

From the Creators of the compact disc HEADPHONES FOR THE COMPACT DISC

PHILIPS

EDITOR AND MANAGER

Kim Bucknole
PRODUCTION EDITOR
Anne Lawton
designer
Clive Davis
ART STAFF
Ron Farrell
PRODUCTION
Tracy Dauglas
ADVERTISING PRODUCTION
Brett Boker
SECRETARY
Michelle Smith
CONTRIBUTING EDITOR
$\mathrm{HI}-\mathrm{fl}$ and Audlo
Louis Challis

ELECTRONICS EDITOR

Roger Harrison VK2ZTB
ELECTRONICS SECTION
Compiled by The Apogee Group
EDITORIAL ASSISTANTS
Adam Searle
Jamye Harrison
DRAFTING
Graeme Knight
Jamye Harrison
Enquirles to The Apogee Group on (O2) 5551646 : fax (O2) 8182949.

EDITOR-IN-CHIEF

Brad Boxall
PUBLISHER
Michael Hannan
CIRCULATION MANAGER
Michael Prior
HEAD OFFICE
180 Bourke Road.
Alexandria. NSW 2015
PO Box 227. Waterio. NSW 2 Ol 7.
Ph: (O2) 6936660
Federal Facsimile: (O2) 6939935

ADVERTISING

New South Wales: Kim Bucknole. Jonathan Poynter, Cameron Johnston. Soles Executives. The Federal Publishing Company, 180 Bourke Road. Alexandria, NSW 2O15. Ph: (O2) 6936666 . Facsimile: (O2) 6939997.
Victoria and Tasmania: Valerle Newton
Victorian Advertising Manager, The
Federal Publishing Company, 22la Boy
Street. Port Melbourne. Vic 3207.
Ph: (O3) 646 3111. Facsimile: (O3) 6465494
Queensland: Graeme Smith, The Federal
Publishing Company. 26 Chermside
Street. Newstead, बid. Ph: (O7) 8541119. Street, Newstead. eid.
Facsimile: (O7) 2523692.
South Australlo and Northern Territory: Michael Mullins, C/- Federal Publishing. 98 Jervols Street. Torrensville. SA 5O31. Ph: (O8) 3528666 . Facsimile: (O8) 3526033. Western Australia: Estelle de San Miguelle. 94 Hay St. Subiaco. WA 6008 , PO Box 745. West Perth. WA 6005 . Ph: (O9) 382 1369. Facsimile: (O9) 3881186 New Zealand: Gordon Marr. The Federal Publishing Company. 67-73 Vlew Rd. Glenfield, Auckland. Ph: 4430954.
Facsimile: 4431326.
Britain: Peter Holloway, C/- John Fairfax \& Sons, 12 Norwich Street. London EC4A 1BH. $\mathrm{Ph}: 3539321$.
ELECTRONICS TODAY INTERNATIONAL is published and distributed monthly by The Federal Publishing Company Pty Limited, inc. In NSW, 180 Bourke Road. Alexandria. NSW 2015 Ph (O2) 6936666. Printed by Hannanprint, Sydney. Distributed by Newsagents Direct Distribution Alexandria. NSW 2015. Distributed in New Zealand by Network Distributors Ltd, 67-73 Vlew Road. Glenfleld. Auckland. Ph: 443 O 245. Facsimile: 443O249. "Maximum and recommended Australian retall price only

TECHNOLOGY

So much equipment that is part and parcel of everyday life depends on electric current as a source of energy for its operation. Reticulated mains power is very much a substantial thread underpinning the infrastructure of modern day life. But it has only become so in the latter half of this century. The chorus of a contemporary folk song of the 1960s ran:
Put a light in every country window High speed pumps where now the windmill stands Get in and lay the cable So that one day
we'll be able To have electricity all over this wide land...
Well, it hasn't happened. Not completely. Why? It's simply not economically possible. In many instances, it's logistically and/or geographically impossible.

So, other sources of electric power have been sought where it is required to operate equipment, or whatever, remote from mains power. These sources of electric power are generally grouped under the "generic" title of remote area power supplies, abbreviated to RAPS.
Most people conjure up an image of a bush or outback home with power provided by such sources - a wind generator, solar panels and such things. While powering a home is one application, there are dozens of others.

Power sources

Electric power can be derived from a number of sources:

1. The Sun. Photovoltaic modules (solar cell panels) generate dc directly from the Sun's energy.

Roger Harrison takes a look at the various technologies employed to provide electric power when the electricity authority's grid is not handily located nearby.
2. The wind. A propeller or turbine driven by the wind drives an electric generator.
3. Fuel. A petrol or diesel motor is used to drive an electric generator. In this category we must also include thermo-electric generators which burn a gas and produce electricity from thermocouples.
4. Water. A flowing stream or river is used to turn a wheel or shaft, which drives an electric generator (microhydroelectric system).
Figure 1 illustrates the use of these various sources. A means of storing the generated electric energy is often used in conjunction with all these sources. This means storage batteries, lead-acid types being typical your car battery is a good example.
Photovoltaic modules, or solar cell panels, have been in wide use for the best part of 20 years and are manufactured in a range of power outputs to suit widely varying applications and conditions.
Wind generators have been around for $50-60$ years or more. They were once quite common in rural Australia. Wind generators are still manufactured in Australia and are available in a considerable range of power outputs.
Petrol and diesel motor-generator sets are also not new and are available in a very wide range of powers and capacities, from small and light portable units for intermittent use. to substantial sets for fixed, continuous operation.

Figure 2. General arrangement of a power supply employing a photovoltaic array.

Thermo-electric generators, based on a princlipie discovered by Seebeck in Germany in 1821, produce electricity by heating an array of dissimilar metal junctions, which generates current directly. They have not found wide application because other methods in the past have proved more economic or were more widely exploited. Nevertheiess, iow-powered portable thermoelectric generators which burn propane, methane or hydrogen are commercially available. Typically, they're used for battery charging, or supplementary battery charging, where a gas source is available.

Most Australians think of the Snowy River scheme when hydroelectric power is mentioned. But almost any source of running water can be tapped as a source of energy to turn a wheel and drive a small generator. Microhydroelectric systems, as they're called, are avallable in a small range of power outputs.

Photovoltaic modules

These are an array of silicon solar cells, which are basically flat, large area silicon diodes (see accompanying panel). All the cells in an array, or panel, are connected so as to provide a useful voltage, the number of cells in the array (and thus its size) being chosen to provide a convenient current or power output.

The Sun is an incredible source of energy. It is, in fact, the world's primary energy source. On a clear day, about one kilowatt of solar energy falls on a square metre of the Earth's surface at mid- to low-latitudes. About 30 per cent is refiected back into space, 47 per cent is converted into heat, the hygroscopic cycle (rain and weather) uses 23 per cent and the wind, waves and convection currents draw some 0.25 per cent.
Photovoltaic arrays or modules provide electric power in clean, transportable, convenient form. There are no moving parts involved: they can be mounted close to the point of consumption and they require an absolute minimum of maintenance.
The array of cells in a module are encapsulated in a clear, weather-resistant laminate of epoxy resin sandwiched between sheets of glass. This assembly is enclosed by a sturdy frame made from a corrosion-resistant metal, such as anodised aluminium, making a very robust, weatherproof unit. As a consequence, they have very long lifetimes. The capital cost of purchasing the module or modules and ancillary equipment is the main cost involved: maintenance costs are virtually zero.
Photovoltaic modules can withstand shorts and open circuits under most conditions. They produce direct current and can charge storage batteries directly. Used in conjunction with petrol or diesel generators, they can reduce their running times and fuel and maintenance costs.

Modules are manufactured to provide specific dc output to suit battery systems,

New light load invert-a-power

SELECTRONICS has released the latest addition to the Invert-A-Power Series of Australian designed and built inverters.
The new unit, the SPI-200, is available in 12 or 24 volt versions, both of which provide 200VA continuous power and intermittent output power of 425 VA and 600 VA respectively.

The SPI-200 has been developed in direct response to the demand for a light load model for use in apolications such as boating, camping, caravanning, outdoors and weekend holiday homes.

With this new unit, the user can operate a wide variety of domestic 240 volt appliances from a deep cycle 12 or 24 volt lead/acid battery. Typically, items such as TVs, lighting, calculators, computers, mixers, shavers etc, are all within the capacity of the SPl-200.

Weighing only 4.5 kg and completely portable, the unit connects to the battery with conventional jumper leads. The appliance is then simply plugged in to the standard switched power point on the inverter. The SPI-200 is equally at home in fixed installations.

The SPl-200 has most of the features of the larger models, including demand start, built-in protection against wrong way connection and automatic shutdown in the event of overload or short circuit. The unit continues to operate when the overload is removed (there are no fuses to replace).
Designed and built in Australia by Selectronics and incorporating solid state components, the Invert-A-Power SPl-200 is virtually maintenance free, says the manufacturer, and is fully supported by a 12 month warranty.

There are now eight models in the invert-A-Power range: 480 watt 12 volt, 480 watt 24 volt, 600 watt 24 volt, 980 watt 12 volt (modular), 1100 watt 24 volt (modular), 1200 watt 48 volt (modular) and the new 200 watt 12 or 24 volt units.

The following Invert-A-Power models have been accepted by the Energy Authority of NSW for use under the Remote Area Power Assistance Scheme (RAPS): 980 watt - 12 volt, 1100 watt - 24 volt and 1200 watt - 48 volt.

For further information contact Mr Ken Scott, Selectronic Components Pty Ltd, 25 Holloway Drive, Bayswater, Vic. (03) 7624822.
typically $12 \mathrm{~V}, 24 \mathrm{~V}$ and 36 V , at differing design current levels. The module has to be aligned to maximise its exposure, depending on local latitude. Power output varies with time of day, being maximum at local noon, and with season - daily energy output being higher in summer than in winter, as you'd expect.

Despite falling real cost over the past
decade, photovoltaic modules are comparatively expensive when rated against other systems. Depending on the energy requirements of whatever's being powered, supplementary energy from another source may be required in addition to a photovoltaic array for a power supply system. This may be a particular requirement to bridge the lowered energy output during

3×12 V/1 A PARALEL-CONNECTED PHOTOVOLTAC PANES
wet and cloudy periods, or during winter at higher latitudes. In the installation of some systems, a means of varying the array's tilt angle is included so that it may be set to maximise the output during each season of the year as the Sun's angle in the sky varies. A shallower tilt angle is required in summer, a steeper angle in winter. Schemes to automatically vary the array's tilt angle to follow the Sun have been devised.
Photovoltaic arrays are principally used in conjunction with a storage battery system. Generally some means of regulating the charge and/or the output is involved, too. This prevents overcharging of the battery

and may additionally provide some voltage regulation for the output. Figure 2 illustrates the general system. The blocking diode shown is to prevent the battery discharging via the array (which is just a bunch of diodes, after all!) during the night.
Single modules may be assembled into an array in a variety of ways to deliver the voltage/current requirements of the system. Figure 3 shows typical parallel-connected, series-connected and series-parallel connected arrays. Note the blocking diode arrangements with each.

Solar cell arrays are used in a huge variety of terrestrial applications, from battery charging on boats and for remote homes, to solar powered street lights. Solar-powered water pumps, electric fence controllers and radio-telephones are just some of the other applications.
As I indicated earlier, capital cost is your biggest outlay with a photovoltaic system. A module dellvering 20-30 watts will set you back between $\$ 300$ and $\$ 400$. A 4O-5O watt module ($12 \mathrm{~V} / 4 \mathrm{~A}$ peak output) is in the \$500-pius bracket. Even second-hand prices remain high because of their longevity. Then you need to add the cost of ancillaries, like the charger/regulator. A complete array delivering around $300-400$ watts (peak) output will leave little, if any, change from \$5000.

Wind generators

Wind farms have sprung up in the USA and Europe, but have yet to appear in Australla. Individual application of wind generators prevails here.

Wind generators involve a bladed propeller or other rotating turbine system coupled to an ac or dc electric generator. They are invariably mounted on a tower, to best take advantage of the wind, and come in two basic types: horizontal axis and vertical axis.

Horizontal axis machines are reminiscent of windmills, having a rear tail which positions the blades into the wind. The blades may be mounted upwind of the generator and tower, or downwind. Vertical axis generators

4×12 V/1 A SERIES-PARALLEL CONNECTED PHOTOVOLTAC PANELS

Figure 3. Showing the various general arrangements for interconnecting photovoltaic panels to produce different voltage/current outputs.
are not common in Australia, but have the advantage that they do not need to swivel in the wind and the generator itself may be more conveniently positioned.
With such a long history of manufacture and development in Australia, wind generator power systems are readily available, have competitive capital costs and comparatively low maintenance costs. However, reasonably regular, reliabie winds
need to be available, not too far distant from the point of consumption. Coastal regions usually experience more regular winds than inland regions. in general, local annual average wind speed needs to exceed about four metres/second (8 knots).
Siting of wind generators is much more critical than for photovoltaic modules. They need to be located on an elevated site, clear of obstructions - such as trees, buildings etc - for some distance. They also need to be sited clear of other wind generators.
A generator's performance characteristics need to be matched to the site and the application. Knowing the load, or power requirements, generator size and turbine specifications are chosen to sult. Often, a gearbox is required between the turbine and the generator to increase the shaft speed because wind speed is too low for the generator.

A wind generator has a minimum wind speed at which it will commence to delliver power, a rated wind speed at which it delivers its rated power output, and a cutout speed at which it is shut down for protection in high winds. Once the generator reaches rated speed, power output is fairly flat' up to cut-out speed.
Control equipment for a wind generator is more elaborate than for solar cell modules. A start-up and shut-down mechanism is

Figure 4. The light output of a fluorescent tube Increases with Increasing supply frequency. This can be exploited in dc-ac squarewave inverters for lighting.

15-17 Normanby Road, Clayton, Vic. 3168, Australia. Tel: (03) 5448411 . Fax: (03) 5448648.
Telex AA35780 "IEIAUS"
N.S.W. - Tel: (02) 749 1099. Fax (02) 7491091 S.A. Tel: (08) 340 2664. Fax (08) 3401484

QLD. • Tel: (07) 273 1077. Fax (07) 2731277
VERBATIM DATALIFE PLUS
Tellon* Coated
(ALL PRICES PER BOX OF 10 DISKS)

$51 / 4^{\prime \prime}$ DS/DD............ $\$ 29.95$	$\$ 27.95$
$51 / 4^{\prime \prime}$ DS/DD............ $\$ 38.95$	$\$ 35.95$

Now you can buy absolute top quality disks that are also the cheapest in Australia! They even come with a lifetime warranty, which indicates the quality of these disks. So why pay $2-3$ times the price for the same quality?
Packs of 10, D/S D/D without boxes, or brand name, just their whitepaper jacket, and index label. (5 1/4" disks includes write protects)
(ALL PRICES PER 10 DISKS)

$51 / 4^{\prime \prime}$	$2 S / 2 D$	"NO BRAND" DISKS
10+ DISKs	$100+$ DISKs	$1,000+$ DISKs
$\$ 6.00$	$\$ 5.75$	$\$ 5.50$

5 1/4" HIGH DENSITY DISKS 10+ DISKS $\$ 23$
 (DOUBLE SIDED) $100+$ DISKS
 \$22
 1,000+ DISKS
 \$21
 3 1/2" 2S/2D "NO BRAND" DISKS \$21

$\begin{array}{lcc}31 / 2^{\prime \prime} & 2 S / H D & \text { "NO BRAND" DISKS } \\ \text { O+ DISks } & 100+\text { DISKs } & 1,000+\text { DISks } \\ \$ 65 & \$ 59 & \$ 53\end{array}$
Suitable for IBM, PS/2, Macintosh, Atari, etc.

TWIN PACK OF VERBATIM DISKS \& FREE KODAK FLING CAMERA Just buy a double box of any of the listed Verbatim disks on the left and you recieve FREE a Kodak 'Fling' Camera.
(Ofter valid ior November and December 89° Only)

DISK BOXES

DISK STORAGE UNITS - 80×312^{2} - Lockable C16038.................. $\$ 16.95$ - 40×3 1/2". Lockable C16035................... $\$ 14.95$ - $40 \times 31 / 2$ " "Eclipse"
C16040.................... $\$ 8.99$ - 120×3 1/2 "- Lockable C16039................... $\$ 21.95$

- $50 \times 51 / 4$ ". Lockable

C16025.................. $\$ 14.95$ - $100 \times 51 / 4$ ""Eclipse"
C16042.................... $\$ 9.95$

- 100×5 1/4 ". Lockable

C16020................... $\$ 15.95$

- 120×5 1/4"- Lockable

C16028...................\$19.95

KEYBOARD ACCESSORIES

KEYBOARD SLIDEAWAY
Slide your keyboard neatly away when not in use. Gives you more desk space. Securely holds any keyboard, wide or narrow.
C21083. \qquad

KEYBOARD STORAGE DRAWER
Stores keyboard under the PC or monitor conveniently out of the way. Fits PC/AT keyboard or $23 / 4^{\prime \prime}(\mathrm{H}) \times 221 / 4^{\prime \prime}(\mathrm{W}) \times 91 / 2^{\prime \prime}(\mathrm{D})$ - YU - E21B

C21081. \qquad .. $\$ 84.75$

COMPUTER CASES
YOU WOULD'NT
believe the price Limited stock so get in quick
IBM' PC/ XT, Apple••\|llle Compatible Computer Case .ONLY \$50

BABY AT* STYLE COMPUTER CASING Small footprint. Features security key switch, 8 slots and mounting accessories Size: $360(\mathrm{~W}) \times 175(\mathrm{H}) \times 405(\mathrm{D}) \mathrm{mm}$ X11093. \qquad

IBM ${ }^{*}$ XT COMPATIBLE CASE WITH AT* STYLING Features security key switch, 8 slots, and mounting accessories Size: $490(W) \times 145(H) \times 400(D)$ X11091 \qquad .$\$ 99$
P.C ACCESSORIES

MINI VACUUM CLEANER
Use it to clean:

- Computer keyboards - Printers
- Video recorders
- Computer circuit boards C21087................. $\$ 14.95$

MAGIC STAGE

A working bench for your Mouse. -High quality ABS plastic and anti-static rubberised top -Stationary holder - Includes pull-out shelf for Mouse
-Dimensions: $280 \times 260 \times 25 \mathrm{~mm}$ Fits over keyboard C21080................. $\$ 24.95$

1/O ACCESSORIES

DATA TRANSFER SWITCHES
If you have two or four
compatible devices that need to share a third or fitth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.

- No power required
- Speed and code transparent

Two/Four position rotary
switch on front panel

- Three/Five interface
connections on rear panel Switch comes standard with female connector
2 Way RS232
X19120 . $\$ 59$
4 Way RS232
X19125. $\$ 79$
2 Way Centronics
X19130.
....... $\$ 69$
4 Way Centronics
X19135.
....... $\$ 79$
RS232 2×2 Auto Switch
X19140........................ $\$ 79$
Centronics 2×2 Auto Switch
X19145........................ $\$ 79$

POCKET AUTO AB SWITCHES

- Pocket size, auto-scanning - Allows 2 PCs to share one Printer
Serial model:
MS-201 - Host-powered X19150. .. $\$ 79.95$

Parellel model: MP-201
Protocol transparent
X19155...................\$89.95

CENTRONICS CABLE 36 Way Centronics Plug to 36 Way Centronics Plug P19013. \qquad . $\$ 29.95$

CL21 COMPUTER LEAD

- 25 pin D Plug to 25 pin D plug - all pins wired straight through (removable terminals)
- Length 1.5 metres

P19007.................. $\$ 36.95$

BABY AT*

 COMPATIBLE COMPUTER!2 M/BYTE RAM
ONLY \$2,195

- Final assembling and testing in Australia!
. 4 M Byte Main Board, 2 M Byte fitted
Switchable $8 / 10 / 12 \mathrm{MHz}$
- 1.2 M/Byte Floppy Disk Drive - 80286 CPU
- Colour Graphics Display Card - 8 Slots
- Floppy \& Hard Disk Controller
- Printer Card and RS232
- Keyboard
- 200W Power Supply
- Manual
- 6 Months Warranty
- Size:
$360(\mathrm{~W}) \times 175(\mathrm{H}) \times 405(\mathrm{D}) \mathrm{mm}$
With 20 M/Byte Hard Disk. $\mathbf{5 2 , 1 9 5}$ With 40 M/Byte V.C. H.D.... $\mathbf{S 2 , 3 9 5}$ With $80 \mathrm{M} / \mathrm{Byte}$ Hard Disk..CALL

NETWORK CARD

R-NET/S INTERFACE NETWORK CARD
Fully compatible with SMC,
Novell Arenet card
Star-burst topology through
RG-62 AU coaxial cable
Zero wait at 20 MHz or higher 80386 machine

- 2.5 Mbps transmission rate

X18162..
.$\$ 275$

E-NET INTERFACE

 NETWORK CARDFully compatible withNovell NE• 1000 Ethernet card Built-in 15 pin D type connector

- 10 Mbps transmission rate - Meets the IEEE 802.3 standard X18160.

G7 MONOCHROME COLOUR CARD
IBM' Colour Graphics Adapter compatible (support 600×200 four colour graphics model) IBM' Monochrome Display Adaptor compatible
Hercules Monochrome
Graphics Adaptor Compatible - 1BM* Printer Adapter
compatible
Support Composite
Monochrome monitors X18007. \qquad . $\$ 139$

GRAPHICS CARD TTL and Hercules compatible with printer port
X18003.

ENHANCED GRAPHICS
ADAPTOR CARD
Auto switch CGA, EGA and Hercules with 256K video Ram X18070... \qquad ..\$295

VGA CARD
PC•/ XT/ AT• compatible 256 K Ram works with $\mathrm{OS} / 2$ X18071. \qquad ... $\$ 595$

VGA 512K
PC•/ XT*/AT• compatible 512K Ram. Hardware zoom, pan, window.
X18072.
.\$795

FLOPPY DISK DRIVE
CONTROLLER CARD
These cards will control up to 2 or 4 double sided 360 K IBM compatible disk drives
For 2 Disk Drives X18005.
.. $\$ 52$

RS232 (SERIAL CARD) without cable Supports 2 asynchronous communication ports. 50 baud to 9600 baud.
X18026.
.$\$ 39$

RS232 \& CLOCK CARD WITHOUT CABLE Supports 1 asynchronous communication port. 50 to 9600 baud with Clock.
X18028. \qquad ..$\$ 59$

CLOCK CARD
X18024.
.$\$ 49$

PRINTER CARD
Parallel interface for Centronics printers.
$\times 18017$.
.$\$ 29$
3.5 M/BYTE EXTENDED/

EXPANDABLE RAM AT* CARD
X18056.
. $\$ 275$

I/O PLUS CARD
Provides a serial port, a parallel port and a joystick port, and even a clock/calendar with battery backup!
X18045. \qquad . $\$ 115$

2 M/BYTE EXTENDED

 MEMORY RAM CARDX18052..... $\$ 225$

MULTI I/O \& DISK
CONTROLLER CARD
This card will control $2 \times$ double sided, double density drives, and features a serial port, a parallel port, and a joystick port or games port. It also has a clock/calendar genarator with battery backup
X18040.
$\$ 99$

SERIAL/PARALLEL/

GAMES CARD

$\mathrm{XT} \mathrm{T}^{\mathbf{/}}$ AT' compatible 1 parallel port, 2 Serial ports, 2 port games adaptor.
X18151
. . 115

4 WAY DISK

CONTROLLER

- PC•/ $\mathrm{XT}^{*} /$ AT* compatible - 1.44 M/B, 1.2 M/B, $720 \mathrm{~K}, 360 \mathrm{~K}$ Drives
X18006
.. $\$ 129$

GAMES I/O CARD
Features 2 joystick ports.(DB15) $\times 18019$ \qquad

HARD DISK CONTROLLER CARDS
X18060 (XT*) $\$ 129$
X18140 (AT*)............ $\$ 195$

MIDI INTERFACE CARD - DS/401

The MIDI DS-401 Card is the PC standard MIDI interlace that runs most popular PC music programs for sequencing, recording, composing, music printing, patch editing, music instruction and many other applications.

- Run all programs designed for the Roland MPU-401
architecture
- Socketed EPROM for easy user replacement
- $1 / 3$ length (short) card will fit in any computer accepting Standard expansion card including laptops
- Including "Y" cable, external connector box to transport is unnecessary
X18164....
. $\$ 245$

386 SX 16 MHz

MOTHERBOARD

Processor: 80386SX•16MHz
(0/1 wait state)
Co-processor:80387SX-16
(optional)

- CHIPS \& TECH NEAT chipsets - (SMT) Surtace Mount

Technology for chipsets \& CPU
Supports up to 2 MB on board, (Sixteen 44256 and Eight 41256 sockets)
Three 8 BIT slots
Five 16 BIT slots
Memory Expansion SIot
Optional 2.8 MB memory card Suppors LOTUS-INTEL
MICROSOFT (LIM) Expanded Memory Spec. (EMS) version 4.0

Supports Page Interleave Mode using 100NS DRAM BIOS: AMI or PHOENIX Turbo Light and Mardware Reset connector
Keyboard or Hardware Reset connector
Power Good Signal on board
Baby size main board
Without Ram
X18094.
. $\$ 900$

286 NEAT

MOTHERBOARD

- Processor: $80286-12,-16 \mathrm{MHz}$ or -20 MHz ($0 / 1$ wait state)
- Co-processor: 80287 (optional) CHIPS \& TECH NEAT chipsets 1-4MB dual RAM socket $1-4 \mathrm{MB}$ module RAM socket on board
-640KB-384KB memory relocation
- Three 8 BIT expansion slots Five 16 BIT expansion slots - Memory expansion to 8 MB - Supports EMS 4.0
- Page Interleave Technology - BIOS: AMI or PHOENIX - Hardware and keyboard switchable Clock Speed - LED speed display
- Power Good Signal on board - Baby size main board
- 16 MHz

X18090.
. 700

- 20 MHz

X18092.
.\$895

AC ADAPTOR

- Output: 6 V 300 mA M19008.
. $\$ 8.95$

Please quote this advertisement for the prices listed for this month.
SYDNEY: 74 Parramatta Rd Stanmore 2048
Phone: (02) 5193134
Fax: (02) 5193868
MELBOURNE: 48 A'Beckett St Phone: (03) 6636151 NORTHCOTE: 425 High St. Phone: (03) 4898866
MAIL ORDER \&
CORRESPONDENCE
PO. Box 620. CLAYTON 3168 Order Hotline: 008335757 (Toll free. strictly orders only) Inquiries: (03) 5437877 Telex: AA 151938
Fax: (03) 5432648
All sales tax exempt orders and wholesale inquiries to. RITRONICS WHOLESALE. 56 Renver Road. Clayton Phone:(03) 5432166 (3 lines) Fax: (03) 5432648

ORDER HOTLINE

008335757
(TOLL FREE)
STRICTLY ORDERS ONLY
LOCAL ORDERS \& INQUIRES
(03) 5437877

POSTAGE RATES:
\$1 - \$9.99 $\$ 2.00$
\$10-\$24.99 $\$ 3.00$
\$25 - \$49.99 $\$ 4.00$
\$50 - $\$ 99.99$..................... $\$ 5.00$
\$100 + ... $\$ 7.50$
The above postage rates are for basic postage only. Road Freigh bulky and fragile items will be charged at different rates.
Errors and omissions excepted. Prices and specifications subject to change.

 thasematk ol Oupont Oenontes regosiered

Power supplies

Energy for the future

FISCAR Pty Ltd is a small development company whose direction has been in renewable energy over the last few years.
The company has developed a low speed generator which is said to be unique in that it produces 1 kW of power at 180 rpm . It can be tailored to suit the client's application. There is no gearing involved in the generator; it is direct drive, minimising losses and possible breakdown from gearbox associated generators.

Fiscar also makes a pure sine wave inverter which is capable of starting induction and brush type motors; sizes range from 1 kW to 8 kW and prices are very competitive with square wave technology. Some features supplied as standard are normal optional extras.

Wind power is a source of energy which, if applied properly with other resources of power input such as solar or diesel, can be made a viable resource at present and for the future. Telecom Australia has shown interest in Fiscar's systems and has funded a number to be placed around Australia and monitored over a period of 12 months to determine accurate readings of production in various wind condition sites. Telecom's involvement means indepth evaluation both of technology and market possibilities.
Development is continuing with the goal of quality at a reasonable price.
Further' information from Fiscar, 2 Oaklands Avenue, Fern Tree Gully, Vic. 3156.
(${ }^{(03)} 7582324$.
required. Mechanical and air brakes are used, as well as blade feathering (pitch variation). A manually- or electricallyoperated swinging tail may be used to swing the turbine out of the wind. A mechanical brake allows stopping the machine. for maintenance.
A voltage regulator is essential to maintain output voltage with varying wind and turbine speed. Electrical protection to prevent overcurrent or reverse current is also included. In direct battery-charging applications, battery over-voltage protection is generally included. In prolonged high winds, when the generator's output may not be needed, a load dump may be connected. This is a resistive load which dissipates the excess energy as heat.
Wind generators are noisy. Wind passing over the blades, vibrating the tower, nolse from gears, brushes and bearings alt contribute. Because of the moving parts, regular maintenance is essential.
Wind generator powered pattery chargers, wind-generator powered electric pump systems and lighting/ac power systems are all common applications.
Low-power battery-charging wind generator systems, delivering around 25-50 watts output cost much the same as
comparable power output photovoltalc systems. But once the power output rises to 200 watts and more, the price per watt rapidly drops. A 400-500 watt wind generator costs around $\$ 2000$.

Motor generator systems

Of the $1 \mathrm{~kW} /$ square metre of solar energy that falls on the Earth, a minuscule 0.025 per cent or so is stored in plants through photosynthesis. Eventually, through geophysical and geochemical action, plant matter is turned into coal and oill - the socalled fossil fuels. This trickle of energy into photosynthesis has acoumulated over millions of years. It has been estimated that It takes some six million years of accumulated photosynthesis to provide the world with six months' worth of coal and oill Think about it. For the moment, anyway, power from burning fuel is a major source of energy.
Petrol and diesel motors linked to dc or ac electric generators have provided electric power sources of various capacitles for the best part of this century.
For remote power applications, both portable and fixed systems are available. Small, portable motor generator sets generally use petrol motors, while the larger,
fixed systems generally employ diesel motors. The generator may be an alternator producing ac output, or a dc generator. The ac output types generally provide 240 Vac , while the dc output types are obtainable in a variety of output voltages, generally for direct battery charging.
Motor generator power supplies have the great advantage that power is available virtually on demand. They are reliable and robust. Capital cost is comparatively low. They can provide large currents and have good temporary overload characteristics. A motor run at a constant speed is very fuel efficlent. The ac (alternator) type can be used to power mains-operated appllances directly and charge batteries through a charger; the dc output type may be preferred for direct battery charging. eliminating the battery charger in a remote power system.
Against motor generators is their high operating and maintenance costs, particularly when compared to photovoltaic arrays. There is the need to store fuel and the necessity of siting them away from the consumption source for safety and noise reasons. They produce fumes and waste fuel if not run at or near full load.
Petrol and diesel engines require different starting and stopping systems; petrol engines have an electrical ignition system, diesels do not. Petrol engines are stopped by cutting off the ignition system, diesel engines are stopped by cutting off the fuel supply.
Control systems include engine speed regulation, high temperature shutdown, low oil pressure shutdown, over- and reversecurrent protection for the generator and over-voltage/under-voltage protection for dc battery charger generators.
Most motor generator systems have outputs starting in the 100s of watts area, ranging to tens of kilowatts. Petrol motor sets are much less expensive than diesel sets, but have shorter lives and higher running costs. Portable petrol generator sets are quite cheap ($\$ 600$ to $\$ 1500$) and cost effective where intermittent use is only required. Larger, fixed installation diesel units are generally more cost effectlve per kW capacity. For a fixed installation diesel generator, up to 10 kVA output, cost will be around $\$ 1000$ per kVA: from $10-30 \mathrm{kVA}$, this figure rapidly halves.

Inverters

There is often a requirement to power ac mains-operated appliances and, with dc power supply systems, this means generating 24 O Vac/50 Hz from some dc voltage usually 12 V or 24 V . An electronic dc-ac inverter is used for such applications.
Three approaches to generating the required 24 O Vac at 50 Hz are taken: generate a square wave of the appropriate amplitude, or derive a sinewave or pseudo-

Flgure 1. The various sources explolted for generating electric power remote from the mains power grid.

SOLAR ELECTRIC MODULES
the simplest, most reliable power supply under the sun

SOLARWATT SOLAR POWER ELECTRIC SYSTEMS

Being the BIGGEST DISTRIBUTORS we offer the BIGGEST DISCOUNTS!

Free advice!
Solar accessories batteries/inverters regulators

230'CONNELL TCE.,BOWEN HILLS, BRISBANE 04006

072527600

READER INFO NO. 5

Power supplies

sinewave supply of appropriate amplitude. A square wave dc-ac inverter has the advantage of simplicity and efficiency. Some appliances will not operate correctly, if at all, from a square wave source, however.

Sinewave inverters provide a pure sinewave, but are not very efficient as essentially they are an oscillator/power amplifier arrangement. They are rarely seen. However, pseudo-sinewave inverters overcome the problem. These generate a square wave output that has a "step" at the zerocrossing point, providing a very crude approximation to a sinewave.

Square wave inverters are often used to provide power for low-powered appliances and for lighting. In lighting applications however, 50 Hz inverters are a liability. The most efficient lighting, for light output versus energy input, is provided by fluorescent tubes. When operated from frequencies higher than 50 Hz , their light output actually increases! Figure 4 tells the story. Fluorescent lights with individual high frequency dc-ac inverters are the most efficient way to obtain electric lighting from a remote area dc power system.

Hybrid systems

Where the application is to provide light and power for a dwelling remote from the power grid, a hybrid system is established, using a combination of sources, as illustrated in Figure 5. Only part of this system may be implemented, using whichever sources are appropriate or available, or whatever can be afforded. Lifestyie in a house remote from the power grid has to be very different from that where reticulated mains is on tap. Electric heating is out, for a start.

In the illustration shown here, the wind generator may be replaced by a microhydroelectric generator. The dwelling's lighting system may be powered from the dc side, while appliances are powered from the ac side. The motor generator may be absent, or the solar cell panel may be absent.

Wrap up

Unfortunately, there's insufficient space to go into remote area power supplies in more depth in one magazine article. Coverage of storage battery requirements and their technology would take a complete article of this size alone! I hope this has provided an overview of the subject and the technologies involved.

픈

Figure 5. A hybrid system is generally put together to provide light and power for a dwelling remote from the power grid.

RAPS and RAPAS

IN NSW, the Department of Minerals and Energy runs a Remote Area Power Assistance Scheme (RAPAS). Other states run similar schemes. Readers who are interested may write to RAPAS, Dept of Minerals and Energy, PO Box 485, Sydney, NSW $2002=$ (02) 234444 for further information. The department can provide brochures outlining the scheme, the eligibility for and availability of grants, and information on system selection, with a list of accepted equipment which may be eligible for subsidy. Discussion of the scheme is without the ambit of this article, but if the literature provided by the NSW Covernment is typical, interested readers will readily be able to inform themselves. (KB)

ARTHURCUSHEN

NO CUTS FOR RADIO FRANCE INTERNATIONAL

Radio France International is planning to upgrade its transmitters and relay bases at home and overseas. By Arthur Cushen.

Many international services are faced with budget cuts, but not so Radio France International. All their transmitters located in France and relay bases overseas are being upgraded, while new bases are being built in Thailand and Djibouti.
According to the Shortwave Frequency Manager of Radio France International, plans are underway to upgrade at the transmitting stations at Allouis and Issoudun. The present 100 kW transmitters were installed in 1962 and are being replaced by 500 kW units. Radlo France International, in its expansion of overseas relay bases, has made an agreement with the Thai Government to build a relay station with a maximum of four 300 kW or 500 kW transmitters
being installed. This would enable Radio France International to cover most of Asia. At the same time, plans are underway for a new relay base in Dilbouti. This will have similar capacity, but the decision of which base is to be built first is still to be made.

Earller, Radio France International had announced plans for relay stations in Reunion and New Caledonia, but these are not going ahead. The projects were originally promoted by the former French Prime Minister, but after two years it was decided to cancel. The proposed Reunion project has been cancelled in favour of the new relay base at Djiboutl, whille pians for New Caledonia to serve the Pacific as well as Australia have also been left in abeyance. The existing transmitter

complex at Montsinery, French Guiana, is to be expanded with a further 500 kW transmitter which will bring the total to four located at this South American transmitting site.
Radio France International operates 24 hours a day in French, while English broadcast's are O315-O345 on 9790, 11700, $11995,15300 \mathrm{kHz} 123 \mathrm{O}-133098 \mathrm{O} 5$ 11670 while the broadcast 1600-1700 is on 11705,15630 , 17620. 17795 kHz . Broadcasts In French are best received in this area at 0600 on 6175,735 , 9790, 11800, 15300, 17850 and 21620 kHz .

Voice of hope for Guam

THE Voice of Hope is well known to shortwave listeners for its broadcasts from Lebanon operated by High Adventure Ministry. The Lebanon transmitters operate on 6280 kHz and, with a low powered signal, on 6215 kHz . The transmitters in Lebanon are near the israel border. The antenna on shotwave has been changed to cover North Africa and the Soviet Union, and this will be coupled to a new 25 kW transmitter.
In California, KVOH is well known as the base of High Adventure Ministry, using a 100kW transmitter. As this transmitter cannot reach into China, however, a new transmitter on Guam is expected
to commence operation this month. It will use the callsign KHBN and 100 kW of power. High Adventure Ministry has been operating for ten years and the Guam transmitter will be its third area of operation, enabling the station to cover China and South East Asla.
The organisation has had several ideas for its broadcasting role in the Pacific, including operation from a ship, then broadcasts from Singapore or the Philippines, but both of these proved difficult. So, Guam, being a United States possession, was chosen for the final site.

DX programs

MOST international stations have special programs for the shortwave listener, and this list covers only a few of those well received in the South Pacific. In all cases repeat broadcasts of these sessions are heard at other listening times.
Sunday: O23O Radio Australla 1524O, 17795kHz, O75O BBC 750 . 177 OkHz
Monday: O800 HCJB 9745، 11925 kHz
Wednesday: O23O Radio Sweden 9695, 11705 kHz
Thursday: O750 Radio Nederland 9630, $15560 \mathrm{kHz}, 1050$ Radio Nederland 9505 kHz
Saturday: O8OO HCJB 9745, 11925 kHz , O845 Swiss Radio 9560, 13685kHz
1000 KTWR $11805 \mathrm{kHz}, 2100$ Radio Canada $15325,17875 \mathrm{kHz}$.

플
This item was contributed by Arthur Cushen, 212 Earn St. Invercargill, New Zealand. He would be pleased to supply additional information on medium and shortwave listening. All times are quoted in UTC (GMT) which is 11 hours behind Australian Eastern Daylight Time.

Iwas intrigued when, earlier this year, a press release on this instrument arrived in our offices, accompanied by the obligatory photograph. It looked like a calculator with a graphics display and three BNC connectors protruding from the top skirt.
A brief browse of the literature supplied quickly convinced me I was looking at something out of the ordinary. But it gave me a faint feeling of deja vu. I then dimly remembered reading about the release of

INSTRUMENTATION
such an instrument a year or two back in a German electronics magazine. Probably an earlier Gossen Multiscope, for the Gossen Multiscope 100 is, indeed, made in Germany.

The basics

It's a half-book sized instrument, measuring 260 mm tall by 105 mm wide by 39 mm thick. It weighs 700 grams. The top of the front panel is dominated by the liquid crystal display which is about 60 mm square. Beneath this is a 50-key calculator-like keyboard. On each of the left and right hand side panels are a pair of slide switches. The upper ones are for selecting the input coupling mode on each channel, the lower ones are the input range selectors for each channel.
Three BNC connectors on the top skit provide the two channel inputs, at left and right, and a trigger input in the centre.
The Multiscope 100 boasts no less than four microprocessors in the works, plus a pair of analogue instrumentation amplifiers, flash: A-D converter and high speed memory.

The instrument is powered from a plugpack supply that delivers $+5 \mathrm{~V},+12 \mathrm{~V}$ and -12 V . The review instrument was not battery operated. although the literature indicates this is possible.

It is supplied with a perspex stand that allows tilting the instrument at various angles. This also doubles as a protective cover. It has two 'ears' which simply snap onto two 1 -sided capstans at either side of the instrument's base.

Features and functions

Get ready for the list. Basically, it has six functions:

1. Digital storage oscilloscope - two channels at that; for the usual sort of oscilloscope applications measuring aperiodic signals at a maximum sampling

haNDHED MULTISCOPE

Would you believe - a dual-channel, digital storage oscilloscope, digital voltmeter, frequency counter and signal computer could all fit in the palm of your hand? You'd better, because here it is! Reviewed by Roger Harrison.
rate of 20 MHz .
2. Sampling oscilloscope - for measuring periodic signals with a maximum sweep rate of $50 \mathrm{~ns} /$ division and bandwidth of $\mathrm{O}-10 \mathrm{MHz}$.
3. Transient recorder - for capturing and storing waveforms, boasting nine signal memories and a dedicated instrument setup memory.
4. Digital voltmeter - for both channels, it will read and display a signal's true RMS value, mean value (dc component), and peak-topeak value.
5. Counter/timer - boasting auto frequency and period measurement from 1 Hz through 5 MHz .
6. Signal processor - for carrying out direct mathematical manipulation of signals, such as obtaining the sum and difference of two signals, multiplying or dividing two signal functions.
The liquid crystal display is an array of 128 $\times 128$ pixels with just over six divisions vertically and horizontally. The handbook reveals the pixels are addressed in a time multiplexed mode, allowing both graphical and alphanumeric information to be shown simultaneously. A contrast ratio adjustment is provided, operated by a screwdriver.
In oscilloscope operation the data fields for each channel are shown at the top (channel 1) and bottom (channel 2) of the display. In voltmeter mode, the display can show all the voltage, frequency and period parameters, and percentage accuracy - all at once, and with simultaneous waveform dispłay! You can put cursors on the display and set them to obtain readout of required parameters.
The two input channels are chopped, or multiplexed. Maximum sampling rate is quoted as 2 OMHz . The maximum resolution for periodic input signals is $50 \mathrm{~ns} /$ division or $2.5 \mathrm{~ns} /$ pixel. The analogue channel bandwidth is 10 MHz . In the timebase department, it's no slouch. It boasts two independent timebases, so you can display totally unrelated signals if need be. Horizontal sweep rates (for periodic signals) range from 1.3 hours.div to $50 \mathrm{~ns} / \mathrm{div}$. For aperiodic signals, it ranges from $1.3 \mathrm{hrs} / \mathrm{dlv}$ to $1 \mathrm{us} / \mathrm{dlv}$. And, like its larger counterparts, you can 'zoom' the display. The screen buffer memory capacity is 256 samples for channels 1 and 2 individually, or 128 samples each in chop mode.
It has a fully digital trigger, the trigger point being definable in terms of both X and Y axes via numeric parameter entry. The pre-trigger range is two screen widths (256 pixels); posttrigger range is 31 screen widths (4000 pixels). Maximum jitter is quoted as $+/-2$ pixels for signal trigger edge gradients greater than two vertical divisions for every three horizontal divisions.
The Multiscope 100 gives you auto trigger control where it automatically defines the optimum trigger level (smartl); a normal mode (manual, according to set parameters); a roll mode (free running) and

You've wanted HP quality...

Call HP DIRECT 008339 861,

 or Melbourne 8952861.We can't make buying HP quality in a handheld multimeter any easier or faster. Our toll-free line gives you fast access to the HP E2373A, above. It combines seven functions with 600 HzAC bandwidth accuracy of 0.7% in DCV and $2 \% \mathrm{ACV}$, in a $\$ 173.00^{*}$ package. Call today to order.
*plus tax
single shot. You can select from internal trigger (ch. 1 or ch. 2 can trigger itself, or both channels): internal alternating trigger in which both channels trigger themselves independently, and external trigger. With the latter, ch. 1 and/or ch. 2 are externally triggered, or chl. is triggered externally and ch. 2 internally, or vice-versa. Naturally, you can select ac or dc trigger input, or TTL standard: rising edge or falling edge. All trigger parameters can be set by straightforward programming, and the setting can be stored in memory and recalled.
Nine trace and data memories are included in the Multiscope 100, and it has a mode memory as well, which allows you to store an array of operational settings which can be recalled later, saving time in setting up oft-used operating modes. Nice touch, and very handyl
You can use the data memories to store waveforms for later comparison with live signals. This is a great feature in servicing and production testing applications. Since all input parameters are held in the memory, actual waveforms can be compared with setpoint characteristics. The mode or setup memory will show the various basic settings and can be programmed with the later mode and corresponding setpoint waveform.
The signal processor, or computer as Gossen refers to it, is an interesting facility. You can, for example, arithmetically correlate two live signals in channels 1 and 2, or a live signal in one channel with respect to a stored signal. You can take the sum of two input signals, or the difference. You can multiply them or divide one into the other.
There's no space here to go through the full keyboard operation, more's the pity. And one small point before I move on - it sports auto-calibration.

On the bench

It doesn't take up much room! If you're used to a normal oscilloscope or digital storage 'scope, the Gossen will seem strange at first. The slide switches on the side of the case I found to be somewhat unsatisfactory in an ergonomic sense. You either have to put your hand under the instrument and operate them with a thumb or finger, or brace your thumb on the top of the case and operate them with one or two fingers. Awkward either way. But, I guess that's the sort of operational compromise necessary when you're trying to package an instrument such as this. Electronic toggle switches would have been better, but how you'd fit the electronics inside, I don't know. (Yet more miniaturisation?).
The keyboard is simple to use, the keys having plenty of clearance between them, and they're well annotated. The keyboard
is clearly laid-out, the different operational areas being colour-coded. Good thinking, Gossen.
The display is adequate for the tasks this instrument would generally be called on to perform. In some instances, it is a little dotty. but eyeball interpolation makes up for that. Really glitchy signals may present a problem, however. The data fields displayed at the top and bottom of the screen in oscilloscope operation are very useful: nay, essential.
The intelligent trigger functions and facilities I would judge to be one of the best features of the Multiscope 100.
The display reacts quickly in operation - a rather unexpected trait, glven my experience with other liquid crystal displays. It provides a readily visible and readable display under a wide range of lighting conditions and over a fair range of viewing angles. But, in use, you must be mindful of the limitations of LCDs. The handbook, I note, is not shy of cautioning users about this.

The multimeter (volts/frequency/period) functions are a bonus. With the one instrument you can do so many things. it won't provide the sort of accuracy you get from individual, dedicated instruments, but for many applications and situations I can see it would be quite adequate.
I felt the plastic stand was a little flimsy for my liking and would expect this to be an early casualty if the instrument were used in field service applications. But I may be wrong. That the demonstration model supplied for us to review had survived thus far and through many hands, probably means it's more robust than it seems.
The placement of the input BNC connectors at the top is convenient and logical. The placement of the powerpack connector at the bottom proved a little awkward, but probably unavoidable. Battery operation obviates this problem. The supplied literature indicates the unit will give four hours of cordless operation from the optional rechargeable battery pack.
Like any complex, feature-packed instrument, there's a learning curve involved before you become proficient with it. This instrument, like any digital storage oscilloscope, is not for the tyro.
The documentation that comes with it is comprehensive and well written - but the typesetting is very small. I could read it OK, but I know some people who'd have trouble with it. A handy key sequence chart is provided. It's about one metre long, 195 mm wide, and printed on both sides and fanfolded. It's a necessity, and therefore a welcome inclusion.
The instrument sent for review was supplied in a robust aluminium road case about the size of a small school case. It had compartments for the instrument itself (naturally!), probes, power pack and manual. A very handy accessory.

Summary

Gossen has done a remarkable job in packaging so much into such a small, highly portable instrument. Where you need such portabillty and require the power of its facilities, the compromises are unimportant. The Multiscope 100 is priced at $\$ 2530$ ex.

tax. S3O36 inc. tax. It comes with a 12 month warranty. 튼

Review unit kindly supplied by the distributors, University Paton Instruments Pty Ltd, 106 Belmore Rd North, Riverwood NSW 2210. I (O2)53-0644.

...in a handheld multimeter...

Call HP DIRECT 008339 861, or Melbourne 8952861.

For more exacting tasks, consider the HP E2377A. With basic accuracy of 0.3% in DCV, 1% in ACV, 1 kHz bandwidth, plus temperature function and data hold. All for $\$ 29700$ * Call and order now.
*plus tax

THE IWATSU DS-8600 PORTABLE DIGITAL STORAGESCOPE

 Portable digital storage oscilloscopes have boomed in the pastcouple of years. This new offering from Iwatsu should find a
ready market for itself. Reviewed by Roger Harrison.

Portable oscilloscopes are getting smaller and handier, there's no doubt about it. As in-the-field servicing demands have increased over the past decade, so has the need for portable instruments and the consequent demand for better specifications and more features.
Vacuum cathode ray tube technology. which has dominated the bench and portable oscilloscope display methodology since day one, is now giving way to liquid crystal display technology in the portable oscilloscope field. This development permits much lowered power consumption compared to conventional CRT displays and calls for digital display circuitry where CRT displays have conventionally employed analogue circuitry in portable units. This has resulted in another important advantage - the exploitation of digitising 'scope technology.
To briefly review: in digital storage oscilloscope technology, the incoming waveform is amplified in the same way as in an analogue 'scope, then passed to an analogue-to-digital converter (ADC). This sampies the waveform at intervals and stores the digitised values in a memory. To display it, the values are recalled from memory and then mapped onto a display in the required time sequence with the required display amplitude.
A powerful advantage offered by a digitising storage oscilloscope (DSO) is the ability to view - in close-up, as it were - sections of the stored signal. Because the samples of the input signal are sequentially stored in memory, you can electronically take out any section and display it. You can compress slowly varying events, you can zoom-in on small segments of a waveform. You can capture transient or one-off events and then
view what's going on for a period before the trigger, and after it.

Because the incoming signal is sampled and digitised, a DSO can provide quite digital readout of waveform period and amplitude
values to a known accuracy. Because the signal is stored. electronic cursors can be used to define points of interest on the waveform and values read off directly.
The foregoing details just some of the

prime differences between analogue and digital storage 'scopes. Altogether, DSOs offer improved functionality over their analogue counterparts. And, as digital circuitry is widely implemented in CMOS devices, instruments having incredibly low power consumption can be realised.

The DS-8600

The Iwatsu DS-8600 measures a meagre 213 mm wide by 145 mm high by 45 mm deep - about the size of a large paperback novel - and weighs about 1 kg . It is a two-channel instrument featuring a liquid crystal display measuring 77 mm wide by 97 mm high.
Vertical bandwidth is given as dc-to- 2 MHz (at -3 dB), deflection factor (input attenuator range) as 5 mV /div to $20 \mathrm{~V} / \mathrm{div}$ in twelve 1-2-5 steps. Maximum clock rate is 16 megasamples/second (MS/s): resolution is quoted as six bits. The horizontal display system boasts a memory length of 128 words per channel, data length of 6.4 Kwords per channel. Up to 50 waveforms can be stored and recalled. Sweep rate range extends from 1 us/div to 0.5 s/div in 18 steps at $1-2-5$ intervals, in normal mode. in roll mode, it extends from $0.5 \mathrm{~s} / \mathrm{div}$ to $10 \mathrm{~s} / \mathrm{div}$ in five steps.
The display is 128×160 pixels (20.480), each pixel measuring 0.6 mm square. The waveform display area is eight divisions tall

instrumentation
...here's a case for buying today.

Call HP DIRECT 008339 861, or Melbourne 8952861.
By calling this line, you get a free $\$ 3500 \dagger$ case with each meter. Including the HP E2378A, which has the same specs as the HP E2377A, in a ruggedised case $\$ 332.00$.* Order today.
*plus tax
+()ffer expires January: 31, 1990 or while stock s last.

HEWLETT

 PACKARD
Iwatsu DS 8600

and wide, one division being just under 10 mm . Beneath the waveform display area is a digital quantity readout area of four rows by 16 columns, providing an alphanumeric mode/function/readout display.

An internally generated calibration waveform is provided, being a 1 kHz waveform of 150 mV amplitude $(+1-30$ per cent on both quantities).
The DS-8600 is powered from a 4.5 Vdc source, either $3 \times$ C-cells (despite the fact that the handbook says AA-cells!) or a plugpack adaptor. Memory is backed up by an internal lithium battery. Two probes and a carrying strap are provided. Options obtainable include a logic probe, a. dedicated printer and a carrying case.

Hands-on

The DS-860O is a natty, well laid-out instrument. The Y-input and trigger input BNC connectors are located on the top skirt. The front panel is divided roughly in half, with the liquid crystal display taking up the left half and the 16 -key function/mode selection keyboard on the right.

A tilt bail on the rear panel allows the unit to be stood up on a bench. The carry strap provided allows hanging the unit around your neck with the front panel facing upwards. Clearly, this is a well thought-out ergonomic
design.
The function and mode keys are all wellspaced and clearly annotated, the markings being quite easily read even under lowcontrast lighting conditions. The exception here is the input selector pushbuttons which select ac or dc coupled input, and input ground. Two small pot controls at the top of the keyboard area provide positioning of the two Y-channel traces.
Each Y-channel has an electronic step attenuator to set the volts/div. Likewise for the horizontal sweep (seconds/div). I liked these features. Many of the functions operate in the same manner as an analogue oscilloscope, making this unit fairly easy to understand and use if you're not used to a DSO.
The display is clear and has high contrast, with a blue trace against the LCD's greenygrey background. It is easily seen under widely varying lighting conditions and over a wide angle, both vertically and horizontally. A finger-operated contrast control is on the rear panel, out of the way.

Waveforms such as sinewaves show in dotfashion on the screen, squarewaves show interpolating dots on the verticals, except for high speed signals where just the tops and bottoms show. Triggering appears to perform well. When you expand a high speed waveform, leading and trailing edges are dotted
in. This is normal.
The vertical bandwidth, at 2 MHz , is limited, but many field service applications don't require much more than that. If more is necessary, I guess it's time to call in the "big guns".
I ran over the various functions of the DS-8600 on different signals and it performed as expected, and as explained in the handbook. If you're used to an analogue CRO, display updating will appear a little slow at first, but it's not a drawback. It's only the display that's slow, not the signal capture! The display size is convenient and the digital function/quantity display below the waveform display area is a real boon.

The handbook is quite well-written. copiously and clearly illustrated - a delight!

In summary

Overall, I found the lwatsu DS-8600 to be a well thought out, easy to use instrument with many features and functions rivalling its bench-bound counterparts. Priced at $\$ 1890$ ex. tax. it's value for money and should find popular acceptance in the field service market.

한

Review instrument supplied by Nilsen Instruments, 200 Berkeley St, Carlton, Vic 3053. \boldsymbol{T} (03)347-9166. Offices in each state capital.

Smen The latest, smaller - lighter. DS-8600 - Digital Storage Oscilloscope

Small - only $213 \times 145 \times 45 \mathrm{~mm}$ Light - approx. 1 kg Battery powered LCD Screen 77 x 97 mm Auto set up button Save/Recall 50 waveforms 16MS/S sample rate Data length 6.4 k words/ch. Optional 8cm logic probe Bandwidth 2 MHz

NILSEN INSTRUMENTS PTY. LTD
200 Berkeley Street, Carlton, Vic. 3053 Ph: (03) 3479166 Fax (03) 3473919.

Offices:

(02) 6493222 (08) 2682300
(07) 2525231 (09) 4331522

FLபKE

How to beat the high cost of cheap meters.

Avallable from the following distributors:

A.C.T: John Pope Electrical, Aeromotive Maintenance Services, George Brown Group - NSW: Ames Agency, JBlackwood \& Sons, Dobbie Instruments, Ebson, George Brown Group, Obiat, Petro-ject, David Reid, NEWCASTLE: DGE Systems, W F Dixon, Novocastrian Electronic Supply WOLLONGONG: Macalec, VIncom - N.T. G Blackwood \& Sons, Thew \& McCann - OLD. Auslec, Dobble Instruments, Petro-ject, St Lucia Electronics, L.E. Boughen, Haytech, Colourview Electronics, CAIRNS: Thompson Instruments, TOWNSVILLE: Nortek - S.A.: Dobble Boughen, Haytech, Coilourvilect, George Brown Group - TAS.: George Harvey Electric, Petrovect - VIC.: Radio Instruments, Electech, Petroject, George Brown Group - TAS.: George Harvey Electric, Petrodect - Mic.: Radio Blackwood \& Sons - WA.: Attkins Carlyle, Dobbie Instruments, Petro-Ject.

You get what you pay for. So get the Fluke 70 Series.

You'll get more meter for your money, whether you choose the affordable 73, the feature-packed 75 or the deluxe 77.

All of them will give you years of performance, long after cheaper meters have pegged their fishhook needles for the last time.

That's because they're built to last, inside and out. So they're tough to break. They don't blow fuses all the time. You don't even have to replace batteries as often.

And they're backed by a 3 -year warranty. Not the usual 1 -year.

Of course, you may only care that the world-champion 70 Series combines digital and analog displays with more automatic features, greater accuracy and easier operation than any other meters in their class.

You may not care that they have a lower overall cost of ownership than all the other "bargain" meters out there.

But just in case, now you know.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

FLUKE 73
FLUKE 75 527° nalop doplad dsprear Vilts, ohms. 10A, mA diode lest Audible continuity Autorange/rangehold $\frac{0.5 \% \text { basic dc accuracy }}{2000 \text { + hour batery lite }}$ $\frac{2000+\text { hour battery life }}{3}$ 3 -year warranty ,

FLUKE 77 5306 . Analopodioliala asislay Volls, ohms, 10A, TA diode fest Audible continuily Touch Hold* function Autorange/range hold 03\% basic dcaccuracy $2000+$ hour tatitery lite 3 -year warranty Multipurpose holster

Suggested Ilst price
-Exclusive Sales Tax

Industry News

Written by Australians for Australians the new Business Guide To Taiwan is an essential reference for anyone serious about business activities with one of Asia's economic "tigers".
Produced by the Australian Chamber of Commerce's Taiwan Market Service in conjunction with leading Australian law firm Mallesons Stephen Jaques, this full colour handbook provides up to date information and statistics on all the important aspects of conducting business in Taiwan.
The guide outlines the historical, political, economic and social factors that have influenced Taiwan's rapid growth to a major player in the international trading arena. A detailed "How to do Business" section explains local business practices, highlights cultural differences, and provides useful tips and contacts to help Australian business representatives achieve success in their dealings with the market.
The guide is written by Paul Hayden a partner with Mallesons Stephen Jaques who has lived and worked in Taipei for a number of years. Hayden is fluent in Chinese and has also had considerable experience in other parts of Asia.

NSW Flying Doctor

joins space age

THE NSW Division of the Royal Flying Doctor Service (RFDS) has signed an agreement with AUSSAT to develop a satellitebased communications network using the mobile satellite service that will become avallable on AUSSAT's B-series satellites in early 1992.

Combining technologies of communications, medicine and aviation, the RFDS has provided a lifellne to the outback since its formation in 1928.
The RFDS MOBILESAT service will be able to offer high quality.
reliable voice and data, communications throughout the continent. Fax computer data, ECG and EGG traces, x-rays and other medical data will be able to be swapped between medicos anywhere in the RFDS network.
The MOBILESAT signal is not subject to the vagaries of HF radio communications. Medical staff on board aircraft will be able to transmit real time patient medical data to specialists at bases, long before the aircraft reaches its destination.

Cooper Tools catalogue

COOPER Tools has released a new catalogue of its products for the electronics industry. Products listed include the famous Weller brand of soldering equipment, soldering and desoldering stations, SMT workstations etc.
A page is devoted to each of the Weller products, with a photograph, catalogue numbers
for replacement parts, accessories and comprehensive description of the product and its uses.

Wire wrap products are also featured, along with Xcelite tools specially designed for electronics assembly work. Enquiries to Cooper Tools, $\mathbf{E}(\mathrm{O} 6 \mathrm{O}) 215511$.

Radio 'heating'

may repair

ozone layer

DESTRUCTION of the ozone layer by reaction with CFCs in the atmosphere may be greatly slowed by electrically charging the atmosphere at the height of the ozone layer using high powered RF transmissions, according to a US researcher.
Alfred Wong of the University of California, Los Angeles, suggested a few months ago using radio waves to produce negatively charged chlorine ions in the stratosphere. Chlorine in the atmosphere, from CFCs, reacts with ozone, depleting it.
Chlorine atoms bulld up in the stratosphere when ultraviolet light from the Sun breaks down man-made chlorofluorocarbons (CFCs).
Wong believes that, by generating radio waves on the ground at a certain frequency. these radio waves will transfer energy to free electrons high in the atmosphere, around 50 to 80 km up.
By transmiltting energy at the electron-cyclotron frequency (about 1.5 MHz), where electrons absorb energy most efficiently. Wong expects to create 10,000 to 100,000 electrons per cubic centimetre, creating an electric field between this heating region and the ozone layer, driving negatively-charged chlorine ions up out of the ozone layer.
By then using radio energy at the ion-cyclotron frequency, Wong expects the chlorine ions to spiral up the Earth's local magnetic field lines, out of harm's way. The drawback is, the scheme needs to deliver some 100 megawatts through an area of 100 square km at heights above 50 km .

Siemens becomes supplier to Aussat

AFTER lengthy negotiatons with Aussat, Siemens has become a supplier of high power Travelling Wave Tubes.

The first order, for two TWTs (type YH1421), has been received. Aussat's expected requirement of approximately 20 tubes per year would mean a business volume of about \$1m.
The TWTs produce an output power of 700 watts in the
frequency range of 14 GHz . Very few companies in the world are capable of producing these high power tubes.
A sample tube was supplied to Aussat in November last year and has been in service since, logging some 6000 hours of operation.
"Aussat is completely satisified with the ease of operation and performance of the Siemens'

YH1421 and this, together with competitive prices, will give us an edge over our competitors," said Mr Robert Fontana, Siemens product manager in Electronic Components.

For further information please contact Siemens Ltd, Electronic Components Department, 544 Church Street, Richmond, Vic., 3121. (O3) 4207313.

$\$ 4 \mathrm{~m}$ Electro-Technology Centre for Petersham TAFE

A NEW S4m Electro-Technology Centre will be provided at Petersham College of TAFE, offering students training in Electrical Trades, Industrial Electronics, Instrumentation and Hydraulics.
Announcing the college's Stage 4 development, the Minister for Education and Youth Affairs, Dr Terry Metherell, said the new centre will emerge from a refurbishment of the old Applied Electricity building.
"The new centre will be an important component in the network of specialist, high-
technology centres being established in inner-metropolitan Sydney TAFE colleges," he said.
"The centre will provide a range of facilities and state-of-the-art technology to provide both traditional trade, post-trade and specialist courses and innovative new courses to address the emergent training needs of industry."
Petersham College is located in the most densely populated and culturally diverse area in NSW and with its accessibility and good transport is an ideal location for the facility.

Siemens achieves two firsts

SIEMENS has secured two orders which are firsts on the Australian market for new equipment.
Mr Ed Muldins, acting manager PE \& A Sydney, said that the first order, valued at $\$ 120,000$, is for a complete Simadyn D system with associated DC converters. The Simadyn D system is a digital control system for electrical machines and the first in Australia will be used for the control, monitoring and diagnostics of a twin motor drive skip hoist drive. used to lift ingredients into the
smelter at BHP's Port Kembla Steelworks.
The second order is for a 32 bit personal computer type $\mathrm{PC} 32-2 \mathrm{O}$, a powerful industrial model, to be used for the monitoring and control of a boiler at BHP's plant in Temco, Tasmania.
For further details please contact Siemens Ltd, Power Engineering and Automation Department, 383 Pacific Highway. Artarmon, NSW 2064玉 (O2) 436871.

Dr Metherell said TAFE had liaised closely with industry in the development of this project and had received support from prominent organisations such as ICl. Wormald and Shell.
"This centre highlights the Government's commitment to expanding and strengthening TAFE's relationship with industry, at the same time ensuring that training areas of significiant need are given first-class educational facilifies," Dr Metherell said
The centre is being constructed with Commonwealth Government funding

Dial-a-BBC

World Service

YOU are now able to dial the BBC World Service on OO555-1434 from any telephone anywhere in Australia. Described as "the premier international radio service", the dial-up service is a continuation of a project which began last year to upgrade BBC radio transmissions to Australia.
By dialling the OO555 Inpholine number callers can hear the service direct from the BBC in London.

Industry News

MicroHelp Computers \& Communications has appointed Paul Willason as National Operations Manager. Mr Willason who previously spent 10 years with Agfa as National Logistics Manager and later NSW branch manager, will coordinate MicroHelp's national purchasing, distribution and customer services.
Mr Willason's appointment follows the recent selection of Anthony Liddy, formerly financial controller of a national manufacturing company, as NSW General Manager for MicroHelp.

Promark Electronics (Australia) Pty Ltd has been appointed Australian distributor for Harris Semiconductor.
The appointment is significant, says Promark, in that it comprises the extensive range of products of Harris Semiconductor, GE, RCA and Intersil. In December 1988, the General Electric Solid State Division was acquired by Harris, adding GE, RCA and Intersil Semiconductor products to the Harris line.
A.J.Distributors has been appointed as Australian distributor for USA power supply manufacturer LH Research Inc. LH Research has been manufacturing switching power supplies since 1974 and boasts one of the largest ranges in the industry from 15 to 2000 watts with up to nine outputs.

FLUKE AND PHILIPS - THE GLOBAL A

FLUKE

FLUKE 45 - DUAL
DISPLAY MULTIMETER
\star True - RMS voltage and current, including AC \& DC
\star RS-232 interface standard, 1EEE-488.2 option
\star Frequency measurement to 1 MHz
\star Compare (Hi/Lo/Pass) function for quick in-tolerence tests
\star High performance and versatility for manufacturing, field and R \& D usage

FLUKE AND PHILIPS BIG

The Fluke and Philips global alliance is a partnership between two of the most powerful forces in a world of test and measurement. That means a full-range product capability, with one of the broadest selections of measuring instruments and test systems available today from a single supplier. And - equally important - the world-wide service, support and training facilities to match.

Total value of this superb test and measurement package is $\$ 6114$.

To enter simply subscribe to or extend your current subscription to ETI and you automatically go into the draw.

12 months subscription only $\$ 45.00$ (12 issues) including postage.

SUBSCRIBE

LLIANCE IN TEST AND MEASUREMENT

PM 3335

PHILIPS PM 3335 -
 DIGITAL/ANALOG
 "SMART SCOPE"

* 50 MHz analog bandwidth
$\star 20 \mathrm{Ms} / \mathrm{S}$ sampling on each channel
\star Autoset
\star Large 8 K acquisition memory
\star Versatile cursor measurement

GER, BETTER, TOGETHER

PHILIPS
PLUS everyone who subscribes or extends their current subscription will receive free a Philips Extra Quality E180 - 3 hour VHS blank video cassette.
E180
Valued at $\$ 9.95$ - yours free!

Hurry offers ends January 31st, 1990.

To enter simply fill out the coupon attached and place it in the reply paid envelope supplied - if the coupon and envelope are missing, send you name, address, phone number and cheque, money order or credit card details (card type, card number, expiry date and signature) to Federal Publishing Company, Freepost No. 4, P.O. Box 227, Waterloo NSW 2017. Any enquiries may be made by phoning (02) $693-6666$. Unsigned orders cannot be accepted.

Conditions of Entry

1. The competition is open only to Australian residents authorising a new/rencwal subscription before last mail $31-01-90$. Entries received after closing date will not be included. Employees of the Federal Publishing Company. Philips Scientific and Industrial Pty Lid and John Fluke Mfg Co, Inc and their families are not eligible to enter. To be valid eredit card, or, if paid by cheque the Federal Publishing Company, Philips Scientific and industrial Pty Lid and for payment. 2. South Australian residents need not purchase a subscription to enter, but may erier only once by submitting their name, address and a hand-drawn facsimile of the cieared for payment. Touth Australian residents need not purchase a subsription coupon to The Federal Publishing Company. PO Box 227. Waterloo. NSW 2107. 3. Prizes are not transferrable or exchangeable and may not be converted to cast. 4 . The judges subscriplion coupon to The Federai Pubisilng ented into. 5. Description of the competition and instruction on how to enter form a part of the competition conditions. 6 . The competition commences on $26-10-89$ and closes with last mail on $31-09-90$. The draw will take place in Sydney on $05-02-90$ and the winner will be notified by telephone and letter. The winner will also be announced by The Australian on 08-02-90 and a later issue of this magazine. 7. The prize is: A Philips PM 3335 Digital/Analog "Smartscope" and Fluke 45 - Dual display multimeter. Valued announced by The Australian on $\$ 6114.8$. The promoter is The Federal' Publishing Company. 180 Bourke Road. Alexandria. NSW 2015. Permit No. TC 89 f 000 issued under the Lotteries and Art Unions Act 1901 ; Raffles and Bingo Permit Board Permit No. 89/000 issued on 0000/89; ACT Permit No. TP89/000 issued under the Lotteries Ordinance, 1964.

New Burst Generator - a world first?

THE new Burst Generator NSG 625 from Schnaffner is a world first, claims the distributor Westinghouse Systems. For the very first time, it has been possible to produce an interference simulator with pulse rise times of 5 ns and amplitudes of up to 4400 V using only solid state techniques.
The instrument conforms to the IEC 801-4 EMC Standard (EMC: Electromagnetic Compatibillty) as well as to the relevant National Standards, in many instances more than meeting the parameters called for.
The new technology ensures greater precision, better repeatability and improved long term stabllity of the pulses, yet the instrument is maintenancefree. says Westinghouse. The pulse burst parameters are programmable within wide limits and in fine steps right down to
single pulses. This enables the interference susceptibility of devices and equipment under development to be precisely analysed.
The Generator is built as an insertion module for the NSG 600 system. Internal and external coupling devices cover the whole range of applications, from interference injection on single and three-phase mains supplies through to interference coupling into data and telecommunication lines.
Features such as computer control, automatic test result logging, test routine storage, etc., make it possible to integrate EMC testing fully into the concept of quality assurance.
More information from Westinghouse Systems. 80 Douglas Parade, Williamstown, Vic 3016. (E) 3971033.

READER INFO No. 160

Time, gentlemen!

A RANGE of analogue panel clocks from Telenora (TN) of West Germany is available with either autonomous or master controlled secondary clocks.
The range includes three square analogue clocks with dials measuring $40 \mathrm{~mm}, 80 \mathrm{~mm}$ and 120 mm , a digital clock displaying figures 14.5 mm high, and a digital precision stop watch (count up/down) displaying figures 20 mm high.
Those other than the stop watch are for use in switch boards and control panels, etc. The stop watch is designed for IV and radio stations, labs, factories and sports venues.
They can be set to the right time from the front panel. Details from Hertz Electronics Pty Ltd. (O 2) 32-3O29.

READER INFO No. 161

In September ETI, page 97, this photograph was incorrectly used to illustrate a story entitled 'Conductivity,
temp. measurement." We
apologise for any
inconvenience caused.

Vicom releases new interceptor

THE Vicom Group has released the new Bradley Interceptor I-264 channel access monitor onto the Australian market.

The Interceptor 1-264 is designed specifically for the CCITT environment, and provides powertul monitoring and channel access capablilty to help isolate networks problems. The l-264 can monitor two $2048 \mathrm{kbilts} / \mathrm{s}$ clrcults simultaneously, as well as drop and insert one or more 64kbit/s time slots of the high speed carrier. The interceptor has a variety of status indicators, provides recelve frequency measurements and displays the received byte for the selected channel. In addition, the l-264 allows access to signalling channels for modification, monitoring etc.

The Menu Select button allows selection from elght menus. There is a two-line 20 character display which provides the ability to configure the instrument, displays test and error results and lists the internally generated insert signals. The top line shows the current

Bradley Interceptor I-264.
instrument configuration and may be modified by scrolling through the options and selecting the appropriate parameters.
There are a number of options available with the I-264; these include 2048 kbps results, 64 kbps G7O3 data port, RS-232 printer and remote control, IEEE remote control port, which allow results printing and remote configuration. A history printout of the last 100 signalling events is also available. A user plug-in memory card contains all the
software needed to operate the unit, providing an easy way to upgrade the 264 when features are added.
The Interceptor is housed in a rugged aluminium case. designed to tightly seal the front panel when closed. The flexiblilly of the menu, combined with the software module's easy access, readily accommodates the addition of future interfaces.
The interceptor is available from Vicom offices throughout Australla and New Zealand. READER INFO No. 162

Autofocus SLR

camera

DESIGNED for the most demanding professional, Canon has launched the EOS-1 high performance SLR camera, featuring autofocus, plus electronic control and operation.
The photographer is provided with "... complete control over all camera operations, even in the automatic modes...", Canon says. Even instant manual focus compensation is permitted after autofocus when using Canon EF lenses equipped with ultrasonic (UM) motors.
The EOS-1 boasts five metering modes, automatic exposure bracketing, maximum shutter speed of $1 / 8000$ th second, built-in 2.5 fps motor drive, LCD display, depth of fleld autoexposure, multiple exposure capablility and rugged body design.
A 13 -page press release fully describes this marvel of modern technology. Contact Canon Australla, $\boldsymbol{\pi}$ (O 2)887-O166.

READER INFO No. 163

ELECTRONICS - TECHNOLOGY
\square INNOVATION

Reader Information Card

On the reverse of this page you will find the Reader Information Card. This is a service ETI provides free to readers who want more information about products advertised or otherwise mentioned in the magazine. At the bottom of the article or advert you will find a RI number. Just circle that number on the card and send the card to us. We will pass on your
address to our contacts, either the advertiser or our source for the story, who will then inundate you with literature on the product of your choice. Another feature: to the right, there is a blank space. Why not use it to drop us a line, and let us know what you think of the magazine. We are particularly interested in ideas from readers on how we can improve things.

Name: Address:...............

Postcode:
\qquad

A flexible approach \triangle

A NEW line of flexible, nonmetallic, liquid-tight tubing for a wide range of electrical applications in computers and peripherals, fibreoptics, lab equipment, robotics and automotive equipment is now available from Nylon Products Australia.
Internal rigid spiral and flexible PVC construction offers maximum flexibility - the tubing
can be bent back on itself - and offers resistance to corrosion, oil and water.
Five sizes are available (nonmetric!) - 1/4, 3/8, 1/2,3/4 and 1-inch. It can be cut with a knife or Heyco VF-28 cutting tool. Details from Nylon Products Australasia Pty Ltd, 287 Torrens Rd, West Croydon, SA 5008. -(O8)340-3088.

READER INFO No. 156

Digital tachos

A NEW universal digital readout tachometer featuring two frequency inputs is offered by Jaquet of Switzerland through their Australian distributors, Electromark Pty Ltd.
Two models are available: the DFP952 with front panel press keys for input selection, and the DFP951 which has concealed programming keys for this purpose.
Each has a 5-digit, 7-segment red LED display with a digit height of 14 mm , which is easily read at a distance. Input frequency
range extends from O .1 Hz to 5 O kHz for signal levels of 50 mV RMS to 8 O V RMS.
Both feature programmable parameters, including: trigger level for both input channels, ratio or percentage difference between the two input channels, the measured absolute value of both inputs, measuring range, etc.
Further details from Electromark Pty Ltd, PO Box 184, Mortdale NSW 2223. T (O2)570-7287.

READER INFO No. 157

Smart light switch

AN outdoor light that detects infrared radiation from the body and turns on in response has been released here through Hertz Electronics.

Dubbed The Observer, it can also turn on additional lights. Hertz say it is ideal as a first defence against intruders, as well as a safety light and an automatic porch light (so you don't have to fumble for your keys/the switch in the dark).
To turn on additional lights when activated. The Observer

Piezo guide

WARSASH in Sydney has released a user's handbook from Physik Instruments summarising the complete range of piezoelectric translators for the accurate micro-positioning of optical components.
The guide is divided into two parts - covering high voltage elements (to 1500 V) and low voltage elements (to 100 V). Coples obtainable from Warsash Pty Ltd, PO Box 217, Double Bay NSW 2O28. (O2)30-6815.

READER INFO No. 188

can be linked to a transmitter which broadcasts a signal via the mains wiring in the building. activating the additional lights. This signal can also be used to activate an audible alarm, an audible/visual signal etc. It's not only functional, it's also smartlystyled. It is manufactured in West Germany and can be used indoors as well as outdoors.
Contact Hertz Electronics, PO Box 173، Edgecliff NSW 2O27. © (O2)32-3O29.

READER INFO No. 158

2.3 GHz counter

PHILIPS has extended its range of high precision microcomputerbased unlversal frequency counters with the release of the PM 6677 , a top-of-the-line model which covers to 2.3 GHz .
This coverage suits the PM 6677 for application in maintenance and service in advanced telecommunications, military equipment, satellite communications systems, microwave links and global navigation systems.

The PM 6677 is light, but sturdy, says Philips, with an all-metal case. It features the reciprocal counting technique pioneered by Philips which ensures high
resolution measurements even on low frequency signals.

The advanced front end includes an automatic PIN diode attenuator that allows automatic triggering and combines a wide dynamic range from 10 mV RMS to 12 V RMS with high overload protection.
Options include an analogue recorder output, GPIB/IEEE-488 interface, carrying case and battery pack. More details from Tom Nealon, Philips Test \& Measurement, 25-27 Paul St. North Ryde NSW 2113. = (O2)888-O416.

READER INFO No. 159

Total fibreoptics range

AS fibreoptic technology diversifies from its stronghold in telecommunications into a broad spectrum of the electronics industry, it is set on a fast track growth path.
3M has responded by launching a new system of fibreoptic products suited to a wide range of industrial and commercial applications, aiming to be Australia's only one-stop shop for fibreoptics by year's end, according to Derek Forsyth, National Product Specialist for 3M Australia's Fibre Optic Products Division.

Dorran Photonics Inc, EOTec Corporation, Photodyne Inc and Raycom Systems - all US fibreoptic specialists - were recently brought under 3M's banner, integrating their collective technological expertise and innovation.

3M's new division here provides technical support as well as a very broad product range. Customers receive free product education, technical advice from consultants and hands-on

training at the 3 M Resource Centre at St Mary's in Sydney. 3M has 16 sales offices throughout Australia.
The 3 M fibreoptics range includes connectors, cable assemblies, distribution boxes, specialty fibres, sensors, PLC link modems, couplers and multiplexers, video and audio links, LAN bridge channel extenders
and a complete range of test equipment including light sources, power meters, test sets and OTDRs.
3M held two successful seminars on fibreoptics innovation and applications recently in Sydney and Melbourne. Further details from 3M Fibre Optic Products Division. \mathbf{E} (O2)623-O127. READER INFO No. 187

Vicom is a company for today and tomorrow. A company that has and will remain at the forefront of technological development. A company with a superb range of quality test instruments for all aspects of telecommunications.

And Vicom is able to supply sophisticated antennas, HF equipment, broadcast, military and other products and services to Australia and the South West Pacific.

TTC-
Data communications testing with the Fireberd 6000

LASER PRECISION-

Fibre optic OTDR, hand held power meter and light source IFR-
The most widely used and appreciated RF test equipment in the world DANTEL-
SCADA, VF and Base Band module equipment

VICOM SCALAR

Design and manufacture of quality antennas

ENGINEERING-

Complete R \& D and design capabilities including CAD

Vicom - Leading the way in Communication Electronics

READER INFO No. 55

VICOM: PUTTING PEOPLE FIRST

Vicom has a strong commitment to development by Australian technology, its capacity to mix and match products and services, and its ability to remain at the leading edge of technological design and innovation.

4he Vicom Group is well known in the electronic communications industry but it is not widely accepted that Vicom is Australian owned and managed with its headquarters in South Melbourne.
Starting from humble beginnings in 1974, with a shop front in Auburn. Victoria, Vicom has expanded into a respected force in the specialised high technology communications market.
Chairman and managing director, Russell Kelly, had a long term strategy for the company from the beginning and this has produced a dynamic, rapid-growth company with offices in Brisbane, Sydney, Melbourne, Perth and Wellington, New Zealand.
Russell Kelly was one of a group of four investors involved in the infant company, which Initially concentrated on consumer communications promoting imported
amateur radio equipment throughout Australia.
"We saw amateur radio and the consumer market as being a stepping stone into the more viable, high technology professional electronic markets،" Mr Kelly said.
"If made any mistakes during the first few years it was to spend too much time and too high a level of resources on the unprofitable ham radio business.
"We quickly came to our senses, left the consumer business to the backyarders and developed a plan to progressively enter the professional and Government markets."
Russell Kelly's objectives have obviously been fulfilled, since Vicom has enjoyed a successful growth rate and, this year, is looking for further growth in excess of 40%, even with threats of a national recession and a poor economic operating environment. Kelly feels that a recession background is
a time to be aggressive and take major expansion steps.
"We've had our best years during poor economic times," he said.
Vicom's company motto is "People to People" and, like many successful businesses, Vicom has come to realise that its resources and strength come from a highly committed and well qualified team.
"We make an effort to employ aboveaverage people, though, disappointingly, in the current labour market that is not always possible."
In fact. Vicom claims that its expansion could be considerably greater if it was able to acquire appropriately qualified engineers, technicians and managers within Australia. "Our sales team are all technically competent and whilst this may seem a strange boast, some of our competitors prefer to have the technical resource back at the home office," he said.
Vicom is probably best known for its range of top-shelf test and measurement equipment for the radio communications, data and fibre optic markets. Kelly claims that Vicom's success formula has been predicated on importing and marketing only the best products and going for major market share. Some of the brands supported incluced IFR, Laser Precision and Telecommunications Techniques (TTS). Most of Vicom's test and measurement equipment is sold to Governments in Australia and the South West Pacific and to the larger communications companies. A recent addition to the test instrument stable is the range of products manufactured by Bird Corporation of USA.

Vicom has designed specialised products for HF applications in Australia and overseas and has recently been active in field trials with the Department of Defence, testing frequency management systems aimed at better utilising the lonospheric conditions.

A rapidly developing division of Vicom incorporates HF communications and Defence communications equipment and the company has achieved major success

Company profile

Vicom's NATA registered laboratory is avallable for callbration services in frequency and time measurement. It is currently being expanded to handie fibre optic and RF power measurement.

The head office executive team discuss future strategies. Vicom expects to doubie its turnover to $\$ 20 \mathrm{~m}$ per annum in 1990.
in large scale contracts in these areas.
Vicom's Engineering Research and Development division, based at South Melbourne, has contracts with Government for consulting and $R \& D$ projects and is also engaged in developing export markets. The company's R \& D program ensures on the one hand that, when a client encounters a problem, Vicom provides the solution and (perhaps more importantly) on the other, that Vicom can help define possible system problems in advance.
A recent acquisition to the Vicom Group is Scalar Antennas, which Vicom took over early in 1988. The company, now known as Vicom Scalar Pty Limited, is being revamped

Vicom's Melbourne 12,000 sq tt head office and R \& D centre. Due to rapid expansion this is the fourth buliding Vicom has occupied in 15 years.
with the R \& D of new, sophisticated products enabling it to compete with foreign competitors. Russell Kelly said that Scalar will be entering the lucrative broadcast antenna business, which will enhance Scalar's excellent export opportunities to South East Asia.
The Scalar factory is based at Kilsyth, Victoria and has recently had its manufacturing processes updated with the introduction of computerised design and modelling and an injection of capital to update machinery and methods.
Vicom has introduced a Total Quality Control (TQC) program throughout the Group and its methodology meets Australian Standard AS1822. As a result, Vicom is on the Australian Defence Register of Authorised Suppliers (DRAS) which enables the company to properly respond to the needs of the Department of Defence.
To meet its obligation to service, maintain, calibrate and otherwise support every instrument and product line it represents, the company has established a comprehensive service centre in Melbourne to cater for Australia, New Zealand, PNG and the Pacific Region.
Additionally, a calibration laboratory has been established to provide traceable metrology standards for a range of RF parameters. The laboratory is registered with the National Association of Testing Laboratories, Australia (NATA).
The customer service support cell is managed by Mark Isherwood, who has a team of trained technicians dedicated to providing high quality service with a fast turnaround.

Russell Kelly feels that a high level of technical support is essential to making successful sales. "When our support has slipped our sales results are immediately

Russeil Keily, chalrman and managing director of the Vicom Group.
effected," he said.
Fred Grossman controls the day to day activities of Vicom as Group General Manager and, with a diverse background from Motorola, is more than able to keep up with Vicom's dynamic pace.
Vicom sees its further expansion with a greater emphasis on value added activities and the international export market. Of considerable concern to Russell Kelly is the stranglehold on the industry by Telecom Australia.
"Telecom consumes 67% of the telecommunications output in Australia and our industry is highly dependent on the Telecom monolith. It is essential that Telecom behaves as a responsible corporate citizen and that more than lip service is given to supporting Australian industry," he said.
"We are also very mindful that as a company gets bigger there are risks and pressures associated with providing adequate performance to our customer base. Big is not beautiful if there is any diminution of service to the customer."
It is a challenge Vicom takes seriously.

=ㄴ PROJECTS

TThe projects presented in ETI are chosen to appeal to a wide variety of reader interests. They range from simple, fun but practical, low-cost entry level devices, through interesting, useful and often challenging projects for more experienced enthusiasts, to technology demonstration projects that introduce emerging, new and exciting technological developments for constructors at all levels. Often, ETI projects will present engineering solutions to real problems or market needs. Over a year, we aim to publish a balanced selection, to cater to readers' wide interests and levels of experience.

This month we include:

- ETI-782 Cubical Quad Antenna - ETI-1625 2400 BPS PC In-modem (Part 2) - ETI-1547 8-Bit Flash A-D/D-A Converter

READER SERVICES

The following services are available direct from ETI.
Artwork for all our projects: $\$ 5$ for boards up to $10 \mathrm{~cm}, \$ 10$ for larger boards.

Back issues, if available: $\$ 4$.
Photocopies of articles: $\$ 4$, or $\$ 8$ if more than one part.
Send orders to Reader Services, ETI Magazine, 180 Bourke Rd., Alexandria, NSW 2015 Australia. Please note that phone
orders cannot be accepted.
Unfortunately we are also unable to handle technical enquiries on projects and articles on the telephone. We are happy, however, to handle such enquiries by mail. Please address such enquiries to: Technical Enquiries, ETI Magazine, 180 Bourke Rd., Alexandria, NSW 2015 Australia. We will endeavour to deal with them as promptly as possible.

COMPONENT AND KIT SUPPLIERS

These suppliers should be able to assist you to locate electronic components for ETI projects: All Electronic Components (03) 6621381 Altronics (09) 3817233
David Reid Electronics (02) 2671385
Dick Smith Electronics (02) 8883200
Energy Control (07) 3762955
Force Electronics (08) 2122672
Geoff Wood (02) 4271676
Hi-Com Unitronics (02) 5247878
Jaycar (02) 7472022

Rockby Electronics (03) 5628559
Rod Irving Electronics (03) 6636580
Stewart Electronic Components (03) 5433733
The Electronic Component Shop (03) 6706474
Circuit boards and some front panels are available from the following:
Acetronics (02) 6451241
All Electronic Components (03) 6621381
Jemal (09) 3505555
RCS Radio (02) 5873491.

Completing some final details on power supplies, Jack Middlehurst moves on to the first active blocks.

Younger triodes you will encounter: two 9-pin miniature all-glass valves; an ECC88 (encountered in audio and RF circuits) is at left and a 6CG7 (encountered in audio and TV circuitry) is at right.

Amajor problem in running valve radios in motor cars was the difficulty of deriving the necessary 250 Vdc from the 12 V battery supply. Most sets ran from vibrators.

Vibrator power supplies

A vibrator is simply a tuned metal reed, electrically excited to vibrate at its mechanical resonance (about 50 to 100 Hz), and having several sets of electrical contacts mounted on it. The clrcuit of Figure 5.1 shows the way in which it works.

The battery voltage is applied through contact KI to the driving coll which creates a magnetic field pulling the reed towards it. This breaks the contact Kl so the magnetic field collapses and the reed swings away from the coil, remaking contact K1, whereupon it is again attracted to the coil, and so on.
The battery is also connected to the centre of the primary winding of the
transformer, and when the reed is not attracted to the coil, contact K4 connects one side of the primary to earth. When the reed is attracted, contact $K 4$ is broken and contact k 5 connects the 12 V to the other side of the primary. This alternate connection of the 12 V to the transformer effectively supplies it with a 24 V peak-to-peak (Vp -p) square wave. The secondary of the transformer is funed to the reed frequency by the two 0.05 uf (47n in 'modern' times) capacitors in series, and its output is about $600 \mathrm{Vp}-\mathrm{p}$.
Contacts K2 and K3 act as the high voltage rectifier, alternately connecting to the output that side of the transformer that is going positive. The 100 Ohm resistors are to prevent excessive current should a tuning capacitor short out, the 470 Ohm resistor is for damping, the shorted coil coupled to the driving coil is to reduce transients in the driving coil, and the various radio frequency chokes (RFCs) and filter capacitors are to reduce the considerable radio frequency

Flgure 5.1 Vibrator power supply circult for a valve car radio.

Figure 5.2 Power supply fliters. (a) LC power supply filter, (b) 2-stage LC filter.
hash that these vibrators produce. If the dampling resistor opens circuits, very high voltages are induced in the transformer, leading to the breakdown of its insulation. Because the incoming waveform is not a sinewave but is close to a squarewave, the design of these transformers is quite difficult. They usually have an air gap, so if you have a faulty transformer, do not try to replace it with an ordinary transformer of about the same size and voltage; it won't work. The only solution is to rewind the original.
Testling vibrator supplies involves connecting a car battery to the input, turning the radio on, and listening to the vibrator. If it is vibrating, you will hear it humming. If the transformer has broken down, you will hear the sparking noise and/or smell the smoke.

If all appears well, check the output under load. If the output voltage is low, replace the normal load with a $5 k$, 20 W resistor and recheck. if the voltage is still low, the contacts on the vibrator are worn, so it will have to be replaced. Finding a replacement can be difficult, so a transistorised inverter may have to be used in place of the vibrator power supply. Plug-in transistorised vibrator replacements became available in the 196Os.

Power supply filters

For valve equipment, LC power supply filters are invariably used. Radios often use the field coil of the loudspeaker as the choke Ll , in the type of filter shown in Flgure 5.2a. Valve radiograms aspiring to higher fidelity than the average, often add another stage of filtering as in Figure 5.2b. In these two Figures, Cl is the filter capacitor immediately following the rectifier. There are many power supplies that do not use Cl. The filter is then known as a choke Input filter.
Such a filter has an output voltage that is much more constant with load current than a filter using Cl , called, as you guessed, a capacitor input filter. Choke input filters are popular with valve audio amplifiers using class $A B$ or class B audio stages in which there is considerable fluctuation in the load current. To avoid the cost of an extra choke, but at the same time get a simllar filtering effect, cancellation filters became popular for low current power supplies. Such a filter is shown in Figure 5.3. They rely on the fact that a class A output stage is used, so the

Older triodes you will encounter: in the centre is a widely-used old triode, the 6B6. At left is a somewhat younger twin-triode. At right is another twin-triode, the ECC35.

Flgure 5.3 Clrcult of the so-called cancellatlon filter.
power supply current is constant. By careful selection of R3, quite good cancellation of the ripple at 100 Hz can be obtained. Such a filter needs a fairly high Q choke.
If you come across a cancellation filter and there is a hum problem, the first thing to do is to check the capacitance of the filter capacitors. Since the cancellation effect depends on the capacitors having a particular value, replace any that are more than about 10\% off their marked value. Then check that R1 has its correct value, and replace R2 with a good quality wire-wound variable resistor of about twice the original value of R2. Adjust the variable resistor for minimum hum output and then remove it and measure its resistance setting. Then make R2 a fixed resistor having this measured value of resistance.
Note that, since this resistor may have to pass considerable ripple current, the wattage will have to be at least the same as that of the original R2, i.e. don't use a half watt resistor for R2 if the original was clearly a 2 W . It is preferable to use a wire-wound resistor.
The power supply filters associated with transistor equipment usually consist of the main power supply input capacitor, which is often several thousand uF, elther by itself or followed by a voltage regulator that acts as a filter. Voltage regulators will be discussed after we have looked at the necessary amplifiers and feedback loops.

Single active blocks

A single active block is an amplifier that amplifies voltage, current, or both. Such a block can have a single active device such as a valve, transistor, or FET , or can be a single IC amplifier (even though this latter may contain hundreds of individual active devices). We will not cover special circuit blocks used at high frequencles such as klystrons, magnetrons, travelling wave tubes and so on. To keep the series in proportion we will limitt ourselves to the frequency range from de to about 20 MHz .

Any active block needs a passive input block and a passive output block. Since the design of an active block depends on the input and output blocks and vice-versa, we will look at the properties of various

Figure 5.4 Symbols used for active devices.
(a) triode valve. $G=$ control grld, $A=$ anode, $C=$ cathode.
(b) beam tetrode. $S G=$ screen grid.
(c) pentode. The suppressor grid is Internally connected to the cathode.
(d) hexode. G1 and G2 are control grids.
(e) heptode.
(f) NPN transistor. $B=$ base, $C=$ collector, $E=$ emitter.
(g) PNP translstor.
(h) N-channel junctlon FET (JFET). $G=$ gate, $D=$ drain, $S=$ source.
(I) P-channel junction FET.
(J) enhancement mode MOSFET.
(k) depletion mode MOSFET.
(I) dual-gate MOSFET. G1 and G2 are gates.
(m) general symbol for a JFET, also used for Insulated-gate FETs (IGFETs).
(n) general symbol for a dual-gate FET.
(o) general symbol for an ampilfler, often an Integrated circult (IC). The + and represent the non-Inverting and Inverting inputs respect/vely; the other lead Is the output.
(p) constant current source.
combinations of an active block with different passive blocks. Where it is appropriate in the Figures, typical dc voltages and the ac properties of the circult are given.
The amplifier may have negative feedback, though this is not common with old single-stage designs. Some modern designs use both positive and negative feedback to tailor the input and output impedances to the designer's wishes. The amplifier can also be configured as an oscillator by having enough positive feedback. All superheterodyne recelvers (e.g. all transistor radios and most valve radios) have to have such
an oscillator to change the incoming frequency to a constant intermediate frequency (IF) that is usually in the range 450 to 470 kHz .
The symbols used for the various active devices that we will be describing are shown in Flgure 5.4.

Taking measurements on active blocks

Most measurements on active blocks are simple and can be made with an ordinary VOM-meter and the signal injector/tracer. There are a few occasions on which the input
impedance of the VOM-meter or signal tracer will affect the answer that you get. The way in which this comes about is shown in Figure 5.5 a . This form of circuit occurs when measuring the dc voltage on the plate or screen grid of a valve (as shown in Figure 5.5 b), the collector of a transistor, or the drain of a FET. In the circuit, R represents the internal impedance of the active device.
Suppose you have a 1000 Ohms/Volt VOM-meter. Using the 1000 V range, Rm is IM . Since $R \mathrm{~m}$ in parallel with R is less than R, the measured voltage (Vmeas) will be less than the true voltage, Vtrue, that would be there without Rm. We can measure Rc, but R can be inside a valve or transistor and therefore not measurable. However, by knowing Vplus, Vmeas, Rc, and Rm, we can calculate Vtrue from:
Vtrue $=$ Vmeas $/(1-R c \times$ Vmeas $/ R m /$ plus $)$
For example, if Vplus is 250 V and Rc is 270K, then if Vmeas is 11 OV , the true voltage would have been 125 V .
A similar situation occurs using the signal tracer. Figure 5.6 a shows what happens when measuring the signol output of a circuit block that has an impedance Rc feeding a load of resistance Rload. The input impedance Rm of the injector is in parallel with Rload. Such a situation occurs when

Flgure 5.5. Showing meter loading effects In a circult. (a) Circult for calculating the loading effect of a dc voltmeter. (b) Anode and screen grid connectlons of a pentode where meter loading effect can be serlous.

Flgure 5.6. More on meter loading effects. (a) Clrcult for calculating the loading effect of an ac voltmeter. (b) FET clrcuit where meter loading effect can be serlous.
measuring the output voltage of most actlve devices, for example a FET, as shown in Figure 5.6b. This time, Esource cannot be measured, but we can calculate Etrue from:
Etrue $=$ Emeas $\times(1+$ Rload $\times \mathrm{Rc} / R m / R c$ + Rload))
For example, if RC is 12 k and Rlood is 12 k , and the 1 Vac range is used ($\mathrm{Rm}=1 \mathrm{k}$), then if Emeas is O .6 O Vac, the true output before the meter was connected must have been 4.2 Vac , the loading effect of the meter producing a very low apparent answer. Switching to the 10 V scale changes Rm to 1Ok but now Emeas becomes 2.62 V , the formula again giving Etrue $=4.2 \mathrm{~V}$.

a) AUDIO VOLTAGE AMPUFIERS

1) Trlodes. Figure 5.7 shows a single triode audio valve amplifier. Typical triodes would be the directly-heated A415 and the indirectly heated $655,6 \mathrm{C} 4,6 \mathrm{B6}$, and 6AT6. Later valves incorporated two triodes in the one envelope, examples being the 12AU7, 12AT7, 12AX7, and the ECC88 and its high reliability version the E88CC.
Special high amplification factor triodes such as the 6B6 use a grid resistor of 10 M which provides self-biasing, so this and similar valves are often used without a cathode resistor.

The Input block is a simple CR coupling to prevent any dc from the preceding stage getting to the input of the active block. The output block is simply the resistor R1, with a capacitor that is part of the input block for
the next stage
To prevent interaction between stages, it is common to use an RC filter, consisting of iff and Cf , in the power supply lead to each stage. Also, in wideband amplifiers there may be an inductor in series with Ri close to the anode connection. A small amount of

A glorious old triode! Such are

 rarities, but triode circuit building blocks were developed using devices such as this. The filament connections run down the bulb to the Edison screw base; the grid and anode (plate) connections are made to wire brought out at the top.negative feedback is sometimes introduced by omitting the bypass capacitor across the cathode resistor. This can lead to excessive hum if the resistance between the heater and cathode driffs down too far as the valve ages.
There are a number of simple tests that can be made to check the operation of this circuit. First, the high voltage supply Vplus should be in the range 180 to 300 V for mains equipment and 30 to 135 V for battery equipment. If a supply filter is used, the voltage Vf at F should be 2 to 2 O less than Vplus. If Vf is equal to Vplus, the valve is drawing no current, so there is an open circuit filament or an open circuit in one of the resistors (anode or cathode).
If Rf is used, it is easy to calculate the anode current being drawn by the valve as (Vplus - Vf)/Rt; indeed if there is no filter, it is worthwhile inserting an Rf of lk just to take this measurement.
For the triode, Vc measured at the cathode C should be Rc times the anode current; if it is higher than this, the valve is probably faulty. For most designs, the voltage Va measured at the anode A will be about 60 per cent of Vf .
If the dc voltages are close to the expected values, the circuit should work unless its output Is shorted to earth in the following stage. This can be checked by applying 100 mV from the signal injector to the grid and measuring or listening to the output using the signal tracer. The gain of medium amplification factor triodes such as the 6C5, 12AU7, or ECC88 will be 5 to 20; the higher amplification factor triodes such as the 12AT7 can have gains to about 45 and the 6B6 and 12AX7 can have gains up to about 60 .

Figure 5.7. RC-coupled single triode audio voltage amplifier block.

Two 'Bandit' hub castings
are the heart of this
project. A vailable from
Ashpoint Industries.

The quad antenna, according to several sources, has been around since the late 1940s and was originally designed by an American radio amateur. The South American shortwave broadcast station, HCJB - The Volce of the Andes - in Ecuador, used one for years.
Probably the most popular form has been the so-called cubical quad beam, comprising two square loops, each loop being about one wavelength long at the design frequency (that is, a quarter wavelength per stde) spaced between one-

Radio

 amafeurs, shorfwave listeners, CBers

Drilling holes for the hub clamping bolts. A G-clamp holds the two castings together while you drill. Hold the drill verticall
fifth and one-quarter wavelength apart. One loop is driven (it has the feedline connected to it) and hence is called the driven element, the other loop is not connected - a parasitic element. If this is slightly longer than a wavelength, then it becomes a parasitic reflector. Thus you have a two element parasitic beam antenna, the two elements in space delineating the sides of an imaginary box, or cube. The loops, being square, have four sldes - a quad. Hence, cublcal quad.
When compared to that other popular parasitic beam antenna, the Yagi, a quad exhilbits sllghtly more gain all else being equal. Controversy over this has raged for years. However, the ARRL Antenna Book reports that a lot of practical work comparing quads and Yagls shows that, for the same array length, the quad has a gain of approximately two decibels (2 dB) over a Yagi. In addition, a quad has a smaller turning clicle because it is only a quarter wavelength wide.
A varlety of methods for constructing quads for the HF bands have been devised and described over the years. By far one of

First step - seal each of the wooden spreaders.
the most ingenious was the splder hub. In this arrangement, the corners of each quad element are supported by spreader arms which radiate from the centre of the cube formed by the elements. A hub at the centre provided support for the spreaders and a method of attachment to a mast and rotator. No boom is required and it results in an assembly of the lightest possible weight and using the least amount of materials. The first ones I saw comprised a very complex. welded assembly of steel angle and tube. Building a HF quad remained the province of the determined and/or mechanically skilled constructor for many years.
The general arrangement of such a cubtcal quad is shown in Figure 1. The forward and rearward rake angle of the spreaders is arranged to achleve a desired or aptimised spacing for the elements. The large arrow shows the direction of the beam. This form of construction has another advantage: you can nest elements for other bands inside the outer loops, the rake angle of the spreaders maintaining the requlred spacing, in wavelength terms, between the elements. See Figure 2.

BUILD A CUBICAL
 QUAD ANTENNA

With the sunspot cycle at its peak right now, the HF bands are hot with DX from all round the world, and will remain so for a few years yet. The cubical quad has been acclaimed as one of the most effective DX antennas for many years. But they can be mechanically unwieldy. A locally-made hub solves that problem. By Roger Harrison VK2ZTB.

The sealed spreaders are secured in the hub plece arms using hose clamps.

Lay the completed 'spider' over the pegged-out square. The corner pegs will indicate where to drill the spreaders.

Experience also shows that the quad is less critical when it comes to tuning and matching, making it more forgiving of construction tolerances.

The hub solution

Back in the years of the CB boom in Australia, when quite a number of enthusiasts gained their introduction to the wonderful world of electronics and communications, interest in antennas was very high - it was the means of getting "the best bang for the buck" from 5 W CB rigs. Many enthusiasts built their own.
Among them was Mike Rychter who, then. as now, is a metallurgist by trade and proprietor of a metal foundry, Ashpoint Industries Pty Ltd. Mike designed and made a set of castings for a quad hub. After a liftle experience and further evolution of the design, he made a quantity and sold them to fellow enthusiasts. It was dubbed the "Bandit". He has been quietly making and selling them ever since. Mike went on to get

Measure out a square on the ground, the size of the element you're bullding. Hammer short pegs into the ground to mark the corners.

Marking where to drill the spiders.

Flgure 1. General arrangement of a cubical quad using the spider method of construction based on a single, central hub.

With the surface for the quad element pegged-out on the ground, run string between dlagonally-
opposite corners, marking the centre where they cross.

Drill each spreader to pass the quad element wire through.

Figure 2. With a spider quad, the forward and rearward rake angle of the spreaders is such that reflector and director are placed at the required spacing. There's a bonus, In that elements for other bands may be nested inside the outer loops and are automatically positioned at the correct spacing.

Cubical quad antenna

his Novice amateur licence and, later, his Limited licence and now signs on the air as VK2NOW (on HF) or VK2YUX (on VHF). His Novice callsign is impressed in the casting. In recent years, Mike also gained a little fame (but little fortunel) from a casting he designed for a discone-type scanner antenna.
The accompanying photographs show what the Bandit hub looks like. Two castings, both the same, make up one hub. The castings are made from corrosion resistant grade aluminium. Each single hub plece has four short arms which are grooved to take a $19-20 \mathrm{~mm}$ diameter spreader. These can be lengths of wooden dowel, readily obtainable at your local hardware store, or glass fibre rod such as fishing rod blanks. The spreaders are clamped into position with worm-drive hose clamps which are widely avallable from garages and hardware stores.

Two castings fit, like a clamp, around a standard 50 mm outside diameter pipe which is used as a mast. Note the lug at the 'top' end of the casting. The two castings are clamped at the top of the mast pipe such that the lug on each one prevents the hub from slipping down the mast.
When the spreaders are mounted, they project out at the required angles to each other so that by stringing a wire loop to each set of spreaders at points equidistant from the hub, you end up with a cubical quad.
The size of the quad loop is determined according to a formula so that the length of wire is very close to one complete wavelength at the frequency of operation. The two loops are automatically placed at the correct spacing.
From the photographs, you can see that a casting also has a cyllindrical protrusion, projecting from the centre of the four arms. This enables you to mount the castings on a standard 50 mm diameter pipe boom to

Figure 3. How the two hub pieces are mounted to a mast.

Figure 5. How to mount a single quad loop antenna.
form a multi-element quad.
A single Bandilt casting costs $\$ 3 O$ tax paid, including postage anywhere in Australia. A pair, for a cubical quad, will cost you $\$ 60$ Contact Ashpoint Industries, 38 Birmingham St, Alexandria NSW 2O15. Phone $\boldsymbol{\$}$ (O2)693-1266, Fax \boldsymbol{F} (O2)317-5629.

Building it

Constructing a cubical quad using this

Cubical Quad - Required ifems, 28 MHz design

- A pair of Bandit Unlversal Quad Hub castings.
- Two 6.4 mm ($1 / 4$ inch) by 38 mm long ($1 / 2$ inch) hex-head bolts, two ruts and two spring washers to suit.
- Elight lengths of 19 mm ($3 / 4 \mathrm{inch}$) diameter wooden dowel rod, two metres iong. You may need to cut these to length from standard-length dowels obtainable at hardware stores.
- Elight worm-drive hose clamps. (e.g. Utilux, or similar)
- Approximately 24-25 metres of 16 or 18 gauge copper wire, or the same length of plastic insulated, stranded hookup wire, either heavy duty (23 x 0.2 mm) or very heavy duty ($32 \times$ 0.2 mm). If you wish to use copper wire, the hard-drawn type is preferred. You
can use ordinary enamelled coil winding wire and harden it by firmly securing one end, then reeling out the whole length and giving it a firm stretch.
- Coax for the matching section (see the panel on Matching).
- Coax connectors to suit.
- Enough 50 Ohm coax (RG8, RG213 or RG58) to run from your final antenna mounting position to your transcelver installation.
- 50 mm dlameter pipe for mast; length to sult.
- Linseed oll or other wood-sealing compound.
- One small reel of insulation tape.
- One small reel of self-amalgamating tape, or piumber's Teflon tape.

Terminate the driven element in the centre of one side by tying-off the wire ends to an egg Insulator, or dipole centre insulator, etc.

Prepare the 70 Ohm matching section cable by terminating one end with a coax plug and stripping back the other 50 mm . The required cable length is measured between the tip of the coax plug and the point where you strip it back to - so allow an extra 50 mm when cutting the cable!

Temporarlly terminate the end of the matching cable to the driven element feedpoint, passing the cable through the holes of the egg insulator, etc.
method is almost foolproof. The cast Bandit hub pleces remove all the mechanical headaches. The accompanying panel (required liems) details everything you'll need to construct the quad, apart from tools. I have described here the construction of a quad for the 28 MHz (10 metre) amateur band. For other bands, the procedure is the same, only the dimensions change. You will need a large, clear area in which to work.
The first thing to do is to clamp the two hub pleces together and drill holes for the clamping bolts. A G-clamp is good for this.
Or securely tape or tie them. Make sure you line them up properiy. The ends with the Bandit embossing should be opposite one another. Drill through the "ears", as shown in the illustration, using an 8 mm ($5 / 16$ inch) drill. This gives the $6.4 \mathrm{~mm}(1 / 4$ inch $)$ bolts a little

Quad Dimensions

You can calculate the required loop lengths for any frequency by using the following formulae:
Driven Element $=30632 / \mathrm{f}$
Reflector $=31394 / \mathrm{f}$
where f is in MHz . The result is in centimetres (cm). I have chosen cm because that's all the accuracy you need, even at 50 MHz .
If you're contemplating a three or four element array (or morel), director length can be caiculated from:
Director $=2978 / \mathrm{f}$
The ARRL Handbook gives tables of dimensions for a variety of quad array combinations.
Here are dimensions for the popular amateur bands:
FREQUENCY REFLECTOR DRIVEN ELEMENT
$14.15 \mathrm{MHz} \quad 2219 \mathrm{~cm} \quad 2165 \mathrm{~cm}$
$21.20 \mathrm{MHz} \quad 1480 \mathrm{~cm} \quad 1448 \mathrm{~cm}$
$28.5 \mathrm{MHz} \quad 1100 \mathrm{~cm} \quad 1074 \mathrm{~cm}$
$50.10 \mathrm{MHz} \quad 627 \mathrm{~cm} \quad 611 \mathrm{~cm}$
clearance. If your drill chuck won't take a bit larger than 6.4 mm , then use that and either ream or file out the holes a liftle.
Having done that, you can proceed with assembly of the driven element, as follows: 1. Each of the wooden spreaders needs to be sealed against moisture and the effects of weathering by treating them thoroughly with linseed oil or other suitable wood preserving product.
2. Once treated, place each spreader in turn in an arm of the hub and secure with a hose clamp. The end of the spreader should butt up against the lug at the inner end of the hub arm as shown in the illustration. This ensures that the spreader will be held firmly. You now have one completed splder.
3. Carefully measure out a square on the ground of 268.5 cm per side $(1074 \mathrm{~cm}$ circumference) and hammer some small pegs or posts into the ground at each corner. This marks out the dimensions of the driven element. It is important to get the dimensions right. Don't be sloppy. Now, using some string. mark out the diagonals and find the centre. 4. Lay the completed splder, legs down - hub upwards, over this square, with the hub above the centre so that you can slght the crossed strings through the boom hote. Using some Insulation tape or a carpenter's softlead pencill, mark the spreaders where the corner pegs indicate. (You may trim back the spreaders to withln 25 mm of the marks if you wish).
5. Drill a 3 mm ($1 / 8$ inch) nole through each spreader at the point just determined. Use the tip of a 6 mm drill, or a countersink bit, to counter sink the two ends of each hole. This avolds a sharp bend in the wire. Soak with linseed (or whatever you are using) to waterproof the exposed wood.
6. Thread the required length of wire through the holes in the spreaders. Terminate the square of wire by tying off the loop ends to a small egg insulator as shown in the accompanying illustration. Draw the wire fairly tight but not so tlght as to distort the spreaders.
7. Now for the matching section. Taking your 1765 mm length of RG59 75 Ohm coax, put a coax connector on one end. Measure back 50 mm and, using a penknife or hobby knife, remove the outer piastic sheath of the coax to expose the braid. Take care not to nick the brald. Separate the braid and centre conductor.
8. Push this end of the 75 Ohm cable through the two holes of the egg insulator and solder the coax braid and centre conductor to the two ends of the quad loop termination as shown in the accompanying lllustration. Do not seal the open end of the coax yet, as you may need to trim it to adjust the match to Improve the SWR.
9. Your driven element is now completed. It is a good idea to add a 'lockwire' where the quad wire passes through the spreader arm as shown in a photograph here.

The reflector

The assembly procedure is basically the same as for the driven element. This time, mark out a square of 275 cm a side. In

DO YOU WANT 10
SALVACE some cashr TURN YOUR SURPLUS STOCK INTO CASHII Jaycar will purchase your surplus stocks of components and equipment. We are continually on the lookout for sources of prime quality merchandise.

115 Parramatta Road Concord 2137 or phone (02) 7472022
ask for Bruce Routley or Garry Johnston
or FAX (02) 7440767

BUILD A CURD ANTENNA

using the "BANDIT" hub casting

as described in ETI, December 1989 issue.
It's so simple, quick, easy and low cost.
casting: \$30 tax paid
includes postage anywhere in Australia.
Two castings required for full cubical quad.
SCANNER ENTHUSIASTS!
Build your own DISCONE wideband antenna

using the DISCONE HUB described in AEM July 1985, Project AEM-3010.
$\$ 45$ tax paid includes postage anywhere in Australia.

Cubical quad antenna

completing the reflector loop, join the ends of the wire at a corner, twisting them around each other in the manner used for installing a lockwire to obviate tension on the joint itself. Solder the wire ends together.
The driven element and reflector hub pieces are secured to a 50 mm diameter pipe mast, as shown in Figure 3. Use spring washers beneath the securing nuts.

SWRing-in

Temporarily mount your quad on a mast at a convenient height - ideally, this should be at least five or six metres off the ground and well clear of any buildings etc. You'll need access to the driven element's feedpoint to trim the length of the matching line.
Connect it up to your rig and check the SWR at several frequencies across the band. This will give you some idea of exactly where the quad is resonating. If any adjustment is needed, lengthen or shorten the loop to drop or raise the resonant frequency, respectively. Small adjustments can be made by applying tension to the 75 Ohm coax. If the SWR is 1.8:1 or below, you have no need to worry. The bandwidth of the quad is quite good and providing the SWR is below that, no adjustment is really necessary and will not result in any significant improvement. Trying

It's good practice to secure the quad elements with a 'lockwire' where it passes through each spreader. Use a short length of heavy gauge wire.
to trim it down to 1.1:1 for the perfect match, is pointless.
With the matching adjustment completed, carefully seal the coax at the feedpoint to prevent moisture from getting into the matching sectlon coax, which isn't good for it.

Reflector tuning

For those who want to optimise their quad for peak performance, the reflector can be tuned. This will improve its front-to-back ratio. The funing can be done with a simple shorted 'stub' which is added by breaking the

Matching

The feedpoint impedance of the driven element of a cubical quad is reported to be generally around $80-100$ Ohms. By far the most popular method used to match this to a 50 Ohm line is the quarter-wove transformer. Thls makes use of the impedance-transforming properties of a quarter wave transmission line, inserted between the antenna feedpoint and the feedline to the transceiver.
The input impedance of a quarterwave line, Zin, connected to a resistive load, Zl , is given by:
$\mathrm{Zin}=\mathrm{Zq}^{2} / \mathrm{Zl}$
where Zq is the impedance of the quarter-wave line. If we know the input impedance, Zin, and the load impedance, Zl, we can find the required impedance of the quarter-wave llie by rearranging the equation like so:
$\mathrm{Zq}=$ square root (Zin $\times \mathrm{Zl})$
If our load impedance, that is, the quad's feedpoint impedance, is 100 Ohms, and we're matching this to a 50 Ohm feedline, the required impedance of the quarter-wave matching section is:
$\mathrm{Zq}=$ square root (50×100)
Thus, $\mathrm{Zq}=$ square root 5000
$=70.7$
The nearest standard impedance cable is 75 Ohms. Only a small mismatch.
giving a VSWR of about 1.1:1, will result, which is of little importance. Even if the quad's feedpoint impedance were down around 80 Ohms, requiring a quarter-wave line of 63 Ohms impedance, using 75 Ohm cable for the matching section will only result in a VSWR of 1.4:1, which is not significant andreadily tolerated.
The general arrangement of a quarter-wave transformer of coaxial cable is shown here in the diagram. The velocity factor of the cable used must be taken into account when caiculating its length (hence the $\lambda c \%$. Use this formula:
$\mathrm{Lq}=(7620 \times V F) / \mathrm{fincm}$.
Where La is the length of the quarter wave line, VF is the velocity factor and f is the design frequency in MHz . The cable's velocity factor is obtainable from the manufacturer's literature. For solld dielectric type cables, such as RG59 or RGII, VF is generally O.66. If our design frequency is 28.3 MHz , and RG59 is to be used:
$\mathrm{Lq}=(7620 \times 0.66) / 28.3$

= 5029.2/28.3

$=176.5 \mathrm{~cm}$
This calculation results in a length that is slightly longer than actually required, allowing the cable to be trimmed for the best match and taking into account

One completed quad
element. Now for the next one, to complete the cubical quad.
reflector loop with an insulator, in the same way as is done for the driven element feedpoint. The method is illustrated here in Figure 4.
The stub is made of tinned copper wire, and is around half the length of one side of the reflector loop measured from the insulator to the end. A short is placed across it to tune the stub. You'll need a field strength meter piaced some distance away, with the meter itself placed in some convenient position so you can see the effect of adjustments. Be warned, this is not an easy exercise with a relatively large quad.
The short can be made from two bulldog clips joined by a length of tinned copper wire just short enough to allow you to clip them across the stub.
The short is adjusted for best forward signal strength and front-to-back ratio. Obviously, you'll need some means of rotating the antenna to do this. When you've adjusted it to your satisfaction, check the SWR and adjust the matching too, if necessary.

Variations

The spreaders of your quad assembly may be made of aluminium tubing to within 300 mm of where the quad loop wire passes through. The tips of the spreaders

intervals). Use the equation above to find La, but make the velocity factor 1 . Then a quarter-wave transformer follows to provide a match to 50 Ohm line. All this may be made from 75 Ohm cable.
must be of a non-conducting material. Wood dowel may be forced down the end of aluminium spreaders, which is simple, cheap and effective. However, it should be treated as previously discussed to protect it from the effects of the weather.
Instead of using an egg insulator at the driven element's feedpoint, you could substitute a special T -shaped centre insulator made for use with wire dipoles. These are available from Emtronics in Sydney, Melbourne and Brisbane.
If you're considering the construction of a multi-element quad, it is best to get your hand in by first building a cubical quad, then graduating to a larger array.

Conversely, for a small, cheap and cheerful rotatable antenna having a modicum of gain, you could make a single quad loop, following the instructions for the driven element. It may be mounted using the method shown in Figure 5.

ت

BIBLIOGRAPHY

The Quad Antenna Handbook, by William I. Orr W6SAI, published by Howard W. Sams \& co.

The ARRL Antenna Book, edited by Gerald L. Hall KITD, published by the ARRL.

UV MATERIALS

3M Scotchcal Photosensitive

		$250 \times$	${ }_{300 \times 600 \mathrm{~mm}}$
8001	Red/Aluminium	S79.00	S90.00
	Black/Aluminium	S79.00	\$90.00
	Reversal Fllm	\$43.00	S58
	BlueiAluminium	\$79.00	\$98.00
${ }_{8}^{8009}$	Red/White	571.00	S81.00
	Black/Yeliow	571	
8013	Black/Whit	57	
8016	Blue/White	\$77.00	
	Green/White		
	Black/Gold	S100.00 $\$ 71.00$	$\$ 121.00$ S81.00
RISTON 3400 PCB MATERIAL			
SIZE	SE SIN	GLE	DOUBLE
INCHES	HES SID	ED	SIDED
36×24		6.00	\$124.00
24×18		8.00	\$ 62.00
18×12		4.00	\$ 31.00
		6.00	\$ 20.80
12×6		8.00	\$ 11.00

KALEX UV LIGHT BOX KALEX ETCH TANK

All prices plus sales tax if applicable
40 Wallis Ave
East Ivanhoe 3079
(03) 4973422

4973034
Fax (03) 3147400
ELECTRONIC COMPONENTS \& ACCESSORIES

- SPECIALIST SCHOOL SUPPLIERS

BUILD A 'SMA 2400 BPS PC IN-MODEM

Part 2. Here's how to set up and install your modem, followed by data sheets on the modem chip and its controller.
By Roger Harrison.

Before socketing any ICs or attempting a first power-up. a few preliminary checks are in order. First, a thorough visual inspection is recommended. Take your time. Correct any obvious mistakes picked up here. With your multimeter, check the supply rails for shorts. Because the board is solder-masked, the likelihood of anything going wrong here is remote, but checking saves grief later. If you do find a fault, search it out and rectify it now. Any other faults will only show up with subsequent testing. To tackle such faults that may arise will require a modicum of common sense, some patience and a little experience with digital fault-finding.
Note that, because a number of CMOS devices are used on this card, you should take the usual precautions when handling
the ICs during installation and handling the completed card.

Configuration

With the project passing preliminary checks, you can carefully install the socketed ICs. Then install the LIU cover with two plastic zip ties. The manual supplied with kits covers in detail the configuration and installation and the Hayes command set operational details.
The modem is installed into an empty slot inside your PC/compatible. First, however, you need to set the jumpers on the card to configure the I/O address and interrupt line to use.
The modem must have a different interrupt line (IRQx) and different I/O address to everything else in your computer. If you
currently have no serial ports installed in your computer, then set the jumpers for COM1 as shown In Table 1 here. If such is the case, you can proceed to the section headed "Installation".
If you have one serial port installed and conflgured for COMI, then set the jumpers on your modem card for COM2 as per Table l; then proceed to "Installation". Conversely, if you have the one serial port installed and set for COM2, set your modem jumper for COMI.
To run correctly with most communications software, your modem should be installed for elther COM1 or COM2. If you have both of these taken up, then you'll have to remove one of the peripherals to free up either COMI or COM2. Some software allows the use of COM3 and COM4. You can configure your modem to use either of these, as per Table l. Table 2 shows the meaning of the jumpers.

Installation

Once the modem card has been configured, you can then insert it into a slot in your computer. First, turn off the computer's power switch and disconnect the power plug. Open the case and remove the rear metal slot cover for the empty slot you intend using. Insert the card and screw it in place. The telephone line connection inserts into the RJIl socket protruding through the rear metal slot cover. Restore the case, hook up everything and you can power up. The software instructions lead on from here. Happy communicating! 탄

PORT	DEFINITION	JUMPERS (B2)					
			1	2	3	4	5
COM1	3F8-3FF IRQ4		x	x		x	
COM2	2F8-2FF IRO3	x			x	x	
(COM3)	3E8-3EF IRO?	$?$	$?$	x			x
(COM4)	2E8-2EF IRO?	$?$	$?$		x		x

Table 1
NOTE: The three links should be placed so that the middle pin in each group of three connects to either its left or right neighbour (es indicated by the X).

Some software allows you to use COM3 or COM4. The modem can be configured for these port addresses if you only Intend uaing it with such software. You'll need to find out which Interrupt lines (IRO?) are used and set the jumpers in 1 and 2 accordingly; that is why the ? are in those positions in the table.

1	Selects IRO4 Selects IRO3	left right
$\mathbf{3}$	Selects 3×8 address Selects 2×8 address	left right
4	Selects \times F8 address Selects $\times 5$ address	left right
$\mathbf{6}$		

Table 2

ABBRIEVIATED DATA SHEET 2400 BIT-PER-SECOND MODEM

FEATURES

- Complete 2400 blt-per-second modem conforming to V .22 bis specifications
- Compotible with CCITT V. 22 bis, V. 22. V. 21 and BELL 212A and 103 standards - Integrated DTMF/GUARD TONE GENERATOR, call progress monitor and contalns an on-chip hybrid
- Analogue, digital and remote digital loopback.
- Programmable audio output port
- Three-micron CMOS technology
- DIP or PLCC package
- High-level of integration provides for economical 2400 bit-per-second modem solution
- Broadly adaptable to estabilished worldwide standards at 2400, 1200 and 300 bit-per-second
- Minimises need for external components simplifying design of intelligent modems
- Testable signal path diagnostics
- Audio interface for phone line monitoring
- Low pawer consumption

DESCRIPTION

The VL7C224A is a complete 2400 bit-per-second modem IC containing all modem functions except the adaptlve equaliser. It is used in conjunction with an external controller such as the VL7C235 (for porallel bus applications), the VL7C245 (for RS-232 applications) or a general purpose microcontroller such as 8096 , to implement a 2400 bps full duplex modem, compatible with the CCITT V. 22 bis recommendation. The controller performs all modem control and handshaking functions as well as the adaptive equallsation.
The VL7C224A operates in 2400 bps

SIGNAL DESCRIPTIONS		
Signal Name	Pin Number	SIgnal Description
SCR	1	Synchronous Clock Recelve (Data set source) - A TTL output that is used only in bit synchronous mode. It's recovered by the recelver phase locked loop from the far end modem. Data on $R X$ is valld at the rising edge of this clock.
AGND	2	Analogue Ground
SCT	3	Synchronous Clock Transmit (Data set source) - This TTL input is used only in bit synchronous mode and is generated Internally by the VL7C224A clock generator. Rate $=1200$ $\mathrm{Hz} \pm 0.01 \%$ or $2400 \mathrm{~Hz} \pm 0.01 \%$.
SCTE	4	Synchronous Clock Transmit (DTE source) - TTL input used only in bit synchronous locked mode and data on TXD line is latched by the VL7C224A at the rising edge of thls clock. Clock rate $=1200 \mathrm{~Hz} \pm 0.01 \%$ or $2400 \mathrm{~Hz} \pm 0.01 \%$
SPKR	5	Speaker - The hybrid output is passed through a programmable attenuator and fed to this analogue pin. Four different levels can be attained by controlling bit 0 and blt 1 of the SPKR register as specified under SPKR register description.
EDC	6	Capacitor for Energy Detect - A.1.0 μ F capacitor shouid be connected between thls pln and AGND.
DGND	7	Digltal Ground
-CS	8	Chip Select - An active low TTL input.
-WR	9	Write - This TTL input is normally high. Data on ADO-AD7 is written Into the VL7C224A registers at the rising edge of this pulse.
-RD	10	Read - A normally high TTL input. Data on ADO-AD7 is read from the VL7C224A registers at the rising edge of this pulse.
A/D1-A/D 4	12,13,17,18	Multiplexed Address/Data Bus (8-bits) - These four TTL I/O blts are used for multiplexed addressing and data $/ / O$ of Internal registers.
VSS	14	Negative Power Supply - 5V.
RXA	15	Receive Analogue - Input.
TXA	16	Transmit Analogue - Output.
DO,D5-D7	11,19-21	Data Bus Bits $0,5,6$ and 7 - They are don't cares as far as the address is concerned.
CLKIN	22	Clock Input - 9.8304 MHz or 12.288 MHz clock input from the VL7C225/235/245, or external controller.
GS	23	Gain Select - To compensate for loss in line coupling transformer. When left open or tled to VSS, the compensation is 0 dB . Connected to ground, +2 dB compensation is provided, and when tied to VDD, the compensation is +3 dB .
ALE	24	Address Latch Enable - The address on A/D4-A/D1 is latched into the VL7C224A address decoder at the falling edge of a positive pulse on thls normally low TTL Input.
INT	25	Interrupt - A normally low TTL output. A short ($13 \mu \mathrm{~s}$ typical) positive pulse is generated after all A to D conversions are completed.
RXD	26	Recelved Data - A TTL output.
TXD	27	Transmit Data - A TTL input.
VCC	28	Positive Power Supply - +5V

QPSK/QAM and 1200 bps PSK as well as O to 300 baud FSK modes, compatible with Bell 103 and 212A as well as CCITT V.21, V. 22 and V. 22 bis standards. When used with the VL7C225, VL7C235, or VVL7C245 controllers, the VL7C224A becomes an intelligent modem controlled by the industry standard "AT" command set. The interface between the VL7C224A modem and the controller (elther the 8096 or the VL7C225/235/245) is a standard microcontroller interface that easily connects to an EEPROM for permanent storage of configuration settings and phone numbers.

FUNCTIONAL DESCRIPTION

- Full transmitter consisting of
- Async to sync converter
- Scrambler
- Data encoder
- 75\% square root of raised cosine pulse shaper
- Quadrature modulator
- FSK (Bell 103 and CCITT V.21)
modulator
- Hybrid
- High-band and low-band filters
- High-band and low-band compromise equalisers
- V. 22 Notch filter (selectable at 550 or 1800 Hz)
- Transmit smoothing filter
- Programmable attenuator for transmit level adjust
- DTMF, $550 \mathrm{~Hz}, 1800 \mathrm{~Hz}, 1300 \mathrm{~Hz}$, and 2100 Hz tone generators
- Transmit clock circult for synchronous operation (slave, external, and internal modes)
- Pattern generator for generating fixed digital patterns in handshaking mode
- Receive section consisting of - 64-step programmable gain controller (PGC)
- Energy detector at the output of the PGC
- Hilbert transformer
- Quadrature demodulator (free running carrler) with bow pass filters
- Baud timing recovery circuit (sampling
clock of 600 Hz)
- FSK demodulator
- Sync to Async converter
- 8-bit analogue to digital converter (ADC)
- Control and status register
- 8-bit microprocessor interface with Interrupt and multiplexed address/data Ithes
- Audio output with level adjust Transmittor
Since data terminals and computers may not have the timing accuracy required for 2400/1200 bps transmission (0.01%). timing correction on the incoming data stream must be made. The async/sync converter accepts asynchronous serial data clocked at a rate between $2400 / 1200 \mathrm{~Hz} \pm 2.3 \%$ - 2.5%. It outputs serial data at a fixed rate of $2400 / 1200$ $\mathrm{Hz} \pm 0.01 \%$ derived from the master clock oscillator. To compensate for the input and output rate differences, a stop bit is either deleted or inserted when necessary If the input data rate is shower than the output rate, a stop bit is inserted. If the input data rate is faster than the output data rate, a stop is deleted. The output of the async/sync converter is applied to the scrambler.
The scrambler is a 17 bit shift register clocked at $2400 / 1200 \mathrm{~Hz}$. Outputs from the 14th and 17 th stages are exclustve OR'd and further exclusive Or'd with the
input data. The resultant data is applled to the D input of the shift register. Outputs from the first four/two stages of the shift register form the quad/dibit that is applied to the QAM/QPSK modulator. The purpose of the scrambler is to randomise data so that the energy of the madulated carler is spread over the band of interest - elther the high-band, centered at 2400 Hz or the low-band. centered at 1200 Hz . In the 2400 bps mode, the modem actually sends four bits at a time, called a quadblt; quadbits are sent at 600 baud. the actual rate of transmission: 600 baud is the optimum rate that can be transmitted over the general switched telephone network for a dull duplex FDM (frequency division multiplexing) modem because band limit filters in the central office cut off at about 3000 Hz . In the 2400 bps data rate, the data to be transmitted is divided into groups of four consecutive bits (quadbits). The first two blts of the quadblts is encoded as a phase quadrant change relative to the quadrant occupled by the preceding stgnal element. The last two bits define one of the four stgnaling elements assoclated with the new quadrant. In the 1200 bps data rate, the data stream is divided into groups of two. consecutive bits (dilibits). the dibits are used to determine the phase quadrant change relative to the quadrant occupled by the preceding signal element. The resulting signaling elements from the inphase (I) and quadrature (Q) channels are passed through base-band filters with a square root of raised-cosine shape. The filtered signais subsequently modulate sine and cosine carrlers and add to form the QAM/QPSK signal. The wave shaped shgnal is then passed through elther the low-band or high-band filter depending upon originate or answer mode selection. For low speed operaton the FSK modulator is used. It produces one of four preciston frequencies depending on originate or answer mode and the 1 (mark) or O (space) level of the transmit data. Different frequencles are used for V. 21 and 103 modes. The frequencles are produced from the master clock oscillator using programmable dividers. The dividers respond quickly to data changes, introducing negligible bit jitter while maintaining phase coherence. The output of the FSK modulator is applied to the approprlate filter when the low speed mode of the operation is selected. The filter section consists of low-band $(1200 \mathrm{~Hz})$ and high-band (24 OO Hz) filters, half-channel compromise amplltude and group delay equalisers for both bands. smoothing filters for both bands and multiplexers for routing through the appropitate band filters. For CCITT $\vee .22$ bis applications, a notch filter is included that can be programmed for elther 550 Hz or 1800 Hz . In the call progress monitor mode, the low-band filter is scaled down by a factor of 2.5 to centre it over a frequency range of 300 to 660 Hz . Thus, during call establishment in the originate mode, call progress tones can be monitored through the scaled low-band filter and the modem answer tone or volce can be monttored through the unscaled high-band filter.
The low-band filter is a tenth order switched-capacitor band-pass filter with a centre frequency of 1200 Hz . In the
originate mode, this filter is used In the transmit direction: in the answer mode it is used in the receive direction. When analogue loopbock is used in the originate mode, this filter, together with the lowband delay equaliser, is in the test loop. In ! the call progress monltoring mode, the filter response is scaled down by 2.5 . moving the centre frequency to 480 Hz The low-band delay equaliser is a tenth order switched-capocitor all-pass filter that compensates for the group delay varlation of the low-band filter and half of the compromise line characteristics. producing a flat delay response within the pass-band.
The high-band filter is a tenth order switched-capacitor band-pass filter with centre frequency of 2400 Hz . In the answer mode, this filter is used in the transmit direction; in the originate mode. it is used in the receive direction. When analogue loopback is used in the answer mode. this filter, together with the highband delay equaliser, wlll be in the test lop.
The high-band delay equaliser is a tenth order switched-capacitor all-pass filter that compensates for the group delay varlation of the high-band filter and half of the compromise line characteristics. producing a flat delay response within the pass-band. The transmit smoothing filter is a second order low-pass switchedcapacitor fllter that adds the modem transmilt signal to the DTMF or V. 22 guard tones. It also provides a 2 d8 per step programmable gain function to set the output level.

Recelver

The receiver section consists of an energy detector. programmable gain control (PGC). part of the QAM/QPSK demodulator, FSK demodulator, 8-blt ADC and sync/async converter.
The recelved signal is routed through the appropriate bond-pass filter and applied to the energy detector and PGC circult. The energy detector provides a detection within 17 to 24 msec . It is set to turn on when the signal exceeds -43 dBm and turn off when the signal falls below -48 dBm measured at the chip. A 2d8 minimum hysteresis is provided between the turn on and turn off levels. In call progress mode the energy detector is connected to the output of PGC to allow detection level adjustment.
The output of the filter is applied to the programmable gain control (PGC). This circult has a wide overall range of 47.25 dB and provides 64 steps of $0.75 \mathrm{~dB} /$ step. The PGC gain is controlled by the external processor. It also Includes autozeroing to minimise the output DC offset voltage. The QAM/QPSK demodulator uses a coherent demodulation technique. Output of the programmable gain control (PGC) is applied to a hilbert transformer that produces an in-phase and 90° out of phase component. These components are then demodulated to base-band In a mixer stage where individual components are multiplled by a free running carrier.
The base-band components are low-pass filtered to produce I and Q channel outputs. (in phase and quadrature.) The I and Q channel outputs are both filtered by 300 Hz band-pass filters. Then they are rectified, summed and passed through a bond-pass filter giving a 600 Hz signal. This signal is applied to a digital phase
lock loop (DPLL) to produce a baud rate clock. Using the recovered clock signal, the I and Q channels are sampled and digitised into 8 -bit samples by the ADC. Each channel (and Q) is sompled twice during a baud period. once at the middle and once at the end of the baud period allowing $T / 2$ or T sampling operation. The external processor is interrrupted once every baud period (1.667 msec). The processor shouid read I and Q samptes (within 100μ sec from the time interrupt is issued), and perform adaptive equalisation carrier phase tracking. data decoding. and data descrambling. One quad/dibit is then transferred to the VL7C224A during each baud period.
In the asynchronous mode, data recelved from the external processor is applied to the sync/async converter to reconstruct the orkginally transmitted asynchronous data. For data which had stop bits deleted at the transmitter (overspeed data), these stop bits are reinserted. Underspeed data is passed essentlally unchanged. The sync/async convertor has two modes of operation. In the basic stgnalling mode the buffer can accept an overspeed which corresponds to one missing stop bit in eight characters. The length of the start and data bits will be the same and the stop bit will be reduced by 12.5%. In the extended stgnaling range, the buffer can accept one missing stop bit in four characters and stop bits will be reduced by 25% to aliow for over-speed in the transmitting terminal. Output of the sync/async converter along with the output of the FSK demodulator is applied to a multiptexer. The multiplexer selects the approprlate output, depending on the operating speed, and outputs received data on the RXD pin.
For low speed operation, the FSK demodulator is used. The output of the PGC ampllfler is passed through a zero crossing detector and applied to a counter that is reset on zero crossings. The counter is designed to cycle at a rate four times faster than the carrier signal. The counter output is bw-pass filtered and hard limited to generate FSK data. To improve performance of recelver at low signal levels, while malntaining a wide amplitude range, a l-bit AGC circuit is placed prior to band-pass filter. The decision thresholds of this AGC are controlled by AGCVT bit when AGCVT = 1 . the threshoids will 6 dB farther apart than when $\mathrm{AGCVT}=\mathrm{O}$, so that probabillty of gain change will be reduced. The status of the AGC gain is available through AGCO bit. AGC will have 8 dB more gain when AGCO $=1$. Status of AGCO shouid be monitored every baud timing and when it makes a transition (causing gainhit). PGC's galn should be modified to prevent divergence of the adaptive equalisation.

Hybrid

The signal on the phone line is the sum of the transmit and receive signals. The hybrid subtracts the transmitted signal from the signal on the line to form the received signal. It is important to match the hybrid impedance as closely as posstble to the telephone line to produce only the recelved signal. When the Internal hybrid is used, by setting the "HYBRiD" bit in the control register, this matching is provided by an external resistor connected betwoen the TXA and RXA
pins on the VL7C224A. The filter section provides sufficient attenuation of the out of band signals to eliminate leftover transmit stgnals from the recelved signal. The hybrid aiso acts as a first order lowposs antlallosing filter. The hybrid can be deactivated by the external controller. The VL7C224A internal hybrid is Intended to simplify the phone line interface. The internal hybrid can compensate for the loss in the line coupling transformer used in the DAA. Depending upon the transformer selected, the loss can be as little as 1 dB or as high as 3 dB . Internal hybrid can make up for this loss from O to 3 dB . using the GS pin.

Tone generator

The tone generator section consists of a DTMF generator, V. 22 guard tone, 1300 and 2100 Hz tone generator. The DTMF generator produces all of the tones corresponding to digits zero through 9 and A,B,C,D.', and \# keys. The v. 22 guard tone generator produces elther 550 Hz or 1800 Hz tone. Selection of either tone will cascade the corresponding notch filter with the low-band filter. The tones are selected by applying appropriate codes through the Data I/O pin. Before a tone can be generated, tone mode must be selected. Facility is also provided to generate single tones corresponding to 1300 and 2100 Hz and the indlvidual rows or columns of the DTMF signal.

Audlo output stage

A programmable attenuator that can dive a load impedance of $50 \mathrm{k} \sim$ is provided to allow monitoring of the recelved line slgnal through an external speaker. The attenuator is connected to the output of the hybrid. Four levels of attenuation - no attenuation, o dB attentuation, 12 dB attenuation, and squeich are provided through the ALCl, ALCO audio output level control codes. Output of the attenuator is avaliable on the audio output pin where an external audlo ampllifier (LM386 type) can be connected to drive a low impedance speaker. The output can directly ditive a high impedance transducer, but the volume level will be low.

FUNCTIONAL DESCRIPTION OF THE VL7C225, VLIC235, AND VL7C245

The VL7C235 modem controller, implemented in VLSI's two-micron CMOS process, was designed specifically to handle all of the modem control functions. as well as the Interface to a system bus. Besides inclurding a 16-bit mircoprocessor, 8 K by 8 bytes of ROM and 304 by 8 bytes of RAM, it also contains the functionality of an 8250 B UART, greatly simplifying the Interface to a parallel system bus, such as the one used in IBM's PC. In fact, a complete Hayes-type compatible modem for the PC consists of the VL7C235 controller, the VL7C224A modem and the DAA. All of the popular communications software written for the PC will work with the VL7C224A/VL7C225 set.
Another version of the controller, the VL7C245, is intended for RS-232 applications. It contains the same processor, memory and UART as the VI7C224A and has the same interface to the modem chip. The difference is that the UART is turned around so that serial data from the RS-232 port is converted to parallel data handed by the Internal processor. Pins are provided for

do not provide external ROM access. All three pinouts allow the controller to talk to both the VL7C224A and a SC221O2-1 (EEPROM).
The interface to the VL7C224A is via an 8 -bit address/data bus and the control lines for read and write. The same interface is used for access to an electrical erasable random access memory (SC221O2-1). They operate on six clock multiplexed address/data bus cycles. For the 44 -pin optlon an I/O ready signal is provided for interface to high speed PC/AT type bus cycle. For the VL7C225 there are 15 extra address ines and chip selects for external ROM and external RAM interfaces.
Besides the interface for the VL7C224A modem, the VL7C235 controller has an 8 -blt data port, three address llnes, a chip select Input, an Interrupt line, and the DOST and DIST controd lines found in the 8250B UART. It also has control lines for ring indication, the off-hook relay and a data/voice relay; these lines connect to the DAA.
In the VL7C245, the 8-bit port becomes the switch input lines and the address chip select, INTO, DIST, and DOST lines become the lines for the RS-232 Interface, and modern status. These lines are aiso used to drive the LEDs. Internally, all of these lines are treated as programmable I/O Dorts under software control - so the main difference between the VL7C235 and VITC245 is the ROM code. It also contains the same modem and DAA interface lines as the VL7C225A.
The VL7C235 and VL7C245 are designed to control a modem or other peripheral that operates at a moderately slow data rate up to 2400 bits per second. The Vl7C235 allows a slow perlpheral, such as the modem. to interface to a high speed bus. without making the main processor slow down.
This is done through the UART interface and the on-chip registers which look somewhat like dual port registers. The main processor can write to and read from them at will, while the on-chip controlier can do the same. The controller was designed this way because most communications software has to have unrestrained access to UART registers. To make the VL7C235 compatible with this software, these registers were Included. The actual processor contalns a 16 -bit data path and can execute 54 Instructlons with three different addressing modes: direct. indirect, immediate. There is 8 K by 8 of ROM on-chip for program storage.
To the system bus, the VL7C235 looks and acts just like an 8250B UART.
Communications software written for the UART will work with the VL7C235 and VL7C245. The VLSI chip set is a completely compatible Hayes-type modem in two chips.
In operation, the VL7C235 or VL7C245 monitor the registers to determine the mode of operation - command mode or data mode; at power-up it is automatically put in the command mode and it looks for instructlons. Once carrier is detected, it goes into the data mode, and stays there until an escape sequence is entered. just like in a Hayes-type modem. The escape sequence is three + signs $(+++)$ in the default mode, but it can be changed in software.

8-BIT FLASH A-D/ D-A CONVERTER

This is a technology demonstration project that shows the capability of leading edge solid-state technology in this field. By Tom DeLurio.

View of the completed flash converter. A combination of digital and analogue-RF technologies is employed in its design.

Ihis project provides hands-on experience with some leading edge devices from Honerwell Inc's Signal Processing Technologles: the HADC77200A/B flash A-D converter and the HDAC1O181A/B or HDAC51400 Ultra High speed D-A converters. The board provides for elther the ADC or DAC to be used together or separately. Included on the unit are two 100 K ECL multiplexers for data routing between the A-D and D-A or on and off the board as shown in the block dlagram here (Figure 1).

The HADC77200A/B is a monolithic flash A-D converter capable of digitising a 2 V analogue input signal with full scale frequency components to 70 MHz Into 8 -bit dightal words at a minimum 150 MSPS update rate. For most appllcations, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.
The HDAC51400 and HDACIO181A/B are monolithic 8-bit D-A converters capable of converting data at rates of 400,275, and

Figure 1. Block diagram.
ETI DECEMBER ' 89

I
 N
 OikSolilli为

ETI'S COMPUTING SUPPLEMENT

198\%'s
PENPHIRM! Stalis

IC:IOCK R:VIITWID

Kester Cranswlck ls a very experlenced journallst speclallsing in the flelds of computers, information technology, communicatlons and photography. He was formerly editor of Computing Australia.

Kester Cranswick picks out the peripheral highlights of 1989. He ventures that it has been quite a year.

t has been quite a year in the world of peripherals. Technologies in printers, storage and communications have all taken important steps forward.
In the printer field, perhaps the most notable announcement was a new laser printer engine. Embodied in the HewlettPackard LaserJet IIP prinfer, (see Workstation cover) it was (unusual in an industry noted for ever faster devices) slower than the normal laser printer, with an output rate of just four pages per minute, compared to the average six or eight.
But it was small enough to fit on any desktop, cost less than \$3000 and had some clever features such as self cleaning coronas and clicky control switches. HP is promising a cartridge to give the new Laserjet PostScript compatibility - that should
glve the budget laser printer makers something to think about. Next year will probably see a clutch of rival laser printers using the new Canon engine.
Canan came out of its shell during the year, with its own LBJ Ill laser printer, billing it the third generation of laser printing. The LBJ-III range is not PostScript compatible, but it does have nine internal, scalable, rotatable fonts with sizes from 4 to 254 points. There are also 64 built in font ornament patterns. The printers output at 300 dpi resolution, eight pages per minute and are priced to compete with non-PostScript printers.
Canon also introduced a tiny new font cartridge with four times the capacity of previous font cartridges.
In the world of storage, the biggest news of the year was when Digital Audio Tape

20，000＋ Programs

The biggest \＆ best collection in Australia

（If you＇ve read about it it＇s sure to be in our catalogue）

Collected from the best Public Domain and Shareware programs from around the world，the SME Public Domain collection is clearly catalogued into 26 easy－to－find categories．

For your $\$ 40$ joining／member －ship fee all members receive our 200＋page A4 ring bound catalogue and our monthly newsletter with update listings of all new disks as well as user reviews of programs and＇helpline＇networking．

And our prices are the cheapest anywhere
5．25＂format－\＄5 a disk，
\＄6 mail order
$3.5^{\prime \prime}$ format－\＄10 a disk， \＄11 mail order

Our current range of software includes the following No of disks：

Artificial Intelligence	9
Business Applications	123

Business Applications 123
Computer Education 23
Desktop Managers 35
Entertainment 79
Games 69
Home Applications 57
Maths／Scientic／Stats． 60
Misc．／Special Applicat． 125
Wordprocessor／Editors 82
DOS／Disk Utilities 50
Misc．／General Utilities $\quad 77$
Printer Utilities 32
Bulletin Board Software 22
Communications 65
Databases 107
Education 48
Financial Applications 59
Graphic／Drawing 61
Languages 82
Reference Materials 33
Spreadsheets 48
Screen Utilities 27
Encode／Decode Utilities 11
Language Utilities 40
Programmer Utilities 21
We are adding approx． 30 new disks to the library each month．

MAC OWNERS！！

MAC SHAREWARE／PUBLIC DOMAIN SOFTWARE LIBRARY
500 disks of the best Mac I \＆ II software．
\＄20 Annual membership gets you 160 page catalogue and quarterly updates．
All disks only $\$ 12$ a disk， $\$ 13$ mail order．

写四迨
 pUBLIC DOMAIN
 Established 1976

Head Office：
22 Queen Street，Mitcham，Vic． 3132
Tel：（03） 8743666 ．Fax：（03） 8734086.
Sydney Branch：
3 Russell Street，Granville， 2142
Tel：（02） 8971566
（200 metres from station）
Ring or call in to your nearest office today， or post or fax to our Mitcham office．

To SME Public Domain Pty Ltd， 22 Queen Street，Mitcham，Vic．

GRAND PRIX CIRCUIT \$48.00

Experience the power. The passion. The performance. Grand Prix Circuit whisks you to the exclusive world of Formula One racing.

THE DUEL Test Drive II \$48.00

Head-to-head racing with the world's fastest production cars!

F16 FALCON \$48.00

Climb into the FALCON cockpit and fly a thrilling and highly realistic simulation of the F-16A fighting Falcon.

JACK NICKLAUS GOLF \$48.00

Tee off on the most challenging 18 holes of major championship golf with the legend who hand-picked each one - Jack Nicklaus.

SILPHEED \$48.00

Get ready for Silpheed, the action game that grabs you and never lets go.
IMPOSSIBLE MISSION II \$37.50
Impossible Mission II requires strategic moves and sharp investigative sense to outsmart ELVIN and his band of destructive evil doers.

3-D REAL TIME ADVENTURE GAMES FROM SIERRA

KINGS QUEST I - Quest For The Crown KINGS QUEST II - Romancing the Throne KINGS QUEST III - To Heir Is Human KINGS QUEST IV - The Perils of Rosella SPACE QUEST I - The Saren Encounter SPACE QUEST II - Vohaul's Revenge SPACE QUEST III - The Pirates Of Pestulon POLICE QUEST I - In Pursuit Of The Death Angel POLICE QUEST II - The Vengeance!
MAN HUNTER - New Yok
GOLD RUSH!
MIXED-UP MOTHER GOOSE
WALT DISNEY - THE BLACK CAULDRON
LEISURE SUIT LARRY I (R)
LEISURE SUIT LARRY II (R)
$\$ 48.00$
$\$ 48.00$
$\$ 39.00$
$\$ 48.00$
$\$ 48.00$

FLIGHT SIMULATOR III
$\$ 39.00$
$\$ 42.00$
$\$ 42.00$
$\$ 59.00$
$\$ 48.00$
$\$ 48.00$
$\$ 48.00$
$\$ 48.00$
$\$ 52.50$
$\$ 48.00$

HINT BOOKS FOR SIERRA 3-D REAL

 TIME ADVENTURE GAMESKINGS QUEST I HINT BOOK
$\$ 9.95$
KINGS QUEST II HINT BOOK
KINGS QUEST III HINT BOOK
KINGS QUEST IV HINT BOOK
LEISURE SUIT LARRY I HINT BOOK
MANHUNTER HINT BOOK
POLICE QUEST I HINT BOOK
POLICE QUEST II HINT BOOK
SPACE QUEST I HINT BOOK
SPACE QUEST II HINT BOOK
DARK CASTLE
INTERNATIONAL KARATE
MOTOCROSS
PINBALL WIZARD
ROBO COP
THEXDER
THE LAST NINJA
JACK NICKLAUS COURSE Vol 1
JET
MILLENIUM 2.2
MURDER IN VENICE
3-D HELICOPTER SIMULATOR
APACHE STRIKE
APOLLO 18
BATTLE CHESS
CAPTAIN BLOOD
ZORK QUEST I
ZORK QUEST II
CALIFORNIA GAMES
GUNSHIP
ULTIMA IV
ULTIMA V
PFS: FIRST CHOICE Ver 3.0
PFS: FIRST PUBLISHER

HARDDISK

40MB HARDDISK
44MB HARDDISK V/COIL
70MB HARDDISK FULL HEIGHT
180MB HARDDISK SCSI
180MB HARDDISK ESDI
347MB HARDDISK SCSI

XT MFM HDC CARD

20MB HARDDISK $\$ 349.00$
33MB HARDDISK RLL $\$ 409.00$

HARDDISK CONTROLLER CARDS

$\$ 98.00$
XT RLL HDC CARD $\$ 109.00$
$\$ 89.00$
$\$ 37.50$
$\$ 37.50$
$\$ 42.50$
$\$ 59.00$
$\$ 48.00$
$\$ 57.50$
$\$ 229.00$
$\$ 229.00$
$\$ 499.00$
$\$ 795.00$
$\$ 1095.00$
$\$ 2340.00$
\$2090.00
$\$ 2950.00$

HDC CARD 16BIT AT $\$ 195.00$
HDC/FDC CARD 16BIT AT
HDC CARD 16BIT AT RLL
HDC/FDC CARD 16BIT RLL
ESDI HDC CARD 16BIT AT
ESDI HDC/FDC 16BIT AT
SCSI HDC/FDC 16BIT AT
SCSI HDC CARD
$\$ 219.00$
$\$ 229.00$
$\$ 259.00$
$\$ 399.00$
$\$ 479.00$
$\$ 679.00$
$\$ 335.00$

FLOPPY DRIVES

360 K 5.25 INCH
$\$ 145.00$
$\$ 179.00$
$\$ 145.00$
$\$ 185.00$
TAPE BACKUP UNITS
40MB INTERNAL FOR AT (DC2000)
$\$ 598.00$

COMPUTER CASES

COMPACT CASE WITH POWER SUPPLY
$\$ 265.00$
TOWER CASE WITH POWER SUPPLY
$\$ 495.00$
CABLES
PRINTER CABLE

MATH CO-PROCESSORS

8087-3 (XT) 4MHz
8087-1 (XT) 8 MHz
8087-1 (XT) 10MHz
80287-6 (AT) 6MHz
$80287-8$ (AT) 8 MHz
80287-10 (AT) 10MHz
80C287A (AT) 12MHz
80387-16 16MHz
$80387-2020 \mathrm{MHz}$
$80387-2525 \mathrm{MHz}$
80387-33 33MHz 80387SX

ADD ON CARDS

4 SERIAL PORTS ADAPTOR
2 SERIAL PORTS ADAPTOR
2 SERIAL PORTS/1 PARALLEL ADAPTOR
2 SER. PORTS/1 PAR. PORT/1 GAME P
GAME I/O CARD
MONO GRAPHIC CARD
DUAL DISPLAY CGA/MONO CARD
EGA CARD
VGA CARD 256K
VGA CARD 1024×760 RES. 512K

MONITORS

MONO MONITOR 14" (AMBER) MONO MONITOR 14" (GREEN) MONO MONITOR 14" (BN) COLOUR MONITOR CGA
EGA MONITOR 14"
VGA MONITOR 14

PRINTERS

PANASONIC KX-P1081, 9 PIN NLQ STAR NX1000 10 " 144 CPS, 9 PIN NLQ STAR NX-1000 COLOUR 10 " 144 CPS, 9 PIN NLQ NX-15 $15^{\prime \prime} 120$ CPS, 9 PIN NLQ
STAR NB-2410 10" 216 CPS, 24 PIN LQ STAR NB-2415 15 " 216 CPS, 24 PIN LQ

DRAM - CALL FOR PRICES

PRINTER PAPER - CALL FOR PRICES OTHER ITEMS

GM-6000 350-1050 DPI GENIUS MOUSE $\$ 115.00$
360K FLOPPY DISK IN BOX (10 PACK) \$12.50 1.2MB FLOPPY DISK IN BOX (10 PACK) $\$ 29.50$ 2MB 3.5" FLOPPY DISK IN BOX (10 PACK) \$CALL
101 KEY KEYBOARD
PLASTIC DISK BOX 5.25" (HOLDS 10) $\$ 2.75$ PLASTIC DISK BOX 5.25" (HOLDS 100) $\$ 17.50$
POWER SUPPLY 200WATT \$CALL
POWER SUPPLY 150WATT \$CALL
AT 286 MOTHERBOARDS $10 \mathrm{MHz}, 12 \mathrm{MHz}, 16 \mathrm{MHz}$
\$CALL
XT MOTHERBOARDS 10MHz TURBO
\$CALL

AT 386 MOTHERBOARDS $16 \mathrm{MHz}, 20 \mathrm{MHz}, 25 \mathrm{MHz}$
\$CALL

APOGEE XT COMPUTER XT10

10MHz, 640K RAM, 30MB HARDDISK AND 101 KEY KEYBOARD, DOS, 360K FLOPPY DRIVE. 18 MONTHS WARRANTY.
APOGEE XT10 COMPUTER WITH MONO MONITOR APOGEE XT10 COMPUTER WITH EGA MONITOR
$\$ 1995.00$
\$2495.00 APOGEE XT10 COMPUTER WITH VGA MONITOR
\$2695.00

APOGEE AT 286 COMPUTER AT12

12MHz Zero Wait State, 1MB RAM, 42MB V/COIL HARDDISK, DOS, 101 KEY KEYBOARD, 1.2MB FLOPPY DRIVE. 18 MONTHS WARRANTY.

APOGEE AT12 COMPUTER WITH MONO MONITOR APOGEE AT12 COMPUTER WITH EGA MONITOR APOGEE AT12 COMPUTER WITH VGA MONITOR
$\$ 2595.00$
$\$ 3095.00$
$\$ 3295.00$

APOGEE AT 286 COMPUTER AT16

16MHz Zero Wait State, 1MB RAM, 42MB V/COIL HARDDISK, DOS, 101 KEY KEYBOARD, 1.2MB FLOPPY DRIVE. 18 MONTHS WARRANTY.

APOGEE AT16 COMPUTER WITH MONO MONITOR APOGEE AT16 COMPUTER WITH EGA MONITOR
$\$ 2995.00$
APOGEE AT16 COMPUTER WITH VGA MONITOR
$\$ 3495.00$
$\$ 3695.00$

CUSTOM CONFIGURATIONS AVAILABLE - CALL OR FAX US TODAY.

ALL ABOVE ITEMS ARE FOR IBM AT AND XT OR COMPATIBLE COMPUTERS

Cheque/Money Order enclosed or
please debit my (please tick) Bankcard Visa Card I Master Card with the following amount: $s \square \square \perp \square \subset \square \square$ Expiry Date: I
 Name
Address \qquad Postcode Phone
Signature \qquad

DESCRIPTION	QTY	PRICE	TOTAL
-			
POSTAGE ADD			
	$\$ 5.00$		

SOFTWARE AT DISCOUNT PRICES ALSO AVAILABLE FOR MACINTOSH, C64, ATARI, ST, APPLE, AMSTRAD AND AMIGA. WRITE OR FAX TODY FOR YOUR FREE CATALOGUE, PLEASE STATE WHICH COMPUTER YOU HAVE

That was the year

The Laserjet 11P from Hewlett-Packard.
(DAT) storage for computers finally became a reality. Apricot Computers had the headlines mld year, launching a 1.2Gbyte DAT storage device.
The DAT standard has been developed jointly by Hewlett Packard and Sony. It uses video recorder technology to store massive amounts of data on a cassette filled with 4 mm tape. The data density is 61,000 bits per inch and the emerging standard for data exchange is called Digital Data Storage or DDS.
Data lis transferred at 6 Mbyte per second, giving a backup time of two hours per gigabyte. Average time is 20 seconds and the drive has a 64 kbyte cache. The medla has a high level of integrity too, with a
claimed corrected error rate of less than one in ten to the power of 15. There was also a DAT standard tape system launched late in the year by Enerald Systems.
Another major storage development was the affordable read/write optical disk. SkI Perlpherals released an erasable magnetooptical disk storage product for 80286 pca, priced at less than \$14,000.

Other distributors also announced erasable optlcal disks, but Ski had the distinction of being the first local company to supply the working products.
The Dlecus Rewitfoble DR-650RE is an external device from New York-based AGA and is built around a mechanism from Olympus in Japan. It stores 650Mbyte of data on a
removable 5.25 in double sided disk, costing $\$ 900$. The disk cartridge is from 3M and will be usable in optical drives from other manufacturers. Average data access time is 61 milliseconds and the data transfer rate is $1.2 \mathrm{mbytes} / \mathrm{second}$, with a $4 \mathrm{Mbyte} / \mathrm{sec}$ burst rate.
Writing is slower, as two passes are needed. The first uses a high intensity laser to wipe data, foliowed by a low intensity laser to write the new data.

Completing the drive is a 16-bit SCSI controller and software, running on any 8 O 286 AT-compatible or PS/2 micro under MS-DOS 3.0 or OS $/ 2$.
There were plenty of new developments among communications peripherals too.

Perhaps the most innovative was Australia's first cellular modem, from local manufacturer, NetComm. Called the CelliModem, it is designed to work with the Okl range of cellular and mobile phones. Formerly sold under the Racal brand name, it is compatible with any computer sporting a serial interface.
The CellModem sends and receives data at 300,1200 and $1200 / 75 \mathrm{bps}$ rates. It also supports US 300 and 1200 bps protocols, so should be usable anywhere.
Like most modems, it has a Hayescompatible command set and non-volatile memory to store configurations. It draws power from the phone and has an auto disconnect feature to save running costs. The product costs $\$ 599$ and, like all NetComm modems, comes with a copy of the popular Gateway V3 communications program.
Another company getting in on the portable modem act was Dataplex, which released a portable facsimile and data modem < $197>$, the first in Australia.
The WorldPort 2496 Fax/Data Modem comes from Touchbase Systems in the USA. Costing \$1200, it has its own power source and is designed to add facsimile functions to a laptop. The fax/modem measures 35×122 $\times 70 \mathrm{~mm}$, weighs 213 g and comes with its own facsimile and electronic mail software. Facsimiles can be sent and received in the background, stored for sending at a pre-set time or printed to any Epson or Hewlett-Packard-compatible printer.
In non-fax mode, the 2496 works at speeds up to 2400 bps and comes with a cable for an acoustic cups adaptor. It has full Telecom approval.

One of the most innovative new products to hit the desktop this year was the first economically priced colour scanner, from Sharp. Two models were launched, the $\$ 6750$ JX-300 and the S12,45O JX-450

Both can scan colour images and digitise the picture for subsequent manipulation by a computer. The artwork is placed facedown on a glass plate and scanned in three passes, at a resolution of up to 300 dots per inch.

On the cheaper model, the maximum scan area is letter size. The larger model will scan half a sheet of newspaper, 35 mm and overhead transparencies and provides selectable resolution, from 300 to 30 dpi.

While the JX-300 can separate some 256 separate colours, with an eight-bit RGB output, the JX-450 can scan 260,000 different tones, thanks to 64-bit output. Both scanners come with the appropriate software and can be used on Macintosh or MS-DOS piatforms.
These peripheral developments will ensure that those of us who already own a computer will still want something from Santa this year!

Kester will complete this survey in January, ETI.

Apricot Computers' VX FTserver.

WORKSTATION December ' 89
7

WHEN YOUR TARGET IS PERFORMANCE AIM FOR OUR COMPUTERS

At last a powerful executive range of high quality PC's to suit virtually every application, from personal single user, right through to powerful network and file server systems.
The enhanced range of Arrow speed switchable XT, AT and 386 computer systems has been specially developed by our engineers in Australia in an effort to provide the ultimate in computers with high performance, peak power output and cost effectiveness to improve productivity in today's demanding economy.

Arrow is already recognised for outperforming competitors in recent 286 magazine reviews, yet our dedicated engineers are still exploring new dimensions in user applications and system configurations.
Arrow computer systems are manufactured in Australia under rigid quality assessment/control conditions, offering trouble free state-of-the-art technology and performance for the serious minded computer user. Added to this is a complete service backup and support network right throughout Australia.

SEE YOUR ARROW DEALER NOW FOR FULL SPECS ON OUR XT, AT AND 386 HIGH PERFORMANCE SYSTEMS.

Manufactured and distributed in Australia by:

ARROW COMPUTERS - RIGHT ON TARGET IN PERFORMANCE AND IN PRICE!

Special introductory prices from your nearest Arrow dealer:

ARROW XT

640 K RAM
Smatt design
Small footprint
Two 360 K Floppy disk drives Dual scan, mono monitor 2 Serial, 1 parallel, 1 games ports 101 enhanced key keyboard Fully expandable
only ${ }^{\$ 9} 90$ inc s/tax

ARROW XT WITH HDD
640 K RAM
Smart design
Small footprint
20 Mb hard disk drive
360 K floppy disk drive
Dual scan, mono monitor
2 Serial, 1 parallel, 1 games ports
101 enhanced key keyboard
Fully expandable
DOS 4.01
ONLY ${ }^{\$ 1590}$ inc s/tax

ARROW 12 MHz AT

12 MHz 80286
640 K RAM
Exp up to 4 Mb on board
Smart Design
Small footprint
20 Mb hard disk drive
1.2 Mb floppy disk drive

Flat screen, dual scan mono monitor
2 serial, 1 parallel, 1 games ports
101 enhanced key keyboard
DOS 4.01 \& GW Basic

oNLY ${ }^{\$ 1990}$ inc s/tax

ARROW SUPER VGA 16 MHz AT

16 MHz (21 MHz Landmark) 80286
0 wait state
1 Mb RAM
Exp up to 4 Mb on board
Smart Design
Small footprint
64 Mb hard disk drive with
1:1 interleave factor
1.2 Mb floppy disk drive

Super VGA monitor (1024×768)
Super VGA card (512 K RAM, 16 bit)
2 serial, 1 parallel, 1 games ports
101 enhanced key keyboard
DOS 4.01 \& GW Basic

oNLY ${ }^{\$ 3990}$ inc s/tax

N.S.W. METRD A.C. COMPUTERFIX	
Auburn	(02) 6461666
Bankstown	(02) 7900944
COMPUTER FAIR	
C,ity	(02) 295088
Caringbah	(02) 5261866
Liverpool	(02) 6008333
COMPUTER HAVEN	
Maroubra	(02) 3492366
PACIFIC MICROLAB	
Parramatta	(02) 8915944
N.S.W. COUNTRY BOWRAL COMPUTERS	
Bowral	(048) 614726
COMPUTERLAND	
Coffs Harbour	(066) 527955

NEW!

BREATHTAKING ARROW 386/25
25 MHz (34.5 MHz Landmark) 386/25
0 wait state
3 Mb RAM
Exp up to 4 Mb on board
Smart Design
Small footprint
64 Mb Voice Coil HDD with
$1: 1$ interleave factor
1.2 Mb floppy disk drive

Super VGA monitor (1024 X 768)
Super VGA card (512 K RAM, 16 bit)
2 serial, 1 parallel, 1 games ports
101 enhanced key keyboard
DOS 4.01 \& GW Basic

oNLY $\$ 4990$ inc s/tax

UPGRADE FROM MONOCHROME		
FOR CGA	ADD	$\cdot 199$
FOR EGA	ADD	5599
FOR VGA	ADD	799

victoria DANDENONG MICROSALES Dandenong	(03) 7940941
PACIFIC MICROLAB	
	(03) 6701533
Sth Melbourne	(03) 6908933
Box Hill	(03) 8908166
VIC COUNTRY	
ASHLIN COMPUTERS	
Albury	(060) 561488
Benalla	(057) 624807
Queensland	
BRICOM	
Towoomba	(076) 331595
CALLIDE COMPUTING	
Biloela	(079) 922990
CAPRICORNIA	
Rockhampton	(079) 360431

VICTORIA
DANDENONG MICROSALES
Dancic
(03) 6701533
(03) 6908933
(060) 561488
(076) 331595
(079) 360431

PALS COMPUTERS
Penrith
(047) 323266

SHOP 4 COMPUTERS
Woolongong
A.C.T.

ATCOM
STEVE'S COMPUTER CENTRE
Fyshwick
SDUTH AUSTRALIA
A.F. Computers

ADELAIDE
TASMANIA
PROTEUS COMPUTERS
Howrah
NORTHERN TERRITORY
AD NT
Darwin
(062) 514477
(062) 806877
(08) 2341221
(042) 262688
(002) 479400
(089) 411061

AVAILABLE AT THESE SPECIAL PRICES RIGHT NOW!
Manufactured and distributed in Australia by:

The 'dongle' installed. It is shown here installed in the serial port. It is transparent to devices connected to your serial port, which just plug into the dongle's rear connector. Cunningly, by turning the dongle around, it can be installed in your parallel port.

Icelock was fully described in the September issue, pages $74-75$, so it won't be necessary to repeat the description here. Suffice to say that Icelock involves the installation of some software that works in conjunction with a hardware dongle plugged into your computer's serial or parallel port. It works in any DOS environment and encrypts existing programs, preventing their disassembly while at the same time allowing backup copies to be made.
I won't go into the various aspects and methods of software protection in this article. Nor will I provide an explanation of the
semantics of software piracy. I will, however, attempt to explore the advantages and/or disadvantages of the Icelock method of software protection.

Appearance

For software developers, or dealers, who wish to protect software, or for that matter anyone not wanting the fruits of their labour to be easily ripped off, for $\$ 60$ Microway will provide you with an Icelock 'master kit' which includes a $51 / 4^{\prime \prime}$ disk of software and the aforementioned dongle. It appears that part of the Icelock's design is that it needs no

ICELOCK
 ADVANTAGE OR DISADVANTAGE?

Jamye Harrison reviews this locally developed and produced software protection product.
manual.
By executing the file SHOWTIME.BAT on the master disk, a snazzy demo program goes through the main hardware and software features of the package. Its companion, MANUAL.BAT, provides a more in-depth presentation of how to use and Implement the product. The display is informative and interesting while being non-fechnical. This approach allows lcelock to be implemented by schools and corporations wishing to protect their commercially sourced software from would-be pilferers. A more technical or semantic explanation I think would tend to alienate potential users.

The dongle itself is of robust design, being encased in a hard plastic shell pumped full of a buff coloured epoxy resin. Any investigation is simply likely to destroy the unit, frustrating any attempt to crack its secrets.

Useful?

Okay, let's pretend you're the head of an Australian Software Development company of modest size; perhaps you employ thitty people. Assuming you've already decided to protect your new product, why choose lcelock?

Well, the first feature which struck me as being innovative during the demonstration run was that the hardware lock can be connected to either the serial or parallel port, just by turning the device around! Useful indeed. This provides certain flexibility from the user's point of view; the hardware lock isn't 'locked in' to one type of port or another (pardon the pun).

Secondly, many methods of protection which require the detection of a device in, or connected to, the computer need extra code to be written into the source. Not only is this awkward but it is often inconvenient in today's software environment. For instance, much of the software appearing in Australia is sourced from the United States and is imported and distributed here through a dealer network. Now, when we're talking about large volumes of product, importing the software, manual and a similar hardware lock is going to be more expensive than just importing the product itself. Using the lcelock method, an Australian distributor could import an American product and protect it here' with a minimum of fuss.

A feature incorporated into the design of the product, and emphasised in the demonstration, is the fact that multiple lcelocks are able to be connected to the one system, if the user has a few programs using the lcelock method of protection. Well that's fine. However it does conjure up images of a computer laden with dongles. There is even mention of an extender board which enables up to four dongles to be connected to one port. Heavens above! In addition, lcelocks can be reused and reassigned to a new version or program. Good idea, considering the cost. Buying extra lcelocks is expensive. To purchase one to ten sets you back sixty bucks a piece not including sales tax. This may be quite a cheap method of protection for a five or six hundred dollar, or costlier, program but it doesn't go a long way to promote keenlypriced Australian developed software, for instance of the calibre and price of products from the prolific FBN Software in Canberra. Maybe their low prices are protection enough.
In quantity, however, the price of lcelock drops substantially, making it worthwhile for software manufacturers and distributors to add it on where quantity sales are involved.

Conclusion

I think three main features are necessary for a method of software protection to be great. Obviously it needs to be reasonably

Throw me a dongle - somebody!
effective, although no method of software protection exists which cannot be broken with enough determination and a lot of time. lcelock, and hardware locks in general, appear to be reasonably effective, so full marks in this respect.

Apart from being effective it must be cheap. From a software developer's or distributor's point of view, lcelock, in my opinion, doesn't succeed in this area. However, it does provide a relatively cheap alternative for schools and companies.

The protection method must also be
easy to implement from the developer's end of things - top marks herel It must be easy to use and preferably almost inconspicuous from the user's end - yes, Icelock passes in this area too. Lastly, flexibility - i.e: No special equipment is required in order to use the device. Well, everyone must agree it succeeds here too - most people have at least one serial and/or one parallel port on their IBM-PC or compatible these days. Et

Icelock is sold by Microway, 292 Chesterville Rd, Moorrabbin Vic. 3189. ※ (O3)555-4544.

Jrelack SOFTWARE PROTECTION for just $\$ 60=$

IGELOCK SIMPLY AND ECONOMIGALLY PROHIBITS UNAUTHORISED USE OF SOFTWARE IN ANY DOS ENVIRONMENT

Ideal for developers and Government Departments and Corporations wanting to protect their software.

Icelock is a device that protects existing programs by encoding and locking the files so that they will only run when Icelock is installed.

292 Chesterville Road,Moorabbin, Victoria, 3189.
Telephone: (03) 5554544 Fax: (03) 5559871 BBS: (03) 5554932
Microway is a registered trademark of Excel Computers Pty. Lid.

TACKLING SYSTEM FILES WITHOUT FEARS OR TEARS

Most PC users know that system files exist. But few know what they do. You won't find a proper explanation in your DOS user manual! So here goes. Jim Tucker gently switches on his PC and describes what happens.

Click. It's onl Most of the noise comes from the fan, which is startIng to whirr, and buzzing disk drives.
But, straight down to software. During startup the operating system looks for two files of user supplied commands, which allow you to customise your system in various ways.

These two files must be named CONFIG.SYS and AUTOEXEC.BAT and should reside in the root directory of your boot diskette or your hard disk.
When you turn on your computer, the CPU (the 8O88, V 2 O or whatever) boots a program in ROM (Read Only Memory) that all IBM compatible machines have. This ROM is in addition to the working RAM (Random Access Memory).
When you buy a machine with 64OK memory, that figure refers to the RAM. There is an addltional 16 K or 32 K of ROM. RAM is cleared whenever you turn off your machine or reboot. ROM is permanent and doesn't change (we hope).
There may also be RAM on other bits and pleces such as the screen board, which is not counted in the total. And hard disk controller boards include ROM, which you usually don't need to worry about.

Booting up

The program that is automatic-
ally run from ROM usually begins with a brief test of various components.
If you have an XT or AT the most noticeable part is the memory (RAM) test, accompanled by counting up the memory on your screen as the test progresses. On the original IBMs this was awfully slow but most PCs now do it in a few seconds.

This test is usually skipped when you do a warm reboot by hitting Ctrl-Alt-Del. You may also notice your drives and printer growiling as they are tested.

After this test, the computer searches for various ROM extensions - additional ROM that can come with a hard disk or EGA card, for example. The program then searches drive A then a hard disk for a program to transfer control to.

It transfers control to the very first sector on the disk. This is called the boot sector.
When you format a diskette, a little program is placed in the boot sector which will display the message "Non system disk, replace and hit any key".
When you transfer the operating system to the disk with the SYS command or via FORMAT/S, this boot sector program is changed to transfer control to a program which must immediately follow the boot sector.
If the disk has the system on it, control is transferred successively
to two hidden files which load the BIOS (Basic Input/Output System part of which is in ROM) and the DOS (Disk Operating System).
When most users think of DOS they think of the familiar prompt and copy commands. These parts of DOS are only loaded later - the part in the hidden file involves services provided by DOS to programmers rather than directly to users.
The two hidden files are called IBMBIOS.COM and IBMDOS.COM in PC-DOS and may have different names on other systems. For instance, on DR-DOS they are not even hidden, unless you choose to hide them.
In any case, there isn't really much hidden about hidden files. As you may know. the DIRectory you are used to display gets its information from a special file also called the directory. This file is essentially a little database with information about each file, including the filename, extension, date and time of creation.
One byte in the record for each file is called the attribute byte and contains eight "switches" to keep track of things - like whether the file is a volume label, read only, and so on. One of these switches (a single bit) is whether the file is "hidden".
To anyone with any programming experience, or with any of a large number of public domain or commercial programs, these files are not in any sense hidden.

The basic DOS services like DIR and COPY are specially set up to ignore hidden files and that is the only sense in which these files are .hidden.
The two system files are hidden because their location is critical for a successful boot-up. You unhide them and do a directory sort at your own risk.
After the second hidden file is mainly loaded, it looks for a special file called CONFIG.SYS and processes the commands in it. Then control is passed to the third file in the operating system, COMMAND.COM.
As the final step in booting up. COMMAND.COM looks for a flle named AUTOEXEC.BAT and, if found, it loads it and runs it. If not found COMMAND.COM exits, with the DATE and TIME commands.
Except for its special status as a bootup file, the AUTOEXEC.BAT file is an ordinary BATch file with the usual rules.
The CONFIG.SYS file has a special syntax with a limited number of allowed commands.
Both must be pure ASC|| files, that is without any special formatting codes that some word processors add. Many word processors which have special codes have a "non-document" mode for preparing ASC|| files.
If you have any doubts about whether the file is pure ASCll you can use the TYPE command to display it on the screen and see if it just has ordinary letters and numbers.

The root directory

When a subdirectory fills up, it adds another cluster of disk space to increase its size, but the size of the root directory is fixed at the time the diskette or disk is formatted.
It is not merely because of the size restriction that I recommend you keep your root directory
small. Since the files in the root are likely to be of diverse type, it will be difficult to keep track of things if you put too much there.
But personally, I find directories within directories confusing and there is really no need for them, even on a 30 meg hard disk. Frankly, unless you run a tree program to show where everything lives, you're likely to forget they exist.
For wiliting, I have a separate directory for Wordstar (only the program), and one for letters and stories. I use the filename extension for other sorting. For instance. .ETI means a story for this publication. AUS means The Australian and .SMH means The Singapore Monthly Herald.
Generally, I reckon there are only three files you need in the root directory: COMMAND.COM, CONFIG.SYS and AUTOEXEC.BAT. You could put AUTOEXEC.BAT elsewhere and even COMMAND.COM but that's carrying things a bit too far.
I won't tell you how to structure your hard disk except to say think about it and practice good housekeeping. Subdirectories on a fioppy disk are a waste of time.
There is no help for some software which forces you to have certain files in the root directory. A plague on their house.

Device drivers

There is a group of programs which are made permanently resident and which are loaded as part of CONFIG.SYS. Virtually any resident program can be produced in this format, but certain ones must be of this form.
Typically, console drivers and any program which controls "a device" must be loaded now. Most virtual disks and print spoolers also are loaded as device drivers. While device drivers are programs, they need not have the extension "com" or "exe". In fact, so far as I have been told their extension can be anything that you like. But nearly all commercial device drivers have the extension "sys". Some
mouse drivers are available with the extension "dev". The syntax for loading a device driver in your CONFIG.SYS is
device $=$ path name
parameters
so if you have a device foo.sys in the directory \devices on drive C: and it will take a numeric parameter to set the size of some buffer, you might load it with
device $=$ C: \backslash bin \mid devices $\backslash f o o . s y s$ 128

The drive lefter C : is not required but it can't hurt.
The question of which parameters a given device driver aliows, or whether it aliows any at all, depends on the driver and should be dealt with in its documentation.

Setting up

The hidden file IBMDOS sets up several devices, even if you have no CONFIG.SYS. These are: con, prn, aux, lpt1, |pt2, |pt3, coml and com2.
Con, short for console, is a combined keyboard/monitor device, prn for printer is by default a name for liptl and aux a name for coml.
The DOS mode command allows reassignment of these devices. LPTn and COMn are names for the parallel and serial ports on the computer. These device names are assigned even If you don't have the full complement of ports.
The most common device driver to install is a console driver which replaces the default console driver.
Some of these replacements attempt to address the notoriously slow display speed of the monitors and/or the annoying flicker on the colour graphics display.
Also. some of the escape sequences of the 1977 console standard of the American National Standards Institute (ANSI) are implemented. These sequences include ways of controlling colours, cursor position and some DOS level keyboard macros. One console driver of
this type, called ANSI.SYS is supplled with DOS and takes about 2 K of memory.
It does not address the speed of display issue but it does implement several ANSI escape sequences. There are hundreds of programs which assume the ANSI.SYS is installed to operate properly (as well as a few that don't work properly if ANSI.SYS is installedl) so it is wise to install ANSI or an equivalent driver even If you do not want to use its features yourself.

Actually, it is not hard to use the driver at the DOS level to set colours, set up a fancy prompt or redefine keys.

RAM disk

DOS 3.x comes with a program VDISK.SYS to set up a RAM disk. Thls disk can operate in conventional or AT extended memory. It will not set up a RAM disk in EMS memory but most EMS boards come with device drivers to set up RAM disks in EMS.
In addition. Microsoft WINDOWS comes with a RAM disk device driver (which can be run independently of WINDOWS) and which can be set up in conventional AT extended or EMS memory. Given Mlcrosoft's experience and the care they have lavished on WINDOWS, l'd recommend using the WINDOWS RAM disk driver if you have it in preference to alternatives and, in particular to VDISK which also comes from Microsoft.
However, having said that, some experts suggest that if you are loading other programs that use AT extended memory, you may want to stick with VDISK because the specification that IBM uses to access AT extended memory is published while that of Microsoft is not and so other programs may clobber the Window's RAM DISK driver.
If you want to set up more than one RAM disk, you can include more than one line loading a RAM disk driver in your CONFIG.SYS file.
You can normally load the same driver twice or use different
drivers if you prefer. Be warned that there is typically a few K overhead in conventional memory to load a RAM disk and you will pay this overhead more than once if you load more than one RAM disk.
Print spoolers set aside some memory to recelve printer output and then send that output to your printer as a background process. I regard them as a tremendous productivity tool. While there exist print spoolers loading as com files, many are loaded as device drivers.
A mouse requires software in memory so your system will recognise the rodent. The Microsoft mouse comes with two versions: MOUSE.SYS which is loaded as a device driver in your CONFIG.SYS and MOUSE.COM which is loaded later, typically in AUTOEXEC.BAT.

I do not know if there is any particular reason to prefer one over the other. Microsoft recommends using the device driver.

As you may know you can place remarks in your BATch files and in particular in your AUTOEXEC.BAT. This is useful if you want to temporarlly run your system without some resident program that is usually loaded in your AUTOEXEC.BAT file.

You need only "remark it out" - insert the word "REM" at the beginning of a line. Technically. remarks are not allowed in CONFIG.SYS files (which is naughty, because all flles should allow remarks or comments). However, if you insert the word "REM" at the start of a lline in your CONFIG.SYS file you will get a message like:
Unrecognised command in CONFIG.SYS
But, since the rest of the line is not acted on, this procedure will have the desired effect of "commenting" the line in question so you should not hesitate to use it.

ECHO also doesn't work in CONFIG.SYS so there is no direct way of placing messages on the screen when it loads.

The MAESTRO 2400XR

Here's a fully-featured, Hayes compatible 1200 \& 2400 bps full duplex modem for just

$$
\$ 299 \text { (incl. tax) }
$$ This modem uses the LATEST in DSP chip Set Technology and microprocessor control, bringing you the future Today.

Super price on a super V.22V. 22 bis Modem!

The MAESTRO 2400 ZXR

 4 Speed Version $\$ 399$ (incl. tax). Don't Wait! RING NOW (043) 682277 or 682278Maestro Distributors
Calool St. South Kincumber, NSW 2256
manmelaternmice FOR YOUR PC/XT/AT

MD120 OPTO/RELAY I8OLATOR BOARD
64 Opto coupled inputs connect directly 5 V -25V DCIAC 4 Releys with $2 A$ contacts. Supports herdware interrupts 2-7. Multiple board addressing allows large number of inputs. Ideal for PC control applications from factory floor to home.

MD100 OPTO/RELAY IBOLATOR

 BOARD16 Opto coupled inputs connect diractly $5 \mathrm{~V}-25 \mathrm{~V} . \mathrm{DC} / \mathrm{AC}$. 8 Relays with 2A contacts. Supports handwerd interrupts 2-7. Mutiple board addressing. Easy programming, as with all Mondotronic boards.
Mondotronic products are designed build and supported in Australie. For more information please write or call:

MONDOTRONIC PTY. LTD.
560 Waverley Road Glen Waverley 3150 P.O. Box 296

Fax [03] 2330376 Phone [03] 2324110
READER INFO NO. 29

Arrow - straight to the point

Alldata Australia Pty. Ltd. has added two new models to Arrow's range of PCs. All Arrow Computers are fully bullt, assembled and tested in Dandenong, Victoria, at Alldata. Australia's new national headquarters.
The Arrow 386 features genulne Western Digital Controller Cards; 8 1/O slots, (2 x 8) $(5 \times 16)(1 \times 32)$ Bit; a very efficlent motherboard using genuine Intel 8O386 processor and incorporating Chips \& Tech Chipset technology; 24MHz Zero Wait State performance (34.4 MHz Landmark Tested): 2 Mb of 8 O Nanoseconds RAM, 1.2 Mb FDD is standard, with enough space for additlonal floppy drives; a well designed case with a flip top lid and provision for up to $3 \times 5.25^{\prime \prime}$ drives and $1 \times 3.5^{\prime \prime}$ drive. As a system, It can be custom bullt to sult the customer's requirements with a wide variety of Voicecoil hard disk drives to choose from. starting at 4 OMb V/C, 64 Mb RLL $\mathrm{V} / \mathrm{C}, 7 \mathrm{Mb} \mathrm{V} / \mathrm{C}, 8 \mathrm{Mb}$ QUANTUM V/C, and even the super quick 150 Mb ESDI V/C using the WDIOO7WA2 ESDI Controller from Western Digltal.
Arrow's 386 machines are priced at under \$5,000 RRP. Alldata also has avallable the new SUPER XT with more than twice the processing speed of any other on the market, the
company claims. Alldata's Super XT Is set to change the standards in motherboard architecture, by introducing AT processors onto the XT motherboard. The impllcations are far reaching. particularly in the area of lowcost, super fast dlskless workstations in networking environments. This computer uses the same high quality componentry as the other Arrow ATs and 386 machines, and has the same case, with 200 watts power supply. Super XT will be avallable for under $\$ 2,000$ tax inclusive.

Other machines avallable in the Arrow Product Group include a stock standard $4.77 / 1 \mathrm{OMHz}$ XT, an Arrow AT 12 MHz Zero Wait State, and of course the 16 MHz Arrow AT with 21 MHz Landmark Speed.
The 16 MHz Arrow computer uses the new G2 Chipset, giving consistent, fast performance. Available in a bundle spectal with a 64 Mb Votcecoll Hard Disk Drive. 1 Mb RAM, 16 Bit Super VGA Graphics Card ($\mathrm{O} 24 \times 768$ res). and Super VGA 14" Colour Monitor ($1 \mathrm{O} 24 \times 768$ res), along with 12 months warranty, thls machine will sell for \$3,990, tax inclusive.
For more Information regarding the Australlan bullt Arrow computers, contact Sales Hotline on (O3) 7945099.

READER INFO No. 254

Broadcast animation

Abstract

IF November ETl's Computer Animation feature was of interest, G2 Systems' products (distributed in Australla by Neriki Enterprises) may make you very animated indeed.

The MasterPleCe Production Computer, with sultable software, enables the creation of real-time "Film Cell" like animation, moving captions using linotype fonts and

drawing with a high speed paint system.
The G2 900 series MasterPieCe can also be used as a time code generator, VTR clock, script word processor, prompter, shot logger and budgeting system.
Full details from Neriki Enterprises on $\boldsymbol{2}$ (O2) 488733.

READER INFO No. 255

"MERRY CHRISTMAS"

 * Here's a great gift for the kids to keep them entertained over the Christmas Holidays! *

本

 A
 $\square \square_{1}-$

INFORMATION TECHNOLOGY MAGAZINE

The future of business communications is looking up

Today's business demands increasingly sophisticated communications. The information needed for sound decision making has to be up-to-the-minute and accurate.

AUSSAT'S growing range of business communications services will deliver all the coverage, flexibility and growth potential to support you today and into the 1990's or beyond!

AUSSAT Marketing (02) 2387800

Australia's National Satellite System

The ICON Desk System.
 A new concept in office planning. (antutumet

Free standing screens

- Optional tilting

Double doom on hamper open at a single touch

The advanced design of CODesign's ICON DESK SYSTEM achieves a new-found harmony in the workplace between human needs and sophisticated technology.
An ergonomically advanced, electrically adjustable desk is the key element of the workstation system allowing inventive space planning through a multitude of configurations.
ICON takes a revolutionary approach to cable management, using the desk as a factory-wired, efficient distributor of data, electrical and telephone cabling. The desk also provides mounting for storage, panels, shelves and accessories. The ICON DESK SYSTEM has arrived. Come and inspect its many unique features at CoDesign.

Co Design
Call TOLL-FREE from anywhere in Australia (008) 023092 Adelaide (08) 2126146 . Brisbane (07) 2522901 Canberra (062) 80 6499. Melbourne (03) 6144299. Newcastle (049) 69 6199. Perth (09) 4810911 Sydney (02) 9298899 . Auckland (09) 788816 Wellington (04) 846328

Anew force in computing and communications.

Telepower combines the proven resources of OTC and Computer Power in a landmark joint venture at the covergence of computing and telecommunications.
So instead of meeting only half your management information and communications needs, we can meet them all.
Telepower. The first organisation to provide a full range of professional, technical and managerial skills to design, build, maintain and manage integrated voice and data networks.
Call us now on (02) 4186233
We'll show you how to make ends meet in Australia, or through 80 international offices worldwide.

The Network Integrators
71 Longueville Road, Eane Cove, NSW 2066 Telephone (02) 4186233 Faosímile: (02) 4186567

EDITOR AND MANAGER (ETI) Kim Bucknole

EDITOR (HUB)
Shelley Spriggs

PRODUCTION EDITOR
Anne Lawton
DESIGNER
Rolf Hagenmaier

PRODUCTION

Tracy Douglas

ADVERTISING PRODUCTION

 Brett BakerEDITOR-IN-CHIEF (FPC) Brad Boxall

PUBLISHER Michael Hannan

CIRCULATION MANAGER Michael Prior

HEAD OFFICE 180 Bourke Road Alexandria, NSW 2015
P.O. Box 227, Waterloo

NSW 2017
Ph: (02) 6936666
Fax: (02) 6939935

ADVERTISING

Ailsa Cameron
Damtale Pty Ltd
Ph: (02) 5607297
Fax: (02) 5601094

[^0]HUB is distributed with ETI magazine or separately by subscription. Subscription rate for 12 issues post paid is $A \$ 48$ ($A \$ 62$ New Zealand, A $\$ 75$ other overseas countries).

CONTENTS

Industry Review: Judi Stack, MD of Bond Communications, looks at common interest arrangements in private networks 7
New Zealand: The new Radio Communications Bill has the air up for auction 10
Plans for the first CT2 network announced 11
Databases: Navigating the Ocean of Information 13
Debunking data base myths 15
Mobile: Computerised trucking 19
Remote cell enhancer may ease the limitations of the cellular mobile network. 20
SPECIAL FEATURE
Managing Technological Change: The people factor 23
IT as an adjunct to strategic management 25
EDI: Introducing 'hustle' into the retail industry 27

MANAGING CHANGE - A SPECIAL CHALLENGE

Managing change has been a preoccupation with management gurus for decades. Not surprisingly, managing technological change has its own special challenges and implications, particularly on the people side. If people are not aligned and motivated, no amount of technology will help. Final year management students from Blacktown TAFE recently surveyed 300 of the top 500 companies to determine the impact of technological change on organisations, their people and structure.

Across the range of industries surveyed, employee retraining, resistance to change and conflict through changes in policy were consistently cited. Seventy-five per cent recognised that too little attention had been paid to pre-planning.

Warren Parry, a change management consultant, has been addressing the vital human factor in technology change for some time. He believes it is no longer possible to work with people or technology in isolation and the challenge now is to bring the two together.

Rounding out our new Management section, David Feeney, Fellow in Information Management at Oxford University, has a quick glance at how a good strategy, supported by information technology, can magnify performance.

Another regular to debut this month is our Database section. Kicking it off, we debunk a few of the myths in this fast growing sector; and Katie Blake from Enterprise Information Management guides the uninitiated through the first steps of going on-line.

Finally, HUB is going through a major change itself right now. With this issue we go monthly and, through our new partnership with leading electronics technology magazine ETI, we gain a mass circulation through newsagency distribution. HUB's editorial team and direction will be the same. Welcome to the second generation.

BUY THE RIGHT PRODUCT AT THE RIGHT PRICE EVERYTIME!

WHY PAY RETAIL!

MONITORS	
SAMSUNG	
12" DUAL SCAN MONO	
14" DUAL SCAN MONO	$\$ 169$
14" DUAL SCAN MONO	$\$ 195$
14" COLOUR (CGA)	$\$ 195$
14" COLOUR (EGA)	$\$ 415$
14" COLOUR (VGA)	$\$ 645$
TECO	$\$ 795$
14" MONO AMBER/GREEN	
14" VGA PAPER WHITE	$\$ 210$
14" COLOUR CGA	$\$ 279$
14" COLOUR EGA	$\$ 415$
14" COLOUR VGA	$\$ 675$

Call for other brands unlisted
GRAPHIC CARDS
VIDEO 7
VEGA DELUXE
$\$ 425$
VEGA VGA
VEGA FASTWRITE
VEGA VRAM (512 K)
EGA CARDS (512K)
MONO/COLOUR CARDS
$\$ 169$
$\$ 195$
$\$ 195$
$\$ 415$
$\$ 645$
$\$ 795$
$\$ 210$
$\$ 279$
$\$ 415$
\$675
795

STORAGE DEVICES	
MINISCRIBE	
20 MB HARD DISK	$\$ 395$
40MB HARD DISK	$\$ 495$
40 MB VOICE COIL HD	$\$ 795$
OTHER NAME BRANDS	\$CALL

IMPULSE
40 MB W/AT CONTROLLER 12MS $\$ 995$
80 MB W/AT CONTROLLER 12MS $\$ 1285$
PLUS
20 MB HARD CARDS $\$ 995$
40 MB HARD CARDS
$\$ 1295$

FLOPPY DISK DRIVES

360K FLOPPY DRIVE 5.25"
$\$ 150$
720K FLOPPY DRIVE 3.5" $\$ 165$
1.2 MB FLOPPY DRIVE 5.25 $\$ 195$
1.44 MB FLOPPY DRIVE 3.5" $\$ 215$
$\$ 675$
\$995
\$265
\$125

BUY AT WHOLESALE PRICES

WITH 1 MEG RAM, TL MONITOR AND free workstation
$\$ 2999.00$ Inc Tax
MATH COPROCESSORS
INTEL GENUINE 5 YEAR WARRANTY

$80287-10$	10 MHZ	$\$ 425$
$80287-8$	8 MHZ	$\$ 365$
$80387-16$	16 MHZ	$\$ 695$
$80387-20$	20 MHZ	$\$ 795$
$80387-25$	25 MHZ	$\$ 985$
$8087-3$	5 MHZ	$\$ 170$
$8087-1$	10 MHZ	$\$ 340$
$8087-2$	8 MHZ	$\$ 245$
$80287-6$	6 MHZ	$\$ 260$
80387 SX	16 MHZ	$\$ 645$
$80387-33$	33 MHZ	$\$ 1295$
$80 C 287$	12 MHZ	$\$ 695$

NOBODY SELLS FOR LESS!

NETCOMM MODEMS	
AUTOMODEM 123	$\$ 445$
AUTOMODEM 1234	$\$ 545$
AUTOMODEM $24 / 24$	$\$ 490$
SMART MODEM 1234 SA	$\$ 775$
SMART MODEM 123 SA	$\$ 595$
SMART MODEM 2400 SA	$\$ 715$
SMART MODEM 1200 SA	$\$ 525$
IN MODEM 2400	$\$ 495$
IN MODEM 123	$\$ 455$
IN MODEM 1234	$\$ 560$
POCKET ROCKET MODEM	$\$ 495$

PRINTERS	
OKI	
ML 182-120 CPS, 9 Pin, 80 Cal	
ML 183P-120 CPS, 9 Pin, 136 Col	$\$ 385$
ML 192P-240 CPS, 9 Pin, 80 Col	$\$ 675$
ML 193P-240 CPS, 9 Pin, 136 Col	$\$ 840$
ML 390P-270 CPS, 24 Pin, 80 Col	$\$ 965$
ML 391P-270 CPS, 24 Pin, 136 Col	$\$ 125$
ML 393P-450 CPS, 24 Pin, 136 Col	$\$ 2185$
STAR PRINTERS FROM	$\$ 465$

SOFTWARE
GAMES \& EDUCATIONAL
KINGS QUEST I, II, III, IV $\$ 65.00$
POLICE QUEST I II II $\$ 55.00$
LEISURE SUIT LARRY I, II $\$ 55.00$
SPACE QUEST I, II $\$ 55.00$
ROGER RABBIT $\$ 55.00$
THEXDER $\$ 55.00$

CALL! GAMES FOR COMMODORE, IBM, AMIGA,
AMSTRAD, APPLE
BORLAND
QUATTRO with FREE AUDIO TAPE $\$ 250$
SPRINT
$\$ 250$
PARADOX 3.0
$\$ 795$
TURBO PASCAL Ver 5.5
TURBO C
TURBO PROLOG
$\$ 195$
TURBO PROLOG \$145
TURBO PASCAL PROFESSIONAL \$265
TURBO C PROFESSIONAL \$265
NEW! QUATRO PRO
$\$ 680$
SOFTWARE FROM MICROSOFT, ASHTON-TATE, LOTUS ARE ALSO AVAILABLE

* Dealer Enquiries *All Products Cary Manufacturers Warranty
* Government and Corporate
Orders Accepted

INDUSTRY REVIEW

Submissions to the investigation into common interest arrangements in private networks being conducted by Austel, the Australian Telecommunications Authority, are in and Austel is due to report by year end. Judi Stack, managing director of Bond Communications, runs through the issues and the implications for the development of enhanced services in Australia.

SHARED INTEREST IN PRIVATE NETWORKS

Under the Telecommunications Act, private networks are permitted as an exception to Telecom's monopoly in the provision of reserved services; indeed, private networks have been permitted by Telecom for decades. Essentially, organisations want to establish private networks where services aren't readily available from Telecom at a price reasonable to them; where the organisation itself wants to have some sort of specific control over its telecommunications services, perhaps to isolate them from industrial action or to have switching control or redundancy; or where Telecom is unable to provide a service - such as in remote Queensland (Bond Communications provides the Q-Net service for the Queensland government to service remote areas).

Private networks are, theoretically, permitted for a single company with a single business, or a group of companies or organisations with a single business (trade associations or government instrumentalities); or for a group of users who are vertically integrated to one another (the airline and accommodation industries). They have grown to a reasonably high degree of sophistication in this country, simply because of the cost of long haul traffic and because of specific applications (the carriage of television coverage) that Telecom doesn't market as a service to the entire community.

Before the establishment of Austel, Telecom, as the regulator and service provider, approved the

BY JUDI STACK

Managing Diroctor Bond Communications

establishment of private networks for common interest groups on a seemingly ad hoc basis. Decisions were apparently based on the ex-
tent the private network might interfere with Telecom's ability to gain revenue on the national network, and therefore its ability to meet its community service obligations (thus the cross-subsidy of CSOs is an issue here); or on whether permitting certain private

Judi Sack
networks might move traffic off the public switched telephone network (PSTN) and therefore have a negative impact on the further development of the PSTN.

Although that seems straightforward, the actual process of permission doesn't appear to have any underlying consistency or logic. For example, in Queensland, Bond Communications operates private networks on behalf of the Queensland government one each for the Water Resources and Electricity instrumentalities and one for other State government departments. Telecom decided that rather than having one common interest group and therefore one private network, there should be three; and that, rather than them being able to speak to one another as arms of government, they should pay interconnect fees. There is a kind of irony in this, because essentially the network is supplying a service to areas to which Telecom is obliged to provide CSO: it becomes a reverse subsidy when a private network has to pay an interconnect fee in order to allow Telecom to extend its network into unprofitable areas.

So while Telecom uses, as a rationale, the extent to which private networks divert money from the CSOs, the actual cost of CSO has never been quantified. Press reports put it as low as $\$ 80 \mathrm{~m}$ which, in the context of Telecom's profits, is not a sizeable amount. And further, inherent in the premise that private networks will redirect traffic from the PSTN is the assumption that Telecom operates the network efficiently.

In the absence of hard data we analysed Telecom annual reports over the last 12 years to see if it could be established that Telecom had to be of a certain scale to pass economies of scale through to users. Normally, with any commercial business you get an economy of scale as production increases, lowering business average cost per unit. We found that between 1976 and 1988 as Telecom's
network expanded Telecom actually experienced a negligible economy of scale - in other words, the average cost of services did not come down but, rather, increased at only 0.6 per cent less than the cost of inflation. From 1981-1988 the size of the Telecom infrastructure increased by 42 per cent and the average cost rose by 1.2 per cent over the rate of inflation - a trend which is opposite to an efficiently run organisation.

There are significant advantages in the liberalisation of private networks. Firstly, they create a situation where the telecommunications infrastructure of a

company is under its control the switching equipment and value-added services are controlled by the network operator who can then choose the appropriate enhancements for the particular application. For example, the type of services the ANZ bank requires are quite specific to the banking arena. If Telecom tried to introduce those services on the basis of equity of access, subscribers would be paying for the gilding of the network without getting the benefits of the gilt.

Unless a company's network is under its control, the sort of proprietary systems that exist for electronic mail and EDI (which a company introduces to gain a competitive edge) are difficult to implement throughout their entire organisation.

Further, private networks have a role themselves in the delivery of CSOs as illustrated in the Queensland case. Similarly, Bond Communications recently put to Telecom a proposal to extend Q-Net to remote communities in the Northern Territory.

But the most important point as far as Bond Communications is concerned is the opportunity net-
work management affords this country in building a base of expertise in telecommunications. We have obviously taken initiatives in that area in Queensland and in our bid for the NSW government network, but we see the operation of large, sophisticated private networks in this country as giving us a base from which we can operate similar networks internationally.

What we would like to see come out of this inquiry is a definition of shared private networks integrated into the Act. That needs to be a wide definition that allows for 'common interest' being i) groups that operate in the same market
ii) groups or companies that are related to each other (for example, there is no guarantee that Bond Group and Bond Media could share a private network)
iii) companies that are vertically integrated (ie) a manufacturer, wholesaler and retailer
iv) groups of people that are located in geographic areas where, by forming a private network, they can fulfil a CSO, and
v) anyone within the same exchange area because the rationale for not allowing private networks is that users can't by-pass the STD part of the network.

In effect, the market should be able to control whether there is a common interest or not. To rent a leased line you need to have a significant amount of traffic since the cost of the leased line is directly related to the amount of traffic you put on it. If there is no actual common interest there won't be enough traffic to justify the private network in economic terms.

The liberalisation of private networks will result in better allocation of resources in terms of the telecommunications infrastructure in Australia; a more rapid take-up of enhanced services; more control for the operators of those services; and a better positioning of the Australian industry as a whole in terms of being able to export telecommunications expertise.

Don't be puzzled

...Keep up to date with SONICS

IF YOU'RE INTO MAKING MUSIC YOU REALLY SHOULD BE INTO SONICS
Now Monthly af your local newsagent or subscribe by phoning (02) 6939517 or (02) 6939515

The Radio Communication Bill, the third, final and most dramatic legislative change in the NZ Government's restructuring of broadcasting, gives virtually open access to radio and television airwaves to anyone with the money to become a broadcaster.

AIRWAVES GO TO AUCTION

The New Zealand Government has embarked on a radical auction of the airwaves which could see it pocket more than $\$ 50 \mathrm{~m}$ over the next two years.

The Government has introduced to Parliament the Radio Communication Bill to manage a market-driven radio frequency spectrum.

The bill gives virtually open access to the radio and television airwaves to anyone with the money to become a broadcaster.

It does not include rights to VHF channels, the type used by TVNZ and TV3; these frequencies will be tendered in several years time.

The Radio Communication Bill is the third, final and most dramatic legislative change in the Government's restructuring of broadcasting.

The first was the Broadcasting Restructuring Act. It scrapped the Broadcasting Corporation and replaced it with the Radio New Zealand and Television New Zealand state-owned enterprises last year.

The second, the Broadcasting Act 1989, abolished the Broadcasting Tribunal. It set up two QUANGOs to police standards, allocate money for minority interest programming and set new rules for advertising. It became effective in July.

The bill is based on a report by British consultants, National Economic Research Associates (NERA). NERA proposed frequency bands for mobile telephones, land mobile telecommunications, radio paging, and ultrahigh frequency and sound broadcasting channels to be sold off progressively over the next three years.

The Government has given top

BY JANE MCSWEENEY

priority to UHF television and then cellular mobile telephones.

Companies will bid for a 20 year tradeable share. The successful tenderer will have the freedom to sublease, aggregate and police its own share. It will pay an annual fee to cover Government administration.

The system allows potential users to put a value on the spectrum. This should save public servants from assessing the merits of each case. It will also raise more revenue.

Now, fees under the Radio Regulations 1987 Act raise $\$ 10 \mathrm{~m}$ annually of which 40 per cent comes

> While the Government has stressed the frequencies go up for tonder only when there is excess demand, the second highest price will generally be accepted.

from Telecom, 20 per cent from radio and television, 10 per cent from Government users such as the Ministry of Transport and 30 per cent from the like of amateur operators. Most fees for non-profit making users are about $\$ 39$.

While the Government has stressed the frequencies go up for tender only when there is excess demand, the second highest price will generally be accepted. This is designed to prevent unrealistically high values in the heat of the auction. Where there is no competition the only interested user will get it by paying a licence fee.

Those with existing frequencies who lose their portion will be given three years to make transitional arrangements and in some cases the
opportunity to match and pay the highest bid. Most affected by the proposals are existing users facing competition. Telecom is the heaviest user of the spectrum with land mobile services and microwave links. Although Telecom does not hold all possible licences in one of the two mobile telephone subbands it will be treated as having the use of the whole band and will be subject to paying or matching the highest bid.

Telecom has said the price paid for the spectrum could be passed to the consumer. If it is substantial, Telecom would have to assess the future viability of the service.

The Government has repeatedly defended the auction of the airwaves as the fairest way to ensure a scarce resource is put to the most valued use. It says people making money from a community resource ought to pay for the value of the resource.

First in the queue for tendering are companies wanting to introduce a variety of television services using the UHF band.

So far, 44 broadcasting groups have tendered their interest. TVNZ wants to set up two more nationwide networks and TV3 is interested in one more.

Others include the TAB, which wants a national network to broadcast live horse racing; Motorola, nationwide coverage for land mobile services; and Christchurch-based Tait Electronics for nationwide coverage of fixed mobile services.

Technically, there is only room for eight nationwide networks and up to eight regional channels.

Tenders for UHF frequencies will probably close early next year. Tenders for FM, AM and VHF will be called in September next year. \quad

Thirteen thousand New Zealanders have already paid anything from $\$ 500$ to $\$ 6000$ for two-way cellular phones. The next generation of cordless phones, dubbed in Britain "the poor person's mobile phone", will provide a low cost alternative in an already strong market. Now the race is on in New Zealand to install the network.

TALKING ON THE RUN THE RACE IS ON

The race is on in New Zealand to install a network for the next generation of cordless phones.

Plans made public by New Zealand Post, Cable and Wireless and GEC Plessey Telecommunications (GPT) suggest the network will be modelled on Britain's yet to be released Telepoint.

Dubbed in Britain "the poor person's mobile phone", the next generation of cordless phones could revolutionise talking on the run. Four licences have been issued by the British Government to set up Telepoints. The licensees predict three million users in five years and about 100,000 Telepoints.

British telecommunications observers see great potential for second generation cordless (CT2) phones and say they will offer a low cost alternative to the cellular phone and provide network operators with an alternative to the costly maintenance of public phone boxes.

The digital phones will be able to be used in the home or on the run and manufacturers have promised they will be cheaper than current cellular mobile phones.

In a surprising move, New Zealand Post has beaten Telecom to the gun and announced a partnership with multinational Cable and Wireless.

Telecom is looking at the technology and is understood to have been approached by several manufacturers, GPT among them.

Both Cable and Wireless and New Zealand Post would not confirm the extent of their arrangement. At the time of writing, NZ

BY JANE MCSWEENEY

Post's managing director, Harvey Parker, said they were having discussions and it was too early to talk of joint ventures.

Sole Cable Wireless represent-

ative in New Zealand, Noel Newton, has been ensconced in NZ Post headquarters in his own office for over a year, supposedly seeking out business opportunities.

The company was expected to have gone public with a deal with Telecom or some plan to directly compete as a network operator on a mega scale. Industry commentators are surprised by the tie-up with NZ Post.
$N Z$ Post plans to retail the phones through its postal outlets. The outlets would also provide a nationwide backbone for base stations needed to route calls from the phones to Telecom's public switched network.

Three systems are being considered. One, for the domestic
user, would receive and transmit calls. Users on the move, but within the range of a base station, would be able to send calls only with the second. The third would be used in business premises as two-way phones attached to private exchanges.

NZ Post begins test trials before Christmas, either in Auckland or Wellington. The trials will coincide with similar ones GPT has planned, with about 50 users.

Director and general manager of GPT's Telecom division, Wayne Singleton, says CT2 phones could take as much as 30 per cent of the cordless phone market.

GPT plans to target the business community first. When demand grows GPT will look to the domestic market and then later to the public market.

Earlier this year, GPT's mobile systems director in Britain, Tim Lowry, visited New Zealand to talk to Telecom and potential customers.

He expected initial investment in a Telepoint type system would be about $\$ 3 \mathrm{~m}$, with each base costing about $\$ 5000$.

Meanwhile, Telecom is waiting for gear to arrive in the country. Telecom's business development manager, Laurence Zwimpfer, was tightlipped, saying it was too early to talk of concrete plans.

Zwimpfer predicted the market for CT2 phones would be strong. The cordless phone is very popular, despite its high costs. Thirteen thousand New Zealanders are already paying anything from $\$ 500$ to $\$ 6000$ for two way cellular phones.

Voice logging comes to finance industry

Philips has developed a voice logger capable of recording 64 simultaneous conversations on to a special 'Certified Logging Cassette' that is simple to handle and load.

Voice logging - the recording of vital incoming and outgoing phone or radio communications - is well established throughout Australia's police and emergency service control centres and, more recently, the finance industry, to verify details of important business conducted by telephone. The traditional voice loggers, in large cabinets with king-size magnetic tape spools, need expert operators, however, and the retrieval of recorded messages can be tedious

The Philips 64-channel recorder, model CLS8000, has a footprint of only a quarter of a square metre and its special cassette is about the size of an average paper back novel

To aid retrieval of information the time and date are electronically and automatically imprinted on to each cassette, which will hold 24 hours of continuous recording in the 64 channel mode.

Development of the new 64 channel cassette method of voice logging was made possible by Philips' production of a ceramic recording head using thin film technology, better known in the company's integrated circuit activities.

Small business systems

Alcatel STC has
manufactured a new Small Business Systems (SBS)
range, to be marketed by Telecom and called the Commander E series. The new one- and two-line
systems were developed in association with Telecom Technologies and were launched in September. Alcatel STC has been supplying Commander systems to Telecom Australia and to its own overseas customers for several years producing a series that ran from three exchange lines and eight extensions, up to 24 exchange lines and 64 extensions.

With the new one-line, five-extension, and two-line, eight-extension systems, Alcatel can now provide domestic users, small businesses, and overseas customers new benefits from the Commander SBS range.

When the planes are grounded

The pilots' dispute prompted Telecom Australia to bring forward the introduction of a new national telephone conference system called Conferlink.

Conferlink can be likened to holding a conference on the phone with, ultimately, the facility to connect dozens of people from around Australia and the world.

Before now, a maximum of only ten people could take part in audio conferencing.

Because Conferlink is connected by an operator, individual conference participants can be contacted with private messages without disrupting the conference.

The system is completely secure and, if necessary, enables selected conference delegates to carry out a private discussion within the larger meeting.

Low-end telephoning

Voca Communications has entered the low end of the telephone handset market with the release of the Voca ATX10.

The ATX10 features on-hook dialling, a 20 -number memory (10 one-touch and 10 abbreviated), and battery back-up for the memory storage.

The ATX10 is PABX
compatible with an earth/flash selection. Standard features also include tone/pulse, pause, and last number redial. The ATX10 will provide users with an alternative telephone, offering enhanced features which may be purchased instead of rented, thus providing substantial savings over a period of time.

The unit comes with a 12 month warranty and retails for $\$ 109$.

The Voca telephone handset range begins with the ATX10, and continues upwards with the ADX17, ADX27 and ADX37.

Maximum security Novell NetWare

LAN distributor ComTech Communications has announced LANtrail, a complete network auditing tool for Novell NetWare that provides the network manager with the ability to monitor LAN activity, generate detailed usage reports, and enable supervisor control access at all levels.

Security protected, LANtrail eliminates the possibility of unauthorised users from viewing, altering, or processing the information generated and allows the supervisor to access data and generate reports from any fileserver.

Reports available within LANtrail include: access report; bindery changer report; programs executed report; rename, create, delete report: file access report; directory usage report; system error log; server summary report; security report and survey reports.

Each report provides a comprehensive description of specific network activity, detailing users' identification, time of day, affected fileserver and physical node address.

LANtrail requires Novell Advanced NetWare 2.0 or greater, IBM PC or compatible, DOS 2.1 or greater and 3 K Resident RAM at each workstation.

Everyone knows that effective access to good information is critical to good business management. But information is not the same as data.

NAVIGATING THE OCEAN OF INFORMATION

There is more data around today, and in more forms, than ever before. There is a sea of printed materials, an ocean of electronic data. Almost every organisation, whatever its size, has its own databases. There are thousands of publicly available databases easily accessible from anywhere in the world. We should be better informed than ever before. But it is easy to drown in all that data, even easier just to ignore it altogether.

Everyone knows that effective access to good information is critical to good business management, good marketing, effective research. But information is not the same thing as data. The important equation is this:

Data + Management $=$ Information.

The mass of available data, public and private, internal and external, must be managed if it is

BY KAnt BLaKE

Director, Emforprise Information Management

to inform. Managing data means making decisions - decisions as to what sort of information is required, whether it will be stored in-house and for how long, and in what form; who has access to it, and when; whether to use external databases, and which ones; how

H is easy to drown in all that deta, evon oasior to ignore it allogether.

much you are willing to pay for information; what hardware and software to use.

The sort of information required will vary, of course, with every organisation, but some broad categories can be outlined:

- Information on competitors
and/or customers. This might include such material as marketing strategies, product offerings, financial information (share prices, credit ratings, balance sheet figures etc.), key people, organisation charts, credit information.
- General industry information, such as the number of players within specific industries, who the major players are, the economic wellbeing of the industry, forecasts and market research.
- Financial and economic information, including currency exchange rates, share price movements, futures information, credit information and general economic indicators.
- Information on people.
- Information on technological developments, including reports of research and development, patent information, technical data.

- Legal information, including acts and statutes, regulations, case law, intellectual property etc.
Some will be generated inhouse, and may be stored in your own databases. But much information is already in public electronic databases which can be used when required rather than stored pemanently on your computers. There are thousands of databases, but most of them can be categorised into the following groups:
- News and current affairs databases
- Advertising and market research databases
- Demographic databases
- Company information and management databases
- Financial services databases
- Computer and electronic databases
- Science and technology databases
- Energy and environment databases
- Patent and trademark databases
- Public affairs databases
- Social sciences and humanities databases
- Biological and medical databases
- Telecommunications databases

All that is necessary to get at these databases is a PC and modem, some telecommunications software and a bit of knowledge about where and how to look for it.

Capturing deta

It is very easy to capture data from online systems and keep it forever in your own computer. This is called downloading. In practice it is not always useful to do so. What is more useful is to add value to data from an external system and store that.

Once material is downloaded from an external source into your own system it becomes available to be processed and managed using a variety of computer applications, such as spreadsheet, word processing or database manage-
ment. It usually comes in ASCII format (American Standard Code for the Identification of Information), and many online systems provide you with output already designed to be loaded into a spreadsheet or a database.

One of the most common ways of handling information from external databases is to use word processing software to enhance it - to add comments and notes, to tidy it for printing, to delete ex-

traneous matter, to incorporate it into reports.

Documents kept as word processing files can usually be searched for words or phrases using a locate/replace function. Some systems also provide you with rudimentary cross-file searching through the provision of "history screens. However, the documents are essentially separate, and you have no quick and easy way of searching on specific terms or relationships between terms across a number of documents. This is where a package like Isys, or AskSam, or Zyindex comes in handy. These packages index the contents of each word processing document, allowing you to search across many of those documents at
once. They provide powerful searching capabilities - Boolean operations and proximity searching. Their primary purpose is retrieval. Let the word processor do the job of presenting the document nicely on paper - the text retrieval application can help you to manage all those discrete documents on the disk.

Poworful functions

However, neither word processing nor text retrieval software can provide you with the powerful sorting and reporting functions of text management or database management software. These are different again. While there are some differences between these applications, they both divide information into logical groups documents or records. They create searchable and sortable databases of things like mailing lists, customer records, library catalogue records and so forth. Each document within a database is divided into specific fields, or sections of the record. These sections might include data elements such as surname, first name, book title, address, document type, postcode, location, description, key terms, notes, price, date and so on. Text management or database management software allows you to sort and print, in a format you design yourself, in any one of these fields. So I can produce an alphabetical list of all the people living in postcodes between 2000 and 2500. Or a list of book titles about whales or dolphins. Or those customers spending more than $\$ 3,000$ in a year.

Managing information means choosing the right external sources to take advantage of the world's published information, importing only that which is useful to you, enhancing it with your own data, and controlling it with the right software. It means integrating your own data with that already available. Choosing the right external database sources and the right software is up to you. It isn't nearly as hard as you might think.

Huge investments in increasingly sophisticated software resulted in a product so complicated it scared people. Now, moves towards a more practical application of on-line information are creating a market of sufficient size to sustain the investment which has been made to date.

LESS FRICHTENING, MORE PRACTICAL

There would be few industries as myth-bound as the information industry - the paperless office, instant access, user friendly, secure, even time-saving. When you most want instant access, or to save time, your PC working to rule or the mainframe knocking off for a long weekend due to overwork is a dead cert; how many times have you not taken a hard copy only to find the original has been corrupted or wiped to free up space? And it seems a hacker with some determination can break into almost any system.

In the on-line information sector there appears to be a sixth myth - cost effectiveness. Information retrieval from databases was to be the answer to every busy and information dependent person's plea, delivering accurate, up-to-date information instantly.

In anticipation, small companies set up everywhere, librarians skilled at retrieval, entrepreneurs gathering an eclectic range of information and putting together databases, and publishers looking to add value to the printed word. Few survive and fewer make profits. Systems are based on software which is expensive to develop making investments hard to recoup in a market that refuses to grow as predicted.

Veteran on-line information specialist, James Harker-Mortlock, believes this sector has never fulfilled its promise - from either the users' or suppliers" side. "The
problem has been a wrong definition," he claims.
"With its current technical orientation. suppliers have become mesmerised with competing with the latest software development, where, basically, competition should be about decent information for people to use and access simply.

The beauty of on-line systems is meant to be the timeliness of

You don's need complicerted software systems for many of the things people want to do.

data - the ability to get to data which you would normally find difficult to obtain; and a limited amount of ability to search the data to go direct to an article which you would otherwise have to read a whole magazine to track down.

According to Harker-Mortlock, huge investments in increasingly sophisticated software has resulted in a product so complicated it frightens people: a product which, in the end, has so much technical development it can only recoup its cost through charging exorbitant amounts of money. "In the end you create an image of a product which is beyond the reach of most people.
"Until recently, most of the marketing activity was aimed at satisfying the requirements of information professionals because
the information itself has been more $R \& D$, longer term strategic planning and general research rather than basic information activity. Most people don't have the same requirements as an information professional.
"But," says Harker-Mortlock, "the orientation is changing. Activity is being spurred by people coming to on-line information for very different reasons. Perhaps their primary reason for connection is to facilitate some day-today transactional activity through the use of an electronic service. That may be a messaging service such as E-mail, telex or fax from terminals, or filling out forms for an EDI system.
"People using these services are small to medium sized business. They can be introduced to the wider application of value added information services for lit-

In anticipation, small companies sef up everywhere. Few survive and fewer make profits.

tle additional overheads. You don't need complicated software systems for many of the things people want to do.
"Most transactional services provide some sort of communications program so users often have all the hardware and software they need. As a bonus, they can approach one entity to support them with using both the transactional
(Conimued on page' $/ 8$)

THESE GUYS CAN MAKE 500 DEALS AN HOUR ON WALL STREET.

BUT GUESS WHO THEY RELY ON FOR TRANSACTION PROCESSING.

For them seconds mean the difference between making a killing, or a dead loss. But, whatever way the deal goes, they rush on the next gentleman's agreement.

Code of honour or not, the deals aren't complete until credit ratings are checked and transactions processed.

That's where the dealers rely on us. Our lines feed the people in the States with data about Australian clients.

Only, our dealers are kept too busy making money to have to worry about details.

ATs'T's and OTC's digital voice and data service is just one of the many leased services available between Australia and the LSA. Services offered through close co-operation between AT\&'T and Australia's O'TC.

Time is monev. For fast, efficient data transfer TRXT's leased services are the flexible option.

When you need a leased service between Australia and the LSA, speeify AT\&T as your LS connection.

Or, for more information, call AT\&T on (008) 024974 , or outside Australia call (612) 2213055.

AT\&'T. Technology designed for business communications needs now.

And for the future.

Now that networks are becoming involved in the valueadded service area they are able to offer the advantages to the user of a kind of supermarket of on-line applications, blending the transactional activity with a messaging requirement and an information requirement all from the one entry point.

Built around this concept is the Harkers Database Network. Residing on OTC Dialcom and accessible from any point in Australia via Austpac, Harkers has been designed around menus for users to read and respond to quickly and simply.

From one entry point a user can choose from a number of functions including messaging, database access, noticeboards, diary, housekeeping and specialist applications such as interlibrary loans and electronic data interchange (EDI). Apart from locally loaded databases, Harkers provides a gateway to external information services provided by other networks. This
means that someone connected to Harkers can, from the one entry, go all the way through to another network - say OTC Intelnet - which allows users to search a wide range of databases using menus, without having to know the command language of the system connected to.

On the other hand, if you are an information professional, you can use Harkers to connect to a service and use all the high powered software that service may offer. Obligingly, if required, Harkers will do the local billing (or you can choose to have a separate account for the service) and will even load your password into the system so you don't need to remember it or re-enter it each time.

Although you can get from Harkers to major networks in the world, most of the databases actually loaded on Harkers will be Australian or regionally generated information, including new business data being compiled in conjunction with
the Australian Graduate School of Management.

Connection costs $\$ 20$ per month and $\$ 300$ per annum, with a base rate of $\$ 30$ per hour applied to moving around the menu, filling out forms and reading before you connect to something which has information and value added to it. Once you move into Harkers locally loaded databases, the charge for searching is around $\$ 150$ per hour.

For offshore information you pay the telecommunications charge plus the charge levied by the information provider.

When connecting to another network, arrangements differ, to protect against double charging. For instance, if a user already subscribes to another system and accesses Harkers he will not be charged again.

Harkers is a new approach to the business of providing online information. Says James Harker-Mortlock, principal of Harkers: "It is a different way of applying the software".
(Continued from page 1.5)
service and the external information services.
"For the information provider the advantage is a much clearer definition of the market and a product that is generally much simpler, and therefore much cheaper, in terms of software development. Users of one particular network or transactional service generally form a niche market and are much easier to target. Rather
than having to scatter across a range of broad industry sectors and different interests (as is necessary when targetting all corporate librarians, for instance), it is possible to say we are dealing with people in the trade industry, or people in the automotive industry.
"And, further," claims Harker-Mortlock, "instead of dealing with a multitude of accounts in distant geographic locations (because the reality is most database hosts are located over-
seas at this stage) they are able to deal with a major network. The network handles all the local billing. The customer pays the network in local currency and the network pays the information provider in foreign currency.
"This move towards a more practical application of on-line information through transactional services is finally creating a market that is of sufficient size to sustain the investment which has been made to date."

TRUCKING ALONG IN THE USA

The operations controller of a large trucking flect sits down at a personal computer. On its screen he can call up maps - either showing the whole of Australia, or just a single city. On those maps are dots showing the location of each vehicle in his fleet. He can type messages at the keyboard which can be instantly relayed to any one of those vehicles, appearing on a display unit in the cab of the vehicle. The same vehiclemounted unit is fitted with a keyboard on which the driver can type a message back to his head office, and which can be displayed on the screen of the PC.

This is not a scenario for the future. This system is already operating in the USA where it was launched early this year, and several major trucking companies are in the process of fitting out their fleets, totalling several thousand vehicles, with equipment to use the service. In the USA, the invehicle unit costs about $\$$ US40)0, the PC software about the same and usage costs are about \$US50 per month.

The company which developed the technology, and which operates the service, known as Omnitracs. is Qualcomm Inc of San Diego, California. It already has trials underway in Europe with several PTTS and, as this article went to press, was planning to start trials in Australia using the Aussat satellite. In the USA, the users' PCs are connected by terrestrial lines to a satellite earth station at Qualcomm's San Diego control centre which provides the links to the satellite.

Omnitracs uses a spread spectrum technology operating in the satellite KU band. The signal is transmitted at very low level

BY SIUART CORNER

across a wide range of frequencies; the receiving unit knows where to look among these frequencies for this low level transmitted signal, and so is able to discriminate it from the background noise. This highly sophisticated signal processing technology allows Omnitracs to operate with small non-steerable antennae mounted on vehicle roofs.

Other companies are developing competing two-way communications technologies for satellites, but Qualcomm claims to be the only one in full commercial operation. Aussat is developing KU band mobile two-way communications systems for use on its second generation of satellites. Until they are launched, it is using C band capacity on the satellites of Inmarsat, the international maritime
satellite organisation. The only manufacturer so far licenced by Inmarsat to produce the mobile units is Thrane and Thrane of Denmark

Whether the Omnitracs service can be viable in Australia is another matter. Because it uses a spread spectrum technology, it requires almost a full 12 watt transponder for outbound signals and another for inbound signals. These can support many thousands of mobile terminals, but make for high start-up costs until user numbers build up.

Also, the trucking industry in Australia may not have the same demand for instant communications as its US counterpart.

In the USA, Omnitracs is being used to track hazardous and other high risk cargoes, such as those which are prime targets for highjackers. The Department of Energy, for example, has installed Omnitracs units on vehicles carrying radioactive waste.

BOOSTING BHP's SICNALS

When BHP built its Iron Duke Mine 60 kilometres from Whyalla in South Australia, it needed communications services for the project, but the site wasn't served by the public telephone network. For the operational telephone needs of the completed mine, BHP was granted the right to install a private microwave link back to its main Whyalla office. During the construction phase it became the first user of a cell extender for Telecom's Mobilenet cellular mobile telephone service. By boosting signals from mobile phones at the mine site, this effectively brought the site into the main Mobilenet network in Whyalla.

These remote cell site technologies aren't restricted only to temporary applications such as remote construction sites. They can also be used to extend mobile coverage to small pockets of population and ribbon development such as major highways and to boost signals where reception is poor.

BY STUART CORNER

The X-Cell-100 Remote Cell Enhancer from US company Astronet, a subsidiary of Mitsubishi, is one such product. It is distributed in Australia by Mitsubishi Electric Australia, which also supplies Telecom with the Walkabout handheld telephone.

The X-Cell-100 is a signal booster which receives the mobile telephone signal from the main host transmitter, amplifies it and retransmits it to the mobile unit which would otherwise be out of range of the main cell site transmitter or which is in an area of poor reception. The signal from the mobile telephone is similarly amplified and retransmitted back to the main host cell site.

The systems can be used in a number of configurations depending on the population distribution around the main cell site. For example, the channels of the main cell site could be re-used at a remote location, or a portion of the
total channel capacity of the central cell site could be dedicated to one or more remote locations by being relayed to those locations through the Astronet X-Cell-100. These units can be located up to 20 kilometres from the main host cell site.

Astronet has also packaged its technology into a trailer. The company claims that this can be set up and used to provide cellular telephone services within 24 hours. It suggests applications for this system in military and emergency situations.

Mitsubishi Electric Australia sold cell enhancers (model X-Cell100) to both Telecom Australia and Telecom Corporation of New Zealand for use in their respective cellular networks during 1989. Both of these organisations have recognised the need for this type of product in providing solutions to the problems of poor reception areas and the expansion of capacity into areas of low population density.

[0:3 LI:313

Collular contracts

Motorola has won two cellular contracts from Telefonica in Spain to form a joint venture with local company Amper SA to make radio-telephone systems. The contracts, said to be worth $\$ \mathrm{US} 100 \mathrm{~m}$ are for a 900 MHz TACS (analogue) cellular system giving nationwide coverage, and for a GSM (pan-European digital cellular) system.

Telepoint

West Germany is expected to announce details of a licence to operate Telepoint services in competition with the Deutsche Bundespost's own service. The Bundespost is planning to launch its own Telepoint services early
next year with three trial systems; one based on the UK's CT2, another based on its own cordless phone standard and a third integrating them both on one site.

Now business

Ericsson of Sweden and General Electric of the USA have joined forces to attack the mobile telephone market. Ericsson will hold 60 per cent of the new company, GE 40 per cent.

Ericsson will be combining about half its mobile communications interests with all GE's activities to create a new business expected to have worldwide revenues of \$US1b next year. The main focus will be on capturing a large share of the market for cellular handsets, growing at 30 per cent p.a.

Doings in the East

First Pacific, the Hong Kong-based investment group controlled by the Lien family of Indonesia, is buying a 50 per cent stake in the Pacific Link cellular telephone operating company, formerly known as Chinatel, from the Peking-backed China Resources.

Cordless allitance

GPT and two leading French electronics companies - Electronique Serge Dassault and Electronique Mecelec - have formed an alliance in the area of cordless telephone technology in the expectation that France Telecom will soon set up a public cordless telephone (CT2) system using common air interface technology.

ASTIntroduces The Seven Wonders

AST makes the fastest and highest-quality desktop computers in the business world. One of them is right for you. Whether you need a personal computer for general office work, engineering, desktop publishing, financial analysis or running your business at home, you can count on AST to fit your desktop size, your budget and your need for ultimate speed.

Our Newest Wonders. If you want extra performance and high quality without spending a lot of money, try our newest computers - the AST Premium 386/16 and the AST Bravo/286. Our cache-based AST Premium 386/16 makes 386-CPU computing available to even the most cost-conscious budget. And the AST Bravo/286 is all the ATcompatible power you need for small or large businesses, home offices, or local area networks.

Our Most Powerful Wonders. For high-speed CAD/CAM/CAE, multitasking, multiuser environments and LAN file service, choose AST's top performing systems. The 25 MHz AST Premium $386 / 25$ and 20 MHz AST Premium 386 C bring the highest performance to your sophisticated 386-CPU based applications.

Our Most Versatile Wonder. If you have to choose one computer that satisfies the broadest range of needs, let it be the AST Premium 286. Perfect for flying through word processing, large spreadsheets and even technical applications, it's the industry's award-
 winner for 286 performance and value.

Our Smallest Wonders. When your desktop space is
limited, but your appetite for speed and power isn't, the AST Premium Workstation/386 SX and the AST Premium Workstation/286 offer test-proven compatibility you can rely on. These sleek, small-sized wonders are the quality answer to cost-effective, high

PC AWARDS performance desktop computing.

AST Service, Support And Reliability -' 'The Eighth Wonder. The AST logo means quality products and service. In fact, PCWeek recently named AST first in technical support, over Compaq(R) and $\operatorname{IBM}(R)$:

For the products and service that will make you the next wonder of the world, ask for AST Computers. For more information, call (02) 9062200 , or fill out the coupon.

RESEARCH
 The Natural Progression

\square Please send me more information on AST computers
\square Please have an AST representative call me.
I am an end user a reseller.
Name
Title

Company

Address \qquad PC

Phone

Corporate Computer Sales, Suite 78, Chatswood Village, 47 Neridah St. Chatswood. Ph: (02) 4114788

READER INFO NO. 51

MANAGEMENT

MANAGING TEGNOLOGICAL GHANGE

Students completing their three-year intensive Management course at the Blacktown TAFE have undertaken research on Managing Technological Change, and the impact of such change on organisations, structure, people and business environment. Some of their more significant findings are re-
ported here
The Business Research Team '89 used a three-phased approach; telephone interviews, major questionnaires targetted at 300 companies selected from the Top $5(\%)$ and face-to-face interviews with CEOs of a random sample of companies.

Response rate to the primary questionnaire was 53% from a cross section of industries: manufacturing 32%; public service 30%; finance 12%; transport 9%; mining and construction 9%; telecommunications 4%; wholesale 3%; rural 1%.

Most important problems

A total of 75 per cent of respondents stated that, in hindsight, they would have introduced their new technology by paying more attention to planning.

MOST IMPORTANT PROBLEMS
Caused by introduced technology

Most important problems

Training was further emphasised with the 'need to retrain' being cited as a major problem. A high 22 per cent believed the introduction of new technology and subsequently new systems met with resistance from employees.

Areas of conflict

In 45 per cent of replies 'changes in policy' created conflict, again highlighting reluctance to adopt change and thus the necessity for extensive training programs.

AREAS OF CONFLICT
To be dealt with

Management problems
Lack of skilled staff was most commonly cited as the critical issue. Respondents indicated it was essential that sufficient training be provided including both broadbased and technology-specific, and enhanced managerial skills.

Technology integration into an organisation cannot ignore the basic human responses to change. If 'ruffled' the wrong way, otherwise well-developed software can become shelfware overnight. Technology systems not negotiated into the political and social networks of organisations run the risk of failure.

It used to be thought that getting the technical solutions right was all that mattered. With this in place everything else would work, everybody would be happy and the 'new, beaut way' would take the organisation into the 21st century.

In many organisations, the potential of the computer-based system remains unfulfilled - not because of the lack of technical or design expertise, but because of the complexity of human factors in the work environment.

It is the rate of organisational and technical change in recent years that has highlighted the vital human factor in the change equation. It is now acknowledged that organisations can expect a major change once every four years and a minor one every year. There is a lot of mythology about change ('when we get through this change, things will be OK'), but the reality is that one change will merge with another.

What is unique about change management now is that the change manager is required to synthesise business knowledge, technical knowledge and human potential. All three of those have been well developed separately in the past, but bringing the three together is the particular challenge now. One of those factors neglected throws the others out of sync, and it is the human factor which is most often the stumbling block.

Introducing new technological-ly-based systems will also dramatically change the work culture to the extent that the organisation two years down the track may be vastly different from the organisation at present.

There are, therefore, two kinds of people necessary to an organisation before and during the

BY WARREN PARRY

Abstract

Warron Parry is Director of Dovolopment Rosoarch Group; he works as a consultant with banks, insurance companies and Govornment organisations spocialising in the 'poople side' of techmology integration.

change process: managers able to facilitate the process and people who can articulate the human vision behind the technology hardware.

Those faced with new techno-logically-based systems often move through four stages before they get used to it (if indeed they do). Initially, there is the shock stage.

Then there is a reactive retreat which I term the nostalgia stage which often results in anger with the system for not doing this or that, and with the organisation for not being consulted or involved.

The third stage is reality acceptance - ('this is the reality of it, so let's get on') and finally, comes learning to cope and making it a challenge.

Some people move through these stages quickly (maybe 25 per cent), but it is the reactions of the remaining 75 per cent that are crucial to the ultimate adoption and success of the new system.

Most change management makes the assumption that either the first two stages don't exist or that people will move through

them by themselves. If change management comes in at the third stage, people hold on to the old system because it is not given any recognition.

It is up to the manager to facilitate a process: perhaps institute rituals at stage two to celebrate the old way and give recognition to it and individuals. As an illustration, a company in Melbourne introduced new technology which confounded people to the extent that they were on the verge of striking. Some people simply could not come to terms with it. The manager turned up one morning with bunches of flowers for the staff: it worked. The gesture conveyed: 'We are not insensitive to who you are or what is going on here', and gave recognition to the struggle some people were having.

Another company, in trying to move people from stage three to stage four, offered a small incentive each week to the person who could beat the new system. They made a game of it and turned it into a challenge, which spurred people into not just accepting the reality, but starting to be creative with it.

In a traditional office there are people recognised as knowledge sources - perhaps a supervisor who is sought after for advice as to how to do certain tasks. With the introduction of a computer system, information can simply be accessed through the computer, so that person's status and position is changed. From an efficiency point of view, this won't show up, but in terms of the social organisation of the branch, the person's sense of contributing goes down the tube.

The social structure is the maintenance structure of an organisation and if that breaks down you get increasing fragmentation and isolation, and hence suspicion.

If managers are insensitive to that dimension, and try to rationalise everything in terms of the task, they may stress the system by taking away the support structure.

The manager has to strike a
balance between what is good for the organisation as a whole and what is good for the individual. It must be recognised that when a company puts in a new system all the various social, political, psychological and neurotic stuff gets attached. The rationalising force in spending millions of dollars on the new system is to develop organisational integration, but in a lot of cases the organisation is not healthy enough to withstand that level of integration.

Often, the old system grew up covering lots of inadequacies, and when individuals are put into the new environment where they are required to be healthy, a lot of those inadequacies are uncovered. Simply sending out information will not foster an openness to change. If a person has negative feelings towards the system and he keeps being given new information he will simply not remember it.

In any branch of an organisation there is a series of levels operating - task, social, political and psychological. If you only manage the task dimensions then all sorts of problems arise in the other ones.

I work on the assumption that what is not managed potentially works against you. It basically comes down to managing the resource.

There is a percentage of people who will work through the four stages on their own; there is a similar percentage who won't change no matter what is done; but there is a large group in the middle who, with support and assistance, will shift; that is the percentage not managed.

It is an interesting phenomenon that technologists are designing systems that, when implemented, often alter the concept of the organisation. What people are not realising is that if you develop an integrated technology system it will change the concept of the organisation. It won't just improve the old system, it will actually change and affect the way people work.

An organisation therefore needs people who can look at the situation, and the implications of technology adoption and say: 'Do you realise that by implementing this system, this is the kind of organisation you are going to end up with in two to three years? This is the way people will work, the way they will think, the kind of things that will emerge. Is that the vision you are spending millions of dollars to buy?'

In Aboriginal society, stone axes were made by the elders and were used in initiation rites. When metal axes were freely handed out - even to women! - whole social form was eradicated overnight; people who had the axe-making skills lost their status and the initiation to manhood was radically altered. No-one foresaw the impact on the culture; there was noone to interpret the vision.

I don't think you ever get painless or resistance-free change implementation, because that is the nature of the beast. All change involves some degree of difficulty, some letting-go of the old ways and some inadequacy in mastering something new. If you accept that as reality, then you can alter the acceptance; and the degree to which you can alter it depends on the degree to which you can see the culture and the nature of relationships in the work place.

The illusions on which people implement new technology systems are that they are a clean, efficient cure-all - an intellectual idea about change which is out of line with the reality of human nature.

From the point of view of the businessperson, technology introduces the potential for competitive instability, providing an opportunity for some competitor to create a dynamic advantage: Roehrich 1984

the Agent Of Change

Information technology (IT) is a magnifier of business management performance. If you know what you are doing in your industry and you deploy IT in support of a good strategy then results will be better - sometimes dramatically better. It is the strategy that is paramount, not the technology.

For the past quarter of a century we have experienced the phenomenon of 'technology push', the idea that the answer to business success is somehow in technology. Business people have been promised that technology holds the key to improved performance - but expectations raised by the IT industry have been beyond the level of achievement.

That realisation led to a shifting of focus: a bottom-up approach, where emphasis was placed on determining the scope of the equipment and then searching the business for an application (having the solution, then looking for a problem). This approach does generate a return on investment but leads to a collection of bottom-up or ad-hoc investments, which I label useful applications of IT, because most of them represent potential improvements in efficiency.

The really crucial developments over the next $10-15$ years, however, will be in investments in IT which can properly be called strategic, in that they are integrated into the whole strategy of the business. They are far more likely to be aimed at the revenue line than the cost line; to be aimed at effectiveness in the marketplace rather than internal efficiency; to be concerned with doing the right things rather than doing things right.

$$
\begin{aligned}
& \text { BY DAVID FEENY } \\
& \text { - David Feeney is a fellow } \\
& \text { in Information Manage- } \\
& \text { ment at the Oxford Insti- } \\
& \text { tute of Information Man- } \\
& \text { agement, Oxford Univer- } \\
& \text { sity. His role is to research } \\
& \text { issues with which general } \\
& \text { business managers ought } \\
& \text { to be concermed in relation } \\
& \text { to informetion fechnolo- } \\
& \text { gies - how to recognise } \\
& \text { opportunitios, to generate } \\
& \text { strategies for oxploiting } \\
& \text { informetion technology } \\
& \text { and how to organise re- } \\
& \text { sources. Much of his time is } \\
& \text { spent feaching manage- } \\
& \text { ment teams for busi- } \\
& \text { nesses. }
\end{aligned}
$$

Before any large IT investment it is important to analyse the business and the industry to try to understand what sort of strategy could achieve a superior performance. Deploying technology for competitive advantage will be a product of management thinking creatively about the business. The technology area supports them in identifying the appropriate technology to carry out the ideas.

The same business idea might be implemented in a number of different ways using different technology.

First bite of the cherry

One way in which businesses can achieve an advantage is by earning the gratitude of the customer and getting priority in terms of selection of product. Helping the consumer or the consumer's agent to choose the right product is what

American Airlines did with Sabre and United Airlines did with Apollo - essentially they provided the travel agent with a tool that could take a consumer's need and translate it into a series of choices.

Becoming the preferred supplier by making it easier for the customer is the line Thompson Holidays in Britain capitalised on. They were the first to make it easy for travel agents to enquire about and book holidays on view data sets; they consequently doubled productivity in terms of the number of holidays sold per employee.

A major advantage comes from knowing when the customer is going to be in the market place. You may have a situation where your customers only buy once every year, or every two years. In the late 1970s, the managing director of the marine coatings division of the International Paint Company, a part of the Courtaulds Group, conceived the idea of building a database about his customer targets.

The database is built by capturing information every time a ship

The really crucial developments, however, will be investments in ir which can property be callod strotogic.

dry-docks anywhere in the world when it docks, which paint supplier is providing paint and, if it is International Paint itself, they record which product, how it is being supplied and what condition the hull is in.

As the database grew, it was used for a number of purposes: to get an idea of the performance of products (which can be fed back into R\&D); to better access market
share in all parts of the world; and, when they knew the date of the previous dry dock, the sort of anti fouling agent that was used, and when a ship was due to dock again, to target sales effort at the appropriate time.

A data base can trigger the sales effort on a client basis, a regular basis or an ad-hoc basis. For instance, when one of International Paint's competitors went bankrupt, International Paint used its database to ensure that within 24 hours every affected fleet owner received a call from an International Paint salesperson.

The idea of using IT to trigger sales action can occur in a range of industries, but the trigger is a function of the industry not the technology.

Supporting the salosforce

Technology can be used in a variety of ways to improve the effectiveness of the salesforce when face-to-face with a consumer. An account manager can use it to get up-to-date information about the status of the relationship, ensuring the sales call doesn't get diverted with bad news about last week's invoice or yesterday's machine breakdown, of which he would otherwise be unaware.

It can also be used at point of sale to ensure every question the customer has can be answered without having to break the call and reschedule. In the pharmaceutical industry, for instance, there is an enormous amount of information relating to new drugs which the salesperson cannot possibly hold. He can use a lap top computer to refer to results of trials, the interaction between drugs, the side-effects of drugs and the way they work.

The experience in the insurance industry is that more and larger products are sold by salespeople who have the advantage of lap top computers to produce on the spot proposals that perfectly suit a client's needs.

Additionally, evidence in that sector indicates individuals are more likely to accept the pronouncement of the technology at the point of sale than they are to accept that of the sales representative. Presumably they see it as unbiased.

GANG-NAIL: BREAKING NEW GROUND

The use of computer technology in structural and engineering design is somewhat taken for granted in 1989. But as early as 1972, one company, Gang-Nail Australia Limited, broke new ground by introducing computer designed timber roof trusses into roof truss fabrication plants.

Since those early days, GangNail has produced a whole suite of programs tailored to the needs of the truss industry, including updated versions of the original Trussfacts program - Datatruss I and II.

Called Lumberlock Datatruss II, this updated program is much more powerful and comprehensive than the earlier version and is designed to serve truss manufacturers' needs for a few years to come.

Input is by roof shape, which speeds up the operation and enables the roof to be overviewed to ensure uniformity of approach, timber size and fitting together. The shape and layout are graphically displayed and may be printed to provide the client with a roof layout. The program uses logical steps and displays instructions,

Building differemtiation

A particular challenge is to build differentiation of a product that cannot in itself be strongly differentiated from a competitor's. A classic illustration concerns Gang Nail Australia which produces gang nails used to join roof timbers (see panel). There would be few products harder to differentiate; Gang Nail used IT to provide a service to companies manufacturing roof trusses.

Building partnerships

Over the last few years, many industries have begun to follow the Japanese philosophy of supplier relationships, which is basically to have a small number of suppliers to whom they are loyal but demand a greater level of performance in terms of quality, particularly of delivery - so-called just-in-time which is proven to be more effective.
minimising the use of manuals and specific training.

The program designs the trusses for the specific jobs with conditions of loading, overhangs, cantilever, girders and so on to give the most economical design and thus the lowest cost roof. Quotations can be easily stored for retrieval on winning the job.

Following designing of the roof, the program estimates all costs of manufacture and adds the margin to give a selling price. Timber connectors and production costs come from 'security' files, updated by the fabricator as necessary.

Other programs offered in the suite are equally as comprehensive and include Lumberlok Dataform for the design of wall frames; Lumberlok Databuild for whole house design; and an administrative program, Lumberlok Data Library.

The programs run on a micro computer and are rented to GangNail licencees at a nominal rate to help support upgrading and new development.

Using IT to link trading partners directly generally means a reduction in the amount of suppliers. But there are two winners - the buying organisation wins by achieving economies involved in the situation and the remaining suppliers win by being part of a small group with larger market shares, and greater security of continuing supply. The more intricately linked the buyer and supplier become the more difficult it is for the buyer to move away or change suppliers.

In a case where companies have a concentrated customer set of five or six, the customers have tremendous bargaining power in the relationship. Some would say this cuts out opportunities to use IT to achieve a competitive edge, but that's not strictly true. The competitive edge comes about through recognising the realities of the relationship and devising different ways of using IT.

The role of technology is simply the agent of change.

Hegncoue

of IUSTLNG GOING ON

The main benefits to the retailer of EDI are speed and precision - advantages not to be scoffed at when moving faster than the competition gives the all important edge.

Behind the stacks of jeans, racks of shirts and shelves of plastic and glassware in retail outlets there is a revolution going on: a revolution in information processing - getting all the information that is associated with the trading process and trapping it electronically as quickly as possible. The revolution is called Quick Response and, although it appears far removed from the process of shopping, in the long haul it means improved customer service.

The bottom line is that automated systems can tell retailers what is selling and what isn't, at a faster rate than before. Today, the greatest advantage lies in moving faster than the competition.

Management guru Peters (In Search of Excellence), in his book Thriving on Chaos, maintains that "given changing technology ... and the moves of competitors we must:

Achieve total customer responsiveness via bold new partnerships with suppliers/distributors/ customers;
Seek out and create new markets with our partners;
Introduce 'hustle' as a key strategic concept - fast moves, fast adaption and tight linkages will become a way of life.
"Adversarial relationships with suppliers, distributors and ultimate end users must be quickly replaced with partnership relations. Major electronic / telecommunications linkages and other tactics to en-

hance speed/responsiveness must be quickly achieved."

Quick Response (QR) is a management initiative encompassing a range of programs including
bar coding, product marking, laser scanning at point-of-sale (POS) and thus POS inventory managment. Bringing those technologies together to create 'hustle' is electronic document interchange (EDI).

Dennis Crane, general manager of General Electric Information Services in Australia, believes it is a change of process and a change in thinking.
"Ideally the entire ordering, stocking/inventory and reordering cycle can be electronic from end to end," says Crane.
"The vendor or manufacturer allocates a product number to goods before distribution to retail customers; from the product number the retailer bar codes the goods; the goods are scanned at the point-of-sale and the data automatically captured; when the inventory level gets down somewhat the computer recognises the inventory need, prepares the order, transmits the order and updates the inventory with new receipts."

One EDI requirement that crops up early is the ability to track sales at the same level at which items are ordered. If you are ordering at the size and colour level, you need to track merchandise at the size and colour level the UPC (uniform product code) level. The UPC bar code is used in the USA for this purpose; however, Australia and the rest of the world use the EAN code, administered here in Australia by the Australian Product Numbering Association (APNA).

In the USA, where large retailers began to implement QR in the early to mid 80 s, they found the key to getting it right was uniformity. Every stage in the retail chain, from production to sales, must be able to link in to achieve the turnaround and productivity improvements sought. (A study done in the USA in 1987 by Kurt Salmon and Associates for the tex-tile-apparel-retail chain showed a life cycle of 66 weeks. Only 11 weeks were work in progress, with 82 per cent of the time being nonproductive.)

So, in 1986, the retail-general merchandise-apparel industry got together and formed VICS (the

Voluntary Inter-industry Communications Standards Committee) with a mission to develop and ensure the implementation of standard merchandise identifiers, standard carton coding and standard EDI transactions.

This meant going from individual proprietory standards to a uniform system. VICS-EDI (using ANSI X12) brought in electronic orders and invoicing and paved the way for sell-through analysis reporting, electronic packing slips and point-of-sale inventory data.

Importantly, what VICS did for the US industry by standardising was to make the technology (once only practical for the big store addressing an equally big manufacturer) accessible to any manufacturer who wants to deal with a volume retailer.
"Beyond that", says Crane, "it gives the smaller retailer the opportunity to experiment a lot more. With fashion, for instance, retailers can order in smaller quantities, and expect to order more frequently from a large supplier who is willing to hold inven-

tory and can do that more cost effectively. The supplier, in effect, becomes the warehouse.

The economic benefits are substantial because of the efficiency of staff - releasing them for direct sales work - and the rapid turnaround time. "So, a retailer might come away thinking: I can afford to experiment and, from US experience, afford to source more domestically.
"Sourcing domestically is an interesting development and stems from the fact that delivery can be within two to three days. What is foregone in margin for off-shore sources is captured in less inventory and recovered in better fashion response, resulting in fewer markdowns and fewer returns than is the case with an offshore supplier," explains Crane.

From the technical side, the
biggest challenge is not the electronic hookup from the retailer to the vendor, which is a relatively simple matter, but the changes to their hardware and software to accommodate the improved flow of information. To get maximum benefit from EDI an order must flow right through a vendor's system, right to the distribution centre, without being re-entered or manipulated manually.

David Milton, from Levi Strauss, Australia, stresses there is no point in putting in EDI unless you have a good integrated internal system.
"In EDI, it is the small to medium sized specialty stores that could potentially gain the most, because cost of participation is less and the availability of integrated solutions is far higher," says Milton.
"When you are talking about EDI in major corporations, it actually changes their systems, changes their applications. In the case of a large organisation it can be a substantial development project that will change the way a company works. A small to medium company, however, doesn't have a great deal to change so they can move that way a lot faster."

Levi Strauss particularly lends itself to an EDI set-up because 85 per cent of what it makes is basic reorderable merchandise. In the United States, the company has taken a very active posture in EDI, to the point where some retailers dealing with them have already achieved near 100 per cent automation.

Levi has gone as far as to create its own package called LeviLink, using the VICS EDI standard. LeviLink is made up of a number of modules or options and the retailer buying regularly may opt for any number or combination of modules. It is 'designed for every stage of the merchandise life cycle - inventory replenishment, purchase order reconciliation, invoice processing and payment, point-of-sale capture and overall market analysis'.

Early on in the development of retail automation Levi adopted vendor marking. Products are sent
to retailers with a standard ticket which features the UPC bar code and identifies prodacts to the stock keeping unit (SKU) level.

One US menswear store invested in a system where it got direct store delivery from Levi with everything marked. On receipt, staff merely scanned the bar code of the container and, having already had electronic notification of that shipment, including what colours and sizes were in the box, put the merchandise straight on to the floor.

Because of the speed of ordering and receiving goods, the store has done away with inventory that isn't on the floor, and they don't have to go through the receiving and checking processes before merchandise is put out for sale and released to the point of sale systems. Once in the point of sale system any sales are automatically debited against the total received.

There are less obvious benefits here for both the vendor and retailer. One of the bonuses of EDI partnerships, as in the case of vendor marking, is that some of the work the retailer normally does is shifted back to the vendor. Similarly, the speed of ordering and receiving merchandise allows retailers to reduce the amount of inventory and use the vendor as the warehouse.

On the flip side, EDI can help vendors anticipate the market. Right now there is an element of guesswork in production, but with POS data being transmitted directly to the vendor they begin to get the whole picture - they know much earlier how many garments to make in what sizes and colours.

Australia

In Australia, that level of automation is on the doorstep and Levi Strauss is one of the companies with its foot in the door. "We currently don't have any trading partners (there are none ready) but we have been establishing systems for the past year and a half," explains Milton. "There are indications others will be ready to play in the first half of 1990 and when that occurs we will be getting a substantial part of our business

CR SURVEY FINDINGS

A $1988-89$ study carried out by Arthur Anderson \& Co on behalf of the US Voluntary Interindustry Communications Standards (VICS) committee, found Quick Response (OR) amounted to annual savings of \$US9.6b after initial investments of $\$ 3.6 \mathrm{~b}$.

The study found that "for the individual company, these numbers translated into an average annual saving equivalent to 5.0 per cent. Those savings were identified through six specific areas.

Sales Because the electronically captured sales information is broken down to size and colour level, products that are selling can be replenished faster, and slower selling lines can be discontinued. Further, because the information is shared with vendors and manufacturers replenishment throughout the retail chain is more accurate.

Markdowns The level of markdowns decreased by 30 per cent in basic/seasonal merchandise and 40 per cent in fashion items, simply because stores were able to forecast demand more accurately and thus stock more of what customers wanted, faster.

Morchandising oxpenses "Automatic replenishment systems and EDI reduce the amount of time required to create, communicate 'and track purchase orders by as much as 80 per cent," the survey found.

Distribution expenser Vendor pre-ticketing and shipping container marking has accelerated the passage of goods along the distribution chain by as much as 45 per cent.

Administrative expenses "EDI significantly reduces the amount of data entry for both the vendor and retailer, at the same time reducing the likelihood of errors . . . and cutting the retailer's clerical costs by as much as two-thirds."

Intorest on inventory The whole process of Quick Response allows for more frequent deliveries from vendors and thus less inventory held (the vendor as warehouse concept). The study found that inventory turns could be increased by 25 30 per cent in basic/seasonal goods and 10-45 per cent in fashion items.
through EDI.
Levi has been involved pushing the infrastructure and the technology from the outset, says Milton, initially, through its desire to be a leader in vendor marking. They therefore became heavily involved in APNA (Australian Product Numbering Association).
"Through APNA we became involved in a retail pilot (purchase orders only) on EDI which was between eight companies from the retail-general merchandise-apparel area. The pilot was split into four existing trading partners and Levi partnered Myers. The objective of the pilot was to establish whether or not the ANSI standards would meet the industry needs; and to establish the credentials of third party network providers. It ran over six months and, although the results were not terribly impressive, there was enough there to see it would work."

At the same time, Levi got involved in establishing the EDI Council (see story this section). From the outset there were a lot of organisations interested, but a lack of know how; so they drew on the experience of Levi Domestic (US operations) and on VICS, and found that those guidelines do work.

In Milton's view (and demonstrated by the VICS experience) there are two important facets to EDI in the retail industry. One is to identify the item via a common identifier - the SKU - which is covered by the APN number. Equally important is to be able to identify the person you are trading with in a non-ambiguous way. Standards do not exist in Australia for this identification at present, although Dunn and Bradstreet numbers are being used as an interim solution.

A necessary step now is to build the same sort of industry cooperation in Australia that exists in the USA through VICS. That is underway through the retail-general merchandise user group of EDICA (EDI Council of Australia) where standards issues are in the process of being sorted out.

WARNS EDICA

The day is dawning when electronic exchange of business data is mandatory - if a company is not geared for it it will be non-competitive, warns Michael Baker, CEO of the EDI Council of Australia (EDICA).

In some industries in the United States and United Kingdom that day has already arrived: US Customs and several large companies are taking the stand: "Deal with us electronically or we will desource you". And the UK Customs Service has stated that unless companies use EDI they will not be assured a "satisfactory customs service". Indeed, Australian Customs has it wired from the export side through its EXIT service and, not too far down the track, it will be mandatory for importers to exchange documents electronically.

But exchanging data electronically is not a practice that can be adopted overnight. The minefield of compatible standards, trading partners and networks must be crossed. And it's not cheap. Says Baker: "To get EDI up and going you have to spend money - change some systems and throw some out altogether.
"A small company might have one or two people planning for a number of months, while a larger company with more complex systems will need substantially more people planning the new system."

EDICA exists to coordinate the efficient introduction of EDI in Australia and, as a byproduct, to provide support and advice amongst members to ensure the transition is as painless as possible. The council was set up in 1986 driven by the motor and retailing industries which
were beginning to plan for electronic trading. Specifically, the motor industry formed an EDI sub-committee in 1985, followed closely by the Australian Product Numbering Association (APNA).

Out of the APNA sub-committee came EDICA, with an interim board made up of people from large vendor organisations (Telecom, General Electric) and organisations already beginning to dabble, like Mitsubishi. That board decided the council should properly be driven by users rather than vendors and consequently ruled that vendors should not hold board positions.

[^1]There are now two types of membership. User membership fees are based on the size of the company and range from $\$ 500$ per year for a company with a turnover of under $\$ 10 \mathrm{~m} ; \$ 1000$ for those with a turnover between $\$ 10$ and $\$ 100 \mathrm{~m}$; and $\$ 1500$ for those over that. Vendors pay $\$ 2000$ per year.

For the price of that membership, says Baker, a company can ensure that the way it conducts its business is the way EDI is developed in Australia. "That's why the big companies were members from the outset. But it is important to note that regardless of size, a member has only one vote - little companies have as much say.
"Membership can ensure that standards are developed to suit specific company or industry needs, that evolving legal issues are fully understood, that
software and hardware needs are addressed. In short, membership creates an opportunity for advice and feedback that may otherwise cost thousands of dollars from consultants."

The business of the council is largely conducted through sub-committees and user groups. An Education and Training committee holds seminars, luncheons and breakfasts to inform about standards and implemention issues in general; a Standards committee takes input from several industry groups and formulates recommendations aimed at ensuring Australian requirements are incorporated in refining the international EDIFACT standard; a Legal and Audit committee tracks and examines issues in the auditing, authentication, contract and security areas; and the Vendor committee addresses issues raised by the members and other committees.

Importantly, the Council is plugged into the international scene, so developments in Australia remain in sync with our international trading partners. Recommendations travel a welldefined path stemming from industry groups, through EDICA to Standards Australia (national), on to the newly formed Australasian EDIFACT Board (regional) and finally to the United Nations EDIFACT body (global).

Since there are just three other regional boards - Western and Eastern Europe and Northern America, each with one rapporteur - the formation of the Australasian Board effectively gives Australia a 25 per cent say in global developments. Hence, claims Baker, anyone who is serious about EDI is in EDICA.

IMPROVE THE SHAPE
 OF YOUR BOTTOM LINE

HUB - the business magazine which offers insight into modern management strategies through information technologies

Call Michelle Smith on (02) 6936666 or fax to (02) 6936613 or write to HUB magazine, 180 Bourke Road, Alexandria 2015 for a free evaluation copy mailed to your business address.

INTCO COMIPUTERES?

YOU MIUST BE INTR YOUR COMPUTEER

DO COMPUTERS PLAY ANY PART IN YOUR LIFE?

If they do - or if you want to find out more about them - don't miss each month's issue!
A magazine for all computer users and enthasiasts, YOUR COMPUTER has something for everyonetopical features on all aspects of the computing world, expert reviews of the lastest software and hardware, up-to-the-minute information for business people, and even games and advice for hobbyists.
YOUR COMPUTER
The only Australian computing magazine!

165 MWPS respectively. The parts have optional video controls and can directly dirve doubly-terminated 50 or 75 Ohm loads to standard composite video levels. The DACs have an internal reference to supply themseives and the HADC77200 with a stable voitage reference and galn control for different output voltage swings.
The HCMP96870 is a high speed dual differentlal voitage comparator used to generate an ECL compatible clock slgnal from any type slgnal generator.
The board is in Eurocard format with a 64-pin dual helght DIN connector for digital data. The analogue inputs, outputs and clock input are standard 50 Ohm BNC connectors. Tektronlx high impedance probe jacks are provided to monitor the clock lines. Standard $-5.2 \mathrm{~V}+5 \mathrm{~V}$, and $+/-12$ to $+/-15 \mathrm{Volt}$ power supplles are required for operation of the board, with normal power dissipation of less than II Watts.
The ETH-1547 evaluation board consists of seven function sections that include an analogue input buffer, A-D converter, input/output multiplexer and data latches, D-A converter, reference voltage generator, ECL clock generator, and ECL clock divider. The analogue and digital grounds are separated on the board for better system grounding characteristics.
There are jumper optlons avallable to switch sections in or out of the system to suit indlividual needs. The clock dlvider circuitry Is on a separate board that plugs into the main board to provide divide by 2 or 4 for the multiplexer and DAC. The jumper options will be discussed in more detail in the following sections. in addition, 90 MHz low pass input and output fllters are on board.

Analogue input buffer

This section consists of a 90 MHz low pass filter, HA2539 high frequency op-amp, and a 2N5836 RF transistor. The input impedance Is 50 Ohm and the gain is set at 2 X so that a 1 Volt input can be applled. Compensation components are provided and can be adjusted for the desired frequency range needed. The compensation is adjusted for the desired frequency for 50 MHz bandwith operation. The bandwidth of the buffer amplifler can be increased by decreasing the gain to 1 X by changing the 1.5 k Ohm feedback resistor to 750 Ohm. The BNC connector shown in the schematics and layout near the output of the buffer can be used for monitoring the buffer output and input to the HADC77200. The BNC should be connected to a 50 Ohm terminated oscllloscope and will provide a 10X attenuated slgnal.
The positive input to the HA2539 Is tled to an offset adjust to centre the input slgnal to the HADC7200 around -1 V , which is needed if a 2 Vp -p input slgnal is applled. The Input buffer can be bypassed by removing the 6.8 Ohm resistor at the emitter of the 2N5836 and the 450 Ohm resistor between

MINV LINV	0	0 1	1	1
OV	111... 11	100... 00	011... 11	000... 00
.	111... 10	100... 01	011... 10	000... 01
-	-	.	-	.
-				
VIN .	100... 00	111... 11	000... 00	011... 11
NI	011... 11	000... 00	111... 11	100... 00
-	.	.	-	.
	000... 01	011... 10	100... 01	111... 10
$-2 V$	000... 00	011... 11	100... 00	111... 11

ELECTRONICS ETI - 1547

Figure 1C. Power supply harness configuration.

8-bit flash converter

the BNC connector and the HADC7200. Bypass the 450 Ohm resistor with a Jumper wire and the HADCT7200 can now be driven directly. The input Impedance is 4 k Ohm in parallel with a 56pF distributed capacitance.

Figure 2.

100K clock generation

The ECL clock sectlon consists of an HCMP96870 dual comparator, duty cycle and hysteresls adjust, FOO131 triple D flip-flop and several Jumper options. Any type of high frequency signal generator can be connected to the BNC input to the comparators. Both inputs to the dual
comparators are connected to the BNC. There are four outputs which generate differential 100k ECL clock signals. One set goes directly to the HADC77200 whille the other two can go to the FOO155 multiplexers and HDAClO181/514OO or to the clock divider clrcuitry.
The threshold input to the HCMP96870 comparators are connected together to a

TABLE 2. POTENTIOMETER AND CAPACITOR ADJUSTMENTS

No.	
RV9	FUNCTION Pot for adjusting gain to produce a 2V reference voltage for the VRB pin on the HADC77200 from the 1.2V reference voltage supplied by the HDAC10181/51400.
RV5 RV6, RV7	Pots for setting the linearity adjustments at the comparator reference ladder on the HADC77200.
RV8	Pot for setting the top point (VRT) on the reference voltage ladder. Nominally set at 50m V below AGND.
RV10	Pot for adjusting output current drive from the HDAC10181/51400 (see data sheets). Vout+ $=25.6$ (digital code X Iset)/RL
RV3	Pot for setting the HCMP96870 comparator threshold voltage to adjust the ECL clock duty cycle.
RV4	Pot for adjusting comparator hysteresis.
RV1	Pot for adjusting up to a 2V offset voltage at the buffer output for driving the HADC77200.
RV2	Pot for adjusting compensation and bandwidth for the buffer circuitry. This has been set for maximum bandwidth by turning to the full counterclockwise range. The frequency range can be decreased by adjusting the potentiometer clockwise.
CV1	"Lead" Capacitor for changing the damping factor of the input buffer, used in conjunction with Pot RV2. This has been set for a flat response.

FEATURES

- 150 Megasample/second minimum conversion rate
- 70 MHz full-scale input bandwith.
- 1/2 LSB integral linearity. (Adjustable with three reference ladder taps).
- Low clock duty cycle sensitivity. (Adjustable).
- ECL clock produced from any signal generator.
- Improved D/A output drive, doublyterminated 50 Ohm.

APPLICATIONS

- Evaluation of HADC772OO A/D converter.
- Evaluation of HDAC1O181/514OO

D/A converter.

- High definition video
- Digital oscilliscopes.
- Transient capture.
- Radar. EW.
- Direct RF down-conversion
- Medical electronics; ultrasound;

CAT instrumentation

Figure 4. Jumper position and connections for either the HDAC10181 A/B or HDAC51400 (Not To Scale).
pot to adjust the duty cycle of the clock. The latch enable pins are also connected together to a pot to adjust hysteresis.

100K ECL clock divider

The clock divider section is shown in Figure IB and consists of a triple D type fllp-flop, which, if jumpered as shown, will provide dlvilded down clock outputs. The clock divider can be bypassed to provide a full frequency clock. The divider is provided to make it easier to monitor the HADCT200 output with a low frequency loglc analyser and to provide the DAC with a reduced sampling rate. When switching between divide by 2 or 4 , the unused outputs " Q " and "Q|" must be terminated. The board is initlally set in the divide by 4 mode. Furthermore, the jumpers on the clock lines to the multiplexer and DAC must be removed.

Reference voltage generator

The reference voltage for the HADCT7200 and HDAClO181/514OO is internally

8-bit flash converter

generated by the D-A converter voltage reference of approximately 1.2 Volts. The AD converter's 2 Volt reference, voltage midtaps and ground are controlled by two PMI quad op-amps (OP-11).
The magnitude of each setting is further adjusted with potentiometer RV5, RV9, RV8, RV6, and RV7 and shown in the detailed schematic and board layout.

Input/output register and multiplexer

The multiplexer section consists of two FOOI55 which select between external 8 -bit digital data from the 64-pin DIN connector or data from the output of the HADC72OO.
The choice is controlled by tying the SELECT pins to either an ECL high for external data or an ECL Low for HADC77200 data. Thls data is then fed to the HDACIO181/51400 on the " Q " outputs of the FOOI55 and the " Q " outputs are tied to the external connector.

A-D converter section

Both input pins to the HADC7200 are tled together to be elther fed by the input buffer or by an external source. The MINV and LINV inputs are left open and tied internally to an ECL low. Diodes are provided to the them high and change the output logic.
The connection choices for determining the output logic are in Table 1.

D-A converter section

The D-A converter section contalns jumpers to use elther the HDAC1O181 or HDAC51400. The primary difference in the two parts is the reference voltage connections. These differences are shown in the detailed schematic in Figure 2. All jumpers will be connected for the HDAC1O181A: if an HDAC5140O is used the board is changed. Figure $4 A$ and $4 B$ show the jumper settings.
The output current magnitude for the HDAClO181/51400 is controlled by a potentiometer (RVIO) through the DAC's iset control pin. In addition, two 90 MHz low pass fillers are provided at both out - and out + output pins as well as 50 Ohm terminating resistors. The terminating resistors can be changed to 75 Ohm if desired. Keep In mind that the transmisstion line must be terminated at the recelving end with the same value resistor. The video and feedthrough controls are routed to the 64-pin DIN connector and are normally disabled.

Power supply connections

Power to the board is supplied through a six pin Molex type connector. The supply lines are colour coded as shown in Flgure IC. Connect the wire end of the power supply harness to power supplles as shown by Figure $1 C$ and the silk screen near the mating connector on the pc board itself. The power harness is attached to the board with the

PARTS LIST ETI-1547 FLASH CONVERTER BOARD SEMICONDUCTORS

$1 \times 2 N 5836$ transistor $1 \times$ Honeywell HDAC10181A/B or HDAC51400
$1 \times$ Honeywell HCMP96870
$1 \times$ Honeywell HADC77200A/B
$1 \times$ Harris HA2539
$2 \times$ Fairchlld F100155
$2 \times$ PMI OP-11
$4 \times 1 \mathrm{~N} 4001$ or 1 N 4002
3×1 N914 or 1N4148
RESISTORS
$1 \times 220 R$, 2 W
$1 \times 56 R, 1 / 2 \mathrm{~W}$
$1 \times 68 R, 1 / 8 \mathrm{~W}$
$11 \times 10 k, 1 / 8 \mathrm{~W}$
$5 \times 220 \mathrm{R} / 330$ R SIP-packs
(ECL terminations)
$4 \times 220 R, 1 / 8 \mathrm{~W}$
$4 \times 330 R, 1 / 8 \mathrm{~W}$
$2 \times 750 \mathrm{R}, 1 / 8 \mathrm{~W}$
$3 \times 50 R, 1 / 8 \mathrm{~W}$
$3 \times 470 R, 1 / 8 \mathrm{~W}$
$1 \times 10 R, 1 / 8 \mathrm{~W}$
$1 \times 15 k, 1 / 8 \mathrm{~W}$
$1 \times 5 \mathrm{k} 1,1 / 8 \mathrm{~W}$
$1 \times 1 \mathrm{k} 5,1 / 8 \mathrm{~W}$
$1 \times 500 \mathrm{R}$ circular pc-trimpot
$1 \times 1 \mathrm{k}$ circular pc-trimpot
$1 \times$ ik upright pc-trimpot
$7 \times 10 \mathrm{k}$ circular pc-trimpots CAPACITORS
$32 \times 100 \mathrm{n}$ monolithic ceramics
$16 \times 47 p$ ceramic chips
$10 \times 1 \mathrm{u} / 35 \mathrm{~V}$ tantalums
$1 \times 1-5 \mathrm{p}$ min. pc-mount trimmer
MISCELLANEOUS
$1 \times \mathrm{pc}$ board (EB101)
1×24-pin IC socket
$1 \times 64-\mathrm{pin}$ DIN connector $18 \times$ jumper pins
$5 \times$ pc-mount 50 Ohm BNC sockets
$3 \times 90 \mathrm{MHz}$ low-pass filters
$1 \times$ Molex 6-pin keyed plug (pc-mount)
$1 \times$ Molex 6 -pin plug to match
$2 \times$ Tektronix test points
Sundry test point terminations
CLOCK DIVIDER BOARD
$1 \times$ Fairchild F100131
1×100 n monolithic ceramic cap
$6 \times 1 \mathrm{k}, 1 / 8 \mathrm{~W}$ resistors
$4 \times 220 R, 1 / 8 \mathrm{~W}$ resistors
$4 \times 330 \mathrm{R}, 1 / 8 \mathrm{~W}$ resisitors
$1 \times 47 \mathrm{p}$ chip capacitor
$2 x$ test point terminations
$2 \times$ Tektronix test points
$9 \times$ pin plugs
$9 \times$ pin sockets
pc board
Kits, containing all the specialised components for this project are available from Energy Control International, 26 Boron St, Sumner Park, Qld 4074 (07) 376-2955, and FT Promotions, PO Box 547, Rozelle, NSW 2039. © (02) 818-4838. Cost is $\$ 289$; built-up units cost $\$ 399$.

Figure 5. Component overlay of the main Flash Converter board, identifying the minor components, etc. Note that the output DAC is socketed so that either the HDAC10181 or HDAC51400 may be used. Assembly best proceeds in the following order: solder in the DAC socket, then all the other ICs, 2N5836 (note its heatsink) and diodes. Thread RF beads on short lengths of tinned copper wire and solder them (all 11!) in place next. Then solder the chip capacitors in place, not forgetting the two beneath the HA2539 (between pins 3-4 and 10-11). Follow by soldering all the small resistors (note those which stand on end) and capacitors in place, the five SIP-pack ECL terminations (note orientation), the jumper pins and the 220R/2W resistor last. Next, solder the BNC sockets in place, followed by the low-pass filters and test point terminations. All the trimpots and CV1 follow. If the external clock divider board is not to be used, solder the CLOCK JUMPERS in place now. Otherwise, solder the clock divider board's pin sockets in place. Last of all, solder in the 64-pin DIN socket and the power supply plug. Set up your jumpers as described in the text.

8-bit flash converter

Figure 6. Component overlay for the Clock Divider board. Assembly is quite straightforward. Solder the resistors and capacitors in first, then the jumper pins go on the underside of the board. Solder the IC in last on this board. Set the jumpers as required.

Triggor mode: Edge
On Pos. Edge on Chan2
Trigger Levels
Chan2 - -1.180 volis
Holooff - 70.000 nsecs
Figure 7. Clock output at the Tektronix Probe Jacks.

-1.00000 usoc	
Ch. 1	50.00 mvolss /
Timebase	$200 \mathrm{nsec} / \mathrm{div}$
Ch. 1 Parameters	
Rise Time	294.080 nsec
Freq.	997.904 KHz
+ Wioth	499.810 nsec
Overshoor	1.502 muols
Trigger mode: Edge	
On Pos. Edge on Chant	
Trigger Levels	
Chant	-100.0 mvolis
Holdor	70.000 nsecs

0.00000 sec

Offset	-100.0 mvolss
Delay	0.00000 sec
P.P Vohs	200.0 mvohs
Fall Time	289.910 nsec
Pariod	1.00210 usec
- Width	502.290 nsec
Preshoot	1.562 mvohs

Figure 9. Output signal from the "buffer out" BNC connector. (50, impedance).

-1.00000 usec		0.00000 sec			1.00000 usec
Ch .1	200.0 mvolis / div		Offet	-	0.000 volls
Timebase	200 nsec/div		Delay	-	0.00000 sec
Ch. 1 Parameters			P.P Volts	-	1.062 vols
Rise Time	289.640 nsec		Fall Time	-	289.320 nsec
Freq.	1.00014 MHz		Period	-	999.850 nsec
+ Whth	497.520 nsec		- Widin	-	502.340 nsec
Overshoor -	6.249 mvols		Preshoot		6.249 mvohs

Triggar mode: Edge
On Pos. Edge on Chan
Trigger Levels
Chant $=0.000$ volts
Figure 8. Input signal to the board (50Ω input impedance).

Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levals
Chan1 - 0.000 volts
Hodoff - 70.000 nsecs
Figure 10. Oscillations are apparent and adjustment is necessary.

TOP VIEW

16 LEAD CERAMIC
bevelled edges and hollow connector alligned to the mating connector.
The power requirements for the board at different supplies and with or without the clock divider board is shown in Table 3. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes are on the board for any reverse polarity connection but overvoltage protection is not provided.
DO NOT TURN ON THE POWER UNTIL ALL LEADS ARE CONNECTED TO THE SUPPLIES AND THE HARNESS IS ON THE BOARD!

Anti-aliasing \& clock noise filters

The input to the buffer circuitry and the differential outputs from the D-A converter are provided with high frequency noise filters. The three filters are 9 OMHz low pass and are intended to be used with the full analogue input frequency and full clock sampling rate of the HADC7200 A-D converter. If lower frequencies are used, the filters should be changed to filter clock noise and harmonics for a particular application.
Additional filtering can be achieved by decreasing the bandwidth of the input buffer by adjusting the 500 Ohm potentiometer (RV2 in Figure 3) clockwise. Also, adjustment of the clock duty cycle with potentiometer RV3 will lower the overall noise floor by controlling the setup and hold time of the digital data for the multiplexers (F1OO155) and DAC (HDAClO181).

Setup procedure

The board is accompanied with a literature package containing the "ANIO2 APPLICATION NOTE", the "HADC72OO", "HDAC51400", "HDACIO181", and "HCMP9687O" data sheets.
STEP 1. Connect the wire end of the power supply harness to power supplies as shown in Figure IC. The power harness should be connected to the board with the bevelled edges and hollow connector alligned for correct operation.
DO NOT TURN ON THE POWER UNTIL ALL leads are connected to the supplies AND THE HARNESS IS ON THE BOARD!
Table 3 shows the power requirements for the board. Use the current meters on the power supply or a DMM in line with the power lines and set on current (I). These current values will vary somewhat until all the potentiometers are adjusted. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes are on the board for any reverse polarity connection but overvoltage protection is not provided.

STEP 2. Refer to Figures 2 and 5. Place a DMM probe (set to voltage selection) on the black jumpers at the input to the HADC7200 (E14). This should read -IV and is adjusted by turning potentiometer RVI (See Table 2).
STEP 3. Again, refer to Figures 2 and 4 and Table 4. Place a DMM probe (set to voltage selection) on pin 3 of the OPII-A and read approximately -1.2 V . If it does not, then check to see if the black jumpers for the HDAC10181/51400 are set up for the right part (see Figure 4).

Next, set the probe on pin 1 of the OPII-A. This should read -2 V and is adjusted by turning potentiometer RV9. Now set the probe on pln 7 of the OPII-A. This should read approximately -1.5 V and is adjusted by potentiometer RV5. Pin 8 of the OPII-A should read -1.0 V and is adjusted by potentiometer RV6.
On the other amplifier, OPII-B, potentiometer RV7 controls the output from pin 1 and should read - O.5V. Finally, RV8 sets up the output from pin 14 on OPII-B and can be set between GROUND and -50 mV .
STEP 4. Refer to Figures 2 and 5. Attach a 50 Ohm BNC cable to the "CLK IN^{\prime} BNC connector. Attach the other end to a sinewave or signal generator set at 20 MHz frequency and IVp-p amplitude (if IVp-p is not available, amplitudes down to 100 mVp p are acceptable). Put a Tektronix or H.P. high impedance probe in one or both of the probe jacks immediately below the HCMP9687O comparator.
Adjust potentiometer RV3 to achieve a 50% duty cycle squarewave (both "high" and "low" states are the same length). Adjust potentiometer RV4 if no waveform is present and/or to get rid of any jitter in the square wave (this is a hysteresis adjustment). The square wave amplitude should be approximately $900 \mathrm{mVp}-\mathrm{p}$ and look like Figure 7.
STEP 5. Refer to Figure 2 and 5. Attach a 50 Ohm coax cable to the BNC connector marked "BUFFER IN ". Use a second sinewave or signal generator set at 1 MHz frequency and IVp-p amplitude (See Figure 8). Attach another cable to the BNC connector "A-D IN/BUFFER OUT" and to an oscilliscope set at 50 Ohm input impedance. A 200 mVp -p amplitude signal swinging around - 100mVdc should appear at a 1 MHz frequency (See Figure 9).

If oscillation is evident (erratic signal amplitude or wrong frequency). Adjust potentiometer R22 to the full counterclockwise range. Now adjust capacitor C25 to stop the oscillation. See Figures 10,11 and 12 .
STEP 8. This measurement is done without the clock divider board connected and clock jumpers inserted as shown in Figure 5. Again referring to Figures 2 and 5, attach a 50 Ohm coax cable to the BNC connector marked "OUT -" and another cable to "OUT + ".

AT-4000 MOTHERBOARD

Featured in ETI Aug/Sept/Oct '88. 12 MHz 8 O 286 .
OKfit 4Mskt Zero WS. Noton 15.3 , lM or 250 K DRAM $6 \times 16+2 \times 8$ Siots. ldeal upgrade for XT. Designer guide \&

ECIO9 6809 CPU 2 Mhz W/CIk Bat $2 \times$ RS232 Cent I/F ECIII 6517 2Mhz SBC with A/D D/A CIS S396 NOW ONLY 3304 WOS S436 NOW ONLY \$330 WOS S436 NOW OWLY $\$ 330$
ECIFII FORIH DeV Kit SSFII PCB \& ROM WOS $\$ 99$ NOW ONLY $\$ 49.00$ EC545 COLOUR CRI (RGB) $16 \mathrm{~K} / 4$ PGge SRAM 512 CHAR EC7O2 2 SLOT RM65 CARD CAGE - WOS $\$ 310$ NOW ONLY $\$ 238$ ECIF124 IND CONTR R Forth 1Oblt A/D. D/A. OPTO ISOL I/O CMOS

WOS S56O NOW ONLY $\$ 392$
SEMI-CONDUCTOR \$AVINGS ...

SPECIAL SAVINGS ON CRYSTALS

$\times 104.0320 \mathrm{HCL8/49}$	20.83 00	$\times 107.3728$ HC18/49	40.0
XLO4.33619 HC18/49	10.79 *	XLO8-OOOO HC18/49	10.61
$\times \mathrm{CL} 4.9152 \mathrm{HC18/49}$	10.74*	XL17-981350 MC18/49	10.87
XLO5-0688 HC18/49	10.58 0	XL16-3840 MC18/49	11.00
XLOO-OOOO MC18/49	40.88 0	XL17-1072 HC18/49	1.02

SAVE \$\$\$S ON QUALITY DI\$KETTE\$

 Pkt of to incl. tox 100 e error free.
 $\begin{array}{ll}26 \text { Boron St, Sumner Pk, Ken Curry } \\ \text { Brisbane Qid } 4704 . & \text { Managing }\end{array}$ Brisbane Qid 4704. \quad Managing
Phone: (07) $3762955 \quad$ Director Fax: (O7) 3763286. WELLINGTON, NZ: Ph: (04) 858742. Fax: (04) 828850
\qquad
Fax: (04) 828850 Fax. (02) 8182949

READER INFO No. 18

	18		\bigcirc	$\ddagger \rightarrow$	1%	
	$1{ }_{1}$		\%	1	ir	
		:		if	\bigcirc	i \quad i
		'i		$\checkmark \ddagger$	$\sqrt{6}$?
$\|$		$*$			$\cdots 1$	
					\cdots	.
				$i \frac{1}{t}$		
			\%	\pm ¥	\because	

-2.50000 usec
Ch. $1=200.0$ mvolts / div
Ch. $2=40.00$ mvolts $/$ div
Timebase - 500 nsec/div
Trigger mode: Edge
On Pos. Edge on Chan 1
Trigger Levels
Chans - 0.000 volls
Holdof - 70.000 nsecs

-1.00000 usec

Ch. 1	400.0 mvoks / div
Ch. 2	400.0 mvolis / div
Timobase	$200 \mathrm{nsec} / \mathrm{div}$
Ch. 1 Parameters	
Rise Time	290.470 nsec
Freq.	1.00264 MHz
+ Width	499.250 nsec
Overshoot	- 6.249 mvolis
Trigger mode: Edge	
On Neg. Edge on Chan1	
Trigger Level	
Chan 1	-964.0 mvols
Holdoth	70.000 nsecs

0.00000 sec

		2.50000 usec
Ohset	$=$	0.000 volts
OHset	-102.0 mvolts	
Delay	$=0.00000$ sec	

Figure 11. The oscillations are decreasing and the bottom waveform is starting to approach the same shape as the top waveform.

-2.50000 usec $\quad 0.00000 \mathrm{sec} \quad 2.50000$ usec

OHset	0.000 volis
Ofis et	-102.0 mvolts
Delay	0.00000 sec
P.P Volis	665.6 mvolis
Fall Time	291.830 nsec
Period	1.00001 usec
- Width	499.830 nsec
Preshoot	0.000 volis

Figure 12. Oscillation has stopped and the bottom waveform is the same shape as the top waveform but is inverted.

Figure 13. Output waveforms from "out-" and "out +" without the clock divider board inserted and the clock jumpers connected as shown in Figure 4.

Ofiset $\quad=\quad .544 .0$ mvolis Delay $\quad=0.00000 \mathrm{sec}$ P.PVohs - 912.5 mvols Fall Time - 297.770 nsec Poriod - 997.370 nsec - With - 498.120 nsec Preshoot $=6.249$ mivins

Ch. 1 Parameters

Rise Time $=201.240$ nsec
Freq.
$\begin{array}{ll}\text { Freq. } & =1.00255 \mathrm{MHz} \\ + \text { Wicth } & =499.050 \mathrm{nsec}\end{array}$
Overshoot - 100.0 nivolt
Trigger mode: Edge
OnNeg. Edge on Chan1
Trigger Levels
Chan 1 - 936.0 mvolts
Holdoh - 70.000 nsecs

Figure 14. "Out-" and "out+" with the clock divider board inserted and set at +2 mode.

Attach the other end to an oscilllscope set to 50 Ohm input impedance.
The outputs should be the opposite of each other and at approximately a 900 mV amplitude. Adjust potentiometer RVOO to achieve this level. Do not adjust too far or the signal will start deterlorating. See Figure 13. After compieting step 6, remove one end of each clock jumper wire and leave the other end soldered to the board.
STEP 7. Insert the clock divider board and connect the shorting jumpers to the posts in the $\div 2$ configuration and compare to the waveform in Figure 14,
STEP 8. Insert the clock dlvider board and connect the shorting jumpers to the posts in the $\div 4$ configuration and compare to the waveform in Figure 15.

TABLE 3 - POWER DISSIPATION

EB100 with clock divider, $\pm 15 \mathrm{~V}$			
Voltage	Current	Power	
+15 V	.145 A	2.175 W	
-15 V	.148 A	2.220 W	
+5 V	.006 A	0.030 W	
-5.2 V	1.65 A	8.580 W	
		13.005 W	
EB100 W/O clock divider, $\pm 12 \mathrm{~V}$			
Voltage	Current	Power	
+12 V	.119 A	1.428 W	
12 V	.123 A	1.476 W	
+5 V	.006 A	0.030 W	
-5.2 V	1.49 A	7.748 W	
		10.682 W	

PIN FUNCTIONS HDAC10181	
NAME	FUNCTION
D3	Data Bt 3
D2	Data Bit 2
D1	Data Bit 1
DO	Date BHt 0 (LSB)
VEED	Digital Megative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	VIdeo Blank Input
BRT	Video Bright Input
SYNC	VIdeo SYNC Input
REF-OUT	Reference Output
ISET	Reference Current + Input
COMP	Compensation Input
vcca	Analogue Postive Supply
OUT-	Output Curremt Negative
OUT +	Output Current Pontitive
VEEA	Analogue Negative Supply
D7	Data Btt 7 (MSE)
D6	Data Bit 6
D5	Data Bt 5
D4	Data BH 4

PIN FUNCTIONS HDAC51400

NAME	FUNCTION
D3	Date Bla 3
D2	Data Blt 2
D1	Date BH1
00	Data Btt 0 (LSE)
VEED	Digltal Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Comptement
FT	Reglater Feedthrough Control
VCCD	Digltal Postitive Supply
FH	Date Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-OUT	Raference Output
REF-IN	Reference Input
ISET	Reforence Current
VCCA	Analogue Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positlve
veEa	Analogue Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bli 6
D5	Data Bta 5
D4	Data Blt 4

A storage cabinet designed for use within industry \& home, wherever small parts need to be stored.
It features twelve [12] drawer units protected by a clear plastic dust flat.
It can be carried by the bar across the top; placed on a bench or table top in a free standing position; fixed to a wall by the four [4] screw holes placed on top of the cabinet; stacked or joined together to other identical cabinets.

ETI PROJECT BUYERS' GUIDE

Shoparound lets you know which firms are stocking kits for current projects published in the magazine, those firms stocking printed circuit boards and companies that carry components used in projects we've published, along with useful snippets of news about products and services of interest to electronics enthusiasts.

Electronics retailers and other suppliers are circulated with information on projects to be published in ETI some three months in advance of publication. This is then checked as close as possible to the date this column has to be prepared, but there is still a time lag of around six weeks before the magazine appears and this may affect the availability of a particular component and thus the availability of a kit. This is something entirely beyond our control, and often beyond the suppliers' control. The information supplied in this column is as accurate as we can ascertain at the time of writing.

ETI-782 Quad antenna

Another RF project in our series for radio amateurs, shortwave listening enthusiasts, etc. This is based on the locally designed and manufactured "Bandit" hub piece casting.
A single Bondit casting costs $\$ 3 O$ tax paid, including postage anywhere in Australia. A pair, for a cubical quad, will cost you $\$ 60$. Contact: Ashpoint Industries, 38 Birmingham St, Alexandria NSW 2015. Phone $\boldsymbol{3}$ (O2)693-1866, Fax (O 2)317-5629.
All the other mechanical components are obtainable from your local hardware store, the coax, wire and connectors etc, from many electronics retailers.

ETI-1625 PC in-modem

Short form kits for this project, containing all the critical components - modem chipset

ICs, the special line interface components, pc board etc, are obtainable from Energy Control International, 26 Boron St, Sumner Park Qld 4074, Ph. T (O7) 376-2955, Fax $\boldsymbol{\text { B (O7) 376-3286. }}$ Cost is $\$ 289$.
Fully-built units are also available, for $\$ 399$, from Energy Control International, or FT Promotions, PO Bax 547, Rozelle NSW 2O39, Ph. (O2) 818-4838,

ETI-1547 150 MS/s A-D/D-A board

This is very much leading-edge technology and for experienced constructors only. Short form kits of components for this project will be available, containing all the ICs, the 2N5836, filters, pc boards etc through: Energy Control International, 26 Boron St, Sumner Park Qld 4074, Ph. © (O7) 376-2955, Fax z (O7) 376-3286. Cost is $\$ 399$. Price for fully-built and tested units is available on request.

NEXT MONTH

D-A converter add-on for your computer

Here's a really simple digital-to-analogue (D-A) converter you can attach to your computer and program to generate all sorts of weird and wonderful signals in the audio range . . . maybe even, speech?

Wideband SWR bridge

While other magazines are still begging for RF and amateur radio projects, we just get on with presenting them for you! Here's a low-cost, accurate, simple to build SWR bridge, You can have the option of single or dual metering or drive the bargraph display from our '748 RF Monitor project.

Simple home intercom

A single IC, a handful of parts, run a little wiring between the kitchen and the garage - or wherever - and, in one Saturday afternoon, you've got an intercom! An ideal project for the newcomer to electronics.

Tips on measurement techniques

There is a law of quantum mechanics that translates loosely into "you can't measure anything without disturbing something". In electronics, this translates into the much more powerful Murphy's law: "No matter how carefully you measure something, you will get the wrong answer!' Jack Middlehurst gives practical tips on how to avoid the traps when using your multimeter.

BOOKREVIEW

1989 ARRL HANDBOOK

Throughout its history, the ARRL Handbook has been considered the bible of Amateur Radio. Originally conceived in the 1930s as a small publication to present the amateur community with tried and proven information in a time when little or nothing was available, since then the ARRL Handbook has attained and retained a pre-eminent position in the literature of the amateur radio fraternity.
The 1989 edition is not only the latest, but also marks the 75th anniversary of the ARRL itself. Accordingly, the latest edition has undergone still more massive updating since the process of completely revamping the Handbook started in 1985; a worthwhile effort for the ARRL's celebrations.
This edition comprises 1200 pages in a hard-bound volume with over 2100 tables, figures and charts. The first five chapters serve as an introduction and cover the fundamentals of electricity, vacuum tube and solid state fundamentals, radio design as well as the language of electronics and Amateur Radio.
Following these are twelve chapters devoted primarily to radio principles, power supplies, audio and video, digital basics, receivers and transmitters, transceivers, repeaters, transmission lines and antenna fundamentals.
A further four chapters cover special modulation techniques, voice, audio and digital modulation. The RF spectrum, propagation and space communications are covered in two chapters.
In the construction and maintenance section we find twelve chapters covering HF and VHF transmitters, receivers and amplifiers, power supplies, test equipment, antennas and

measurements, station accessories and a section on troubleshooting and maintalning your own equipment.
The final five chapters cover getting your licence - American style, component and material data, the index, abbreviations list and artwork copies for the projects found in the main section of the book.
As usual, the handbook attempts to keep us up to date with all the latest techniques. There is more information on phase noise measurement, direct frequency synthesis and spread spectrum communications, techniques. In the test equipment' sections you will find new information on spectrum analysers and oscilloscopes, as well as new test equipment designs to build.
Many new, small as well as large scale construction projects have been included, some of the simpler offerings being updated
pre-amplifier designs for VHF and UHF bands and power supplies. For the more ambitious constructor, there are projects like a 1.8 MHz QSK transverter as well as many amplifier designs for whatever your needs might be. For satellite enthusiasts there is a new digital TR sequencer for added operating convenience. You'll also find up to date information not only on ATV, SSTV and fax, but also weather fax.
The famous Cubic Incher QRP transmitter is there along with a new 6 W, VXO-controlled CW transmitter for your favourite band between 80 and 15 metres. There are a number of very useful station accessories, DTMF encoders and decoders, PIN diode transmit receive switches, a digital PEP wattmeter and SWR calculator, transmatches and dummy loads.
Altogether. a book well worth buying for anyone involved in amateur radio, and if you haven't
had a new one for a few years you won't recognise it, so much has changed.

The 1989 ARRL Handbook for the Radio Amateur is published by the American Radio Relay League: 1200 pages, hardbound, quarto size. Review copy from Stewart Electronic Components, P.O. Box 281 Oakleigh 3166 : (O3) 543-3733. Cost: $\$ 46.00$ post free.

ADVERTISER INDEX	
Alldata Australia W	WS 8.9
Apogee Technology	W5 4.5
Audio Engineers	139
AST Research H	HUB 21
Ashpoint industries	44
Augat	28
Baltec Systems	WS 6
Bose Australia inc	OBC
Bob Mcknight (Trading)	13
Endeavour Tools	107
Energy Control international	105
FPC Subscriptions	26.27
FPC Marketing 122	122, 123
Hewlett Packard 17	17.19.21
tE1	9
Isbey Industries	140
Icom industries	117
Jaycar Electronics	43
Jockey	5
Kalex Electronics	45
Maestro Distributors	WS 13
Marantz (Australia) Promotion	- 131
Marconi Instruments Promotion	tion 121
Marktronics	119
Microway (Excel Comouters)	WS 11
Mondotronic	WS 14
Nilsen Instruments	22
Philips Accessories	IFC
Philips Scientific and industrial	ial 23
Philios Promotion	26.27
Rod iving Electronics	WS 15
Roman Technology	HUB 6
Reader information coupon	29.30
Sancom comouters	WS 16
Scan Audio	133
Scope Laboratories	111
Selectronic Components	8
SME Public Domain	WS 3
The Australian Sound Company	any 130
Vicom International	32
VRC Comouter Services	WS 14
Wireless Institute of Australia	1a 42
Yamaha Music Australia 1	146، IBC

I NGENUITY

Programs

A new ERA for CP／M

BDOS	ORG	65100 H	；change to 9C866H for 64k Standard
	EQU	5	
			；File type tield of FCB
	1 d	IX，F＿Type	；dir \％．BAK
	call	Print	
	1 d	c， 19	；era＊．BAK
	］d	de，FCB	；
	call	BDOS	
	1 d	（ $1 \times+9$ ），＇H＇	
	1 d	（IX＋1），＇E＇	
	$1 d$	（IX＋2），＇ X ＇	
	call	Frint	；
	1d	c． 19	；era＊．HEX
	1 d	de，FCB	；
	call	BDOS	
	$1 d$	$(I X+6),{ }^{\prime} P$＇	
	1 d	（ IX＋1），＇R＇	
	1 d	（IX＋2），＇N＇	
	call	Print	；
	1 d	c． 19	；era P．PRN
	1 d	de，FCB	；
	JP	BDOS	
；			；Search for first file
Print：	1d	c， 17	
Prn＿J1：	1 d	de，FCB	；BDOS returns $A=0,2,2,3$ or gFFh
	call	BDOS	； 9 FFh means flie not found
	OR	A	ioffset in file buffer＝A 32
	RET	M	；not 85h to lgnore user number
	11	H1， $3: \mathrm{H}$	
	1d	de，String	；
	RRCA		；$A=A * 32$ provided $A<8$
	FRCA		
	RRCA		
	add	a， 1	； $\mathrm{HL}=\mathrm{HL}+\mathrm{A}$
	1 d	1，a	；
	Jr	nc，Prn＿J2	；
	inc	n	
Prn＿32：	1 d	bc， 8	；Move file name to String
	LDIR		
	Id	a，＇，＇	
	Id	（de），a	
	inc	de	
	1 d	c， 3	；Move file type to String
	LDIR		；Print
	ld	c． 9	iStrang
	1 d	de，String	
	cal！	BDOS	isearch for next file
	ld	c． 18	
	jr	Prn＿J 1	
；			； 16 spaces
String	db	，	
	db	＇${ }^{\prime}$	
；			
FCB	db	6	
	db	＇？？？？？？？？＇	
F＿Type	db	＇BAK＇	
	db	0，8，8	
	ds	20	

THE program is invoked without any parameters．It then erases all the files of type BAK（backup）， HEX（assembler output in hex format）and PRN（complete assembler output with comments
and object code）．These files usually do little but take up disk space．The program prints the names of every file it erases．

Christopher Pankhurst， Narara，NSW．

Draw on your Apple 11

```
    REM *** DRAWER ***
    REN1 *** LOW RESOLUTION DRA
        Fi***
    REM *** BY GREG TUMKIINS **
    REM *** FOR THE AFPLE ][ *
    REM *** VEFSION WITH LOW RI
        AND HI RES COMING SOON!!!
    *
    REM *** COMANDS ***
    TEXT : HOME
    FRINT "USE I TO MOVE YOUR
    T UF, M TO MOVE DOWN, J TO
    QVE LEFT, K TO MOVE RIGHT
        C TO CHANGE COLOUR, F TO I
        ISE YOUR FEN AND D TO LOWEI
        IT"
    FRINT "•Q* TO QUIT"
    PRINT "FREESS 'S' TO START"
    S莑 \(={ }^{\prime \prime}\)
    GET S*
    IF S宣 \(=\) " S " THEN 80
    GOTO S0
    GR
    \(X \%=20: Y \%=20\)
0 COLOR= 9
110 FLOT \(X \%, Y \%:\) FRINT "DOT AT
    ;X\%;" HORIZONTAL AND ";Y\%;
    VERTICAL
\(120 \mathrm{M}=\)
130 GET M穾
140 IF \(M=\) "Q" THEN 340
150 IF \(M=\) "P" THEN COLOK" \(=1\)
    GOTO 110
160 IF \(M \$=" D\) " THEN 100
170 IF \(M=\) "C" THEN 300
190 IF M\$ = "I" THEN F•RINT:
    \(: Y \%=Y \%-1\)
    IF M \(=\) "M" THEN PRINT:
    \(: Y \%=Y \%+1\)
210 IF MS = "J" THEN FRINT:
    \(: X \%=X \%-1\)
    \(: X \%=x \%+1\)
230 REM *** START OF ***
240 REM \(0^{*} * *\) BORDERS \({ }^{*} * *\)
250 IF \(X \%=<6\) THEN FRINT
    "CAN'T GO THERE'!!!!!": \(\mathrm{X} \%\) :
    \(X \%+1\)
        IF \(x \%=>39\) THEN FRINT
        PRINT "CAN•T GO THERE!!!!
        \(: X \%=X \%-1\)
270 IF \(Y \%=<0\) THEN PRINT
    "CAN T GO THERE! ! ! ! ! : Y\% =
    \(\%+1\)
280 IF \(Y \%=>39\) THEN PRINT
    PRINT "CAN'T GO THERE!!!!'
    \(Y \%=Y \%-1\)
290 GOTO 110
300 FEM *** CHANGE COLUUR ***
\(310 \mathrm{C} \%=C \%+1\)
32.1 IF \(\mathrm{C} \%=16\) THEN LET \(\mathrm{C} \%=\)
ジきO (こOLOR = 6\%: 13010 110
```



```
YEO ENJ
```

HERE＇S a simple program that lets you draw on－screen with your Apple 11．All instructions are included in the program．

Oreg Tomkins，
Weston，Act．

Idea of the month

Improved directory routine for the C128

HERE is a program that makes looking for a file on disk easier. If you have disks like I have, with hundreds of short files, the problem of looking for files becomes worse as the computer quickly scrolls the screen up without giving you a chance to view the filenames.
To fix the problem, I have written this program which stops at the end of a page's worth of files and will not continue until you have finished looking at the screen and pressed a key to continue. Also, this program fits twice as much on the screen when you are using 80 columns, whereas the computer's built-in routine only has one column, whether you are in $40 / 80$ screen columns mode.

To type the program in: enter the built-in machine language monitor (press Function-8). Type in the first line. excluding the
colon and characters which follow it. then press <RETURN> The computer will now give you the next address (>O13O8). Now just type the two-digit hexadecimal numbers and enter them. Continue this until you've typed in the last line, then press $<$ RETURN $>$ twice.

Now all the machine code is entered, to save it type, S " 128 DIR/ML" O8 1300 140F < RETURN>
Exit the monitor with, X <RETURN> and type in the basic file. Save it with DSAVE'(filename." $<$ RETURN $>$.

Turn your computer off and on. Typing RUN'Yfilename)' <RETURN> will load the directory routine. Pressing the Function-3 key from then on will give you the directory (Function-3 was the computer's old built in directory routine.)

Shane G. Harper,
Lalor, Vic.

MONITOR
PC SR AC XR YR SP ; $00000000000 \mathrm{F8}$
 >01310 FF A8 08 AA AO $0020 \mathrm{BA}: \square$ $>0132020 \mathrm{C} 6 \mathrm{FF}$ BO 1A AO O4 20: 4 >01328 CF FF 88 DO FA A9 12 20: $\bar{\pi}$ >01330 D2 FF A9 FF 85 FC A9 00: π. \quad.
 >01340 D2 13 A2 00 A0 $0420 \mathrm{CF}: \rightarrow$. . $>01348 \mathrm{FF} 9560$ BA $4901 \mathrm{AA} 88: \ldots \ldots$.n. >01350 DO F4 3820 FO FF AO 00: 5 部, >01358 A5 FC FO 02 AO 2818 20: $>01360 \mathrm{FO} \mathrm{FF} 2007 \mathrm{BA}$ A9 $00 \mathrm{~A} 2: \mathrm{M}$. >0136808 AO 0320 5D BA 38 20: >01370 FO FF AO O5 A5 FC FO 02: r. >01378 AO 2D 1820 FO FF A8 00: >013808561 A9 1C 856020 CF : UR..

 $>01398 \mathrm{DO} \mathrm{EC} 20 \mathrm{E} 1 \mathrm{FF}$ FO $33 \mathrm{A5}$ 가난 $>013 \mathrm{AO}$ FC C9 FF DO 19 AO 38 A5: $>013 A B$ D7 DO 02 AO 10 A9 20 20: $>013 B 0$ D2 FF 88 DO FA A9 92 20: $>013 B 8$ D2 FF A9 01 85 FC A5 90: ㄱ․ . . $>013 C 0$ FO 1B 20 7D FF 42 4C 4F: T. Tis
 $>013 D 0$ 2E 0020 CC FF A9 $0820: \%$ 팝 $>013 D 8$ C3 FF 4C E7 FF A5 FC $49:-7 C^{-11}$ $>013 E 001$ A6 D7 D0 02 A9 00 85: . 0 . $>013 E 8$ FC A5 FC DO 1B A9 OD 20:M
 $>013 F 8$ A5 FD C9 18 DO OA A9 00: FA >0140085 FD A5 D4 C9 58 F0 FA: . $\mathrm{H}_{\text {In }} \mathrm{x}$
 10 BLOAD" 128 DIR/ML"
20 KEY3, "SYS4864"+CHR\$(13)
30 NEW
PO
PC
PR AC
000
$?$

READY.

"IDEA OF THE MONTH"

ROGER HARRISON

ANSWERS \& ARGUMENTS

This column is intended as a forum for exchange between you, the readers, and the magazine. Via this column I'll answer queries on projects, general questions on electronics and related subjects that may puzzle or concern you, engage in a little argument on topics of interest, or discuss subjects you might like raised. It's up to you! Short letters will be appreciated, long ones may be edited; if asking questions, confine your letter to one or two topics please. Send your letters to: Locked Bag 888, Rozelle NSW 2039.

Extra details with projects

1 have been a casual reader of ETI for 12 years. The 'new' format is great and more projects such as the ETI-1623 Parallel I/O card for PCs, with complete data sheets, should be included in future. Not all projects in magazines are bullt as presented, and all extra info is greatly appreclated.

S.N. McK.

Highgate HIII, WA.
OK glad to obllige where possible and appropriate, but at the same time we don't want to fill the magazine with data sheets, either.

More radio projects

Can you put more shortwave, CB and amateur radio in Electronics Today. It is a great magazine. Keep up the great work.
B.P.,

Fern Tree Gully, VIc. As you no doubt have already seen in recent issues, we're dolng just that, while our competitors are stlll scrounging for contributions. We deliver!

Protection for the 162 Power Supply

The School of Science \& Technology of the University of Western Sydney, Nepean, offer degree programs in Applied

Chemistry, Applied Physics and Computing Science as well as transfer courses in Engineering. Applied Geology and Materials Sclence in conjunctlon with the University of Technology, Sydney.
To support the experimental program, the ETI Project 162 (Dec. 1982) was chosen as a versatile power supply.

In some experiments, the power supplies were called on to provide a full 1 A through a 2 Ohm load, and in others the students, through misadventure, tested the performance of the supplies to their limits.
As a result of this "baptism by fire", a number of modifications have been made to the original design which may well be of relevance and interest to your readers - particularly high school science teachers looking for a student-proof and Inexpensive power supply.
When pushed to its limits (I A) it was found that the pass transistor, Ql, after a period of time, would short clrcuit "emitter/collector".
This problem can be solved by including a larger heatsink. However, intermittent short circuiting under maximum voltage and current conditions also caused Ql to short clicuit. Admittedly, these situations are not those that most owner/ builders would inflict on their power supplles but with students,
many situations arise which are not anticipated.
The remedy for this, we found, is not just to use a larger heatsink but a larger MJ2955 pass transistor as well, mounted directly onto the heatsink. Under these conditions it is possible to draw 1 A continuously and the thermal protection is no longer needed.
It is also found that with the voltage set to a maximum (3O V) and current set at a minimum, a short circult across the output causes IC2 (LM3OI) to fail. When the current is set to a minimum, both inputs to the op-amp are driven by low impedance sources which can cause a problem. This particular problem was cured by placing a 56k resistor in serles with the Inverting input.
As a result of these changes to the ETI-162 project circult, the power supplies are now able to handie severe treatment without failure.

E. Peter Toups,

School of Sclence \& Technology,
Unlversity of Western Sydney.
Many thanks for relating your experiences with this supply and the "cures" you found effective. I might also draw your attention to the article, written by yours truly, entitied 'Goof-proofing' the '162 Power Supply on page 113 of the June 1984 issue. Other ETI-162 owners may wish to consider
both solutions before attempting any modification. Copies of this article are obtainable in the normal way through ETI's Reader Services.

Car alarm

I was recently looking back through your February 1986 issue (Saturday Arvo Projects section) after remembering the car security system featured. As I am now thinking of installing such a system, this article interested me greatly.
I was wondering if this kit (Project No. 340) is still in production. If so, what is the price. Maybe it has been replaced by a better, more efficient alarm system.
S. M.,

Devonport, Tas.
The ETI-34O Car Alarm was the last fully-featured car alarm project we've published. It is available in klt form from All Electronic Components, 118-122 Lonsdale St, Melbourne Vlc 3000, $\boldsymbol{3}$ (O3)662-1381. Or, if you just want a pc board, they can supply that, too.
The only other projects that might be of interest to you are the ETI-343 Optical Car Alarm Switch, published in the September and October 1985 issues, and the Shock-triggered Alarm which appeared in the Aprill 1988 issue. Copies of the articles, or back issues where avallable, can be obtained through ETI's Reader Services.

Digi-125 Amp follow-up

I have a few questions regarding the ETI-143O Digi-125 Audio Amp Module. I have built a number of these with good success. It's a top performer for such a remarkably simple designl However, one of my modules draws almost zero quiescent current and shows distortion at low volume. Got a cure?

MODIFGATION HHEN USING A 100 VOLT UNE TRANSFORMER

Also, I want to build one into a small PA system. Can I drive a 70/100 volt line transformer primary directly from the module's output, or would the tranny's inductance do strange things to it?
Last, l'd like to try bridging a pair of modules for a bass guitar amp project. How do I connect them up?
Any and all assistance would be greatly appreciated.
D.G.,

Marrickville, NSW.
I think we can assist on all three counts. Firstly, the low quiescent current and low level distortion is an output stage bias problem. The forward voltage drop of diodes D1 and D2 is too low here. Just lift the leads at cathodeanode junction of DI-D2 and insert another IN914 in series, so that all the cathodes face in the same direction, of course. Simple, eh?
While we're talking about this part of the circuit, something missed in the original article is the fact that R6 should be rated at IW if you run the module from the maximum recommended rail
voltages
To drive a 70/100 volt line transformer, you need to install two 'klck-back' diodes between the output terminal and the module supply ralls, as shown in the circuit here. 1 N4OO7 diodes will do the job. These short any back-emt transients that you get In such installations. Graham Dicker tells me he has used these modules in a number of PA installations and they're doing sterling service.
So you want more grunt? Bridging two modules is simple. according to Graham. The scheme is shown in the accompanying dlagram. Connect a l00k resistor between the base of $Q 2$ on one module and the output connection on the other module. The speaker connects between the output terminals of the two modules. The input ground terminals should be connected to common ground at one point only. It would be advisable to use a speaker having an impedance no less than 8 Ohms with bridged modules. Make sure your power supply is suitably rated.

Corrections

Projert ETl-195

August, pages 47 \& 51
The circuit of the 1 kHz Oscillator, on page 47, shows C2 and C3 incorrectly connected at each end of R3. There are no junctions here, C2 and C3 connect from pin 3 lClb and pin 5 lClc to ground, respectively. The
incorrect plot of the circuit was used for reproduction, as you can see by the scribble next to the oscillator output socketl The correct circuit is shown here.

On page 51, on the component overlay diagram, the connection at the junction of D1O and D12, on the left of "sinewave out to SWl", should show "T2/15 V".

September, page 64 shown here.

Building Blocks of Electronics

 October, page 53Three famous double diode valves are shown in the picture

in the top right hand corner of the page. The 6×5 at the right is incorrectly designated as directly heated when it is actually an indirectly heated type. 타

QUESTIONS, THEORIES \& ANSWERS

Every year, the insurance ndustry trots out its list of risible excuses written in defence of, or in support of (we're not sure which...), insurance claims. You know the sort of thing I mean "I was driving down a dark street. when this tree suddenly jumped out in front of me ...", from a gent claiming on serious front end damage to his car. They're usually followed, at this time of the year, by stories from teachers who've just finished marking mountains of students' annual examination papers.
In keeping with the general idea that this publication is largely about electronics in all its facets (well, at least, the last time I looked it was ...), let me bring you a few risible replies to questions posed on some fundamental aspects of electricity and electronics, passed on to me by a colleague from a certain academy. The questions here are not necessarily in any given order ... Q: Define the AMP.
A: An AMP is a little animal that crawls along a wire.
Q: What is the function of an AMMETER.
A: An AMMETER is an animal that eats AMPS.
Q : What is the rote of the BATTERY in this circuit. (The circuit showed a battery connected to a simple series and parallel resistor network).
A: The BATTERY fires AMPS around the circuit.
Q: Show how the current flows in this circuit. (Same circuit...)
A: The AMPS ride round the circuit on a megacycle.
Q: What does Fleming's Right Hand Rule state?

A: Fleming's Right Hand Rule states that: "All AMPS must ride their megacycles on the right hand slde of the circuit."
Q : What is the difference between CHARGE and CURRENT?
A: A CHARGE occurs when all the AMPS run round the circuit together.
Q: Define the JOULE.
A: A JOULE is a fight between two amps.
Q: Define the OERSTEAD.
A: An OERSTEAD is an OHMSTEAD for "orses?
And no, we did not get this one off a computer bulletin board! But, no doubt, within a week of this issue going on sale, you'll be able tol

The science of salesmanship

SELLING things - anything - has always been a matter of following time-worn patterns of behaviour until you strike the one that works with the customer you're speaking to at the moment.
But all that has now changed. Selling has been reduced to a set of scientific theorems which can be expressed as mathematical equations. However, as salespeople always get the job because of their poor mathematical ability, rather than despite it (...look, guys ... although I write this stuff, I don't make it up all the time), we'll leave out the equations and just get straight into the theorems. Even if / understood the equations, I
wouldn't write 'em down here.
Some of the best scientific minds of this century described some of the fundamental laws of physics - which is nature, after all. So, because these theorems parallel the work of these great scientists, they have been honoured in the theorems of the science of salesmanship. Now, I realise, at this juncture, that to be entirely non-sexist and up-todate about this, that last word should be salespersonship, but the lexicon for the spelling checker in my word processor doesn't have it - and whose fault is that? Anyway, let's lapse into legalese for a moment and say that where the one gender is mentioned then the other is included here.
Back to the theorems of the science of salesmanship...
The Helseniberg Uncertoiniy Theorem. You can know that a customer will buy at any given time, but not how much they will pay. Or, you may know how much a customer has at any time, but not whether they will buy.
Schrodinger's Theorem. At any given moment there is a positive probability that someone will buy. sit down and wait. Keep your cat locked up.
Szllord's Choin Reoction Theorem.
Sell a chain to one customer in the shop and they'll all want to buy one!
Bohr's Theory of The Cuspomer. Customers will circle the store in discrete orbits. They will never approach the sales person because of the repulsive force.
The Theorem of de Broglle. To signal your attention, customers will wave their umbreila at you. To
signal dissatisfaction with the price, customers will whip out an umbrella from beneath their cloak and beat you repeatedly about the head and body!
The Papodopolous Topology Theorem. Acknowledging the quantum theory of financial mechanics (all payments are made in lump sums, some sums more often than others), we observe that the customer can be described by a truncated equation of the torus. We then transpose the customer into fourdimensional space. It is then possible to carry out such a deformation that the customer is returned to three-dimensional space in a knotted condition. The customer is then helpless.
d'Espagnars Set Theorestic. We observe that the store is a separable space. It therefore contalns an innumerable dense set of points from which can be extracted a sequence having the customer as the limit. We then approach the customer steadily and stealthily along this sequence using suitable arguments. But the limit of the sequence may be zero.

The Rheinhartz Inversion. Place a spherical Faraday cage in the middle of the store. Go inside it, locking it behind you. Customers entering the store will not be able to enter the cage. Perform a space inversion with respect to the cage. The customers will then be inside the cage and you will be outside. Isn't that where you want them?
Diroc's Theorem. We observe that customers are, ipso facto, observable in the store. Consequently, if there are any customers in the store, they won't see you. Selling something to a customer is left as an exercise for the reader.
Feynmon's Observafion. If you can pick any lock, you'll never need to sell anything. Play bongos, instead.

를

IMPROVE THE SHAPE OF YOUR BOTTOM LINE

HUB - the business magazine which offers

 insight into modern management strategies through information technologiesCall Michelle Smith on (02) 6936666 or fax to (02) 6936613 or write to HUB magazine, 180 Bourke Road, Alexandria 2015 for a free evaluation copy mailed to your business address.

SOFTWARE TOOLS FOR SCIENTISTS AND
 를․

 your oun－Dobe and study nem in detait atyour Bisure ils－of The rules Quinn－Gurtis tios fivo for usifg This miterce You can includesony this eode ＝ōgethe with your own code－fora conmerctal prógramiprovif̂ect you only sell the fully compiled andinkediexectifablette．

 no boition in in with wheeroy friting
 Cuittisise o
 Whator to

 agian－

 F－ānt to dota fastifo riéatransform dis pait
 －tocik of ceide is giegdy he $e^{-6 i s c}$
 regutany was oched IPCClicion and is
 version 2.0 ，bt ixould clearle－wotk using －version 1.5 Ine is a cômpenion setiof dites af the same price for－beole piogitnming

The manuat－

喜hreerin bindein－ describes etch functon in detentogether withbints of its use．There is ant fle at the －front ang a sma sectibn of link and renn－tine problems－at Fhe back
 section pointine out that a late memot

 ¢haper ©n－dafa structurese in © C 2

and tway aimensional atays into functions The conter ter the manual，end fherfirst
気Statiptics 皇
3．Multicle regressien

4．Numenticat tegration and differ entiation
5．\＄olution of ifferentiol ē
6．Fburier＝ana ikis sis en
7．Fille transfer ito

9．Natix mat his
W．Complex numbèr maths

12． 720 giéphic ${ }^{3}$
13． 3 D gradatict

6．Sṕecial mathematiēal functions：

DSC two

The secend dible
 －of the dedmonstatio programs：
 prosiam for fuit or to help them with her hobiby wik find wedilh of zisefotionctions

TheCCode

 versien 5 5 L with a Fow simple miodlications to bermithe use of pulck C ．Thespogromming
 explanator Funterngth varia sible nates are
 is hightiquality with －in other wordsol good sound code rather than－sipectacular，
For anyone probramming or learning to program in C，the fact that you can legally

a coby of fiese prograns for pach copy source code thaf you sell．Since－veny fews －brogranme are hoing to sell heir source－
 restrictiṑn．Of course if yolifere ernly witing progras or yourse the these rules don＇t aripty

Impressions

Thene musit be well ovet a man－yeatof work in these dibcs，in writing．the frograns and testifg the to thake sure that they－ero exacily what theyare designed to do All of the biocks ó code that thave used sē far have worke withệut an hitches andeot立xactly what descibed int the monual．the
 sulitable foreñineels，scientists，oElete arione who wishes to visualise the shape ol data or mathe maticafinunctions in toun thie dimonsioñ
－AI an a ap pijce，in ludinforsta of S16年 the ef discs 胃ust suiely be the batgain of the yearitis not often zou can buy abour S3F，GOO worth ol good code por such a paltr）sum！新 Sciente and Engineoning tols for Mictosort － 5.1 ＂，Rev 6.1 iz two－dilsc setol source codes
 postage．Review copy from Boston Technofogy， 12 Glen sit，Milsồns Point NSW 2061.

BACNOROP：Printout of the function $Y=A^{*} \exp \left[-C^{*}\left(x^{*} x+y^{*} y\right)\right]$ plotted using grid lines and with the axes rotated to the position shown． The computer was a 12 MHz Osborne AT turbo using Hercules graphics，the printer was an Epson

EX800．

THE NEW ICOM IC32AT, OVER. WITH ITS DUPLEX FACILITY, OVER. MEANS YOU WON'T HAVE TO TALK LIKE THIS, OVER AND OUT.

The IC32AT is the newest dual band handheld transceiver by Icom.

It has been designed with the most advanced VHF technology the electronics industry can offer.

And this little 2 metres and 70 cm compact handheld offers full duplex facility.

Which means instead of a broken conversation, you can now simultaneously transmit on one band and receive on the other. Just like a telephone conversation.

No longer do you have to wait for a long "Over". It's full "Break in".

And with its high output power, you can be sure your words are heard. The IC32AT uses a custom designed power module as the final amplifier. Which means this transceiver puts out 5.5 W on 2 metres and 5 W on 70 cm .

So you will never be at a loss to make that repeater.

What's even more incredible, each of the twenty memory channels can store two frequencies: operating frequency and offset frequency are just a couple of examples.

The Programmed Scan function scans all the frequencies between two programmable scan edge frequencies, while the Memory Scan function scans all memory channels in succession, except, of course, those you lock out. In short, you can scan 2 metres, 70 cm or all channels.

Thanks to the handy little pocket beep, you'll never miss a call. By installing the UT-40 Tone Squelch Unit (sold separately) the transceiver functions as a pager.

You can use the built-in DTMF keyboard to access a repeater and to make a phone patch. The key numbers and letters are printed large for quick and easy reading.

As for monitoring the input frequency when you work a repeater, that's as simple as pushing the Monitor switch on the side panel to open the squelch and check the frequency.

Every five seconds, Priority Watch monitors the Call Channel, or one or all the memory channels in succession.

And that's while you operate!
When you want to change the frequency or the memory channel fast, the Dial Select changes the $1 \mathrm{MHz}, 100 \mathrm{kHz}$ digit or the memory channel directly. One push of the button does it.

All these functions not only make the Icom IC32AT the most advanced dual band handheld transceiver available, but also very easy to use.

Call (008) 338915 for your nearest Icom stockist today.

The telephone conversation in itself will be a very good demonstration of the IC32AT's duplex facility.

Over and out.

The Ball Partnership ICO 0024

SEMICONDUCTOR WATCH

TECHNOLOGY

Roger Harrison reports on what's happening in the world of semiconductors.

Programmable delay generator

PROGRAMMED with an 8-bit code, Analog Devices' AD9501 delay generator provides precise time delays of digital pulse edges. A TTL/CMOS-compatible alternative to existing ECLcompatible componients which require ECL-to-TTL level shifting circuitry, the AD9501 needs just a single +5 V supply.
With a full-scale range of 2.5 ns to 10 us, with 10 ps resolution, the device is designed for pulse deskewing and clock timing adjustments, the company says.
Applications include automatic test equipment (ATE), disk drives, data communication, video and radar applications.
For further information, contact: Avisun Pty Ltd, 11-15 Alexander S \dagger Crows Nest NSW 2O65. T (O2)438 3900.

READER INFO No. 172

Advances on the optoelectronic chip

IBM scientists in New York have successfully put 8000 transistors and four photodetectors onto a single gallium arsenide chip, claiming this to be the densest optoelectronic chip yet produced.
An optoelectronic chip is one that integrates electronic circuits with optical devices. It can detect and process data at speeds of a billion bits per second.
Gallium arsenide was chosen to make the chips because lightemitting components, such as lasers and photodiodes, cannot be made from silicon. But you can't integrate as many components on gallium arsenide
as you can on sillcon.
integrating electronic and optical devices permits computer circuits to be faster and more reliable.
John Crow of the IBM Thomas J Watson Research Centre at Yorktown Heights in New York said that another advantage is that integrated transmitters and receivers can fit "right into the processor".
Before this development, integrated chips of only tens of electronic components and a few photodiodes for high speed fibreoptic receivers were available.

READER INFO No. 171

Maxim to produce analogue ICs

MAXIM Integrated Products and VTC Incorporated are to produce a group of blpolar opamps and comparators, to be manufactured and marketed by the two companies under a joint agreement to develop high performance analogue ICs.
The products were developed using VTC's complementary bipolar process featuring 6.5 GHz NPN and 1.5 GHz PNP transistors claimed to be two-to-three times faster than any other manufacturer building similar devices.
The new MAX4O8, MAX428 and MAX448 ICs are single, dual and quad package 100 MHz opamps designed to meet growing
demand for high speed devices in test and measurement, video signal processing and telecommunications.
They operate from standard digital supplies of $+5 \mathrm{~V},-5.2 \mathrm{~V}$ which compares with $+/-15 \mathrm{~V}$ for conventional devices. They feature $100 \mathrm{uV} /$ second slew rate, offset voltage to 3 mV and ability to drive 50 Ohm transmission lines.
Three new comparators featuring ECL outputs are released - the MAX9690. MAX9685 and MAX9687.
Further details from Veltek Pty Ltd, 22 Harker St, Burwood Vic 3125. 주 (O3)808-7511.

READER INFO No. 170

Laptop-specific features for RAMDAC

ENERGY Control Internationa extended its coverage of RAMDACs for hi-res colour graphics applications with the introduction of the Brooktree Bt475 and Bt477 RAMDACs, Intended for use in both VGA compatible and laptop computers.
These two devices are similar to their predecessors, the Bt47, $\mathrm{B}+476$ and $\mathrm{B}+478$. The $\mathrm{B}+475$ and ' 477 are 256×18 and 256×24 colour palette RAMDACs, respectively, running at 8 OMHz .
They are sulted for hi-res displays for desktop publishing, CAE/CAD/CAM, image processing. instrumentation etc. Brooktree has included additional features allowing them to be used in laptop computer systems that offer the option of driving a VGA monitor.
A power-down/sleep mode minimises power consumption. dropping current drawn to 1 mA when not in use. An on-chip voltage reference allows a single

external resistor to be used to set full-scale output current of the triple 8-bit DACs on-board.

On-chip comparators verify proper CRT connection and an anti-sparkle circuit that is said to eliminate the scattered white dots that occasionally occur when the system writes to the RAMDAC during active video both new features.
Full details from Energy Control International, 26 Boron St, Sumner Park Qld 4O74. I (O7)376-2955.

READER INFO No. 167

14-bit serial/parallel DAC

FABRICATED in low-power linearcompatible CMOS, the AD784O 14-bit DAC from Analog Devices is complete and fully specified for both ac and dc performance. Without any external components, this double-buffered monolithic DAC interfaces to a serial port or parallel data bus, generating $a+/-3$ - V full-scale output.
Incorporating an on-chip reference and output amplifier, it simplifies system design in applications such as high-end modems, speech synthesis, programmable controllers and servos, and adaptive noise cancellation.
An internal 3 V buried Zener reference, trimmed to within $+/-1 \mathrm{mV}$ of nominal, also provides up to 0.5 mA for external circuit use. When desired, the AD784O can accept a system reference in place of this internal reference. Its integral output buffer amplifier develops up to $+1-3 V$ across a $2 k$, 100 pF load, settling to within $1 / 2$ LSB of final value in typically less
than 2.5 us. Small-signal bandwidth of the output amplifier is 1 MHz .
For further information, contact Avisun Pty Ltd 1l-15 Alexander St Crows Nest NSW 2065. © (O2)4383900.

READER INFO No. 165

Sony in

SRAM output

race

SONY is aiming for a 50% production increase for high-end static RAM chips. It wants to build up to an output of 4.5 million units per month.
Most of the Y6O billion Sony has set for investment in semiconductor equipment this financial year will go to its SRAM plant in Kyushu. The production boost is mainly in 256 Kbit and 1 Mbit SRAMs where the market is tightening.

READER INFO No. 164

Application notes

THREE new application notes about Analog Devices' ADVseries of low-cost video RAMDAC ICs are now available. The paper on PCB layout describes printed circult board layout schemes for the video RAM-DAC portion of a VGAcompatible graphics card.

Contact Avisun Pty Ltd, 11-15 Alexander St, Crows nest NSW 2065. $\boldsymbol{- 1}$ (O2)438-3900.

READER INFO No. 168

CMOS clock

 oscillatorTHE new CO-44O series high speed CMOS clock oscillator is available up to 125 MHz using ACMOS technology. Stability is $+/-25$ ppm over O degrees C to +70 degrees C , with a MILoption of $+/-50$ ppm over -55 degrees C to +125 degrees C .
More information from A.J. Distributors Pty Ltd, 44 Prospect Road, Prospect SA 5082.

READER INFO No. 169

TWICE THE CAPACITY

BUT NOT TWICE THE PRICE

The new "BP1000" is an Australian designed and manufactured Battery Pack to suit the Electrophone TX475. The "BP1000" replaces the old "BP1300."

The physical size $105 \times 60 \times 40$ of weight of approx. 300 gms belies the large capacity of 1000 MAH @ 9.6 VDC. This should give a good full days work without recharging.
Dealer inquiries welcome.
Retail price $\$ 179.00+\$ 5.00$ P\&P.
Full protection for all your equipment needs in-house custom designs as well as stock items. Hard cases in aluminium or industrial fibreboard and soft cases in cordura, foam lined for impact resistance, webbing harness and carry systems,
tool pouches for all special applications.
In stock over thirty different carry case designs for
hand held two way radios.
Dealer and government enquiries welcome-POA.
THE MARKTRONICS \& GLOBITE GROUP
Ph. (07) 8441281 or (008) 777745.
Fax. (07) 8463318
PO Box 270, Stones Corner Old. 4120.

READER INFO NO. 13

CRACKING THE WHIP

> A proposed referendum might give the Government a convenient shield behind which to hide from the issue of national regulation on environmental matters. We must not let this happen, says John Coulter.

s
-enator Richardson recently foreshadowed a referendum in the future to give the Commonwealth specific powers to decide whether or not to legislate for the protection of the environment. For some months I have been pursuing the claim that the Commonwealth already has considerable powers it is not using.
Legislative power is conferred on the Commonwealth under Section 51 of the Constitution. Each clause of Section 51 contains what is called a head of power'. Section 51 says:
"The Parliament shall, subject to this Constitution, have power to make laws for the peace, order, and good government of the Commonwealth with respect to:" (and Clause 20 of Section 51 says:)
"Foreign corporations, and trading or financial corporations, formed within the limits of the Commonwealth."
That power, the so-called corporation power, complements Clause 1, the trade and commerce power, and both have been used very widely although not, so far, to protect the environment.
Clause 1 says:
"Trade and commerce with other countries, and among the States."
There is no doubt the Commonwealth has the power to legislate to control trading or financial corporations and trade and commerce among the

States (subject to Section 92, which says that laws may not discriminate between the States in these matters). Most applications of these powers have not related to environmental protection, though part of the successful Tasmanian Dams judgement rested on Section 51, 20, the Tasmanian Hydroelectric Commission being judged to be a trading corporation within the meaning of that sectlon.
Most environmental damage could be controlled by regulating the activities of corporations and trading bodies under these heads of power. The Government has been loath to use this power and has sought, rather, to claim that it does not have it. The Opposition would never use these powers because of their dedication to the notion of 'States Rights'.
States Rights is a catch cry much used by the Opposition and frequently heard in Queensland and WA. There is no such thing as 'States Rights'. Only individuals have rights. Through democratic process, individuals collectively grant certain powers to Government. At Federation, the colonies came together to form the Commonwealth of Australia with a Federal Parliament. The people agreed to a constitution, and, under that constitution certain powers were conferred on the Federal Parliament. At any time, altered or additional powers can be
conferred on the Federal Parliament by the people voting in a referendum. Under the Constitution, the laws of the Commonwealth override the laws of the States if conflict arises between the two. It is clear from this structure that State powers are residual powers. They are those powers which have not (yet) been conferred on the Commonwealth by the people, together with those powers which the Commonwealth possesses but has not yet fully applied. This is the case with powers under Section 51, 1 and Section 51,20 of the Constitution, especially in relation to environmental protection. It is also worth noting in passing that the States did not exist before Federation; there were only colonies. States were co-created with the Commonwealth through the act of federation.
The exercise of these wider powers by the Commonwealth
> 'The Government must be bullied and whipped into using those powers'

would certainly be challenged by one or more States in the High Court but there is every indication that the Commonwealth's use of these powers would be upheld. As long as the present situation continues, with the Federal Government sitting on its hands, those proposing very large scale investment - often large, international companies - can demand and get less stringent environmental protection standards by bargaining one State against another. Moreover, similar major enterprises should observe uniform high national standards throughout Australia.

For example, petrochemical plants, paper pulp mills, refineries and metal smelters, as well as the use and application of synthetic chemicals and pesticides, should be nationally regulated so as to ensure high levels of environmental and occupational health.
Consider now Senator Richardson's call for a referendum. it provides a convenient shield behind which the Government can hide, claiming it does not have the power until the referendum is passed. The referendum, if and when it is put, will be resisted by all the State Righters you have ever dreamed of, and will almost certainly be lost. An even stronger excuse would then exist for the Government not to legislate in the area of environmental protection.
The Government must therefore be bullied and whipped into using those powers which it undoubtedly possesses. These actions will be tested in the High Court and will almost certainly be found sound. If not, we will discover what extra powers the Commonwealth does need to protect the environmental 'Commonwealth'. A referendum under those. conditions would also stand a better chance of success. Above all, we must not let the Government continue to hide behind what is probably an untrue claim. interestingly, in recent weeks, frustrated by the intransigence of the Queensland Government with respect to protection and management of the wet tropics, Senator Richardson has threatened to use Section 51, 20. The same has happened with the south eastern forests of NSW.

Senator John Coulter is the spokesman for the Australlan Democrats on Science and Technology.

WIN A MARCONI PROBE

VALUED AT \$2610

Win a Marconi 1GHz Active Probe.

 Precision performance over the widest dynamic range.That's right! Enter this competition and you could be the proud owner of a Marconi 2388 1GHz Active Probe. Prize comes complete with power supply and is valued at $\$ 2610$.

The Marconi 2388 active Probe features:
\star Wide frequency range -50 KHz to 1.25 GHz for all HF to UHF applications.

* Innovative ergonomic design compact, easy to use.
\star High input impedance precision measurements with minimal disturbance to circuit under test.
* Rugged and reliable - tough enough to withstand accidental drops.
To enter simply complete your details in the coupon provided, answer the two simple questions and send it to:
ETI/Marconi Probe Competition Federal Publishing Company Freepost No, 4,
P.O. Box 227,

WATERLOO, NSW 2017

NAME:
ADDRESS \qquad .POSTCODE:
PHONE: \qquad OCCUPATION:

What frequency range does the Marconi 2388 Active Probe have on all HF to UHF applications? \qquad

What make an model scope or spectrum analyser would you use the probe with if you won?

[^2]
YOU CAN NOW PURCHASE ANY OF FROM THE ETI

Titles cover a wide range of electronics, scientific, technical and computer topics and will be updated regularly to keep you abreast of the latest trends.

Simple Tropical and MW Band Aerials	BP-145	\$6.00
Test Equipment Construction	BP-248	\$11.00
An Introduction to Satellite Television	BP-195	\$12.95
Computer Music Projects	BP-173	\$11.00
How to Get Your Computer Programs Running	BP-169	\$11.00
The Simple Electronic Circuit \& Components (Elements of Electronics -		
Book 1)	BP-062	\$14.00
Chart of Radio, Electronics, Semiconductor and Logic Symbols	BP-027	\$4.00
Electronic Music Projects	BP-074	\$9.50
How to Design Electronics Projects	BP-127	\$9.00
25 Simple Amateur Band Aerials	BP-125	\$6.50
25 Simple SW Broadcast Aerials	BP-132	\$6.50
An Introduction to Z80 Machine Code	BP-152	\$10.00
Radio \& Electronic Colour Codes Data Chart	BP-007	\$4.00
50 Projects Using Relays, SCRs and TRIACs	BP-037	\$8.50
50 Simple LED Circuits	BP-042	\$6.00
IC 555 Projects	BP-044	\$9.50
Popular Electronics Projects	BP-049	\$9.50
Practical Electronics Calculations and Formulae	BP-053	\$16.00
Your Electronic Calculator \& Your Money	BP-054	\$5.00
Electronics Security Devices	BP-056	\$9.50
Choosing and Using Your Hi-Fi	BP-068	\$6.00
Transistor Radio Fault-Finding Chart	BP-070	\$4.00
Power Supply Projects	BP-076	\$7.50
How to Use Op-amps	BP-088	\$11.00
Communications (Elements of Electronics - Book 5)	BP-089	\$11.00
Audio Projects	BP-090	\$8.50
Model Railway Projects	BP-095	\$8.50
IC Projects for Beginners	BP-097	\$8.50
Mini-Matrix Board Projects	BP-099	\$6.50
Aerial Projects	BP-105	\$8.50
30 Solderless Breadboard Projects - Book 1	BP-107	\$11.00
The Art of Programming the 1K ZX81	BP-109	\$8.50
How to Get Your Electronic Projects Working	BP-110	\$8.50
Audio (Elements of Electronics - Book 6)	BP-111	\$16.00

BOOK SHOP

BABAN/BOOKS RORULBACK BY ARDEMAND

THESE SPECIALLY SELECTED BOOKS

 BOOK SHOP.A Z-80 Workshop Manual
30 Solderless Breadboard Projects - Book 2
The Pre-Computer Book
Practical Elec. Building Blocks - Book 1
Practical Elec. Building Blocks - Book 2
Audio Amplifier Fault-Finding Chart
How to Design and Make Your Own PCB's
Audio Amplifier Construction
25 Simple Indoor and Window Aerials
An Introduction to Programming the BBC Model B Micro
Digital IC Equivalents \& Pin Connections
Linear IC Equivalents \& Pin Connections
Further Practical Electronics Calculations and Formulae
The Pre-BASIC Book
An Introduction to 6502 Machine Code
An Introduction to Computer Peripherals
More Advanced Electronic Music Projects
An Introduction to Computer Communications
Electronics Circuits for the Computer Control of Robots
Electronic Circuits for the Computer Control of Model Railways
MIDI Projects
Electronic Synthesiser Construction
Using Your Amstrad CPC Disc Drives
LOGO for Beginners
Electronic Hobbyist Handbook
Getting the Most from Your Multimeter
International Radio Station Guide

BP-112	$\mathbf{\$ 1 2 . 0 0}$
BP-113	$\mathbf{\$ 1 0 . 0 0}$
BP-115	$\mathbf{\$ 8 . 5 0}$
BP-117	$\mathbf{\$ 8 . 5 0}$
BP-118	$\mathbf{\$ 8 . 5 0}$
BP-120	$\mathbf{\$ 4 . 0 0}$
BP-121	$\mathbf{\$ 6 . 5 0}$
BP-122	$\mathbf{\$ 9 . 5 0}$
BP-136	$\mathbf{\$ 6 . 0 0}$
BP-139	$\mathbf{\$ 8 . 5 0}$
BP-140	$\mathbf{\$ 1 8 . 0 0}$
BP-141	$\mathbf{\$ 1 8 . 0 0}$
BP-144	$\mathbf{\$ 1 6 . 0 0}$
BP-146	$\mathbf{\$ 1 1 . 0 0}$
BP-147	$\mathbf{\$ 9 . 5 0}$
BP-170	$\mathbf{\$ 1 0 . 0 0}$
BP-174	$\mathbf{\$ 8 . 5 0}$
BP-177	$\mathbf{\$ 1 1 . 0 0}$
BP-179	$\mathbf{\$ 1 1 . 0 0}$
BP-180	$\mathbf{\$ 1 8 . 0 0}$
BP182	$\mathbf{\$ 1 1 . 0 0}$
BP-185	$\mathbf{\$ 1 1 . 0 0}$
BP-189	$\mathbf{\$ 1 1 . 0 0}$
BP-193	$\mathbf{\$ 1 1 . 0 0}$
BP-233	$\mathbf{\$ 1 6 . 0 0}$
BP-239	$\mathbf{\$ 1 1 . 0 0}$
BP-255	$\mathbf{\$ 1 6 . 0 0}$

EASY TO ORDER

To order simply fill in the coupon, remembering to include the code numbers and $\$ 5$ postage and handling. If the coupon is missing, write down the names, code numbers and prices of the books you require. Include your name, address, telephone number, plus cheque, money order or credit card details (card type, card number, expiry date and signature) and send it all to: Federal Publishing, Book Offer, Freepost No. 4, P.O. Box 227, Waterloo, NSW 2017. No stamp required. And don't forget to sign all orders.

MORE FIBRE IN THE HOME

Barrie Smith looks at-the ways in which optical fibre is going to change our lives, in the not too distant future.

Cut-away of optical fibre cable. Made entirely of pure glass, the cable has three parts; core, cladding, protective jacket.

> Present and future global spread of optical fibre networks, linking almost every continent.

Uhe Australian diet has changed considerably in recent times, with many people making a determined effort to increase their intake of fibre and avoid cholesterol-laden and fatty foods. Fibre has made for a 'healthy home:'
Now Telecom is intensifying its efforts to give us the 'intelligent home' with the help of fibre - of the optical variety. How? By giving us interactive video and electronic links connecting our homes to the communications world at large: interactive information videos, home video

I NNOVATION
conferencing, electronic mail and electronic banking.
I know that many of our readers will scan this article for the technological background I will impart - but many (including the writer) may be sceptical of the success of Telecom's aims - not their ambitions in technical terms (in this area they are rapidly moving above any criticism) - but in some of the product benefits to the consumer.
How many of the public really want home conferencing via video? Would the average person appreciate the disruption of his or her domestic routine by clusters of strange faces descending onto the home screen? Or would conferencing really mean an opportunity for research companies to invade our privacy in their fervent search for intimate statistics?
How many could get worthwhile use from electronic mail? In most cases domestic correspondence has little need for rapidity. (even to the point of tardiness being welcome when it comes to bills received!
And is electronic banking for the non-
business person practical? How do you withdraw cash for the milk money from a keyboard and a glowing TV screen in your living room?

Courageous march

No, I think the benefits of Telecom's courageous march into advanced electronics technology will lie in other areas. Optical fibre has so many pluses it is almost impossible to raise even the slightest quibble about its deployment in a national communications scheme. Its enormous bandwidth permits mountainous quantities of information to be exchanged. Commissioned in August, 1987, the thousand kilometre Sydney-Canberra-Melbourne optical link can carry 115,200 simultaneous conversations or the equivalent in data transmissions. To match this capacity in coax terms would need four 10 cm diameter cables.
Before installing the inter-capital link, Telecom investigated the alternatives, with one eye on current demands, and the ability

of rival methods to cope with an expected communications explosion as the country's needs expand.
Already, fibre had proved successful on short distance/high capacity routes. Major trunk links had demands of little difference, and again optical fibre proved to be cheaper than co-ax, microwave links or satellite systems. And, with relative costs steadily decreasing, telephone connections to the home are unlikely to be made with copper by the 199Os. Fibre will be the most likely replacement
There are savings also in installation, maintenance and overall engineering costs, and optical fibre calls for fewer signal repeaters.
Route selection for the alternatives has always been a problem. With metallic cabling, careful avoidance of induction effects from overhead power lines is important, line of sight requirements for microwave links a sometimes impossible necessity.
Fibre is free from electro-magnetic
interference, electrically noisy environments and lightning strikes, and offers virtual immunity from security intrusion - or, at least, if an optical fibre link is tapped, the break-in is detectable. Future signal processing techniques may further extend the capacity of present links.
it is currently believed that Australla is a world leader in long distance optical fibre communications. 1990 will see the AdelaidePerth fibre highway laid - a distance of $2,500 \mathrm{kms}$. By then we will possess a network of $30,000 \mathrm{kms}$, with an actual fibre length of $430,000 \mathrm{kms}$.
Early in March this year, a convincing demonstration of more immediate optical fibre technology was given, which Telecom has christened Phase II.
Centennial Park in Sydney, home of weather-worn stone Victorian statues, singleminded joggers, frantically keen cyclists, fanatic equestrians and Patrick White, was chosen as a test area for the trials, to prove the technique in domestic environments.
Phase II involves multi-channel video
distribution to seven domestic sites. The homes are currently receiving TV transmissions from $A B C, S B S$, a special Telecom closed circuit channel and a threeway split summary of all incoming programming.

Superior fidelity

Domestic reception of television naturally benefits from optical fibre's superior fidelity and low signal-to-noise figures and in Centennial Park's case, imparts a muchneeded boost to reception quality of the national and ethnic broadcasting duo - both unfortunate victims of Sydney's topography and electrical interference.
TV programming is first received at the City South Exchange in Castlereagh Street, and monitored closely before being passed on to the East Exchange in Liverpool Street, Darlinghurst. From here the signal is emitted via optical fibre to the seven test sites.
In the home, the optical fibre carried signal arrives at a decoder box located inside the house, at a convenient point near aerial and

Fibre in the home

power inlets. From the decoder, the familiar co-axial aerial lead is run to the TV set.
At a press conference to announce the beginning of the second phase of the optical fibre trials, Kayvan Ohoudiyat, principal engineer with Telecom's Network Planning, described the organisation's approach to the scheme.
He illustrated the spread of the current global link-up between Asia, North America, Europe, Northern Africa and Australia. By 1991 almost all of Australia's capital cities will be linked by fibre networks.
The present Sydney-Melbourne link is single mode type, holding sixty fibres in the main cable, ten in the distributor and two in the leading cable. Each fibre is ten microns and the whole bundle is enclosed in 125 micron cladding.
Links to homes are currently made with single mode cable.

Three types

There are three types of optical fibre:

1. Multi Mode Step Index: due to the sudden (step) change of the refractive index between core and cladding, light entering the fibre at different angles will take different times to travel down the fibre. It, therefore, causes mode dispersion, which in turn results in limited bandwidth. In telecommunication. this fibre is rarely deployed.
2. Multimode Grade Index: this type of fibre has a high refractive index in the centre, tapering to less at the cladding. This results in approximately equal times for all rays, therefore improved bandwidth is possible. Multimode fibres have core diameters of 50 , $62.5,85$ microns and cladding diameter of 125 microns. They can be used with LEDs for some applications.
3. Single Mode: has a much smaller core diameter ($9 \mathrm{~m} \mu$) and requires a much more intense light source. Able to transfer a very large bandwidth and low loss:
$-0.5 \mathrm{~dB} / \mathrm{km}$ at 1300 nm .
The fibres are made by three companies: Austral Standard Cables, Olex and Pirelli.
Taking Sydney as an example of the approach to a city installation, the 130 telephone exchanges in the 'OZ area will be

OFREP CUSTOMER
(2 FBRE/ CUSTOMER)

System layout at (right) local exchange, and (left) customer's home or office.

$$
\begin{aligned}
& \text { YEAR } 1995 \text { SGENARIO } \\
& \text { YOUR FUTUSIE HOHIE }
\end{aligned}
$$

TELEPHONY : Telephones

TEXT: Electronic News, Weather
DATA : PC's, Data Base Access, Security \& Fire Alarms
AUDIO : 20 Hi-Fi Stereo Channels
VDPEO: 40 TV Channels

INTERACTIVE VIDEO : Electronic Banking

Your 'intelligent' home in 1995 as Telecom would have it. Note the 40 TV channels.

linked by fibre by $1991: 80 \%$ is already in place. The CBD will be served by its own loop.

The home service currently provides four channels (ABC, SBS and two Telecom VCRgenerated signals). In practical terms, the signals are fed to the processing equipment. The output signal is multiplex AM at RF, fed into the optical transmitter. This latter sends intensity modulated signals to the East Exchange. Here, the signal is fed to $1: 8$ passive couplers. Outputs 1 to 7 provide signals to each of the seven Centennial Park

Down the track

There are five main services to the home: water, sewerage, electricity, gas and the phone.
Today's telephone outlet will transform to a telecommunications port.
For example: electricity is supplied to your home (say 240 volts/ 100 amps), and it is distributed throughout the house's interior via a network of power points. Regardless of what type of appliance you would like to use, it is simply a matter of plugging it in.

Now, apply the same principle to telecommunications. A certain amount of capacity will be available for each household, eg 2.4 Gigabits on tap throughout the house, regardless of whether it be telephone, computer data, fax, video or audio.
With an optical fibre quietly sneaking into your 'intelligent home' - you just plug it in.
customers. Output No 8 is fed back to City South Exchange through a loop back fibre; a Television Operating Centre monitors this eighth signal for continulty and quality.
In the customer's home the optical receiver converts the information to RF, and it is then fed to the TV set itself.
It may be a surprise to learn that signal dissemination along the fibre uses AM processing. The reasoning in the trial stage was to get the system working with minimum complexity of equipment at the customer end.
This has, unfortunately, introduced some disadvantages.
Low capacity - a limited number of channels can be carried due to AM intermodulation effects. Use of more complex frequency modulation techniques will expand this capacity.
Cost: optical transmitters and receivers are currently expensive. Hopefully, the price will drop as the technology expands. Eti

Barrie Smith's article in ETI, September '89, "Video piracy - we're the best" stated that Crocodile Dundee ll's producers had not filed for copyright. They have now done so.

R R Din HANHITS

Ex:

 ETI'SAUDIO\& \& HI-FI SUPPLEMENT
CANON A1

CAMCORDE

174ना/i?

YAMAHA NATUAAL SOUNO COMPACT OISC PLAYEA CO-SOSO B,
(ancer

TMMOLINT SPEAKERS
FROM KLIPSCH

Les Cardilini reviews the Tangent 10 and 50 systems, part of a new series by the legendary US loudspeaker manufacturer, Klipsch.

[t is not often you would have seen loudspeakers by Paul Klipsch costing less than a thousand dollars, but the Tangent 10 sells here for around $\$ 899$ a pair (rp).
The Tangent 10 is the smallest system in the Tangent Series by Klipsch, a new range of five models from the speaker legend himself.
Paul Klipsch, now 85 years old, still chairs the speaker company he founded in Hope, Arkansas, USA, during the mid-194Os, after World War 2. In fact, Klipsch and Associates remains one of only a few family company speaker manufacturers that have resisted takeover or absorption by multi-national and larger organisations in that country, according to The Australian Sound Company, in Melbourne, which distrbutes Klipsch products in Australia.
Of course, the name Klipsch has, over the years, been synonymous with horn loudspeakers and enclosures such as the renowned Belle and La Scala models which are still produced by the company. Many Klipsch horns and systems have found applications in professional audio circles around the globe, as well as in hi-fi systems.
But, in contrast, the new Tangent series is more in the mould of the conventional loudspeaker box enclosure for the hi-fi enthusiast.
In the Klipsch tradition, nonetheless, compression drivers with matching horns are employed to reproduce the midrange-totreble sound in all models in the Tangent Series. In the four higher-power models the tweeter units are ferro-fluid cooled.
The low frequency drivers used in the Tangents are Klipsch engineered from the voice coil up, using magnets almost as wide as the driver cones they help power. The magnets weigh in at 567 grams (20 ounces) each and are one of the few parts of the speaker made outside the Klipsch organisation. According to Klipsch literature,

ON A TANGENT, FROM KLIPSCH

the low frequency driver cones are equipped with special cloth surrounds, dua dust caps and geometric design to cope with the higher power afforded by these large magnets. A single, low frequency driver is used in each of the Tangent 10 and Tangent 20 enclosures. Two are used in the Tangent 30 and Tangent 40 models, while the Tangent 50 has three. All drivers, including the high frequency horns, are aligned vertically on the front of the respective enclosures.
As might be expected, the number of drivers in each enclosure is commensurate with the maximum power handling capacity of the channel for the Tangent 10 and Tangent 20, to 150 watts per channel for the Tangent 50. A minimum amplifier power of 20 watts per channel is recommended for each unit in the range. Rated speaker impedance for the Tangents is 6 ohms.

On removing the clip-on cloth covers from the models reviewed, it was evident during loud bassy passages of music that the excursions of the low frequency driver cones were well controlled. This doubtless contributed to the clean, tight bass. apparent especially in the larger Tangent 5Os.

Test tracks played from the Denon test compact disc to detect possible unwanted resonances, intermodulation distortion and delinquent transient responses. in listening tests, showed the systems reviewed to be quite well behaved.
Dynamic range was impressive and stereo imaging very positive over a wide selection of music from solo instrument performances and vocals to orchestral movements. In this regard I think the directional properties of horns and 'stacked' drivers contribute significantly to spatial definition. Polar responses showing the measured horizontal and vertical dispersion characteristics of the speakers were not available at the time of writing.
Some of the inherent directivity of horns in the upper frequency range seemed evident, especially with the smaller Tangent 10 s operating at floor level. Normally, however, it might be expected that these units would be placed on stands or bookshelves. The Australian Sound Company advises that they have optional 500 millimetre-high stands for use with the smaller speakers in the Tangent range, if required. With the taller Tangent 5 O standing on the floor, the high frequency horns are more or less at ear level for a seated listener, and the centre axis of the low to mid frequency 'line source' is also higher.
The Tangents seem reasonably efficient, with sensitivities ranging from 94 dB Sound Pressure Level for the Tangent 10 and 20 models to 98 dB Sound Pressure Level for the top of the range Tangent 50 .
The sturdy timber sides of the cabinets in the Tangent range are lumber-cored in a sandwich of birch ply and finished in a natural timber veneer. The veneer used on the

The Tangent high frequency compression driver.

respective left and right hand sides of each box is matched in grain and colour from the original veneer timber stock, so that each stereo pair of Tangent enclosures is closely \dagger winned in appearance.
The remainder of the cabinet is finished in black vinyl over particleboard. All panels are 19 millimetres thick, braced and glued. In fact, I sneaked'a look inside one of the larger models, the Tangent 50, and noticed that even the bracing had been fixed in a horn

The Tangent woofer has dual dust caps, magnet twice the normal size, special cone geometry and flbre surround.
configuration. In a product from Klipsch, I still cannot help but wonder if the wide bracing was put in that way because of its length or because its horn-like geometry had something to do with coupling the very low frequency, 305 millimetres (12 inches) diameter passive radiator mounted in the rear panel of each cabinet and in the apex formed by the bracing.
The passive radiator has all the outward appearance of a speaker the same size. It has a cone with a conventional surround and a dust cap, like a regular speaker. The passive radiator is also mounted in the speaker cabinet, like a regular speaker. The difference is, of course, that the passive radiator has no voice coil or magnet, (hence, passive) and is simply excited by sound energy locked up inside the speaker enclosure, to radiate sound in the low bass range and enhance the overall bass performance of the system.
The principle is similar to that of the bass reflex or vented enclosure where the disc of air in the vent in the enclosure is vibrated to create sound waves outside the cabinet. The passive radiator, being made of material similar to a speaker cone, however, has greater mass than a similar shaped mass of air and helps extend downwards the frequencies it can effectively reproduce.
Perhaps surprisingly, having the passive radiator mounted in the back of the cabinet and facing rearward does not interfere with the directional characteristics and stereo imaging of the speaker system as a whole. Bass speakers generally tend to radiate their low frequency sound in all directions, in effect enveloping the speaker cabinet rather than being impeded by or reflecting from it, unlike the higher mid-range and treble which are more easily obstructed and directional.
The system is also designed so that sound waves in the extended bass range radiated by the passive radiator reinforce those created by the low frequency drivers mounted at the front. Basically, the passive radiator recovers bass energy that would

For audiophiles with more dash than cash.

" by klipsch

Tangent is the most affordable speaker system to come from the Klipsch factory in 47 years.
The Tangent range, 5 models in all, incorporates the very design philosophy that has made Klipsch a Legend in Sound.
Those who know the name Klipsch will know exactly what to expect. Those who don't are about to learn that good sound, and we mean really good sound, should not cost the earth.
Tangent by Klipsch. From just $\$ 899$ a pair.

For more information contact:

> The Australian Sound Company, 133 Market St., South Melbourne. Ph. (03) 6962277.

On a Tangent

otherwise be absorbed and wasted inside the speaker cabinet. This makes the system more efficient in the important lower base range.
The effect the passive radiator can have on bass response becomes apparent when we compare the bass performance of the Tangent 10, which does not have a passive radiator, with the next model up the range - the Tangent 20 - which does.

Apart from the slightly larger cabinet, a different high frequency driver (which should not affect the bass response, anyway) and passive radiator in the Tangent 20, the two models are very similar in appearance and power rating. From the specifications supplied by Klipsch and Associates, however, we find that the 3 dB point at the lower end

Above: the legend himself, Paul Klipsch, now 85 years old.
Below: Klipsch in an anechoic chamber.
of the frequency response is 75 Hz for the Tangent 10 , and 42 Hz for the Tangent 20 - almost one additional octave of bass in the Tangent 2 O

The overall system bass response was also able to be trimmed by moving each enclosure strategically into and away from the corner of the room, in effect applying horn loading.

For upper mid-range and treble reproduction each of the five models in the Tangent Series has a 2.54 centimetre (1 inch) compression driver matched to a horn to provide three-fold output compared with a typical dome tweeter the same size, according to Klipsch literature. But not all speakers in the range use the same combination of driver and matching horn, the main difference being magnet size, ferrofluid cooling and the size of the horn.

A high frequency response flat to within plus or minus 3 decibels, out to 20 kHz , is claimed for all five systems in the Tangent Series.

The smallest enclosure in the Tangent Series measures 413 mm high $\times 292 \mathrm{~mm}$ wide $x 210 \mathrm{~mm}$ deep and weighs 8.39 kg . The largest stands 921 mm high $\times 359 \mathrm{~mm}$ wide $x 311 \mathrm{~mm}$ deep and weighs 26.3 kg . The Tangents are priced from $\$ 899$ to $\$ 2999$ per pair, recommended retail price and have a 5 -year warranty on cabinet and components.
The Tangent 10 and Tangent 50 systems reviewed were supplied by Klipsch agents in Australia, The Australian Sound Company Pty. Ltd., 133 Market Street, South Melbourne, Victoria 32O5, ㄹ(O3) 6962277 . 튼

Win a marantz CD VIDEO

Gompert Dies curlio, herrate hes distiled a censept so perfoct aud dunilo, it will becease a louranats in corthertew timorition.

CD Vaso is a Pink behreen your peyent CD celletien

Per mise imbountion cell

extra sensory perfection

CONDITIONS OF ENTRY

1. The competition is open only to Austrolian residents whose entries are received prior to last moil 31 ist Jonuory, 1990 Employees of the Federal Publishing Company and Marantz and their families are not eligible to enter
2. South Australion residents need not purchase a mogazine to enter but may enter only once by submitting a hand-drawn facsimile of the entry coupon along with their nome and address to The Federal Publishing Company, PO Box 227, Waterioo, NSW 2017
3. The prizes are not transterrable or exchangecble and may not be convented to cash
4. The judges' decision is final and no correspondence will be entered into 5: Description of the competition and instructions on how to enter form a pari of the competitions conditions
5. The compettion commences on 26 th October, 1989 and closes with the las mail Jonuory 31, 1990 The drow will rake place in Sydney on 5th February. 1990 and the winner will be notified by telephone and letter The winner will also be amounced in The Australian on 8th February, 1990 and a later issue of this magazine
6. The prize is One only Moraniz CD Video Valued ar $\$ 1999$

To enter simply complete your details and answer the question on the coupon provided and send to:

EII - Marantz CD Video compettion, Federal Publishing Company, Freepost No. 4, P.O. Box 227, WATERLOO, NSW 2017.
QUESTION: WHAT IS THE MODEL NUMBER OF THE MARANTZ CD VIDEO?
ANSWER: CV \qquad
NAME:
ADDRESS
POSTCODE: PHONE:
OCCUPATION:

vamaha co 5050 COPAVER

Louis Challis reviews the new Yamaha CD 5050 CD player. He believes this 102 year old company really does try harder than its competitors.

The CD 5050's hidden panel.

Ever since Yamaha produced its first CD player in 1982, its products have exhibited significant differences to those of its competitors. The background to those differences isn't too hard to find, especially if you take the time and trouble to visit the Yamaha factory at Hamamatsu. about half way between Tokyo and Osaka. The Yamaha company is now 102 years old and is solidly based on 'craft industries' associated with the development of its range of musical instruments - generally among the best in the world. With a musical background as solid as theirs, it's not really

Frequency response with 10 dB pot (left channel) 5 Hz to 22.05 kHz .

Frequency response with 10dB pot (right channel)

5 Hz to 22.05 kHz .
surprising to find that they really do try a little harder than their competitors to retain the "musicality" of their products.
This, of course, has to be achieved while remaining cost competitive in an aggressive market place. This has been no easy task. So, when faced with this problem almost a decade ago, the wise old directors at Nippon Gakki (as the company was then known), with not too gentle pushes from the young hawks in the engineering department, funded a project to build a large scale integrated (LSI) circuit facility, in the firm conviction that, if they could secretly design special lCs, they would be able to compete on an equal footing with their larger Japanese competitors.
While there were obviously some breathless moments, within a few years, that decision had vindicated all the forecasts and promises that those young hawks must have made to top management.
The CD 5050 is just one more example of what the advanced digital technology of the Yamaha plant can produce. The firs \dagger important feature of both the CD 5050 and the slightly lower-specified 4O5O CD player incorporates two pairs of digital to analogue converters in each channel, which achieves 22-bit linearity using 18 -bit DACs, supplemented by 4 floating bits. This takes the signal-to-noise performance of the player to new heights.

The second feature of the CD 5050 is that it uses digltal filters operating at 8 times the basic 44.1 kHz . This places the fundamental sampling frequency so far above the range of the audio signals that it can be easily filtered out by a simple linear phase analogue filter which avoids trace of audible distortion. At the same time, the Super Hi-Bit sampling system removes the quantisation ripples. The DAC output circuitry differs substantially from most of Yamaha's competition as it uses one DAC in the normal phase mode and the other in

100 Hz square wave.
the reverse phase mode. This stratagem ensures that the common mode rejection ratio is superior under most operating conditions.

No handbook

After unpacking the CD 5050, I was puzzled at first by the lack of a handbook in the box. I noted the transport locking key on the bottom of the chassis, which was clearly annotated. But when I looked at the front panel, which is silver hued instead of the famous Yamaha black*, it looked decidedly different from the other CD players around. I could see the mains power switch, the head phone socket, the disc drawer OPEN/CLOSE button, the PLAY button and the STOP, PAUSE button, but none of the other controls which I have come to accept.
It was only then that I noticed a sort of 'cut out', or panel, below the 3 basic function controls. I gently pushed and pulled and down popped a neatly damped rotating panel with copious numbers of controls, certainly enough to satisfy my needs. These were neatly laid out in two rows with two display switches to control DISPLAY MODE (full display or abbreviated) and TIME DISPLAY (first track, remaining time and total time). Next were two repeat switches. The first was

- The CD 5050 is also available in black.

Impulse response.

1 kHz square wave.

Width	435 mm
Depth	392 mm
Height	130 mm
Weight	12.0 kg
R.R.P.	$\$ 1899$

Yamaha CD 5050

Frequency response with 10 dB pot (lett channel)
labelled S/F/OFF (for single track repeat, full track repeat or cancel) together with the A - B repeat switch.

Next is the AUTO SPACE switch which places a four second pause between tracks. In the middle are the three PROGRAM selection switches for DELETE, SET/CHECK and CANCEL. The delete allows you to delete tracks from the program, the set/check to set the most complicated program of up to 24 pre-determined sequences in any possible combination from those on the disc in any combination which you key in, in a direct sequence. The sequence can be cancelled with a CANCEL button right along side.
To the right of this is a RANDOM PLAY button, which is a feature I never use (but I know some people do). To the right of these is the elongated toggle bar for FAST FORWARD and REVERSE SEARCH. Next is the FORWARD AND REVERSE SKIP bar, and, las \dagger but not least, the INDEX switch, which is only of use if the disc incorporates the index Information.

DIRTY RECORD TEST

Using Philips NR4A (410-056-2)

Interruption in Information Layer
400 micrometer; Passed
500 micrometer; Passed
600 micrometer; Passed
700 micrometer; Passed
800 micrometer; Passed
900 micrometer; Passed

Black Dot at Read out Side

300 micrometer; Passed
500 micrometer; Passed
600 micrometer; Passed
800 micrometer; Passed
BLACK STRIPE TEST (passed)
OUTPUT IMPEDANCE OUTPUT IMPEDANCE

Head Phone Amplifier Output impedance 152 ohms

20 Hz to 20 kHz .

The lower row of switches has the ' +10 ' followed by 9 switches from 1-9 for direct entry of track numbers, or programming, as required. On the right hand side is a toggle bar instead of a normal volume control for ralsing or lowering the output level from O dB (maximum gain) right down to -96 dB (minimum level) in $240 \times 0.4 \mathrm{~dB}$ steps.
With the display set to full, all of these functions are individually displayed on the bright orange plasma screen. Even though the volume control segment only shows increments of 3 dB (which corresponds to approximately 12 individual steps of the volume control toggle bar) this control responds precisely to your demands. The bar also responds to a hold-down mode to provide a more rapid response should you require it. The output volume control simultaneously provides you with direct control over the headphone output socket level.
The last of the controls is the HI-BIT DIRECT OUTPUT switch which allows you to bypass the analogue filter after the 8 times over sampling filter for true digital sound.
The rear of the CD player has 2 gold plated coaxial line sockets, a coaxial digital socket for feeding the digital signal to digital amplifier (or DAT recorder if you have one) and an optical socket for connecting an optically coupled amplifier or preamplifier if you have the need for the ultimate in interference rejection.
It is only when you remove the cover from the CD 5050 that you can really appreciate the loving care that has gone into the design and assembly of this CD player. At the base of the unit is an extremely heavy moulded chassis fabricated from what appears to be barium or lead filled plastic composite material.
Immediately behind the solidly made 3 beam laser pick up system are the transformers of the double shunt regulation power supply.

To the right of this section is the large mother board which seems to exude a dull black glow instead of the conventional green or yellow. Unlike the latest generation of budget priced CD players, which have a component count you can almost total up
on your fingers and toes, this board is covered by a myriad of resistors, transistors, capacitors, ICs and eight very large special purpose LSIs. In addition, there are two separate LSIs on the plasma display board and more iCs on the separate shunt regulator power supply board.
The CD 5050 player is undoubtedly well presented, but, more importantly, every separate sub-section or remote printed circuit board is interconnected using neat ribbon cables terminated with plugs and sockets. The only exception to this are the two power transformers, which are neatly hard wired to wire wrapped terminals.

A delightful task

The laboratory assessment of this CD player proved to be a delightful task as the $C D$ 5050 has outstanding performance figures in virtually every department. The frequency response of the player is exceptionally smooth, with a response that is within ± 0.1 dB from 5 Hz to 22 kHz , and that figure, although equalled, has not been bettered by any other top-line CD players or multi-disc 'combi players' released in Holland or Japan. What really caught my eye, however, were the linearity figures, which are the best I have yet seen from any CD player all the way down to -90 dB .
As if not to be outdone, the channel separation figures are outstanding, with the lowest figure of 98.2 dB being logged at 20 kHz and separations much better than 100 dB at all other frequencies. Yes, those shunt regulator supplies and common mode rejection characteristics really do workl
Even the distortion figures are good all the way down to -8 OdB , but of course they are really measurable (but not readily audible) at -90 dB , where those extra floating bits dont make up for the limitations of true dynamic range of the software.
Where those floating bits do show up exceptionally well is in the signal-to-noise figures, which have yet to be beaten. An S/N figure of $123.5 \mathrm{~dB}(\mathrm{~A})$ is tops, even if it is getting well past the range of most people's amplifiers - or their hearing for that matter. Yes, with those sorts of figures you will have to put aside all those old ADD discs if you
want to capitalise on the performance capabilities of the player.
The CD 5050 passed every Dirty Record test and continued to play through all our vibration tests. The only minor criticism is that this particular player was 18 Hz low in frequency with the 20 kHz test signal.
Having convinced myself that this player has the best performance figures of any CD player that I have tested, I took it home to let it loose on my collection of discs.
As I discovered, the remote control unit makes this an absolute pleasure to use.
The first characteristic that I noted was absolute silence from the player between tracks, even with one of my ears glued to my speakers.
I used a Yamaha C2 preamplifier with a Yamaha M 80 amplifier feeding a pair of B \& W 801 M speakers for the evaluation. This combination provides superb signal-to-noise ratios at equivalent power outputs of 300 watts peak into each speaker.

The subjective evaluation of the CD 5 O5O was most enjoyable and relaxed. It offers the simple convenience of three primary controls, without having to resort to the multiple controls on the roll-down control panel. Although I infrequently utilised those supplementary controls for the $A B$ testing of sections of discs, and for other testing, which I subsequently carried out on other loudspeakers which I was reviewing, more than 95\% of people would emulate these needs and conditions and, consequently, primary access to the three controls that you really want to use constitutes a better ergonomic design!
In my evaluation, I listened to more than 50 discs from my growing collection with two of the latest discs providing exciting new material.
The first was Jean-Pierre Rampal's latest pot pourris of his flute and piccolo entitled Music My Love (CBS MK 45548), which contains a wide range of previously released material ranging from Bach Adantae Ill from E-Minor Sonata and Vivaldi Allegro Ill from GMinor Concerto for flute, oboe, violin, bassoon and harpsicord, at one end of the spectrum, through to Scott Joplin with The Ragtime Dance and Bolling's Jazzy at the other end. The almost unbelievable signal-to-noise ratio of this player provides an electronic virtuoso's concert hall listening quality with the DDD segments, and, of course, just audible background hiss with the ADD segments.
The second disc I played many times over. It was Emanuel Ax's Haydn Sonatas No 33, 38,58 and 60. This is an absolutely exquisite rendition of some of Haydn's most glorious piano sonatas.

The CD 5050 is one of the best CD players that Yamaha has produced, and offers superlative technical performance with premium ergonomic design in one neat (if somewhat heavy) package.

MEASURED PERFORMANCE OF YAMAHA
 MODEL NO. CD 5050
 SERIAL NO. MO 11079 ZP

FREQUENCY RESPONSE	20 Hz to 20 kHz	$\pm 0.1 \mathrm{~dB}$
	5 Hz to 22.05 kHz	$\pm 0.1 \mathrm{~dB}$

2. LINEARITY © $\mathbf{1 k H z}$ NOMINAL LEVEL

dB	0.0		0.0
-1.0	-1.0	-1.0	
-3.0	-3.0	-3.0	
-6.0	-6.0	-6.0	
-10.0	-10.0	-10.0	
-20.0	-20.0	-20.0	
-30.0	-30.0	-30.0	
-40.0	-40.0	-40.0	
-50.0	-50.0	-50.0	
-60.0	-60.1	-60.1	
-70.0	-70.2	-70.2	
-80.0	-80.5	-80.4	
-90.0	-90.2	-90.1	

3. CHANNEL SEPARATION

FREQUENCY	RIGHT INTO LEFT dB	LEFT INTO RIGHT dB
100 Hz	112.6	111.3
1 kHz	112.1	111.7
10kHz	106.8	105.9
20kHz	98.3	98.2

4 DISTORTION (@ 1kHz)

Level	2nd	3rd	4th	5th	THD\%
0	113.7	98.7	107.3	104.6	0.0025
-1.0	111.1	98.9	109.0	106.6	0.0025
-3.0	107.2	94.7	114.6	107.7	0.0038
-6.0	121.0	94.6	101.0	97.9	0.0042
-10	-	95.4	114.2	107.7	0.0033
-20	109.9	107.6	104.6	98.4	0.0023
-30	100.7	98.9	91.8	91.2	.0 .0066
-40	90.7	86.3	86.3	85.7	0.016
-50	79.3	-	79.6	78.6	0.039
-60	68.7	58.6	66.3	67.0	0.28
-70	49.2	47.1	-	41.1	1.04
-80	40.2	34.3	-	30.0	3.83
-90	33.9	33.5	31.8	14.7	18.8
100 Hz					
0	117.1	95.8	106.0	115.7	0.0032
-20	103.5	101.5	108.0	101.0	0.0029
-40	82.7	79.4	87.5	84.6	0.032
-60	55.3	54.8	64.5	64.7	0.26
6.3 kHz					
0	96.5	97.2	102.4	-	0.0053

5. \qquad

Frequency	Recorded Leve
1 kHz	-0.37 dB
5 kHz	-4.53 dB
16 kHz	-9.04 dB

6. SIGNAL TO NOISE RATIO

Without Emphasis	$108(\mathrm{Lin})$	$123.5 \mathrm{~dB}(\mathrm{~A})$
With Emphasis	$109.5(\mathrm{Lin})$	$125.0 \mathrm{~dB}(\mathrm{~A})$

7. FREQUENCY ACCURACY
($19.999 \mathbf{k H z}$) $\mathbf{- 1 8 H z}$ for $\mathbf{2 0 k H z}$ test signal
8. SQUARE WAVE RESPONSE (See photos)
9. IMPULSE TEST
(See photo)

CANOVISION AI VIDEO 8: A CHALLENGE

Barrie Smith tests Canon's top-of-the-range camcorder - the Canovision A1 Video 8.

[1y first brush with a Canon camcorder was late in 1988 when I took the E7O8 model on a business trip to Queensland. I remember noticing how different in handling it was to machines made by electronics companies.
It confirmed a theory I had held for some time that video camcorders were devices designed by electronics engineers, for the express purpose of shooting other electronics engineers, to replay to still more electronics engineers!
The 150 year old art of photography had never seemed to raise its head in the camcorder world.
Until Canon. And, apart from a few minor. niggles with the 708 model, I was very impressed.
Now there's another challenge to be met: The Canovision Al, the company's top of the range.
And a challenge it is, looking very unlike any other make on the market. Trapezoidshaped, it tackles the problem of where to put the Video 8 cassette by putting it flush up against the nose of the óperator.

These days, we are faced with 35 mm SLR cameras that bridge the role of compacts and look like video camcorders in the process.
The Al swings us full circle - and looks like a bridge cameral Placing the tape drive so far forward produces one major benefit: the
unit is squatter and shorter in length - length, in this instance, meaning eye to lens front element distance.

Superb balance

The balance is superb. The camera feels as though it has lost a third the bulk of any competitor, although it is wider.
Like another Canon model, the E8O8, the hand grip is rotatable - 90 degrees vertically up and down - just the thing for those ultra low ground shots, or over the crowd's heads. The grip also conceals the battery - in this case a tiny one about the size of two matchboxes, but still dellvering up to 70 minutes recording.
Not mentioned in the handbook is the neat fairing aft of the handgrip which stands duty as another 'handle' to hang on to.
The viewfinder eyepiece is orientable through 180°, so, should the whim so take you, the camcorder could be operated at waist level by gripping this convenient fairing. I was able to view the whole frame quite satisfactorily from 15 cms away - great for spectacle wearers.
Super 8 film cameras are very much a thing of the past for movie makers. While I regret their passing I have difficulty recalling any that give such a degree of operator ease as some of the new breed of video camcorders. Even such illustrious makes as Leicina (Leica), Bolex and Bauer never gave
us oriental viewfinders, nor a choice of grip, nor multiple controls for functions such as zooming.
In ergonomics and layout the camera has such unusual features it's worth close inspection.
One is immediately aware of the big front element; big because of lis lOxl zoom range. AnFl. 4 optic, it has a zoom range of $8-80 \mathrm{~mm}$. resulting in a very useful wide and tele coverage at elther end. Internally, the lens has 14 elements in 12 groups.
As befilting a lens made by one of the world's leading optical companies, the unit allows considerable operator control. Three focussing systems are incorporated: autofocus, manual and push focus. Normally, autofocus is at hand at camera start up time.
The viewfinder display contains a white outlined rectangle. Any subject matter within this oblong gains the full and undivided attention of the autofocus mechanism. In full tele on the zoom I estimated a focus pull from Infinity to Close (l.1 metres) took around 3-4 seconds. Not quick, but not bad, either.
To the rear of the lens, on the camera's left hand side, is the first of the unit's four control panels. This arrangement, of thirteen buttons, is almost all you need to run the camera in record mode.
When the AF ZONE button on this control panel is hit, the above-mentioned rectangle changes from a narrow, letterbox proportion

The A1 stereo AFM sound is captured by modulating the $L+R$ and $L-R$ channel signals at different frequencles. But the employment of $L+R$ and $L-R$ slgnals also means that compatibility is maintained with existing tapes made on 8 mm VTRs with conventional monoaural AFM sound tracks.

Right: the Canovision's dual action hand grip also conceals the battery.

Bottom: a 5-blade iris rather than the conventional 2-blade design gives greater exposure precision.

to one which occupies 80% of the frame. The former is for specific, limited, and relatively stationary areas of the scene - the latter is for wide-ranging action, ducking and weaving.
This cholce of two focussing zones removes a lot of my complaints about autofocus. There is nothing worse than a focus system 'pulling and pumping' as the central subject moves around the frame. Being able to control the area of auto operation discards some of the quirkler elements.

More complex

Manual focus is more complex in operation than the automatic. Press M and you simply rotate the lens' focus ring to select your setting; pan, zoom, pull focus to your heart's content - especially useful if you want to employ defocus effects as a device to aid scene transitions. However, if you need to fall back on automatic, simply push the AF/ZONE button and this mode will hold for four seconds.

But there's more to it than that. By allowing the system to find focus for you, it's a quick move to slip back into manual, at that setting. Handy if you want to pan around a scene and know that you can guarantee you'll end up on a chosen portion of the subject - and it will be in focus when you get there.
Interestingly, the manual settings are stored in the camera's memory even after the camera's power is switched off. Sensitively used, it is rather like the predictive focus mode found on some of the newer high tech 35 mm SLRs. We can expect to see many more touches added to focussing systems in future camcorders.
Before we get too far away from the optical department, it's worth mentioning the lens' macro function. Like most other machines, you rotate the zoom stick to the wide end, pull the little black knob, and enter MACRO. This presents the eternal problem - how do you do macro shots when the front element is breathing down the neck of your subject? Fancy shooting a close shot of a taipan's jaws?
The ER8O8 had a nice touch, macro in the wide, or the tele end, which allowed you to shoot a field of $35 \times 47 \mathrm{~mm}$ from 60 cm distance. Why not in this model, Mr Canon?
Returning to the control panel and its thirteen buttons, it's commendable that Canon has given each of them a distinctive feel and shape, so that after a little practice you could home in on a particular one

without looking.
The exposure control takes an unusual direction in the AI, and one which I fully applaud. You can choose AUTO, letting the aperture go with the light condition prevailing, or MANUAL. But it's manual exposure control with a difference.

As you view the scene, a small icon of a scale with plus and minus signs at each end, and a fulcrum, appears. But the tiny delta shape is not a fulcrum. Press $a+$ or - on the panel and the delta moves along the scale. giving you a larger or smaller aperture. Better still, this manual compensation stays in memory when the camera is switched off. Full marks, Canon.

Multitude of riches

The designers have obviously thought long and hard about the Al's metering system.

and a multitude of riches are concealed beneath a relatively simple, operational exterior. Described as a Correlated Two-field System, two readings are taken - one of the entire frame, the other of the central 36%. The two measurements are then integrated to produce a final aperture setting.
The company claims this system necessitated a change to the construction of the aperture itself; in place of the usual two-bladed iris, a five blade has been installed. A visually pleasing by-product of this change is that hot spot highlights, and out of focus backgrounds, will be of a more pleasing, spherical shape.
Other controls: FADE in and out to white, handy for scene transitlons, TITLE (two lines of sixteen characters each) and DATE - with the number of the month preceding the name of the month (for that forgotten percent of the market who don't live Statesidel); WHITE BALANCE, which is normally in auto, but can be set and held manually; RECORD SEARCH, allowing a skip back about three seconds into the previous scene so that new recordings can start 'frame tidy': CAMERA MODE - in the A setting focus, white balance, and exposure fall under automatic control, plus you are allowed access to the high speed shutter; and the SHUTTER control.
Unlike other makers, Canon has decided to access the shutter speeds by a button pressing routine, which keeps the control panel tidy. The normal speed is $1 / 50$ th; the options are $1 / 250,1 / 500,1 / 1000$ and 1/2000. Using these higher speeds you must place the camera in AUTO CONTROL.

To the rear of the camera control panel is a concealed flap which opens to reveal access ports for audio/video outputs via RCA plugs direct to the AV terminals (if your set has them), or via the familiar RF pack. Bear in mind the audlo output is stereo, with audio outputs to match. Also found beneath the flap are EDIT control for dubbing to another VCR and a REMOTE port. The EDIT switch bypasses the final stage video equaliser circult, reducing loss of signal fidelity in the transfer process.
The rear of the camcorder is taken up by the tape well, and atop it are controls for PLAY, REWIND, FF, PAUSE, etc. A double azimuth 3-head system allows noiseless slow motlon repiay, frame advance and still frame pause. The arrangement also means that actlon shots using the high speed shutter can be screened with no flicker or blurring - a bonus for sports analysts.

Cunningly snuggled

Snuggled cunningly into this section are a duplication of the main zoom controls. The handbook offers no explanation for this, but I guess it would be handy if you're operating at waist level. For shooting kids, waist level is the only way to go!
Round the corner another flap is hiding another control panel. Here are found titling set buttons, tape speed change and a timer, to allow you to be in the picture, or to preset the unit to record at a point over the following 24 hours.
For TIMER, also read INTERVALOMETER, an extremely useful option, which takes the

CANON A1 - SPECIFICATIONS

Television system: Image sensor:	CCIR standard. PAL Colour signal. 420,000 pixels CCD.
Video recording system:	2 rotary heads, helical scanning. Luminance signal: FM azimuth recording. Colour signal: converted subcarrier phase shift recording (8 mm video standard).
Audio recording system:	Frequency multiplexing with the video signal by two rotary heads (two channels).
Tape format:	8 mm . Metal particle tape recommended.
Tape speed:	SP: $20.051 \mathrm{~mm} / \mathrm{s}$. LP: $\mathbf{1 0 . 0 2 6 ~ m m / s . ~}$
Lens:	F1.4/10x power zoom, $8-80 \mathrm{~mm}$ focal length, plus macro mode.
Focussing system:	TTL piezo-electric autofocus, plus manual facility.
Minimum autofocus distance:	1.1 m or 4 mm in macro mode.
Minimum illumination:	7 lux (at max aperture).
Filter diameter:	55 mm .
Finder:	Electronic, mono, 0.7 inch diagonal.
Output level:	Video: 1 Vp -p/75 ohms, unbalanced (video terminal). Audio:- 10dBV/less than 3 kohms, unbalanced (audio terminal/stereo audio output).
Dimensions:	$157 \times 257 \times 149 \mathrm{~mm}$.
Weight:	1.5 kg plus battery.
Accessories:	Tele-converter which extends focal length range by a factor of x 1.4 ; Wide converter changes max wide to 6 mm ; mic boom and accessory stereo mic; sports finder; battery light; rain shield.
RRP:	\$3499.00

humdrum camcorder (if you could ever label three and half grand's worth of electronics humdrum) into a very novel area. By entering RECORD mode the TIMER allows you to capture a half second burst of action in intervals of 10,20 and 60 seconds - ideal for time lapse of flower (if that's your bag) or cute pixillation effects that were beloved of experimental movie makers in the 1930s.
The right side of the camera finds OPERATE (power ON), a HEADPHONE mini-jack, the red RECORD button, battery (neatly housed beneath the hand grip) and the main zoom lens control.
The camcorder is a stereo model, but the handbook carries barely a mention of it, so, I will. Whilst stereo, a tape recorded on the Al will replay in mono via older camcorders. The Al stereo AFM sound is captured by modulating the left + right, and left - right, channel signals at different frequencies, approximately 1.5 and 1.7 mHz . Decoded and replayed, the two signals can produce discrete two-track stereo. But the employment of $L+R$ and $L-R$ signals also means that compatibility is maintained with existing tapes made on 8 mm VTRs with conventional monaural AFM sound tracks.
The mic fixed to the top of the unit is a stereo electret condenser, and you must live within an auto level environment, not always to the liking of picky videographers. I think a few loud voices should be heard in the corridors of Canon about up-grading the audio side on expensive models such as this. It is possible to connect an outboard microphone via a 6vDC OUTPUT and MIC socket - but how about a simple volume control?

An extremely useful gadget supplied with the Al is the infrared wireless controller. This small unit can control the camcorder up to 5 metres away, covering a forward horizontal arc of sixty degrees, and vertical of thirty. It is surprisingly comprehensive in Its duplication of camera controls, allowing you not only to run and stop the camera in record, plus zoom, but access all the PLAY controls and FADE, TITLE and DATE. About the only functions unavailable via remote are the white balance and shutter.

Summing up

The Al would have to be one of the better thought-out units on the market, in Video 8. Picture quality is level with, if not a touch ahead of. any make on the market.
But one should not ignore the arrival of Super-VHS in 1989 and the promise of PAL Hi-8 early in 1990. The only penalty with these standards is that you need to invest in new display equipment (TV set and VCR) to enter the realm of near-broadcast quality they promise.

Which allows me to advise that if you're in the mood right now for a top Video 8 unit - this could be your Al choice. Eti

If you haven't replaced
your stylus (needle) in the past year, you may be permanently damaging every record you play.
Replacing your stylus is simple (see diagram). And selecting the proper stylus to replace it with is also easy: Make certain it's a genuine Shure stylus.

Stylus wears By the time you hear it, it's too late.

All Shure styli are designed to exacting
specifications for precise stereo reproduction. And only a Shure stylus can restore your Shure cartridge to its original standard of performance. Don't accept substitutes. Protect your records and your sound. Get a genuine Shure Replacement Stylus. Soon.

AUDIO ENGINEERS PTY. LTD. 342 Kent St., Sydney, NSW 2000 Ph: (02) 296731

AUDIO ENGINEERS VIC.
18 Enfield Ave., Park Orchards Ph: (03) 8790320

MARKETEC PTY, LTD
146a Canning Hwy, Sth. Perth
Ph: (09) 4742323

PERREAUX

A LITTLE FIGURING

Forecasts of sales in the audio and television markets were released at the end of the year's third quarter, showing continued strong growth, despite the doom-and-gloomsayers.

The demand for stand-alone compact disc players remains strong, the forecast showing an increase of 30 per cent over the 1988 sales figures, according to the Market Forecast Figures released by The Consumer Electronics Suppliers Association (CESA), a body which represents the major Australian importers of audio and hi-fi equipment.
The figures were released as part of CESA's annual Industry Consensus, as a revision of its earlier forecast for 1989 and indicate trends that have occurred up till the middle of the year, they say.
The industry expects some 150,000 component CD players to be sold over 1989, and around 13,000 portables. But the big surprise comes with the figures for CDs built in to music systems. CESA predicts 80,000 units to be sold this year, an increase of 70 per cent over the 1988 sales figures.
"This year could finally prove to be the major turning point in the growth of CD products...". says the CESA report.
And, in this 1Oth anniversary year of the Sony Walkman - the stereo headset cassette player that turned the consumer electronics industry literally on its ear - CESA forecasts sales of some 540,000 stereo headset players for 1989. The tranny is dead!
Clearly, a large swag of those component CD players will be added on to existing sound systems; amplifier sales forecasts run at around one-fifth component CD sales at a forecast 33,000 units.
CESA's forecasts for the colour TV and video market are interest-
ing, too. "Sales of colour televiston receivers have remained strong. and anticipated sales have risen to 680,000 units, with an estimated retail value of $\$ 458$ million. It is anticipated they will be 35 per cent of the estimated sales.
"Higher priced stereo units are continuing to represent a greater proportion of the market, and it is anticipated that they will be 35% of the estimated sales". CESA says.
Likewise, the demand for video cassette decks and video camcorders has strengthened, the report goes on. Sales will be 560,00 units for the year. according to the forecast.

SMPTE Conference

THE 4th Conference and Exhibition of the Society of Motion Picture and Television Engineers - Australian Section, will be held over 3rd to 6th July 1990. The venue will be the RAS Showground in Sydney and the event has been dubbed: "Sound \& Vision '90."
The previous conferences have been the foremost events for the film and television industry in Australia.
The program for the conference:

- High definition systems \& equipment.
- Production and postproduction techniques for film and video.
- Audio production and post production systems \& equipment. - Delivery systems - today. tomorrow \& the future.
- Dispiay technology - the future.
- Developments in magnetic recording and technology.
- Computer graphics animation.
- Digital optics.
- Laboratory development.
- Cinema - the future.

Keen to present a paper? Contact the Papers Chairman. David Edgar, at AAV Australia, 180 Bank St, South Melbourne Vic 32O5. = (O3)699-1844, fax (O3)696-2895.

DAT again

THE announcement last July that recording and consumer electronics companies had reached an agreement about the introduction of a Serial Copy Management System (SCMS) to limit the copying of pre-recorded material on DAT machines was not accompanied by any literature on exactly how the system worked, and how it was to be implemented. Well, since then, more details have come to light, courtesy of Phillips.
The SCMS is a system to reguiate the serial digital copying on digital audio tape. Serial copying means copying from copies - a dub, to you and me.
SCMS will allow direct digital copying of compact discs onto blank DAT tape (and LPs and audio cassettes, too). SCMS allows you to make as many firstgeneration dubs as you like. But when you go to make a copy of that, digital-to-digital - no gol Not unless you dub from the DAT player's audio output onto the next medium, thereby losing some clarity.
Direct digital-to-digital copying is near-perfect, hence the recording industry's worry about
serial copying because you can make an almost infinite number of dubs - digital audio clones. really - from coples without significant. or noticeable, degradation.
The SCMS restriction only applies to copying from source material which is both protected by copyright and which already has been copied at home.
Current DAT recorders cannot make direct digital dubs from CDs because the digital system sampling frequencles are different between the two machines. However, in future, a DAT recorder equipped with SCMS can record using the CD sampling frequency of 44.1 kHz .
SCMS will encourage copying of originals at home, resulting in coples of great quality, but will prevent serial copying.
New DAT recorders will have the SCMS system incorporated in the ICs which make up the player's electronics.
The SCMS will add a code to copies of original recordings, in effect labelling the tape as a home-made copy and thus copyright protected. if. subsequently, the digital output of one DAT machine is connected to the digital input of another, to make a direct digital-to-digital copy, the machine being used for the copying will check for the code and, if found, refuse to record.
The International Federation of the Phonographic Industry (IFPI) and the Recording Industry Association of America Inc (RIAA) got together with three European consumer electronics companies - Philips, Thomson and Grundlg, and 12 major Japanese consumer electronics companies: Fujitsu General, Hitachi, Matsushita (Panasonic, Technics). Mitsubishl, NEC Home Electronics, Pioneer, Sanyo, Sharp. Sony, TDK, Toshiba and the Victor Company of Japan (JVC).

\square

New Stanton Club

 Series cartridges

THE 89OAL Club Series is Stanton's newest Pro DJ cartridge. This state-of-the-art cartridge provides the best sound quality ever offered for DJ use and is specifically designed for backcueing, scratching, mixing and other heavy use, according to the company.
The 890AL is manufactured with a unique suspension system that is highly responsive to extremes in groove modulation changes. it features an ultra high polished spherical diamond and a thin wall aluminium alloy cantilever reinforced with an exclusive tie wire design that stabilises the stylus in the groove. The 890AL is supplied with an extra stylus.
The 680 Mkill Club Series offers three models, the 68OEL MkIl, the 68OEL Mkll-MP and the 68OAL Mkll. Each of these models includes an extra stylus, with the exception of the 68OEL MkII-MP.
The 680 series has long been one of Stanton's most popular cartridges for the professional.

The new 680 Mkll is said to provide an excellent balance between a responsive musical cartridge and rugged construction that will stand up to the demands of the professional DJ. The 68 O MkH's new cantliever suspension system is designed for optimum strength and minimum mass. Its thin wall, smaller diameter aluminium alloy tube is highly responsive to groove modulation yet very durable.
The 500 Mkll Club Series comes in three models, the 500AL Mkll, the 500AL MkII-MP and the 5OOEL Mkll.
Stanton's new design of the 500 Mkll includes a Samarium Cobalt Magnet which offers a lower mass and a higher output plus a new cantilever suspension system. The $500 \mathrm{Mk} \mid \mathrm{l}$ series is said to provide a perfect blend of economy, reliability, ruggedness and optimum performance, ideal for heavy use, scratching and mixing.

READER INFO No. 179

Meridian gets active

BRITISH speaker manufacturer has gained a reputation for active loudspeaker design. Unlike the more usual arrangement in which passive loudspeakers are driven from a separate amplifier, the Meridian active speakers contain purpose-designed electronics - amplifier and electronic crossover - which allow them to be driven from a preamplifier or directly from a CD player.
The new generation of Meridian active loudspeakers, the M3O, M2O, M6O and D6OO. have user switchable features including auto music turn on from standby, and a range of response selections allow the speakers to be adjusted for room acoustics or to operate close to
a wail or on a bookshelf. They also feature a multi-way connector intended for use with Meridian's multi-room system.
The D6OO is the world's first digital loudspeaker, the company claims. The dedicated electronics housed within the speaker contains the digital to analogue converters, so signal from the digital output of a compact disc player may be directed in its digital form to the D600 for converslon, rather than the conversion taking place in the CD player or external amplifier.

More information is available from the distributor, Audio 2000, PO Box 94 Drummoyne NSW 2O47. © (O2)819 6533. READER INFO No. 178

Surround sound success

THE Lexicon CP-1 Digital Audio Environment Processor, launched in Australia early last year, has been a resounding success as a first entry into the home listening market for Amber Technology, the company says.
Amber distributes a full range of Lexicon professional audio products, but the CP-1, aimed specifically at the domestic consumer market, has been a major breakthrough in applying world class studio technology to a home listening product, they say.
According to Amber Technology's David Hudson, Lexicon set the standard for advanced digital technology in the professional recording industry years ago.
"The CP-1 Digital Audio Environment Processor placed this technology within the reach of home listeners, to provide them with the same high quality processing as that of the world's top recording studios."
The Lexicon CP-1 will enhance the home listening experience with a basic stereo system or with up to six additional speakers.

It processes sound in true stereo - that is, all sounds are independently digitally processed, unlike other competing products that produce a stereo output from a mixed mono input. Further information from David Hudson, Amber Technology, PO Box 942 Brookvale NSW 2100. I (O2)975-1211.

READER INFO No. 177

New Grado cartridge

THE Grado signature XTZ cartridge is the latest edition to Grado's acclaimed signature serles cartridges. The XTZ is the pinnacle of the "optimised transmission line" signatures, and joins the accomplished $8 \mathrm{MZ}, \mathrm{MCZ}$ and TLZ.
The optimised transmission line design provides an excellent soundstage, extremely low background noise and state of the art sound with the convenience of the stylus being user replaceable and compatibility with most quality arms, Grado says.
The three-piece optimised transmission line cantilever technology consists of separate sections that are telescoped into each other.

All sections are made of different alloys, some sections hollow, others solid. These sections are bonded together with materials that act as dampers, and are coated with a black proprietary material which contains and absorbs resonances that travel on the surface of the cantilever.
The OTL stylus/cantilever transmission line technology will make your records sound quieter, improve the height, width and depth of the soundstage and offer exceptional detail. For further information, contact Grado's Australian agent, Audio 2000, PO Box 94 Drummoyne NSW 2O47. © (O2)819 6533.

READER INFO No. 176

New Pioneer car CD

THE new Pioneer KEX-M800 Multi-Play CD Controller has a unique detachable front panel which can be taken by the driver when leaving his or her vehicle to prevent theft.
The front panel is flicked down for normal operation of the cassette deck and with an easy press of the button comes away from the controller leaving a blank panel behind.
The detachable front panel is compact and lightweight to carry around or conceal until the driver replaces the control panel and once again the system is ready for use. The KEX-M800 also includes an auto reverse cassette deck.

The KEX-M80O is ideally matched to the new CDX-M7O Multi-Play Compact Disc Player, says Pioneer. The CDX-M7O takes the same six-disc magazine used in Pioneer's home Multi-Play CD players. The compatibility between car and home players extends the use of the magazine and at the same time the discs are protected from dust and damage.
The boot mounted CD player has a double-float suspension system to ensure accurate laser tracking of discs even under the extremities of Australian road conditions. More details from your nearest Pioneer dealer.

READER INFO No. 175

Going against the grain

SEEMINGLY swimming against the tide in colour television sales trends, which dictates that 25 -inch and over screen sizes and 14 -inch and under are all the rage in the market place, Akal has released a new 21-inch colour TV featuring a flat-square tube and remote control.
Known as the CTK-211, it boasts a 3O-channel tuner and input facilities to accommodate a VCR with video input and audio
output. It is directed towards unit owners requiring a modest-sized screen TV, and consumers wanting to integrate a television receiver into a midi-size hi-fi system.
The CTK-211 is available from selected Akai dealers and department stores and sells for a recommended retail price of $\$ 899$. It is covered by a threeyear warranty.

READER INFO No. 173

15-hour play time VCR?

TWO separate developments from West Germany have upse \dagger the VHS applecart. It is now possible to get up to 15 hours playing time from a single VHS video cassette following developments at Nokia in West Germany.

Nokia engineers found a way of tripling the playing time of any VHS cassette, by simply running the cassette at one-third its normal speed. Nokia's developmental recorder runs the VHS tape past the head at 0.78 $\mathrm{cm} / \mathrm{sec}$ cond instead of 2.34 $\mathrm{cm} / \mathrm{sec}$ ond. Conventional halfspeed VHS VCRs run the tape at $1.17 \mathrm{~cm} / \mathrm{second}$.
Reducing the speed reduces the width of each diagonal magnetic stripe or track to 16 micrometres; the track is 49 micrometres wide for conventional recordings. Such a narrow track width would normally result in unacceptable crosstalk between adjacent tracks, but Nokia has avoided this complication by a cunning and simple device: reversing the phase between adjacent tracks.
This cancels any track-to-track crosstaik. Nokia says that this simple technique, which costs
very little to implement, produces pictures which are said to be almost as clear as those from fullspeed tapes.
However, you can't replay tapes recorded in this way on a conventional machine. JVC objects to the Nokia development as it falls outside the VHS standard, for which the company is responsible.
In a separate development, West German tape manufacturer BASF has produced an E3OO VHS cassette which gives five hours recording time at normal speed, and 10 hours at half speed. Used on Nokia's developmental machine, it would provide 15 hours playing time. Currently, the longestplaying VHS cassette meeting the VHS standard is the E24O, providing four hours recording at normal speed, elght hours at half speed.

JVC has issued warnings that the thin E3OO tape (it has a 9 um base compared to a 12 um base on an E24O) will tangle and break in some VCRs. News has it that E3OO VHS video cassettes will be on sale in Europe this month.

READER INFO No. 174

Harman/Kardon would have to be considered a maverick in the hi-fi market here. In the first place, it's American-designed and Japanesemanufactured gear. In the second place, it's distributed in Australia by a company best known for distributing the best in British loudspeakers - Convoy international.

Last year, Convoy picked up the Harman/Kardon agency following a period when H/K had been virtually off the marke \dagger here. Since then, Convoy has quietly set about re-establishing the brand's presence, importing a range of quality components and integrated units, such as this receiver.
Harman/Kardon has a deserved reputation for providing sturdy, functionol, no-

A good place to start

 assembling a component hi-fi system is with a receiver, because you get a tuner, preamp and power amp in one box. Roger Harrison reviews this economical receiver from Harman/Kardon.nonsense, cosmetically understated, reliable, quality-manufactured hi-fi equipment which delivers good performance at notoutrageous prices. The item of equipment reviewed here fits solidly into that mould.

Basics

The hk55OVxi is an AM-FM stereo tuner and preamp/amp integrated into a single cabinet. The amplifier delivers 45 watts per channel (continuous) and the preamp will accept inputs from a turntable, compact disc player, video cassette recorder or two audio tape decks. An additional auxiliary input is also provided. This allows you to connect up almost any of today's diverse range of audio source equipment: furntable, cassette deck, CD player, DAT, VCR, videodisc player or stereo TV, etc.
The amp has two sets of speaker output connectors, making it possible to hook up one set of speakers in the listening room, with the equipment, and a set of extension speakers in another room. The speaker connectors are a spring-lever type that make speaker cable connection a breeze.
The funer section has three antenna connections: a 75 Ohm unbalanced male coax connector for FM , a pair of of binding posts for 300 Ohm balanced FM antenna input, and a pair of binding posts for an AM antenna input (one of which is ground). For AM reception, a small loop antenna is
provided, while an indoor dipole is provided for FM reception.
The front panel has a brushed aluminium finish, the metal cabinet a fine. dense wrinkle paint finish. The front panel lettering is in gold. A groove or channel runs the length of the front panel, separating the top and bottom halves. Centrally located in the top half is the display panel, which takes up some one-third of the width. This contains the five-digit, seven-segment frequency readout and the various annunciators and indicators.
Immediately to the left of the display are eight small, rectangular pushbuttons which provide the station memory facility. You can commit up to six stations to memory on either the AM or FM bands. Immediately to the right of the display is a large, rectangular rocker switch for tuning the receiver up or down the selected band. Just to its right is a small pushbutton marked "Seek". When pressed, this sets the tuner automatically tuning up and down the band, pausing as it comes to each station. Press it again and the auto-tuning will cease.
In the lower half of the panel, beginning at the extreme left, is the large, square power switch. It's a push-push type. Then, moving to the right, there's the headphone jack socket (standard 6.5 mm stereo jack). speaker selector switch, bass-treble-balance controls, the tape monitor switch, the function switch and then the large diameter volume control knob. Note that the bass, treble and balance controls all have a centre detent. On the extreme right is a loudness pushbutton. This provides a 10 dB lift at 50 Hz and a 3 dB lift at 10 kHz , according to the specifications.
Immediately above the power switch, in the top half of the panel, are two LED indicators marked "High voltage" and "High current". I shall return to these a little later.
The front panel layout is logical and uncluttered. A delight, in fact. With the exception of the volume control, all the rotary knobs are of the thumb-and-forefinger type. The volume knob is 40 mm in diameter, making for comfortable handling.
The hk55OVxi receiver measures 443 mm wide by 103 mm high (which includes the 13 mm high feet) by 368 mm deep. It weighs 7 kg .

HARMAN/KARDON hk550Vxi STEREO RECEIVER

On the air

The hk550 Vxi acquits itself like the old BOAC airlines slogan - "with a minimum of fuss." All the controls work smoothly and do just as you expect them to do; there are no little surprises. The memory presets are easy to set and the auto tuning is simple and works well. Note that you can preset up to 12 FM stations and six AM stations.
The facility of being able to select either of two speaker pairs, or both together, is a welcome one. The handbook, however, cautions that the combined impedance should not be lower than 4 Ohms. There is a switch on the rear panel that allows selection of an 8 Ohm or a 4 Ohm speaker load, but does not reveal exactly what it does. From a look inside the chassis, it appears that it changes the output stage's supply rail voltages, which would keep the output devices' dissipation within safe limits with a lower impedance load. I note that the specifications quote the same continuous power output at both 8 Ohms and 4 Ohms. A nice feature, and one I haven't seen before.
it protects the speakers as much as the amplifier because, with an uncommonly low impedance load it's easier to drive the amplifier into clipping. The power in the high frequency distortion products then often destroys the speakers' tweeters, followed by collapse of the amp's output stage.
The sound quality is quite good, with no obvious imbalances or peculiarities. It drove the pair of bookshelf bass reflex speakers I used to uncomfortably loud levels with ease. Residual hum and noise is well down, being unnoticeable in a quiet room, except when switched to phono and with the volume control set for high level output.
Incidentally, all the input sockets are mounted on a pc board which also contains the phono input stage, this board being secured to the rear panel. Only high level
signal wiring runs to the front panel selector switches.

The tuner exhibits good sensitivity on FM, sufficient to receive all the major Sydney stations and a goodly number of the community FM transmitters. Sound quality is quite good, and $A-B^{\prime} d$ with an expensive topend funer, did not give too much away here.
An indoor wire dipole was supplied, which the handbook suggests you connect to the 300 Ohm balanced antenno input terminals. Not ideal. but adequate. Our offices are located in Balmain and in an RF hotspot. Like every other tuner I have used at this location, crossmodulation products are evident across the dial. However, all the stations I could locate on these frequencies were clean, showing no evidence of the modulation products of other stations.
The AM tuner is best described as adequate. No AM stereo decoder is included, but, as I have said previously, this seems to be aimed at the car radio listener, or just ignored. Reception on the supplied loop was good for all the local stations. This loop does not show much directionality.
In manual tuning mode, it steps at 9 kHz intervals on AM and 50 kHz intervals on FM . You can store up to 12 FM stations because the FM/AM switch to the left of the display gives you two FM registers (FM1 and FM2), but only one AM register.
The bass, treble and balance controls all work as expected and the centre detents are a welcome feature. The specifications indicate the tone controls provide $+/-10$ dB of boost and cut at 50 Hz and 10 kHz . The loudness switch works as expected, with no audible clicks or plops. The tape monitor and function selector switches also work without any trace of switching transients.
Internally, the construction is of solid, conservative design, with the main amplifier pc board dominating the base of the chassis, the tuner board being mounted above it. The preamp "front end", as mentioned before.
is mounted to the rear panel. Various other small boards complete the complement. The generous power transformer is mounted at left rear, well away from the sensitive circuiltry. A single, large heatsink at the rear dissipates the output stage devices' heat. Slots in the chassis beneath this area and in the cabinet cover above provide good, free, air circulation.
I said I would return to the "High voltage" and "High current" indicators. Harman/Kardon's full description of the hk550Vxi is "High Voltage/High Current Stereo Receiver". This, basically, seems to refer to the speaker load setting switch. When set to the 4 Ohm position, the high currrent LED lights. When set to the 8 Ohm position, both LEDs light.

The handbook supplied is simple to follow, well laid out and clearly illustrated. One niggling little point, though: in the description of the Operating Mode Indicator Lights (the above mentioned High Voltage. High Current LEDs), it says their operation "... is covered in the Hook-Up section farther on in this manual." Well, I couldn't, for the life of me, find the Hook-Up section, or any further mention of these indicators.

Summing up

The hk55OVxi is entirely without pretence. It delivers solid performance, and at a recommended retail price of $\$ 999$, represents excellent value for money. It would make a very good basis for a component hi-fi sound system. Just add, say, a turntable or CD player and a quality pair of bookshelf loudspeakers, and you'd end up with a quality system for under $\$ 2000$ that would give many years of enjoyment. 픈

[^3]

SHOOTING SCRIPT.

AVX: $\quad 360^{\circ}$ Gunfire. Bullets ricochet off door.
Camera: Close up on Butch.
Butch: Kid, this enhanced cinema surround gunfire is killing me.
AVX: Increase gunfire presence. The expansive reports of Winchesters.
Camera: Cut away to police. Back to two shot.
Kid: It certainly is very realistic sound quality. And amazing how you can change the sound environment just by pressing a button on this.
Camera: Close up on remote control of Yamaha AVX-100. Cut to Butch as he turns and shoots.
AVX: Extreme presence of gunshot.
Kid: Five year guarantee too...
AVX: Long hail of shots.
Butch: Maybe you should try it out. This sound is getting too real. I'd swear I can even feel the bullets...
Kid: I've an idea. Let's go to ... a night club.
AVX: Extended gunfire in muffled night club.
Picture Freeze
AVX
Fade up music in dolby stereo.
Title: Call 008331635 for your nearest dealer.

BIESE:

ose engineers have invested more than 25 years of ongoing research seeking one goal-re-creating the realism of a live performance.

The next best thing to hearing music live is hearing it through a Bose Direct/Reflecting speaker

Drawing on the heritage of the internationally acclaimed Bose 901° speaker, the $601^{7 / 4}$ speaker gives you the best seat in the house-wherever you sit or stand.

Through our extensive acoustical research into live sound, we learned that focusing on only one musical parameter such as frequency response and expecting realistic sound is like trying to create a lifelike painting by concentrating solely on colour. As with visual images, live sound has perspective, clarity and proportion.

We designed our speakers based on the natural combination of direct and reflected sound. The difference between listening to conventional speakers and Bose Direct/Reflecting speakers is like the difference between viewing a movie on a television versus experiencing it in a theatre.

The 601 system brings a three dimensional sensation to musicgiving the sound depth, height and width. In short, it seems to come alive! In a live performance, the majority of sound reaches your ears after being reflected off the wails, floors and ceiling. With conventional speakers, you mainly hear only direct sound. Bose Direct/Reflecting ${ }^{3}$ speakers add the missing elements of music by bringing you the natural combination of direct and reflected sound (see diagrams at right). The result is a lifelike soundstage that's practically like being there.

With most conventional speakers, you hear stereo in one or two parts of the room. Everywhere else, you hear primarily one speaker. The 601 system allows you to hear true stereo

The Bose $601^{\text {"w }}$ Series III Direct/Reflecting Loudspeaker System

 at true-to-life volume levels.

The Bose 601 system also makes it possible to use your stereo system in a new way: as part of a total audio/ video system. It is designed to produce greater realism with all video sound sources-especially stereo televisions, hi-fi VCRs and video disc players.

Bose Australia Inc., 11 Muriel Avenue, Rydalmere, NSW 2116 Telephone: (02) 6841022,6841255

Bose Distributors:

NSW and VIC: Bose Australia (Reverse charge (02) 684 1022); OLD: Stereo Supplies (07) 2297930 WA: Prosound (09) 325 1066; SA: Blackwood Sound (08) 278 1281: TAS: Chessman Distributors (003) 264622

[^0]: HUB is published and distributed monthly by The Federal Publishing Company Pty Ltd inc. in NSW, 180 Bourke Road, Alexandria, NSW 2015. Ph: (02) 6936666 . Printed by HANNANPRINT, Sydney. Distributed by Newsagents Direct Distribution, Alexandria, NSW 2015. Distributed in New Zealand by Network Distributors Ltd, 67-73 View Road, Glenfield, Auckland. Ph: 443 0245. Fax: 4430249.

[^1]: EDICA exists to coordinete the officient introduction of EDI in Australia and, is a by-product, to provide support and advice cmongst mombers.

[^2]: CONDITIONS OF ENTRY

 1. The competition is open only to Australian residents whose entries are received prior to last mail 31st January, 1990. Employees of the Federal Publishing Company and Marconi Instruments Limited and their families are not eligible to enter
 2. South Australian residents need not purchase a magazine to enter but may enter only once by submitting a hand-drawn facsimile of the entry coupon along with their name and address to: The Federal Publishing Company. P.O. Box 227. Waterloo. NSW 2017
 3. The prizes are not transferrable or exchangeable and may not be converted to cash.
 4. The judges' decision is final and no correspondence will be entered into.
 5. Description of the competition and instructions on how to enter form a part of the competitions conditions.
 6. The competition commences on 26th October, 1989 and closes with the last mail January 31, 1990. The draw will take place in Sydney on 5 th February, 1990 and the winner will be notified by telephone and letter. The winner will also be announced in The Australian on 8th February, 1990 and a later issue of this magazine.
 7. The prize is: One only Marconi 2388 Active Probe complete with power supply. Valued at $\$ 2610$.
[^3]: Review unit supplied by the distributor, Convoy International, 400 Botany Road, Alexandria 2015. © (O2)698-7300.

