same when there is no damping. With 
damping, however, the maximum acceleration on the first downstroke is 

z 0 
z 0 
i- < < £E tE UI UJ _l _1 UJ U O a u O < < 
Q UJ UJ Q. O z cc < f- U) CL 
Q Z 

D 3 
s Z 3 3 S Z 
1 Z z 

t.o 

0.8 

0.6 

0,4 

0.2 
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\ 

\ 
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v 

\ 
\ 

S 
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\ 

.4 .6 

#2 

1.0 

Fig. 2.6.1—Influence of velocity damping on maximum upstroke acceleration. See 
equation (2.5.5). 

greater than that on the first upstroke (Fig. 2.5.2) and it is the latter that 
controls rebound. Hence damping inhibits rebound. 

For example, with 50% of critical damping = 0.5), equations (2.5.8) 
and (2.5.9) and Fig. 2.5.2 show that for the first downstroke Gm/Go = 1 
while for the first upstroke Gm/Go = 0,164. Hence the tendency to rebound 
is reduced by a factor of six when damping to the extent of 50% of critical 
is added to an undamped package. 

The ratio of the maximum acceleration on the first upstroke to the maxi- 
mum undamped acceleration is plotted in Fig. 2.6.1 for various values of fio ■ 
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2.7 Influence of Dry Friction on Acceleration and Displacement 

By "dry friction" is meant friction that is independent of velocity except 
for sign. During contact of the package with the floor the motion of Wa 
might be opposed by a constant friction force F. Such a force is developed, 
for example, in a package with corrugated spring pad cushioning by rubbing 
against the side and end pads in a top or bottom drop. A typical idealized 

Fig. 2.7.1—Load vs. displacement for cushioning with dry friction. 

load-displacement curve is shown in Fig. 2.7.1. For the first downstroke 
of mi, the equation of motion of mi is 

p 

miXi + kiXi = —F. (2.7.1) 

With initial conditions 

[^2]<=o = 0, = V 2gh (2.7.2) 

the solution of (2.7.1) is 

Xi = 
F 
ki 

(2.7.3) 

where 

F F 
tan a = 

ki do Wi Go 
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da and Go are the maximum displacement and acceleration that would obtain 
if no friction were present. From (2.7.2) the maximum displacement with 
friction is 

"—lA+dM,- (2-7-4) 

Hence, the presence of friction decreases the maximum displacement since 
dm do. 

From (2.7.3) the acceleration is 

^2 
= - |/GS + (^J sin M + «), (2.7.5) 

so that the maximum acceleration is 

G„ = y/G5 + (0> (2.7.6) 

which is greater than the maximum acceleration without friction. 
It would appear, at first glance, that cushioning with friction always 

gives a greater acceleration than the corresponding cushioning without 
friction. However, the reverse is actually true provided we allow the same 
displacement in both cases. This may be done, as may be seen from (2.7.4), 
by decreasing the spring rate in the cushioning with friction to 

2F 
kr = k2 - (2.7.7) 

Uo 

The maximum acceleration in the cushioning with friction is then, from 
(2.7.6), 

Gr = Go — 0 ? ^ 3 (2.7.8) 

That is, for the same maximum displacement, the maximum acceleration 
is reduced by the addition of dry friction. 

2.8 Acceleration-Time Relation for Cubic Elasticity 

As an example of the effect of nonlinearity of the cushioning on the shape 
of the acceleration-time function, the case of cubic elasticity (Class B) 
will be analyzed. The system to be considered is illustrated in Fig. 1.2.1, 
and the load-displacement relation for the cushioning is given by 

P = k0X2 + rxl. (2.8.1) 
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Substituting (2.8.1) in (1.2.13) and performing the indicated integration, 
we find 

.2 , , ^02 r 4 ^ = 28* - 

Remembering that a-2 = dx^/dt, we solve (2.8.2) for dl\ 

dxi 
dl = 

l/ 
2gJi — r-— x;] 6 vh ' 2^2 

i,7 

(2.8.2) 

(2.8.3) 

\ 
-\ 

\ 
\ 

C 8 10 12 14 16 18 20 

Fig. 2.8.1—Duration of acceleration pulse for cushioning with cubic elasticity. See 
equation (2.8.10). 

Then, with the initial condition x* = 0 when / = 0, the integral of (2.8.3) is 

f d* {2XA) r'1 dxz rx- 

Jo X2 Jo 

To integrate (2.8.4), let 

Z = 

where 

■Vo 

Vk2(xl - dm)2 + dl' 
(2.8.5) 
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Fig. 2.8.2—Acceleration-time curves for cushioning with cubic elasticity. See 
equation (2.8.14). 

and B and dm are as given in Part I: 
4W2 fir 

B = Nr (L5-3) 

^ = 4/t/|(-i + VTT^)- (1-5.4) 
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Then (2.8.4) becomes 

, - 1 T dZ (2 8 7) 
a)c Jo \/(l — 22)(1 — k2Z2)' 

in which the integral is the elliptic integral of the first kind (see Hancock 
"Elliptic Integrals," John Wiley and Sons, New York, 1917). In (2.8.7), 

o)c = o)o (1 + -S)1'4, (2.8.8) 

where uo = y/h/mi is the radian frequency that would obtain if the cushion- 
ing were linear with spring rate • The motion for the linear case has a 
half period, or pulse duration ro = tt/ojo . The half-period (ra) of the motion 
with cubic elasticity is twice the time required for ^2 to increase from 0 
to dm. 

From 2.8.5 

[Zll2=0 = 0' (2.8.9) 
[Z]l2=dm = 1. 

Hence, from (2.8.7), the half-period is 

2 r1 dZ IK 
T2 = o)c io Vd - ^)(1 - k2Z2) - 0,0 

where K is the complete elliptic integral of the first kind. The duration of 
the acceleration pulse is therefore 2K/wc. We can define a radian frequency 
of the acceleration by 

TT 71-0)0 7rO)o(l + -B)1'4 /O Q m 
032 ~ T2~ 2K 2K 

The ratio 0)0/0)2 (i.e., ra/ro) is plotted in Fig. 2.8.1 which illustrates how the 
pulse duration decreases as the parameter B increases. Hence, for a given 
cushioning with cubic elasticity, the pulse duration decreases as the height 
of drop increases. This is in contrast to the linear case in which the dura- 
tion is independent of the height of drop. 

To find the acceleration *2, we return to (2.8.7) and write it in the form 
of an elliptic function: 

sno)£^ = Z. (2.8.12) 

Substituting the expression for Z given in (2.8.5) and solving for ^2, we find 

*2 = dmcn((i)ct — K). (2.8.13) 

Finally, differentiating (2.8.13) twice with respect to /, we find the accelera- 
tion to be 

^2 = ucdm[2k2sn2(o:ct - K) -l]c«M - K). (2.8.14) 
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The ratio —xz/Gog is plotted in Fig. 2.8.2 against a radian coordinate 
(cooO for several values of i^. It may be seen that, as B increases, the maxi- 
mum acceleration increases, the duration of the pulse decreases (see Fig. 
2.8.1) and the acceleration-time curve becomes bell shaped. For reference, 
the sinusoid for the linear case (B = 0) is plotted in the figure. 

Figure 2.8.2 is plotted for perfect rebound. If rebound does not occur, 
the curves continue, mirrored in the time axis, so as to form a periodic 
vibration of period 2r2. 

2.9 Acceleration-Time Relation for Tangent Elasticity 

In this section the effect of tangent elasticity on the shape of the accelera- 
tion-time relation will be studied. The shape of the load displacement 
curve is given by 

(1,4.3) 
TT Mb 

The system considered is again that shown in Fig. 1.2.1. Referring to the 
energy equation (1.2.13): 

^ + l" Pdx, = mtgh, (1.2.13) 
A Jo 

we substitute the above value of P and perform the indicated integration to 
obtain, for the velocity, 

Then, as in Section 2.8, 
C2 dx2 r*2 dX2 r2 dxi r2 dx2 

I = — = / / Q. (2.9.2) 
Jo X2 Jo . A , . 8^o dl TTXi 

V 2gh + ^ cos 2db 

and the half-period (72) of the motion is again twice the time required 
for X2 to increase from 0 to </m . Hence 

rdm dx2 
= 2l / Zhdl T,Xt 

(2-9'3) 

y2«"+^loscosM1 

To 

where, from Section 1.9, 

2db 

[-?©"] 
= — cos exp | —— ( T ) |. (1.9.5) 
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The radian frequency of the acceleration is 

TT 
C02 = — 

T2 

and this is to be compared with the frequency 

tt . /^o wo - - = 4/ —- 
TO \ W2 

that would obtain if the cushioning were linear with spring rate ko • The 
ratio ajo/w2 (i.e., t2/to) was obtained by numerical integration of (2.9.3) 
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Fig. 2.9.1—Duration of acceleration pulse for cushioning with tangent elasticity. See 
equation (2.9.3). 

and is plotted in Fig. 2.9.1 against the ratio db/do. The figure shows that 
for db/d0 < 1, the pulse duration varies almost linearly with db/do. As the 
bottoming distance becomes larger than that required for linear cushioning 
with spring rate yfco, the pulse duration approaches asymptotically the 
duration tt/ojo for the linear case. 

As db/do decreases, the pulse duration becomes shorter, but the maximum 
acceleration increases, in accordance with equation (1.9.4) and Fig. 1.9.1. 
The shapes of the acceleration-time curves for several values of db/do are 
illustrated in Fig. 2.9.2. They are more sharply peaked than the corre- 
sponding curves for cubic elasticity (Fig. 2.8.2) as might be expected from 
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the fact that the load-displacement curve for tangent elasticity rises more 
rapidly than that for cubic elasticity; that is, the bottoming is harder. 

'db 1 
do •75 

1 \ \ 

/ \ 

// \ \ db 

// 
0 

V \ V 

Mb 
k ^ 

oo 

\ 
v \ \ \k 

\ ■v \ \S \ 
O .5 1,0 1.5 20 2.5 3.0 

Clot 
Fig. 2.9.2—Acceleration-time curves for cushioning with tangent elasticity. 

The curves of Fig. 2.9.2 were obtained by numerical integration of equa- 
tion (2.9.2), to obtain x* as a function of t, following which these values 
were substituted in the equation 

2kodb irXz n vhxi d tan oT = 0 

TT Zdo 

to obtain X2 . It may be observed that the maximum values of the curves 
are the values dictated by equation (1.9.4). 
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In performing the numerical integrations of equations (2.9.2) and (2.9.3), 
it is found that the integrand becomes infinite when .^2 = dm since at this 
point the velocity is zero. In order to avoid this difficulty, it was assumed1 

that, for a small distance in the neighborhood of dm , the acceleration is 
constant with magnitude Gmg as obtained from equation (1.9.4). The 
procedure is described in further detail in Section 2.12. 

Figure 2.9.2 gives the acceleration-time curve for perfect rebound. If 
rebound does not occur, the acceleration is a periodic vibration, each suc- 
cessive half period having the shape shown, with alternating sign. 

2.10 Acceleration-Time Relation for Abrupt Bottoming 

By abrupt bottoming, we mean bilinear cushioning (Class D) as treated 
in Section 1.12. The load-displacement relation is (see equation (1.4.4) 
and Fig. 1.4.4) 

P = koX2 0^X2^ da 

P = khX2 — {h — ko)db X2>ds] 

Considering, again, the system illustrated in Fig. 1.2.1, the equation of 
motion of mi , before bottoming, is 

W2 X2 + ^o-T2 = 0 0 ^ X2 ^ dg (2.10.1) 

with initial conditions 

[a;2]/=o = 0, [.T2]<=O = V2gh. (2.10.2) 

The solution of (2.10.1) is then 

= Sin coo/, O^xi-^d,, (2.10.3) 

(1.4.4) 

X2 = 
COO 

where 

fh. (2.10.4) 0,0 W2 

The time (/,) at which X2 reaches ds is found from (2.10.3): 

1 . _i ^odg 1 . /o m e\ 
/. = — sin —7^=r = - sin t , (2.10.5) 

coo V 2gn coo "0 

where 

, . /2W2h do = _ . /nvTh 
" V k0 

1 See Timoshenko, "Vibration problems in Engineering," D. Van Nostrand Co.. New 
Y ork, Second Edition (1937) page 123. 
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i.e., do is the displacement that would have been reached if the spring rate 
remained constant. 

The velocity of ma at time ta is 

= a/2gh cos wo/, = /J/Z2gh^\ — (2.10.6) 

If > uo d,, the displacement will exceed ds and the equation of 
motion becomes 

m&i + ktXi — {h — ko)d. = 0, X2 ^ d,,. (2.10.7) 

The solution of (2.10.7), with initial conditions 

= dt 

(2.10.8) 
tel,.,. = ^/2g/,(l-|), 

is 

^2 = 
. /kb dl / . , , 

irr r.+^(1-fej5in(u'' + a 
— COfc/,) 

+ 
(2.10.9) 

^2 ^ d. 

where 

tan" a = 

-d-) 

0)b = 

(2.10.10) 

By differentiating (2.10.3) and (2.10.9) twice with respect to /, the 
accelerations for the two regions are found to be 

= — Gog sin ojq/, 0 ^ a-a ^ , (2.10.11) 

Go? i/t+K1 ~l)sin 

•^2 > rf., 

where 

Go — 
_ / 2/^o 

T 1^2 • 

(2.10.12) 

(2.10.13) 

Typical shapes of the acceleration pulse represented by equations (2.10.11) 
and (2.10.12) are shown in Fig. 2.10.1. The curves are drawn for d,/do = 
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0.5 and for several values of kb/ko. The peak values of the curves are the 
same as given by equation (1.12.3). The curve marked kb/ko = 1 is the 
sinusoid of the linear case with duration 

to = —. (2.10.14) 

* 
A "b = 100 

r \ ^ i - 
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Fig. 2.10.1—Acceleration-time curves for cushioning with bi-linear elasticity. 

= 0.5. See equations (2.10.11) and (2.10.12). 

As before, if the package does not rebound, the acceleration shown is mir- 
rored in the time axis after each half cycle, to form a vibration of period It* . 

It is useful to know the duration of the complete pulse {aa! in Fig. 2.10.1) 
and also the duration of bottoming (66' in Fig. 2.10.1). Calling the former 
to and the latter tb , we have, from equations (2.10.11) and (2.10.12) 
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Fig. 2.10.2—Pulse durations for cushioning with bi-linear elasticity. See equations 
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T! = ? Sin- ^ + i A 
T oo v kb TO 

TB 
TO 

1 — - tan 

(i-). 

1 — - tan 

(i-). 

(2.10.15) 

(2.10.16) 

These two equations are plotted in Fig. 2.10.2 for several values of kb/h . 

2.11 Acceleration-Time Relation for Hyperbolic Tangent 
Elasticity 

The relation between acceleration and time for hyperbolic tangent 
elasticity is found by the same procedure that was used for tangent elasticity 
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in Section 2.9. The system considered is that shown in Fig. 1.2.1 and the 
load displacement curve of the cushioning is given by 

P — Po tanh . 
Po 

Substituting the above expression for P in the energy equation (1.2.13), we 
find the velocity to be 

= V^-Slogcoshi?- (2-iu) 

Then, as before, 

/= (2,ii.2) 
Jo Xi 

and the half period fo) of the motion is twice the time required for *2 to 
increase from 0 to , or 

T2 = 2 [dm ~~, (2.11.3) 
Jo Xi 

where, from Section 1.13, 

. doPo ,-1 /iFlGoN /, 1-7-in 

The radian frequency of the acceleration is defined as 

TT 
0)2 — — 

T2 

and this is to be compared with the frequency 

^ _ A /h . ^ O)o = - = 4/ — 
ro y nh 

that would obtain if the cushioning had a constant spring rate equal to the 
initial spring rate (ko) of the hyperbolic tangent cushioning. The ratio 
0)0/0)2 (or T2/T0) is plotted, in Fig. 2.11.1, against the dimensionless param- 
eter Po/W-iGo (see Section 1.13). It may be observed that the pulse 
duration becomes very long when P0/W2G0 is small, i.e., when the horizontal 
portion of the load displacement curve (Fig. 1.4.5) comes into play. The 
influence on the shape of the acceleration-time curve is illustrated in Fig. 
2.11.2. The curve marked P0/W2G0 —> =© is the sinusoid for the linear 
case. For small values of Po/W&o the curve approaches a square wave. 
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Fig. 2.11.1—Duration of acceleration pulse for cushioning with hyperbolic 
tangent elasticity. 

2.12 Numerical Procedure for Finding Acceleration-Time Relation 
for Class F Cushioning 

When the load-displacement curve does not resemble one of Classes A to 
E, the acceleration-time relation may be found by numerical integration. 
Combining the energy equation, 

mo Xz 
Jo 

P dxo = m2gh, (1.2.13) 
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with the equation relating time and velocity, 

r12 dxi r12 dX2 

Jo Xi ' 

we find 

t = 
W* rX2 

2g Jo 

dXi 

1/ ^ - r 
P dxo 

(2.12.1) 

(2.12.2) 

As an example, consider the problem of a 15-pound article supported on 
cushioning with the load-displacement curve shown in Fig. 2.12.1. The 
package is to be dropped from a height of 3 feet. The computations are 

X2 
G0g 

Po 
W2G0 >- OO 

N 

/^,0 

\ 
0 
2G0 

.5 
\\ 

\ r 
p 0 \ \ \ w 2gO \ \ 

\ \ \ \ 1 

— — \ 

\ 1 

Wot 

Fig. 2.11.2—Acceleration-time curves for cushioning with hyperbolic tangent elasticity. 

given in detail in Tables III and IV. The headings of Columns (1) to (8) 
of Table III are the same as in Table II, Section 1.15. An is the integral 
under the radical of equation (2.12.2). Column (10) of lable III is the 
integrand of Equation (2.12.2), i.e., it is proportional to the reciprocal 
of the velocity expressed as a function of displacement. The function 
is plotted in Fig. 2.12.2 and its integration is performed in Table IV. In 
columns (11), (12) and (13), intervals of x* are chosen to suit the shape of 
the curve. The values for column (14) are taken from column (10). Col- 
umns (15) and (16) perform the same operations on the integrand 
(Wih - An)'* that are performed in Columns (5) and (6) of Table III on 
the integrand P. 
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Fig. 2.12.1—A load displacement curve for Class F cushioning. 
TABLE III 

(i) (2) (3) (4) (S) (6) (7) (8) (9) (10) 

(*j)n Pn ^fVn + Pn-O , An 
= m Will -An 

i 
VWih - An 

0 0 0 0 0 0 0 0 0 540 0.0431 
1 .20 0.2 105 10.5 10.5 0.7 7.0 529.5 0.0435 
2 .20 0,4 155 26.0 36.5 2.4 10.3 503.5 0.0446 
3 .20 0,6 192 34.7 71.2 4.8 12.8 468.8 0.0462 
4 .20 0.8 217 40.9 112.1 7.5 14.5 427.9 0.0483 
5 .20 1 0 237 45.4 157.5 10.5 15.8 382.5 0.0511 
6 .20 1.2 257 49.4 206.9 13.9 17.1 333.1 0.0547 
7 .20 1 4 277 52.9 259.8 17.3 18.5 280.2 0.0597 
8 .20 1 6 305 58.2 318.0 21.2 20.3 222.0 0.0671 
9 .20 1 .8 342 64.7 382.7 25.5 22.8 157.3 0.0798 

10 .20 2.0 392 73.4 456.1 30.4 26.1 83.9 0.109 
11 .05 2,05 405 19.9 476.0 31.8 27.0 64.0 0.125 
12 .05 2.10 422 20.7 496.7 33.2 28.1 43.3 0.152 
13 .05 2.15 440 21.6 518.3 34.6 29.4 21.7 0.215 
14 .01 2.16 445 4.42 522.7 34.8 29.7 17.3 0.240 
15 .01 2.17 4.50 4.48 527.2 35.2 30.0 12.8 0.279 
Id .01 2,18 455 4.52 531.7 35.5 30.3 8.3 0.347 
17 .01 2.19 457 4.56 536.3 35.8 30.5 3.7 0.521 
18 .01 2.20 462 4.60 540.9 36.1 30.8 0 CO 
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TABLE IV 

(11) 

n 

(12) (13) (14) (15) (16) (17) 

A(xj)n (X5)n 
fn — 1 ^(/n+Zn-i) 

Dn = 
r (X2)n dX2 Dn X V J 

VlCs/l -An jo VWih—An 

0 0 0 0.0431 0 0 0 
1 0.4 0.4 0.0446 0.0175 0.0175 0.0024 
2 0.4 0.8 0.0483 0.0185 0.0360 0.0050 
3 0.4 1.2 0.0547 0.0206 0.0566 0.0079 
4 0.4 1.6 0.0671 0.0243 0.0809 0.0112 
S 0.2 1.8 0.0798 0.0149 0.0958 0.0133 
6 0.2 2.0 0.109 0.0189 0.1147 0.0160 
7 0.1 2.1 0.152 0.0131 0.1278 0.0178 
8 0.05 2.15 0.215 0.0092 0.1370 0.0190 
9 0.03 2.18 0.347 0.0083 0.1453 0.0202 

10 0.01 2.19 0.521 0.0043 0.1496 0.0208 
11 0.01 2.20 00 0.0221 

0.5 

0.4 
c 

<: 

0.2 

0.1 

0 ,2 .4 .8 1.2 1.6 2.0 24 
X2 

Fig. 2.12.2—Plot of Column (3) vs. Column (10) of Table III. 

A difficulty arises because the integrand {W-Ji — An)~* becomes infinite 
for the maximum displacement (see Column (14)). This is avoided by 
assuming that the acceleration is constant in the last interval2 and has the 

2 Timoshenko, "Vibration Problems in Engineering," D. Van Nostrand Co., New York, 
Second Edition (1937) page 123. 
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value given in Column (8), Table III, for the maximum height of drop. 
Then, 

Afe)n = iGngM' (2.12.3) 

or 

At = (2.12.4) 
V C'mg 

30 

25 

20 
X2 

15 

10 

.01 .02 .03 
t 

.04 

Fig. 2.12.3—Acceleration-time curve (for the cushioning shown in Fig. 2.12.1) obtained 
by numerical integration. 

In the present instance, 

{Axi)n = 0.01 inches 

Gmg = 30.8 X 386 = 11900 in/sec.2 

Hence, from (2.12.4), At = 0.0013 sec. and the last entry in Column (17) 
is obtained by adding this value of At to the preceding entry. 

The final curve of acceleration vs. time is obtained by plotting the entries 
of Column (17) against the entries of Column (8), Table III, for correspond- 
ing values of Xi. The result is shown in Fig. 2.12.3. 
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PART III 

AMPLIFICATION FACTOR 

3.1 Introduction 

If the maximum acceleration, of the packaged article as a whole, is 
reached very slowly, the severity of the disturbance experienced by a 
structural element of the packaged article is very nearly proportional to the 
maximum acceleration. Roughly speaking, "very slowly" means that the 
time, during which the acceleration undergoes a major change in magnitude, 
is long in comparison with the natural period of vibration of the element 
under consideration. When this is so, no transient vibration is excited in 
the element. The displacement response of an element under very slowly 
varying conditions is called the "static response". Under more rapidly 
varying conditions the dynamic response to the same maximum acceleration 
may be greater or less than the static response. The ratio (A) of the maxi- 
mum dynamic response to the static response is called the amplification 
factor. In general, for a given acceleration disturbance, very low-frequency 
elements have amplification factors less than unity, while the amplification 
factors are greater than unity for elements whose natural frequencies are 
near or above the disturbing frequencies. The numerical value of the 
amplification factor depends not only on the manner in which the disturbing 
acceleration varies with time, but also on the "reference acceleration", i.e., 
the value of acceleration for which the static response is calculated. Usually 
the reference acceleration chosen for calculating the static response is the 
maximum value (Gm) of the disturbing acceleration. However, when 
special circumstances are being investigated, such as the effect of damping 
or abrupt bottoming, the reference acceleration is taken to be Go , which is 
the acceleration that would be reached if the damping or bottoming were 
absent. In such cases the amplification factor includes both the effect of 
rate of change of acceleration and the effect of the special conditions. 

When the reference acceleration is Gm the amplification factor will be 
denoted by Am and when the reference acceleration is Go the amplification 
factor will be denoted by .do • The symbol Gc will be used to designate the 
slowly applied acceleration that would produce the same maximum dis- 
placement as the transient acceleration, i.e., Ge = ^lTOGm or Gc = ^loGo. 
The symbol G3 will be used to denote the safe value of Ge, for an element 
of the packaged article, as determined by a strength test or by calculation. 
In specifying G, some judgement is required to take into account the effects 
of plastic deformation in comparing tests made on greatly different time 
scales. Good judgement is also necessary in deciding whether or not the 
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assumptions listed in Section 0.2 are valid in each application. The general 
procedure for using amplification factors is as follows. We first find the 
value of the reference acceleration (in units of number of times gravity) from 
Part I. From Part II we find the properties of the acceleration-time rela- 
tion which give us the information required for entering one of the curves 
of Part III and finding the amplification factor. Then, the product of the 
reference acceleration and the amplification factor {AmGm or AqGq) is a 
number (Ge) by which the weight of the structure is to be multiplied when 
calculating its deflection or stress by the usual static methods of elementary 
strength of materials. Alternatively, G, must be found not to exceed Gs . 

'h 

(a) 
////AS'////// 

(b) 
Fig. 3.2.1—Idealized system used in calculating amplification factors for linear undamped 

cushioning with perfect rebound, (a) initial position, (b) first contact with floor. 

In the following sections the amplification factors for typical transient 
accelerations encountered in package drop tests are calculated. The ampli- 
fication factor curves that are plotted are entirely analogous to the familiar 
"resonance curves" for steady sinusoidal vibration, except that in this 
case the disturbing forces are transients of various shapes. It will be seen 
from the curves that the maximum acceleration, as calculated by the 
methods of Part I or as measured by an accelerometer, is not always a true 
measure of the severity of the disturbance. 

3.2 Amplification Factors for a Half-Sine-Wave Pulse 
Acceleration 

The first case to be treated is the response of an element of the packaged 
item to the transient acceleration that would occur in a package with linear 
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undamped cushioning and perfect rebound. Figure 3.2.1 illustrates the 
idealized system, and it may be noted that the mass W3 is omitted, as is 
required for perfect rebound (Section 2.3). At first we shall consider that 
the mass wi is undamped and later we shall consider the effect of damping 
in this element. 

The mass Wi is taken to be small in comparison with W2, so that the motion 
of the latter is the same as we found it to be in Section 2.2 where mi was not 
considered. Hence the acceleration of m-i is a half-sine wave pulse: 

X2 = —<02 s/2gh sin uzt, (0 < t <: tt/coj). (3.2.1) 

The equation of motion of mi is 

mixj + ki(xi — X2) = 0. (3.2.2) 

Let x be the relative displacement of mi with respect to W2, i.e., 

x = Xi — x-j. (3.2.3) 

.-v is proportional to the force in the spring (^i-t) and to the acceleration 
of mi and hence is proportional to the deflection, strain and stress in the 
element which the system mi, ki represents. 

Substituting (3.2.3) in (3.2.2), we find: 

mix + kix = —miX2. (3.2.4) 

This equation holds for the duration 7r/a52 of the pulse X2. The initial 
conditions for x are 

[x]t=0 = [*],-„ = 0 (3.2.5) 

so that the solution of (3.2.4) is 

^ = WW^sin Wil _ ^^,1, (0 ? i 3 (3.2.6) 
0)1 — Wi l_C0i J \ 

It may be seen that x is composed of a forced displacement at the accelera- 
tion frequency C02, on which is superposed a free vibration at the natural 
frequency, coi, of the element. The maximum value of the relative displace- 
ment is 

^2-7) 

\C02 / "2 

in which n is a positive integer chosen so as to make the sine term as large 
as possible while the argument remains less than tt. 

(3.2.7) gives the maximum dynamic response of the element mi during 
the interval of impact. To find the amplification factor we must compare 
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^"mnx with the "static response" i.e. with the value {x8t) that x would have 
if the acceleration £2 reached the same maximum value (co2\/2gh) in a very 
long time. The resulting value may be found from (3.2.4) by omitting 
the transient term niix. Then 

Xst = (02 V2gh ~ 

or 

x,t = ~2 \/2gh. (3.2.8) Oil 

The amplification factor for the interval 0 ^ ^ 7r/o)2 is then 

Wl 

Am = ^s= ^ , (0 ? < 3 TM. (3.2.9) 
Xst ^ _ 1 1 

0)2 0)2 

It should be observed that Am depends only on the frequency ratio 0)1/0)2. 
That is, since 0)1/0)2 = tz/ti , the amplification factor depends only on the 
ratio of the pulse duration to the half period of vibration of the element. 

Thus far we have studied only the motion in the interval 0 ^ ^ x/o)2. 
We must not, however, overlook the possibility of larger displacements of nti 
with respect to occurring after rebound. In fact, examination of (3.2.6) 
reveals that x has no maximum in the interval 0 ^ ir/wz whencoi < 0)2. 
It is very likely, then, that larger values will occur at later times. 

After rebound, nil executes free vibrations with respect to mn. We have 
to compare the magnitude of .Tmax, in the interval 0 ^ ^ ir/wo, with the 
amplitude of the free vibration. Calling the relative displacement during 
free vibration x' and measuring a time coordinate t' from the instant the 
package leaves the floor, we have 

niyx' + hx' = 0, (3.2.10) 

with initial conditions 

[a." ]i'=o = Mt=r/«2 j 

[.t" ]<'=0 [X] 1=T/u2 • 

The solution of (3.2.10) with initial conditions (3.2.11) is 

, ^4/4^(1 + cos ^) f i : 

X co^col - Wj) Sm V1 202/' 

t 5 
0)2 

(3.2.11) 

(3.2.12) 
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Then 

Am — 
Xst 

„aJl TTOJ, 
2— cos — 

C02 2C02 

i-i 

(3.2.13) 

We find, on comparing (3.2.13) with (3.2.9) that for on < 012 equation 
(3.2.13) gives the larger value of Am, while for coi > coo equation (3.2.9) 

a. 
o 
t3 
< u. 
z 
o 

5 
y 
u. 

Q. 
2 
< 

^1=0 

/ 

0.005 
-0.01 
^O.OS 

I 

X 
O.IO 

-0.30 
'0.50 

f 

/ 
^=1.00 

1 / 

/ 

ay /< 'cj 

Fig. 3.2.2—Amplification factors for linear undamped cushioning with perfect rebound. 
See Fig. 3.2.1 and equations (3.2.9) and (3.2.13). 

gives the larger value of Am. That is, when the duration of impact is 
shorter than the half-period of vibration of the element, the maximum 
displacement (and stress) in the element occurs after the impact is over. 

The curve marked = 0 in Fig. 3.2.2 is a plot of the largest value of Am 

from (3,2.9) and (3.2.13) with the frequency ratio0)1/0)2 as abscissa. (3.2.13) 
was used for 0)1/0)2 ^ 1 and (3.2.9) for 0)1/0)2 ^ 1. The maximum value 
of Am is 1.76 and occurs at 0)1/0)2 = 1.6. Hence, at this frequency ratio, the 
deformation of the element is 1.76 times as great as would be expected from 
a calculation using the maximum value of acceleration alone as in Part I. 



DYNAMICS OF PACKAGE CUSHIONING 427 

On the other hand, for frequency ratios ui/u* < 0.5 the severity of the 
shock can be very much less than might be expected from the calculations 
of Part I. For very small values of ui/u2 the amplification factor may be seen 
from (3.2.13) to be equal to 2ui/ui. For large values of oji/coo (stiff elements) 
Fig. 3.2.2 shows that the amplification factor is very nearly unity and the 
methods of Part I can be used without additional calculation. 

When damping of the element of the packaged article is considered, the 
amplification factors are less than without damping. The applicable 
equations of motion during and after impact are obtained by inserting 
velocity damping terms in (3.2.4) and (3.2.10): 

vhx + ciz + kix = -miX2 , 0 ^ — (3.2.14) 
C02 

mix' + cj*' + = 0, t ^ —. (3.2.15) 
C02 

If we express the damping of the element nh as the fraction of critical 
damping 

t3-2-16) 

(as in Section 2.5) equations (3.2.14) and (3.2.15) become 

x + 2/3icoi.'i- + u\x = -*2 , 0 ^ ^ , (3.2.17) 
C02 

x' + 2/3!to,x' + u>\x' =0, / ^ (3.2.18) 
(j)o 

The amplification factors for equations (3.2.17) and (3.2.18), with boundary 
conditions (3.2.5) and (3.2.11), respectively, were obtained on the Westing- 
house Mechanical Transients Analyzer3 for/3i = 0.005, 0.01, 0.05, 0.10, 0.30, 
0.50 and 1.00. The curves are shown in Fig. 3.2.2. 

3.3 Application of Half-Sine-Wave Amplification Factors 

As an example of the use of the amplification factor curves of Fig. 3.2.2, 
let us consider the following problem: 

3 Arrangements for performing these calculations were made through the courtesy of 
Mr. A. C. Monteith, Manager of Industry Engineering, and Mr. C. F. Wagner, Manager 
of Central Station Engineering, Westinghouse Electric and Manufacturing Co. Dr. G. D. 
McCann, Transmission Engineer, was in immediate charge of the project. For a descrip- 
tion of the analyzer see "A New Device for the Solution of Transient-Vibration Problems 
by the Method of Electrical-Mechanical Analogy" by H. E. Criner, G. D. McCann and 
C. E. Warren, Journal of Applied Mechanics, Vol. 12, No. 3 (1945) pp. A-135 to A-141. 
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It is required to judge the suitability of a proposed package for a large 
vacuum tube weighing 10 pounds. Strength tests have been made on the 
tube in a shock testing machine which produces a half-sine-wave acceleration 
pulse of 25 milliseconds duration. The weakest element of the tube is 
found to be the cathode structure, for which the safe maximum acceleration 
in the drop testing machine is 200g. The cathode structure has a natural 
vibration frequency of 120 cycles per second and has 1% of critical damping. 
The proposed package has essentially linear, undamped cushioning with a 
spring rate of 3300 pounds per inch and an available displacement of f inch. 
The outer container weighs much less than the tube so that the package may 
be expected to rebound. Is the cushioning suitable for protecting the 
cathode in a drop of 5 feet? 

First find the maximum G that the tube will experience in a 5 ft. drop of 
the package (equation 1.3.3): 

~ . Mh ( /2 X 60 X 3300 _ 
G"~ y w2 ~ v io 

The accompanying maximum displacement is, from equation (1.3.4), 

2h 2 X 60 n , . 
dm = — =   = 0.6 in. m Gm 199 

The available displacement (f inches) is therefore sufficient and the maxi- 
mum acceleration (199g) is slightly less than the safe maximum acceleration 
(200g) found with the shock testing machine. However, before the cush- 
ioning is approved it is necessary to investigate the frequency effects. The 
duration of acceleration in both the shock machine and in the package 
must be considered. 

The amplification factor for the element tested in the shock machine is 
found as follows. First find the frequency corresponding to the 25 milli- 
second pulse; 

fi, =  ^  = 20 c.p.s. J2 2 X .025 H 

The ratio of the element frequency to the shock machine frequency is 

fi _ ui _ 1^0 _ ^ 
fz W2 20 

Entering Fig. 3.2.2 with 011/0)2 = 6, we read, from the curve ft = 0.01, Am = 
1.14. The 200g test in the shock machine is, therefore, equivalent to a 
slowly applied acceleration of G, = 200 X 1.14 = 228g. 



DYNAMICS OF PACKAGE CUSHIONING 429 

To find the corresponding quantity for the package drop, first find the 
cushion frequency: 

^ _ 1 . _ 1 . /3300 X 386 _ „ „ „ „ 
f2-2*Vm*-2iV 10  

The ratio of the element frequency to the package frequency is therefore 

/i __ ui _ 120 __ 2 i 
fi 032 57 

Entering Fig. 3.2.2 with 0:1/032 = 2.1 we read, from the curve /3i = 0.01, 
Am = 1.59. The 199g acceleration pulse in the package drop is therefore 
equivalent to a slowly applied acceleration of Ge = 199 X 1.59 = 316g. 
This is almost 40% in excess of the value (228g) found to be safe from the 
shock machine data. The cushioning is therefore judged to be inadequate. 
Tne procedure for finding the correct spring rate for the cushioning is as 
follows. It is known that we must have 

G, ^ Gs. 

Therefore, take 

Ge = AmGm = 228. 

Now 

G"= 4/^ = "2 4/7 • 

Therefore 

Amo)2 = 409 rad/sec. 

Also 

wi = 27r X 120 = 754 rad/sec. 

Then, with successive trial values of 030, we calculate coi/wo, enter Fig. 3.2.2, 
read the corresponding value of Am from curve /3i = 0.01 and test to see if 
the product Amo32 = 409. The combination which satisfies the test is found 
to be 

0)2 = 280 rad/sec. 

0)1/0)2 = 2.69 

Am = 1.47. 
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Then 

k, = u|m2 = ^80386
><: 10 = 2030 Ibs./in. 

= 4^ 
G„ = = 155 

dm = ~ = .77 in. 
v-'m 

Hence the spring rale of the cushioning should be reduced from 3300 lbs./in_ 
to 2030 Ibs./in. and the available space should be increased to accomodate 

the 0.77 inch maximum displacement before bottoming. 

3.4 Special Treatment of Strong, Low Frequency Elements 

The product of the amplification factor {Am) and the maximum accelera- 
tion {Gm) must be equal to or less than the maximum allowable slowly- 
applied acceleration {Gs)\ 

Ge = AmGm ^ G.. (3.4.1) 

For frequency ratios 

— < i, (3.4.2) 
W2 4 

Figure 3.2.2 shows that, approximately, 

= 2— (3.4.3) 
fa)2 

for Pi ^ 0.10. When this is so, we may combine (3.4.1) and (3.4.3) to 
obtain the criterion 

2^G„5G.. ' ■ (3.4.4) 
Ci)2 

Now, 

G"= \/w!= W! l/f (3-4-5) 

Hence the criterion (3.4.4) may be written as 

2&ji ? G, (3.4.6) 

or 

■y/h 

where h is in inches and /i is in cycles per second. 

fi ^ ^ (3.4.7) 
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It may be observed that (3.4.7) is independent of the properties of the 
cushioning. Hence, as long as (3.4.2) is satisfied, any cushioning at all 
may be used for an element that satisfies (3.4.7) regardless of the magnitude 
of the maximum acceleration Gm . In particular, rigid mounting is suitable 
for such an element. The only precaution to be observed is that the maxi- 
mum acceleration and duration must not be unfavorable for other elements 
of the packaged article. 

Example: A 9-pound vacuum tube has an anode structure for which the 
safe maximum acceleration is 200g as determined in a centrifuge test. 
The natural vibration frequency of the anode is 35 cycles per second and the 
damping is 1% of critical. What cushioning around the tube is required to 
protect the anode from damage in a package drop of 3 feet? 

Calculate 

1.1GS 1.1 X 200 

vr= = 367 cps- 

This is greater than fi = 35 c.p.s and hence any cushioning is safe for the 
anode. The results of calculations for cushioning with spring rates of 50, 
500, 5000, 5 X 105 and 5 X 107 pounds per inch are given in the following 
table: 

*j(lbs./in.) Gm 03\ Am AmGm 

50 20 4.74 1.12 22 
500 63 1.47 1.65 106 

5 X W 200 .474 0.9 180 
5 X 105 2,000 .0474 0.09 180 
5 X 10' 20,000 .0047 0.009 180 

In each case the product of AmGm is less than the allowable 200 and, as long 
as the combination of Gm and the amplification factors for other elements 
does not exceed the allowable AmGm for those elements, the cushioning is 
suitable. The precaution to observe is that higher-frequency elements 
shall not have amplification factors such that AmGm may be excessive for 
them. 

3.5 Amplification Factors for Damped Sinusoidal Acceleration 

If the outer container of the package is heavy enough (see Section 2.3) 
there will be no rebound and the packaged item will vibrate in the cushion- 
ing after impact. For linear cushioning with velocity damping, the accelera- 
tion produced by the vibration will be a damped sinusoid (equation (2.5.5) 
and Fig. 2.5.2). The system to be considered is shown in Fig. 3.5.1. 
To determine the effect of the damped vibration of nu on the mass mi , 
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m2 

1 
X2 3= 1 

/ ;/////// //////// 
(a) 

Fig. 3.5.1—Idealized system for linear damped cushioning with no rebound, 
(a) initial position, (b) first contact with floor. 

Bi ~ 0.005 

Ji\ = p.OOS 
O.OI 
0.05 

0.99 I.OO 

0.5 

co 2 

Fig. 3.5.2—Amplification factors for linear damped cushioning with no rebound. 
$1 = 0.005. See equations (3.5.1) and (3.5.2). 

we note that the equation of motion and initial conditions are identical 
with (3.2.17) except that for the acceleration xi we use the damped sinusoid, 
equation (2.5.5), instead of the half-sine pulse (3.2.1). The solution of 
(3.2.17), i.e. the relative displacement (a;i - ^2) of Wi with respect to mi, 
is 
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x = ui s/lgh sin ^ 7 _ g) ^ sin (WJ / — 7 — f)] 
ZW2 fe?! 

g-^'U sin (0.2/ + 7 - 5)- -B sin + 7 + f)]} (3.5.1.) 

where 

Oil = 

0)2 = 4/ — 

on = o)i\/1-/3? 

0)2 = O)^ \/l — ^ 

\ / A = \/(^20)2 — /3lO)i)2 + (o)( — 0)0)" 

1 /B = \/ (^20)2 — i3lO)l)2 + (o)( + O)^)2 

ms 

- 1 
tan 7 2ft Vl - 3? 

0)1 — 0)2 
tan b = 

tan f = 

@2 0)2 — /3lO)l 
' J_ ' 0)1 "T 0)2 

@2 0)2 — /3l 0)i 

The relative displacement of vh with respect to W2 is seen to consist of a 
forced, damped vibration (0)2, B2) on which is superposed the free damped 
oscillations (ou , /3i) of nil. 

The amplification factor 

Aa = (3.5.2) 
"2 V 2^/f 

is plotted in Figs. 3.5.2 to 3.5.7 for six values of /Jj and six values of ^2 • 
These curves were obtained by direct solution of the differential equation 
on the Westinghouse Mechanical Transients Analyzer.4 The amplifica- 
tion factor in this case includes the effect of damping; i.e., the reference 
acceleration is not the maximum acceleration of W2, but is the maximum 
acceleration that nh would reach if the damping 02 were zero. Conse- 
quently, the amplification factors for large values of ui/uz do not approach 

4 See footnote, Section 3.2. Only enough data were obtained with the analyzer to find 
the general shapes of the curves, so that the fine structure is not revealed. Checks on 
the analyzer results were made by computing Ao from equations (3.5.1) and (3.5.2) for 
a>i/«2 = 1, /3i = @2] U1/102 = 0; <0i/c02 —> CO . 
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Fig. 3,5.3—Amplification factors for linear damped cushioning with no rebound. 
= 0.01. See equations (3.5.1) and (3.5.2). 
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Fig. 3.5.4—Amplification factors for hnear damped cushioning with no rebound. 
fa = 0.05. See equations (3.5.1) and (3.5.2). 

unity. For example, the curve for^i = 0.005, /^ = 1 (Fig. 3.5.7) approaches 
a value of nearly four as a3i/t02 —^ 00 • The factor four is composed of two 
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Fig, 3,5.5—Amplification factors for linear damped cushioning with no rebound. 
Pi = 0.1. See equations (3.5.1) and (3.5.2). 
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Fig. 3.5.6—Amplification factors for linear damped cushioning with no rebound. 
Pz = 0.5. See equations (3.5.1) and (3.5.2). 

factors of two. The first arises from the fact that the maximum value of 
acceleration, for p-z = 1, is twice the value that would be reached if Pz 
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were equal to zero (see Fig. 2.5.3). The second factor (of nearly two) is 
due to the fact that the maximum acceleration is reached at time t = 0 
when /Sa = 1 (see Fig. 2.5.2) and the response of an almost undamped sys- 
tem (0i = 0.005) to a suddenly applied and subsequently maintained 
acceleration is double the response to a slowly applied acceleration (see 
curve (a) Fig. 3.8.1). For > 0 and < 1 the amplification factor is 
less than four, as wi/wa —> oo, in accordance with the curves plotted in Fig. 
3.5.8. 

Example: A 1.5-pound vacuum tube is to be packed in a container whose 
estimated weight will be at least 50 pounds. The cathode structure of the 
tube has a natural frequency of 25 c.p.s. with damping 0.5% of critical 

a* =10 

oos 396 31 > 3 94 
05 3 60 

3 44 
SO 2 28 /9i = 0.005 2 00 I.OO O.OI 0.05 

0.5 

/ 
/ 

Fig. 3.5.7—Amplification factors for linear damped cushioning with no rebound. 
/32 = 1.0. See equations (3.5.1) and (3.5.2). 

and its safe acceleration, as determined in a centrifuge, is 90g. What 
spring rate of cushioning is suitable for protecting the cathode in a drop of 
five feet? It is specified that the cushioning shall have damping 50% of 
critical. 

Assuming linear cushioning, the spring rate that would be prescribed, by 
considering maximum acceleration alone, is 

h = WzGm _ 1.5 X (90): 

2h 2 X 60 
= 101 lbs./in. 

Considering damping, Fig. 2.5.3 shows that 50% of critical damping does 
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not change Gm . To find the amplification factor we must first decide if the 
package will rebound. With 50% of critical damping, the maximum ac- 

36 

= .3 
2.4 

2.0 

4=1 
16 

1.2 

1.0 

,10 

Fig. 3.5.8—Limiting values of amplification factors for linear damped cushioning with no 
rebound, wj/wa —> <». See equations (3.5.1) and (3.5.2). 

celeration on the first upstroke is 0.164 Gm (see Section 2.6 and Fig. 2.6.1). 
Then, 0.164 X 90 X 1.5 = 22 lbs. which is less than the estimated weight 
of the outer container. The package will not rebound and Fig. 3.5.6 
should be used for the amplification factor. 
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The frequency of vibration of the tube in its cushion will be 

Hence wj/wz = 27r X 25/159 = 0.99 and, from Fig. 3.5.6, A0 = 1.4. Hence 
Gt = 90 X 1.4 = 126, which is greater than the allowable Gs = 90, so 
that the 101 Ib./in. cushion is unsatisfactory. 

To obtain satisfactory cushioning, set 

AqGQ = 90, 

that is 

90 
A0o,2 = ~7jh = 

159 rad./sec. 

y g 

Noting that wi = 27r X 25 = 157, we find from Fig. 3.5.6 that there are two 
values of coz (90 and 600 rad/sec.) that satisfy the criterion Awl = 159 
rad/sec. The first gives 

w2 = 90 rad/sec. 

Ao = 1-8 

kz = 31.5 Ibs./in. 

Go = 50 

Ge = 90 

dm = 2.4 in. 

The second gives 

coz = 600 rad/sec. 

Ao= 0.27 

ko = 1400 Ibs./in. 

Go = 335 

Ge = 90 

dm = 0.36 in. 

The second solution requires less space for cushioning than the first but 
should be used only if the remainder of the tube can endure the high ac- 
celeration of 335g. Otherwise the 50g package should be used. 
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3.6 Amplification Factors for the Pulse Acceleration of 
Cubic Cushioning 

In a rebounding package with undamped Class B cushioning, the pack- 
aged article (wo) will undergo a pulse acceleration of duration 7r/aj2 as given 
by equation (2.8.11). The shape of the pulse is illustrated in Fig. 2.8.2 
and its functional form is 

AK.2 aj2 dm \ r,, i JlK^t .1 (iK^t Av 
X2 =  ^  2k sn I  — A I — 1 I cwl  — K\. (2.8.14) 

To determine the influence of the shape and duration of this pulse on the 
amplification factor, we proceed as before by substituting (2.8.14) in the 

[yi 

2 
*2 

///////////////////// 

(a) 

77T//////77- 

(b) 
FiR. 3.6.1—Idealized system used in calculating amplification factors for non-lines 

undamped cushioning with perfect rebound. 

differential equation governing the relative displacement (x = Xi — x 
between mj and mo (see Fig. 3.6.1): 

x + wlx = —Xi. (3.6.1 

With boundary conditions .t(0) = .i-(0) = 0, the solution of (3.6.1) may b 
written as 

1 fl 

x = — I X2 (X) sin cui (X — /) d\ (3.6.1 
0)1 Jo 

and the maximum value of x may be expressed by 

1 r'm 

— — / -i:2(X) Sin 0)i(X Im) dX, (3.6.v 0)1 Jo 
where lm is the time at which the largest value of x occurs. 
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The amplification factor, in this case, will be taken as the ratio of .t'max 
to the relative displacement (xtt) resulting from a slow application of the 
maximum value of xo. From (3.6.1), 

xsi = ^2 | max   Gm S 
2 2 ' COi COi 

(3.6.4) 

where Gm is given by equation (1.5.6). Then 

Am = 
Xa,nx = a" (3.6.5) 
xsi Gm g 

20 

1 8 

1.6 

1 4 
12 

Am 10 

.8 

.6 

.4 

.2 

. 

- 
f 
fW; 
m\, ? , W 

SB 

-i11 "i 

■—1 
i|| 

" I :;:,; n'ii'"'' 
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Uz 
Fig. 3.6.2—Amplification factors for undamped cushioning with cubic elasticity. Perfect 

rebound. See equation (3.6.6). 
or 

Am = [ X2(X) sin wi(X — /,„) dX. (3.6.6) 
G,n g Jo 

Am was evaluated, mostly by graphical methods, for four values of B 
(0, 2, 20 and «)) and the results are plotted in Fig. 3.6.2. Observing that 
.6 = 0 corresponds to linear cushioning, it may be noted that cubic non- 
linearity in the cushioning does not change the amplification factor by 
more than 35% even in the most extreme case (6 —> oo). The severity 
of the shock, however, may be much greater for the cubic cushioning than 
for linear cushioning with a spring rate equal to the initial spring rate (^o) 
of the cubic cushioning. This is because Am is multiplied by Gm to obtain 
Ge and, for large values of 6, Gm may be much larger than the maximum 
acceleration for the linear case. In other words, in comparing Class B 
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with Class A cushioning the difference in maximum acceleration, rather than 
the difference in amplification factors, is usually more important. 

Example: Consider the example given in Section 1.6 and let it be required 
to determine the effect of pulse duration on a cathode structure with a 200 
c.p.s. natural frequency of vibration. In Section 1.6 we found that 

B = 5.4 ' h = 255 

Go = 28.6 r = 108. 

Gm = 55 

With B = 5.4, enter Fig. 2.8.2 and find 

- = 0.88. 
0)2 

Now 

= l/|f = V^hr6 =661 rad-/sec- 

Hence 

W2 = ^ = 75 rad./sec. 

Then, with = Itt X 200/75 = 16.7, enter Fig. 3.6.2 and find Am = 
approximately 1.0. Hence Ge is about the same as Gm and the conclusions 
reached for this problem in Section 1.6 are not altered. 

3.7 Amplification Factors for Abrupt Bottoming 

The amplification factors for bilinear elasticity have not been computed 
in complete detail. They can be obtained approximately by using the dura- 
tion curves (Fig. 2.10.2) and the amplification curves for the linear case 
(Figs. 3.2.2 and 3.5.2 to 3.5.7). It is useful, however, to calculate the am- 
plification factors for extremely abrupt bottoming (kb —* 1:0) to obtain a 
general understanding of the accompanying phenomena. 

The system to be considered is illustrated in Fig. 3.7.1. It is assumed 
that the impact between mo and the base (occurring at / = /„, = d,) 
has a coefficient of restitution of unity. Hence m-i will strike the base with 
velocity 

M-. = ^(1-|) 

(see equation (2.10.8)) and leave it at a velocity of the same magnitude but 
opposite sign. Perfect rebound of the whole package is also assumed. 
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The acceleration pulse will then look like the curve marked kb/ko —* » 
in Fig. 2.10.1. 

There will be three regions in which to consider the relative displacement x: 

Region 1 0 < / < /» 

Region 2 ta < t < 2ts 

Region 3 / > 2/, 

The relative displacement (x = Xi — x?) of nil with respect to W2 will have 

base 
//////// 

Fig. 3.7.1—Idealized system representing abrupt bottoming. 

the same functional form for Region 1 as in the linear case (see equation 
(3.2.6)), and the amplification factor is, by analogy with (3.2.9), 

Ao — 

Wl 
coo sin 

2mr 

^ _ 1 ^ + i 
OJo Wo 

0 < / < /,, (3.7.1) 

where 

wo = ko/nii. 

For Region 2, we use the differential equation 

.i: + wj.-r = wo \/2gh sin wo(/ — 2tg) (3.7.2) 

and, as initial conditions at / = , we use the terminal conditions for 
Region 1 with the sign of reversed. The amplification factor for 
this region is found to be (by the same method as in Section 3.2): 



W1 /  Ao = /-—r \/A2 B2 sin (coilm + 77 — coi/s) ojq v 2g/i 
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2 

1 . ( , , . -id\ (3.7.3) (\ 2 Sin 1 too'm — COo'a — Sin -r J, 
(00 \ \ t/o/ 

t, < t < 2ls 

where 

too 

/I = — 7 r2 sin I — • -1 ds\ 

L -y-j ^ 111 

too 

too 
n   toi r. ^ . A /wi • 

\/2sa j _ Lv ^ C05 U rf./J 

. -1 ^4 7? = tan ~ 

and tm is the root of 

to? .  
"2 7^=7 V7l2 + COS (to, /,„ + 7] — tO, / g) too V 2gn 

~2 cos (too/m — too ts — sin 1 ^ J = 0 
\ Ao/ 

that yields the largest value of ^lo in equation (3.7.3). Region 3 is gov- 
erned by 

.i; + toi;v = 0 (3.7.4) 

and the initial conditions are the terminal conditions of Region 2. By 
the same method as was used in Section 3.2, we find 

2 — 
too 

Ao = 

t)' 

■ F("1)! \/1 - I - coS ("' sin"1 ^)1. 
! L\wo/ Y do \too tZo/J (3.7.5) 

t> 21,. 

The largest value of Ao from equations (3.7.1), (3.7.3) and (3.7.5) is 
plotted against toi/too in Fig. 3.7.2 for several values of d,/do. 
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Notice that the amplification factor is Aq rather than Am. That is, 
the reference acceleration is Go rather than Gm ■ This is necessary because 
Gm is infinite in the present instance. Hence Fig. 3.7.2 cannot be com- 
pared directly with Figs. 3.2.2 and 3.6.2. However, it is interesting to 
observe that, for coi/a)2 < 0.5, (low frequency elements) abrupt bottoming 
has no harmful effect. For high-frequency elements, the severity of bottom- 
ing is very great even when very nearly all of the required space {do) is 
available. For example, if 90% of the required space is available {djdo = 
0.9) and the frequency of the element is ten times the package frequency, 

 : 

r 
db „ 

X do ^ 

/ 

// 
/ 

y db 

r 
do 
  

6 7 8 9 10 
(A 
Uq 

Fig. 3.7.2—Amplification factors for abrupt bottoming. See equations (3.7.1), (3.7.3) 
and (3.7.5). 

the severity of the shock is almost ten times as great as it would be if the 
additional 10% of space were available. 

3.8 General Influence of Shape of Acceleration-Time Curve 
on Amplification Factor 

When amplification factor curves are not available for a special shape of 
acceleration-time curve, an approximate value of -4 m may be obtained by 
interpolation between or extrapolation from the curves of the preceding 
sections. The shape of the acceleration-time curve and its duration (t2) 
or frequency (coo) should be found, first, by the methods described in Part II. 
The shape found should then be compared with the standard shapes shown 
in Part II, for which amplification factors are given in Part III. 

The amplification factor found in this way will generally be within 25% 
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of the true value because amplification curves for pulse accelerations do not 
differ greatly even for very different acceleration-time curves as long as the 
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Fig. 3.8.1—Dependence of amplification factor on shape of symmetrical acceleration pulse. 
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Fig. 3.8.2—EITect of asymmetry of an acceleration pulse on amplification factor. 

amplitudes and frequencies are adjusted to the same scales. This is illus- 
trated in Fig. 3.8.1 where the amplification factor curves are drawn for 
square wave, half-sine wave, triangular and cubic pulses. 
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Amplification factors for small values of 0)1/0)2 may be calculated very 
accurately if it is observed that the initial slope of the amplification factor 
curve for a pulse acceleration is proportional to the area under the accelera- 
tion-time curve. For example, noting that the initial slope of the amplifica- 
tion factor curve for the half-sine wave pulse is 2, we assign the value 2 to 
the area under the half-sine wave. On the same scale, the area under a 
square wave pulse is tt and under a triangular pulse is 7r/2. Accordingly, 
the initial slopes of the amplification factor curves for the latter two pulses 
are tt and 7r/2 respectively. 

As an additional aid in finding amplification factors for unusual cases; 
Fig. 3.8.2 is given to show the effect of asymmetry of an acceleration pulse. 
The pulse is triangular in shape but the time {tp) taken to reach the peak 
value of acceleration may have any value from zero to the total duration 
(tz) of the pulse. 

PART IV 

DISTRIBUTED MASS AND ELASTICITY 

4.1 Introduction 

It is important to be aware of the conditions under which the assumption 
of lumped parameters is permissible. In Parts I and II the cushioning 
medium was assumed to be massless, so that wave propagation (or surges) 
through it was ignored. Such surges will contribute to the acceleration 
imposed on the packaged article and we should be able to predict both the 
magnitudes and frequencies of the additional disturbances. If this is done, 
the information in Part III may be used to obtain at least a rough estimate 
of the resulting effects. In Part III itself the effects of accelerations were 
determined by studying the response of a system having only one degree of 
freedom; that is, an element of the packaged article was assumed to be a 
single mass supported by a massless spring. Every real element, of course, 
has an infinite number of degrees of freedom, so that it is important to 
discover the contribution, of the higher modes of vibration of an element, 
to the overall response. 

Both of these problems (distributed parameters of mass and elasticity in 
the cushioning medium and in an element of the packaged article) are 
studied in this part. One example of each type is considered, and the choice 
of the example in each case was influenced by considerations of expediency, 
namely that the mathematical derivations be relatively simple and lead to 
solutions for which not too lengthy computations are necessary to yield 
results that can be applied practically. At the same time, the examples 
chosen are believed to give some insight into several of the physical phe- 
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nomena involved. The treatment is by no means complete, but a more 
detailed investigation is beyond the scope of this paper. 

4.2 Effect of Distributed Mass and Elasticity of Cushioning 
on Acceleration of Packaged Article 

Referring to Fig. 4.2.1, we consider the packaged article, of mass nh , 
to be supported by distributed cushioning of mass mc and depth (. The 
cushioning may be a pad, say of rubber, in which case t is the pad thickness, 
or it may be a helical metal spring, in which case I is the coil length. The 
package is dropped vertically from a height h and,has attained a velocity v 
at the instant of contact (/ = 0) of the outer container and the floor. The 
outer container is assumed to be heavy enough so that there is no rebound. 
A horizontal plane in the cushioning is located by a coordinate .r measured 
from the end of the cushioning attached to the outer container. The vertical 

-v 

in ii nijiiliii 
liiitrijii i 111 11 > 11 [■ Jn|il 11 * i 11 11 

y (cushion) 

Floor 

Fig. 4.2.1—Packaged article of mass »i2, supported on distributed cushioning of depth ( 
and mass mc, depicted at the instant of first contact of the outer container (ma) and 
the floor. 

displacement of the plane .v is designated by u. The undamped motion of 
the cushioning after contact is governed by the one-dimensional wave 
equation: 

-.2 n'l a 11 ■> a u /. « . x 

in which a is the velocity of propagation of longitudinal waves in the cushion- 
ing. If the cushioning is continuous, 

a = -, (4.2.2) 
P 

where E is the modulus of elasticity and p is the density of the cushioning. 
If the cushioning is a helical spring, 

V = - , (4.2.3) nic ; 
where k is the spring rate. 
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The initial conditions of the system are 

[«],.G = 0, (4.2.4) 

[-1 = J<=o 
(4.2.5) 

The boundary conditions are 

[m]X=O = o, (4.2.6) 

(4-2-7) 

Equation (4.2.7) expresses the requirement that the force on the upper end 
of the cushioning must balance the inertia force of the packaged article. 
For continuous cushioning k( should be replaced by EA, where A is the 
cross-sectional area of the cushioning. 

A solution of (4.2.1) satisfying conditions (4.2.4) and (4.2.6) is 

n = ^2 An sin sin w,,/, (4.2.8) 
71=1 A 

where wn is the wth root of a transcendental equation to be obtained from 
(4.2.7) and yl n is a constant to be determined by (4.2.5). Substituting 
(4.2.8) in (4.2.7) and equating coefficients of like terms of the series, we 
obtain the transcendental equation 

^ tan — = — . (4.2.9) 
a a m-i 

Substituting (4.2.8) in (4.2.5) we obtain, by the usual methods of expansion 
into trigonometric series, 

^ 7i A - (4.2.10) 
wn 

(unl 1 . 2co„ A' 

Hence the complete solution of the problem is 

2v sin  sin wn t 

" = -E 7 ■ " ■ (4.2.11) 
- (^ + i sin 2-^) 

\ a a / 

Our chief interest is in the acceleration of m-i. Making use of (4.2.7) 
and (4.2.9) we find, from (4.2.11), that this acceleration is 

CttI =i,coo S sin wn/, (4.2.12) [_ Ol' _|l=£ 71 = 1 
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where 

2 k 
Wo =   

in 2 
(4.2.13) 

and 

Bn = 
Wc _|_ w; _j_ w; 
ni2 ml c 

(4.2.14) 

The acceleration of Wo is, therefore, a sum of sinusoids of frequency wn 

and amplitude vuoBn . Now, z-coo is the maximum acceleration that mz 
would attain if the mass of the cushioning were negligible. Calling G,, 
the maximum acceleration in the «,h mode and Go the maximum accelera- 
tion neglecting the mass of the cushioning, as in Part I, we have 

~ = Bn. (4.2.15) 
CfO 

But Bn depends only on the ratio mc/m2, as may be seen from equations 
(4.2.9) and (4.2.14). Similarly the ratio of the frequency (wn) of any mode 
to the frequency (wo) with massless cushioning depends only on mc/m2, 
as may be seen from equations (4.2.3), (4.2.9) and (4.2.13). Hence, both 
the amplitude and frequency ratios for the acceleration in any mode depend 
only on the ratio of the mass of the cushioning to the mass of the packaged article. 
The ratios G„/Go and a)n/ajo are plotted against mc/m2 in Figs. 4.2.2 and 4.2.3 
for the first five modes. It may be seen from these figures that the accelerations 
in the higher modes can be very important. For example, if the cushioning 
weighs half as much as the packaged article the maximum acceleration in 
the second mode is about 40% of the acceleration in the first mode and the 
latter is about the same as found by the elementary method of Part I. 
This could have a disastrous effect on an element of the packaged article if 
the latter had a fundamental frequency near that of the second mode of the 
cushioning, the latter being found, from Fig. 4.2.3, to be about five times 
the fundamental frequency of the package. 

It must be remembered that damping has been neglected in the above 
investigation and damping in the cushioning will serve to mitigate the se- 
verity of the higher mode accelerations to a great extent. However, the 
danger is always present at the start of a design and the possibilities of un- 
favorable combinations should be studied in every case. 
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Fig. 4.2.2—Influence of ratio of mass of cushioning (»«„) to mass of packaged article 
(wa) on acceleration ratio. The numerator of the acceleration ratio is the maximum 
acceleration (Gn) in the nth mode of vibration transmitted through the cushioning. The 
denominator of the acceleration ratio is the maximum acceleration (Go = VHtki/mig) that 
the mass wia would experience if the mass of the cushioning were negligible. See equations 
(4.2.15), (4.2.14), (4.2.9). 
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Fig. 4.2.3—Influence of ratio of mass of cushioning (>«c) to mass of packaged article 
an frequency ratio. The numerator of the frequency ratio is the frequency (w,.) of the 
iitb mode of vibration transmitted through the cushioning. The denominator of the 
Freouencv ratio is the frequency (wD = VWwa) of vibration of the mass wis neglecting 
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4.3 Effect of Distributed Mass and Elasticity, of an Element 
of the Packaged Article, on the Amplification Factor for 

a Half-Sine-Wave Pulse Acceleration 

In this section we shall determine the contribution of the higher modes of 
vibration of a structural element to its total response to a half-sine-wave 
pulse acceleration. For the shape of the element, we choose a prismatic 
bar because this leads to the simplest mathematical formulation of the 
problem and such a bar is also a common structural element. Other con- 
siderations influence the choice of direction of acceleration with respect to 
the axis of the bar. The transverse direction (cantilever) is the most 
practical from a physical standpoint, but, for purposes of comparison with 
the one-degree-of-freedom system, the parallel (axial) direction of accelera- 
tion is the more logical. Both problems lead to solutions in the form of 
infinite series, but, in the latter case, the expression for the strain at a fixed 
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Fig. 4.3.1—The system studied in Section 4.3 depicted at the instant of contact with 

the floor. 

end can be summed in terms of elementary functions without difficulty. 
Since it is necessary to determine maximum values of strain over a wide 
range of frequency ratios for the plotting of an amplification factor curve, an 
enormous reduction in the time required for accurate computations is 
obtained by choosing the axial case. Furthermore, the axial case appears to 
contain the essential features which might result in differences between the 
response of a one-degree-of-freedom system and a continuous one. 

The complete system to be studied is illustrated in Fig. 4.3.1. To the 
mass W2, supported on massless cushioning of constant spring rate ki, 
is attached one end of an elastic prismatic bar, of length i, cross sectional 
area A, modulus of elasticity E, and density p, with its axis oriented verti- 
cally. The system is dropped from a height h so that its velocity is v 
at the instant of contact of the cushioning with the floor. The mass of the 
bar is supposed to be small in comparison with and perfect rebound is 
assumed, so that the motion of m* during contact is a half-sine wave of 
frequency 
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C02 — A / — (4.3.1) 

The maximum acceleration of is thus z'co2. If this magnitude of ac- 
celeration were reached very slowly, so as not to excite transient longitudinal 
waves in the bar, the maximum force between the bar and m-y would be the 
product of the acceleration and the mass of the bar; 

F = vcozpAF (4.3.2) 

Hence the strain at the end of the bar attached to W2 would be 

11032 pi 
eo = E 

(4.3.3) 

Our problem is to find the ratio of the maximum transient strain to eo. 
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Fig. 4.3.2—Amplification factors for an element of the packaged article having dis- 
tributed mass and elasticity. The package has linear undamped cushioning and perfect 
rebound. See equations (4.3.15), and (4.3.14). 

Let u be the displacement of a transverse plane section of the bar distant rr 
from the end attached to m*. Then, the equation of motion of the bar is 

-»2 a u 2 o u 
  = CL    , 
d/2 dx2' 

(4.3.4) 

where a is the velocity of propagation of longitudinal waves in the bar: 

(4.3.5) 2 E a — —. 
P 

Taking the instant of first contact of the cushioning with the floor to be 
^ = 0, we know, from Part II, that the system will leave the floor when t = 
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7r/co2. We shall therefore treat separately, as in Part III, the motion 
during contact 

0 ^ ^ — 
C02 

and after rebound 

j = 7r 
t > —. 

W2 

During the first interval, the initial and boundary conditions are 

[ML-o = 0, (4.3.6) 

[t] 3/ | = "^ (4.3.7) 0/ |(=0 

Mx=o = — sin 0)2/, (4.3.8) 
0)2 

SI 
= 0. (4.3.9) 

The first and second conditions state that, at the instant of contact, all 
points in the bar are moving with the approach velocity v, without relative 
displacement. The third condition prescribes the half-sine wave motion 
of the end of the bar that is attached to m*. The fourth condition states 
that the strain at the free end of the bar is always zero. 

By the usual methods, a solution of (4.3.4) satisfying conditions (4.3.6) 
to (4.3.9) is found to be 

"2^ n . . . itirx . mrat v cos — (c - a;) sm 0)2/ „ „ „ sin —r sin —- 

«=" — E -r/
2< 2T (4.3.10) 0)2_f TT'a n=l,3.5 • • - jf/ 0)2 COS   n a 
nira V ~| 

LVwj ~ l\ 

(0 ^ ^ 1). \ 0)2 /OloC / 

The displacement is seen to be a forced vibration at the frequency (0)2) 
of the applied acceleration, on which are superposed the free vibrations of 
the bar given by the series expression. The frequency of the fundamental 
mode of vibration of the bar is va/2 ( and the frequencies of the higher modes 
are the odd integral multiples of the fundamental. 
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The strain at the attached end of the bar is 

=r~i l_cto Ji=o 

■0 \ C02^ • / 4 V 
  \ tan — sin aj2i / - 

sin 
nirat 
~2f 

(o 

(4.3.11) 

_ _ tt nira 
< t < J o } ^ 1 0)2 ZUil ) 

It may be verified that the sum of the series in (4.3.11) is given by 
nirat 

sin 
= tan — sin U2t + cos uzt — 1, (4.3.12) 

a 

(<><•<$■ 

It should be observed that the summation is valid only in the interval 0 < 
I < 21/a. However, the series is periodic with half period 21/a and includes 
only the odd terms, so that the function repeats itself with reversed sign 
after each interval 21/a. Hence the summation, valid for all /, can be 
written 

nirat 
sm 

21 
IT n=1.3,B • • • T/ W7raV 

n 
1 LW) 1 

= (— 1)* [tan ^ sin ^ [t - ^ + cos ^ ^ ^ - 1 j (4.3.13) 

1 ' , i- , 2(w + 1)^ i k — m when   < t <  I. ' 1 a a 

/ m = 0, 1, 2, 3, • • • . 

We may, therefore, rewrite (4.3.11) in the form 

^ = — tan — sin wd + ( — l)fc ftan — sin w. (i — 
v a \_ a \ a / 

+cos W2 (' - v)_ O 
(4.3.14) 
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0 ^ ^ — 
0)2 

, , 2m( 2{m + 1)/ 
k = in when — < t <   !—- 

a a 

in = 0, 1, 2, 3 • • • . 

The expression (4.3.14) is simple enough so that the maximum value (em) 
of the strain at the attached end can be obtained without difficulty for any 
ratio of the fundamental frequency (on = ira/lt) of the bar to the frequency 
(0)2) of the disturbing acceleration. The amplification factor 

| em | £ 2o)ia , , <c\ 
 y =   , (4.3.lo) VU2pC TV 032 V 

may then be calculated. The results of these calculations are plotted in 
Fig. 4.3.2. The important feature of this curve is that the amplification 
factor is everywhere less than the corresponding amplification factor for the 
one-degree-of-freedom system (Fig. 3.2.2, ^ = 0). Hence the assumption 
of lumped parameters is on the side of safety as regards amplification factor. 

It is interesting to observe that the curve of Am vs. 0)1/0)2, for this case, 
is a straight line between 011/0)2 = 0 and 0)1/0)2 = 1. This arises from the 
fact that, for 0)1/0)2 < 1, equation (4.3.14) reduces to 

€a = cos 0)2/ - 1, ^ ^ l). (4.3.16) 
v 

Hence, when the duration of shock is less than the half period of the funda- 
mental mode of vibration, the maximum value of strain occurs at the end of 
impact and is equal to twice the ratio of the approach velocity to the velocity 
of wave propagation in the bar. 

The whole solution of the problem is not yet completed; for, although it is 
fairly evident from the fact that there is at least one maximum in the inter- 
val 0 ^ t ^ 7r/a)2 for all values of 0)1/0)2, it must be verified that the maxi- 
mum strain (and, therefore, the amplification factor) is never greater after 
t = 7r/a)2 than before. Defining a new time coordinate 

(4.3.17) 0)2 

we have, for the initial and boundary conditions of equation (4.3.4) for 
/ > 7r/o)2, 
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nair2 . nvx 
0 , » sin — sin — 

= ?^ E (4.3,18) 
TT-fl n=l,3,5 • ■ ■ 

4(5)'-"] 

01, WflTT- . WTra; 
v cos — (^ — .t) . « cos - :f sin ip f 67^1 _ a _|_ V 2ai2C 21 

T-"--[(Sj-.] 

(4.3.19) 

Mr=o = (4.3.20) 

f—1 =0. (4.3.21) 
(_ftejx=j 

The first and second conditions state that the displacement and velocity of 
every point in the bar must be the same at the beginning of the second inter- 
val as at the end of the first interval; the expressions in (4.3.18) and (4.3.19) 
are obtained from (4.3.10). The third condition prescribes the constant 
velocity of departure from the floor of the mass nin and, therefore, of the 
end of the bar attached to it. The last condition states, again, that the 
strain at the free end of the bar is zero. 

It may be verified that a solution of (4.3.4) satisfying conditions (4.3.18) 
to (4.3.21) is 

" iiirx . /nirat' \ 
« = . 2: C„ sin T sin { + Jnj (4 3 22) 

(/' ^ 0, / ^ TT/oiz), 

where 
nair- 

SvC sin 
2a)2/ sawx 

Cn sin 7„ =  =-7 r-j =1 (4.3.23) 

l(s) - ■] 
tt" an' 

Cn cos 7„ = 

/ nan-\ 
( 1 + COS ^—„ ) 

imTr\ 
2(02 t) 

2 2 tt an 
Ks)' - ■] 
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Hence, the strain at the attached end of the bar is 

niral 

• EL - 
Av ~ Sln U 
TTO 

  {(5)'- ■] 

+ 4z; ^ S!n 2t 
iv a 

nral' (4.3.25) 

n—i,3.5• • • f / nira \2 | 
n[Wj) - M 

The two series may be summed, as before, with the result 

7 = ("'1)" t13'1 T s[n -2-t) + cos u" (' - v) _ l] 

+ (-l)fc'^tan^sina;2^' - + coso)^/' - - ij (4.3.26) 

/ > T/wo , /' = / — tt/U* 

. 2m( ^ ^ 2{m + l)/1 

k = m when — < t < — —, 
a a 

, , 2m'( . ^ 2(w' + 1)^ k = m when   < I < —   
a a 

m = 0, 1, 2, 3 • • • w' = 0, 1, 2, 3 • ■ • . 

Once more, the expression for the strain at the attached end of the bar is 
in a form suitable for rapid calculation and it can be shown the e in equation 
(4.3.26) for I 5 tt/oo is never greater than the c in equation (4.3.14) for 0 <! 
I ^ t/ojo for the same au/wo. Hence, Fig. 4.3.2 and the conclusions follow- 
ing equations (4.3.15) and (4.3.16) need not be modified. 

Notations 
A Cross sectional area of a bar element of the packaged article. Also, a 

constant of integration. 

,4o Amplification factor when the reference acceleration is Go. Ratio of 
maximum dynamic response to the response to a slowly applied ac- 
celeration of magnitude Gog. 

Am Amplification factor when the reference acceleration is Gm. Ratio of 
maximum dynamic response to the response to a slowly applied accelera- 
tion of magnitude Gmg. 

An In Section 1.15, the sum of all the trapezoidal areas from .re = 0 to rj = 
(re),,. Also, in Section 4.2, the coefiicient of the nth term of a series. 

A.4 „ The area of a trapezoid with altitude A(re)„ and sides and P„. 

a xo/l in the tension spring package. Also, in Part IV, the velocity of 
propagation of longitudinal waves. 
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B A parameter of cushioning with cubic elasticity defined in equation 
(1.5.3). Also, a constant of integration. 

Bn Coefficient in the Mth term of a series. 

h f/l in the tension spring package. 

C A constant of integration. 

Cn Coefficient of the nth term of a series. 

c A constant defined in equation (1.7.11) 

ci Damping coefficient of an element of a packaged article. 

d Damping coefficient of linear cushioning. 

cn The elliptic cosine function. 

do Hypothetical displacement that would result if initial spring rate were 
maintained. 

db Maximum possible displacement of packaged article in cushioning with 
tangent elasticity. 

dm Maximum displacement of packaged article, 

dm Value of dm when ko = ki 

d. Displacement of bi-linear cushioning at which the spring rate changes 
from feo to kb. 

E Modulus of elasticity. 

e In the tension spring package the stretch of a spring when the displace- 
ment is dm. 

exp ( ) e (), where e is the Naperian base 2.718 - ■ • 

F In section 2.7, a frictional force. 

Fm In the tension spring package, the maximum force on a spring. 

f In the tension spring package, the difference between I and the distance 
between hooks of an unstretched spring. 

/, Frequency of vibration of an element of the packaged article. 

f„ Frequency of vibration of the packaged article on its cushioning. 

Go Hypothetical maximum acceleration (in number of times g) that would 
result if initial spring rate were maintained. 

Ge AmGm or AqGo, i.e. the slowly applied acceleration (in number of times g) 
that will produce the same maximum response as a transient acceleration 
of maximum value Gm or Go. 

Gf Maximum acceleration (in number of times g) in cushioning with fric- 
tion and spring rate kF. 

Gm Absolute value of maximum acceleration of packaged article in units of 
"number of times gravitational acceleration." 

Gm' Value of Gm when = K. 
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G„ In section 1.15, the maximum acceleration (in number of times g) ex- 
perienced by the suspended mass when dropped from a height In 
Part IV, the maximum acceleration (in number of times g) of the nth 

mode of vibration. 

Gr Maximum acceleration (in number of times g) after rebound. 

G, Safe value of Ge. 

g Gravitational acceleration. 

It Height of drop. 

/;„ In Section 1.15, the height of fall that will cause the cushioning to dis- 
place an amount (a^n. 

K In the tension spring package, the initial spring rate of the suspension. 
In Section 2.8, the complete elliptic integral of the first kind. 

A'i, K2, K3 The initial spring rates in the three mutually perpendicular directions 
normal to the faces of the package frame. 

k In the tension spring package, the spring rate of a spring. In Section 
2.8, the modulus of an elliptic integral. 

k, k' In Section 4.3, 0, 1, 2, 3, • • • . 

^0 Initial spring rate of non-linear cushioning. 

k'o Optimum value of initial spring rate ko. 

k, Spring rate of lumped elasticity of element of packaged article. 

ko Spring rate of linear cushioning, 

k/, Spring rate of bilinear cushioning after bottoming, 

ky Spring rate defined in equation (2.7.7). 

L Constant defined in equation (1.8.2). 

/ In the tension spring, the projection of /, on a horizontal plane. In 
Section 4.2, length of cushioning. In Section 4.3, length of element of 
packaged article. 

/, In the tension spring package, the distance between the two support 
points of a spring when the suspended article is in the equilibrium 
position. 

M Constant defined in equation (1.8.4), equal to Gm/Go. 

m Reduced mass defined in equation (2.4.5). 

vi, mi' In Section 4.3, 0, 1, 2, 3, • • • . 

Mil Lumped mass of element of packaged article. 

mi2 Lumped mass of packaged article. 

mi3 Lumped mass of outer container. 

mi Mass of cushioning. 

N M-. 
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n 0, 1, 2, 3, • ■ • . 

P Force transmitted through cushioning. 

P0 Asymptotic value of force transmissible through cushioning with hyper- 
bolic tangent elasticity. 

Pm Maximum force exerted on packaged article by cushioning. 

Pn In Section 1.15, the load that produces displacement (>2)..- 

R Force between package and floor. 

r Coefhcient of cubic term in load-displacement function for cushioning 
with cubic elasticity. 

s, t, 11 The direction cosines of the acceleration direction with respect to the 
normals to the faces of the package frame. 

sn The elliptic sine function. 

p2 The period of vibration of the packaged article on its cushioning. 

t Time coordinate. 

I' I - - C02 
l0 Time of first contact of package with floor. 

lm Time at which maximum displacement or acceleration occurs. 

lr Time at which package leaves floor on rebound. 

1, Time at which the displacement reaches de. 

u Displacement in x direction. 

v Approach velocity. 

Wz Weight of packaged article. 

Wa Weight of outer container. 

x sj — xz', relative displacement of mi with respect to viz. 

x i'l — -i"2- 

X Xl — Xz. 

x' Relative displacement of m, with respect to viz at time l'. 

x0 In the tension spring package, the perpendicular distance from an inner 
spring support point to the nearest plane, perpendicular to the displace- 
ment direction and containing four outer spring support points. 

a;! Displacement of vn. 

Velocity of mi. 

ah Acceleration of vii. 

a:2 Displacement of viz. 

.i-2 Velocity of viz- 
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.i:2 Acceleration of m*. 

Xmax Maximum value of x. 

{Xi)n In Section 1.15, the displacement associated with the «th point. 

x,t The value x would have if the acceleration reached its maximum value 
in a very long time. 

(A.To)n In Section 1.15, equals (^n — (*2)11-1. 

y X2-X3. 

z X2/I (tension spring package). 

«> Ti 5, f, rj Phase angles. 

/3i Fraction of critical damping of an element of the packaged article. 

02 Fraction of critical damping of package cushioning. 

7n Phase angle of «lh term of series (equation (4.3.22)). 

e Strain at attached end of element under transient conditions. 

to Strain at attached end of element under non-transient conditions. 

Maximum strain at attached end of element under transient conditions. 

0 Angle between the displacement direction and the acceleration di- 
rection. 

TT 3.14159- • • . 

p Density (mass per unit of volume) 

to Pulse duration of a half-sine-wave acceleration. 

t2 Pulse duration associated with non-linear cushioning. 

tii Duration of bottoming of cushioning with bi-linear elasticity. 

tp Time required to reach peak value of a triangular acceleration pulse. 

u Radian frequency defined in equation (2.4.6). 

oil Radian frequency of vibration of an element of the packaged article. 

wi' Radian frequency of vibration of damped element of packaged article. 

0)2 Radian frequency of vibration of the packaged article on its cushioning. 

0)2' Radian frequency of vibration of the packaged article on damped 
cushioning. 

oib A frequency defined in equation (2.10.10). 

uc A frequency defined in equation (2.8.8). 

o)n Radian frequency of nth mode. 



Abstracts of Technical Articles by Bell System Authors 

Dimensional Stability of Plastics.1 Robert Burns. Because of inherent 
insulating properties, rigid plastics play an important part in the design and 
manufacture of precision electrical apparatus. Almost invariably, practical 
design considerations require that the plastics have reasonable structural 
possibilities since it is rarely practicable to disassociate completely electrical 
and structural functions. 

This paper discusses one of the important factors in the successful use of 
plastics in precision devices, namely, dimensional stability. Since plastics 
are organic compounds, one must be prepared to accept a degree of insta- 
bility not usually encountered in metals. The measurement of this property 
is therefore of prime importance to the user of plastics since the data provide 
a basis for design adjustment which frequently is the difference between 
failure and success. 

The various types of dimensional change are reviewed. Data illustrating 
the separate effects of humidity, drying, and cycling procedures are sub- 
mitted. The influence of fabricating processes such as compression or 
injection molding, and sheeting, is included. 

Some Numerical Methods for Locating Roots of Polynomials.- Thornton 
C. Fry. It is the purpose of this paper to discuss the location of the roots 
of polynomials of high degree, with particular reference to the case of com- 
plex roots. This is a problem with which the Laboratories has been much 
concerned in recent years because of the fact that the problem arises rather 
frequently in the design of electrical networks. Attention is not given to 
strictly theoretical methods, such as the exact solution by elliptic or auto- 
morphic functions: nor to the development of roots in series or in continued 
fractions, though such methods exist and one at least—development of the 
coefficients of a quadratic factor—is of great value in improving the accuracy 
of roots once they are known with reasonable approximation. 

Instead, the paper deals with just two categories of solutions: one, the 
solution of the equations by a succession of rational operations, having for 
their purpose the dispersion of the roots; the other, a method depending on 
Cauchy's theorem regarding the number of roots within a closed contour. 

Thermistor Technics? J. C. Johnson. This paper is confined to a study 
of how the three basic types of thermistors, namely, externally-heated or 
ambient temperature type, the directly-heated type, and also the indirectly- 

1 A.S.T.M. Bulletin, May 1945. 
2 Quarterly Applied Mathematics, July 1945. 3 Electronic Industries, August 1945. 
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heated type, are used in simple feedback amplifiers as regulation and control 
devices to effect the economies inherent in an entirely electrical system by 
eliminating such mechanical devices as motor-driven condensers, sliding 
contacts and rotary switches. 

Dynamic Measurements on Electromagnetic Devices.* E. L. Norton. A 
method is presented by which measurements of flux may be made at any 
desired time during the operate cycle of an electromagnet. Apparatus is 
described which operates the magnet cyclically at an accurately held rate, 
and provides a means for measuring flux either by the use of a search coil 
or by the operating winding of the magnet itself. When using a search coil, 
it is connected to a direct-current milliammeter at the time in the cycle at 
which the value of the flux is desired and disconnected at the end of the 
cycle or just before the magnet is energized for the next pulse. If proper 
precautions are taken, the steady reading of the instrument is an accurate 
measure of the difference in the flux in the coil between the time it is con- 
nected to the meter and the time it is removed, or, since the latter is zero 
except for residual flux, the reading is a direct measure of flux. 

The same apparatus may be used for the measurement of instantaneous 
current by the addition of an air core mutual inductance, and its use is 
extended to the measurement of armature position and velocity by the 
addition of a photoelectric cell and the proper amplifiers. 

A form of vacuum tube filter is described which effectively filters the 
pulses from the indicating instrument without affecting the accuracy of the 
measurements. 

Coaxial Cables and Television Transmission? Harold S. Osborne. 
Communication techniques and facilities useful to the entertainment 
industry have evolved naturally from the Telephone Companies' main 
objective—the transmission of speech. The development of carrier sys- 
tems for long-distance transmission and technical features involved in the 
latest carrier medium—the coaxial cable—are reviewed. The television 
transmission capabilities of this medium, both now and what may be 
expected shortly after the war, are mentioned. The extensive system of 
such cables planned for the next five years, supplemented by radio relay 
systems to the extent that these prove themselves as a part of a communica- 
tions network, will provide an excellent beginning for a nation-wide tele- 
vision transmission network. Planned primarily to meet telephone 
requirements, this network of cables will be suitable to meet the transmission 
needs of the television industry. 

The Performance and Measurement of Mixers in Terms of Linear-Network 
Theory? L. C. Peterson and F. B. Llewellyn. This paper discusses 

' Elcc. E,ngv,., Transactions Section, April 1945. 
5 Jour. S.M.P.E., June 1945. 6Froc. I.R.E., July 1945. 
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the properties of mixers in terms of linear-network theory. In Part I the 
network equations are derived from the fundamental properties of nonlinear 
resistive elements. Part II contains a resume of the appropriate formulas 
of linear-network theory. In Part III the network theory is applied, first 
to the case of simple nonlinear resistances, and next to the more general 
case where the nonlinear resistance is embedded in a network of parasitic 
resistive and reactive passive-impedance elements. In Part IV application 
of the previous results is made to the measurement of performance properties. 
The "impedance" and the "incremental" methods of measuring loss are 
contrasted, and it is shown that the actual loss is given by the incremental 
method when certain special precautions are taken, while the impedance 
method is in itself incomplete. 

A Figure of Merit for Electron-Concentrating Systems.7 J. R. Pierce. 
Electron-concentrating systems are subject to certain limitations because 
of the thermal velocities of electrons leaving the cathode. A figure of merit 
is proposed for measuring the goodness of a device in this respect. This 
figure of merit is the ratio of the area of the aperture which, in an ideal 
system with the same important parameters as the actual system, would 
pass a given fraction of the cathode current to the area of the aperture which 
in the actual system does pass this fraction of the cathode current. Ex- 
pressions are given for evaluating this figure of merit. 

A 60-Kilowatt High-Frequency Transoceanic-Radiotelephone Amplifier.6 

C. F. P. Rose. Here is described a high-frequency radio amplifier recently 
developed for the transoceanic-telephone facilities of the Bell System at 
Lawrenceville, New Jersey. In general, the amplifier is capable of delivering 
60 kilowatts of peak envelope power when excited from a 2-kilowatt radio- 
frequency source. It is designed to operate as a "class B" amplifier for 
transmitting either single-channel double-sideband or twin-channel single- 
sideband types of transmission. Features are described which permit 
rapid frequency-changing technique from any preassigned frequency to 
another lying anywhere within the spectrum of 4.5 to 22 megacycles. 

Some Notes on the Design of Electron GunsP A. L. Samuel. A method is 
outlined for the design of electron guns based on the simple theory first 
published by J. R. Pierce. This method assumes that the electrons are 
moving in a beam according to a known solution of the space-charge equa- 
tion, and requires that electrodes exterior to the region of space charge be 
shaped so as to match the boundary conditions at the edge of the beam. 
An electrolytic tank method is used to obtain solutions for cases which are 
not amenable to direct calculation. Attention is given to some of the 

7 Proc. I.R.E., July 1945. 
8 Proc. I.R.E., October 1945. 
9 Proc. I.R.E., April 1945. 
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complications ignored by the simple theory and to some of the practical 
difficulties which are encountered in constructing guns according to these 
principles. An experimental check on the theory is described, together 
with some information as to the actual current distribution in abeam 
produced by a gun based on this design procedure. 

Microwave Radiation from the Sun.10 G. C. Southworth. During the 
summer months of 1942 and 1943, a small but measurable amount of micro- 
wave radiation was observed coming from the sun. This appeared as ran- 
dom noise in the outputs of sensitive receivers designed to work at wave- 
lengths between one and ten centimeters. Over a considerable portion of 
the range, the energy was of the same order of magnitude as that predicted 
by black-body radiation theory. 

Attempts were made to determine the effect of the earth's atmosphere on 
this radiation. Measurements made near sunrise or sunset, when the 
path through the earth's atmosphere was relatively long, differed only 
slightly from those made at noon. This suggested that any absorption 
that may have been present was small. In this connection it is of interest 
that small temperature differences could be noted between points below the 
horizon and the sky immediately above. This also suggested that the 
earth's atmosphere was relatively transparent. 

In another kind of measurement the parabolic receiver was centered on 
the sun and its output was observed as the sun's disc moved out of the aper- 
ture of the receiver. The directional pattern so obtained indicated that 
at the shorter wave-lengths the sun's apparent diameter was considerably 
larger than that measured by ordinary optical means. This suggested that 
there may have been some refraction or perhaps scattering by the earth's 
atmosphere. 

Resistive Attenuators, Pads and Networks—An Analysis of their Applica- 
tions in Mixer and Fader Systems {Part Eight of a Series)}1 Paul B. 
Wright. In last month's discussion, the series-connected fader and the 
parallel-connected fader systems were considered, together with an analysis 
of their performance expressed both algebraically and in terms of the 
hyperbolic functions of a real variable. In this installment, the series- 
parallel-connected fader system discussion is continued and equations 
describing the complete behavior of this type network system are developed. 
This is followed by further analytical work dealing with the parallel-series- 
connected fader and mixer system and several lesser known systems which 
are quite useful to use. These are the multiple bridge and the lattice network 
systems which may be utilized to advantage for some applications. All of 

10 Jour. Franklin Institute, April 1945. 11 Communications, September 1945. {Preceding parts of this Scries appeared in earlier 
issues of Communications.) 
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the equations which are derived are shown in the algebraical, hyperbolical 
and symbolical forms. The key chart which was presented earlier in this 
series may be used to great advantage when checking the definitions of the 
symbols used which are not specifically defined in the text. This procedure 
also may be directly applied to the hyperbolic equations shown. It is of 
course necessary to take into account that, in general, subscripts are used 
in most of the equations in the text while the key chart does not have any 
subscripts. This does not, however, alter the fundamental forms nor their 
definitions in terms of the propagation function, theta. To avoid the neces- 
sity for extensive interpolation of the hyperbolic function tables to find the 
correct numerical values for the various functions used throughout the text, 
a series of tables providing all of the functions required is presented. 
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