
 JANUARY 1979
 INTERNATIONAL L
 $\$ 1 \cdot 40^{*}$
 N2S150

$2 m$ VNOS Power Amp

 R@ce Track cane Scope Logic Trigger Use ล Scope Curve Tracer Urioity Drying
WHAT EVERYBODY ASSUMED YOU ALREADY KNEW ABOUT TAPE RECORDING, BUT NEVER TOLD YOU...

 simply excellent

Aleatronites today

Editorial:	Les Bell
Managing Editor:	Collyn Rivers

Cover: The SIMPLE language and interpreter for the 8080 microprocessor is an interesting introduction to the construction of interpneters.

A Modern Magazines Publication

* Recommended retail price only.

Registered for posting as a publication Category B

PROJECTS

141: Logic Trigger 37

Use vour scope on complex logic.

143: Curve Tracer . 43
Observe semiconductor operation
720: 2m VMOS Power Amp . 71
813: Race Track Game 79
An 'odds-on' favourite!

Special Software Project
 Simple.
 Simple Micro Processor Language Experiment 53
 53

FEATURES

Use a Scope 13Soe what's soing on. The Garrard MRM101.
22
Noise Reduction unit.
31
Writing for ETI
Gain Control 46
VCAs, etc.
84
Data Sheet
Utility DXing 89
NEWS \& INFORMATION
News Digest5 Propagation Predictions102
Sound Briefs 27
Print Out News 67
Mini Mart 105
Kits for ETI Projects 87
Amateur News 95
Ideas for Experimenters 107
Reader Services. 114
Index to Advertisers. 114
97
SWL News

fact: Shures up front with Maynard Ferguson... and backstage too!

The Performance

Maynard settles for nothing short of the finest . . . in his music, in his arrangements, in his creativity, in his road engagements, in his band. And in his microphones and sound system. That's why he insists on a Shure SM58 microphone. That's why engineer Tony Romano puts the sound together on Shure SR consoles.

The Sound

Maynard builds it from feelings, ideas, crescendos, rhythms, harmonics, and layers of raw sound Shure's professional SR sound equipment performs superbly even in Maynard's most demanding sets. It projects his trumpets to everyonewhatever the size or shape of the hundreds of clubs and halls he works. Take it from Maynard Shure performs. That's the up-front information. And the backstage story, too! Shure ... the Sound of the Professionals.

Professional Microphones \& Sound Systems

THORNBURY 3071 Vic

News Digest

Electronic Ruler

National Panasonic has developed a unique electronic ruler incorporating an 8 digit calculator with memory functions. The ruler will measure straight or curved lines by means of a small wheel fitted to one end, and the resultant measurement can be fed directly into the calculator as a basis for computations. It is convenient for measuring distances on maps or charts, and in warehousing, textile, carpentry and engineering activities.

The electronic ruler, designated Model JE-8210 U, is available from electrical retailers, discount houses and department stores throughout South Australia at a recommended retail price of $\$ 63-50$. Distribution will probably be extended to other States at a later date.

Townsville MICSIG

The Townsville Chapter of the Australian Computer Society has formed a Microprocessor Special Interest Group. Three meetings had been held when we heard from the group's secretary in late November. Speakers have been Mr. J. Sokoll from Brisbane and Dr. W. Caelli from Canberra, and a 'show-and-tell' evening was held where members demonstrated equipment they are working on.

Meetings will be held at approximately monthly intervals, and people interested in attending should write to: MICSIG Secretary, ACS, PO Box 82 Aitkenvale 4814.

Extension Speaker

A compact, lightweight, self-contained extension speaker, which operates from the earphone jack of a TV receiver, radio or cassette player is available from National Panasonic. The speaker, which has a built-in amplifier, gives an output of 4 watts from a 16 cm woofer and a 5 cm tweeter, and it is designed for use in large areas such as halls and conference rooms or in clubs and hotels where there is often a high ambient noise level which makes sound from a single output source difficult to hear. It is also suitable for domestic application with radio-cassettes for outdoor parties, barbecues, etc.

The loudspeaker, which comes complete and ready for installation, is available from National dealers at a recommended retail price of $\$ 79.95$.

Chess Champion Offer

Unfortunately the closing date of the Chess Champion offer in last month's ETI was accidentally omitted. This offer closes on 1 January 1979.

Nationwide Paging System

The Swedish National Telecommunications Administration intends to introduce a new nationwide paging system which will allow the users of pocket receivers to be contacted wherever they may be in the country. Calls to the system go through a central installation in Orebro and are then relayed over the FM network. About 30 seconds after the user's telephone number is dialled, his pocket receiver will beep, requesting him to call his office or follow some other prearranged procedure. A more advanced system stores the callers' numbers at the central installation for up to two hours.

Antiforgery System

Researchers at IBM's Thomas J. Watson Research Centre have refined an earlier system to reject 1.7% of valid signatures while accepting only 0.4% of forgeries. The system, which is designed for access security control, works by tracking acceleration and pressure patterns as the signature is written rather than the contour of the signature. Inventor N.M. Herbst claims that the muscle movements required to produce these patterns are beyond conscious control and thus well-nigh impossible to fake.

Piezo-electric Motor

Soviet scientists at the Polytechnic Institute of Kiev have succeeded in building a piezo-electric motor that converts electrical power into rotary motion. Tests have shown that the movement was continuous even though it was produced with impulse forces, and that the machine is over 50% effecient with 90% efficiency being possible.

Digital Link

Strong RF fields, such as are found around broadcast transmitters, cause problems for digital telemetry links, making the installation of such equip. ment for remote monitoring of antennas extremely difficult. Now, however, a new system from Flash Technology of America (Nashua, NH) offers twoway digital coupling across an RF gap with 15 kV RMS at 1 MHz , or even higher voltages at lower frequencies. The ElectroFlash Optical link FTB205.OL uses an optical fibre link to provide complete electrical isolation between the two sides of the link, which are separately powered.

Synthesized Sig Gen

The new HP 8662A Synthesized Signal Generator covering the range 10 kHz to 1280 MHz now challenges the signal performance of mechanical and cavity. tuned generators such as the well-known HP 8640B. Since both single side band (SSB) phase noise and spurious signals are highly important in out-of-channel receiver testing, this new generator can now be considered for automatic test applications where its programmability and test flexibility are needed.

A major design objective of the front panel layout was to improve measurement efficiency so that engineering and production test productivity could be increased. By using a micro-processorbased controller, manual keyboard functions, semi-automatic sequences, and external programming all provide exceptional user flexibility.

Signal generator key functions are grouped centrally. Frequencies are keyset to 0.1 Hz (or 0.2 Hz) and levels to 0.1 dB resolution. Values can be incremented or decremented with up/ down keys or a rotary knob after keyingin the desired step size. A store/recall function allows up to nine complete front panel control settings to be retained and recalled singly or in a sequence of up to 10 steps. Most increment and sequence steps can be triggered by rear panel inputs.

Start/stop or span sweeps can be selected and five key-set markers plus linear or \log sweep are available. By using the sequence function, multiple sweeps can be observed simultaneously.

Full signal generator capability is provided with high performance AM and FM modulation. AM rates to 40 kHz are possible depending on modulation depth and carrier frequency FM deviations to 200 kHz and rates to 100 kHz are available for external modulation inputs. A 400 or 1000 Hz internal source can be selected.

Price of the HP 8662A synthesized Signal Generator is $\$ 24,700$. For further information contact Hewlett-Packard Australia Pty Ltd, 31-41 Joseph St, Blackburn, VIC 3130.

USSR Space Shuttle

The USSR design for a space shuttle takes a somewhat different tack from the US one. The Russian launch booster would take off horizontally, like a conventional aircraft, and land the same way. This scheme was considered by NASA and later rejected, but apparently the Boeing Company has been asked to review the concept.

Drawing Rules

The Standards Association of Australia has recently published a new standard on the preparation of outline drawings of integrated circuits, AS C379.3. The purpose of this part of the standard is to extend the recommended practices for the preparation of drawings for semiconductor devices given in AS C379, Part 1, to provide general rules for the preparation of outline drawings of integrated circuits. Specific information is given on dimensions of integrated circuit packages, the mounting of packages into carriers and the numbering of case leads. Such drawings are intended to indicate the space which an integrated circuit package will require on a printed circuit board together with any other dimensional characteristic
required to ensure mechanical interchangeability of electronically identical components.

The standard is technically identical with part 3 and Supplement 3A of Publication 191 issued by the International Electrotechnical Commission and already endorsed by the Association as AS C379, Parts 1 and 2. It is probable that the proper use of this part will require reference to AS C379, Mechanical standardization of semiconductor devices, Part 1: Preparation of drawings.

Copies of AS C379.3 (\$6.00) may be obtained from the offices of the Association in the state capitals and Newcastle. Postage and handling 80 cents extra.

Hifi Bar Graph Displays

Technics is now employing newly developed, all electronic flourescent bar graph level meters in cassette decks. The three latest additions to the Technics cassette deck range, namely the RS-M85, the RM-673 and RS-641 feature these long life, highly accurate FL (fluorescent) meters.

The distinct advantage of the FL meter is that there is no moving parts,
as control is electronic, so response time is instantaneous. Also, there is no overshoot, a characteristic of the needle-type meter. The FL meter itself emits light, so there is no difficulty in reading and the left and right channel displays are aligned in parallel for easy viewing and comparison.

For further information on these products, contact the National Technics Hi-Fi Showroom, 31 Market Street, Sydney. Telephone 29-3218.

High Solar Cell Efficiency

Westinghouse Electric Corporation scientists have announced the achievement of high efficiencies in the conversion of solar energy to electricity in solar photovoltaic cells made of silicon.

Efficiencies of more than 15% the theoretical maximum is 22% have been achieved with silicon dendritic web, a single crystal form of silicon showing high potential for lowcost production, according to Dr .
Daniel R. Muss, manager of solid state research and development at Westinghouse's Research and Development Centre in Pittsburgh.

Under a Department of Energy contract administered by the Jet Propulsion Laboratory (JPL), Westinghouse has been developing the technology of growing silicon ribbon for photovoltaic cells. Dr. Muss said that the achievement of greater than 15 per cent efficiency is an important milestone in the solar photovoltaic programme, in that this is the highest efficiency yet reported for silicon ribbon.

The technique used by Westinghouse forms silicon into a ribbon by drawing the material out of a furnace in a thin strip. The ribbon, or web, is formed by the solidification of a liquid film supported between two silicon filaments called 'denrites' which bound the edges of the growing strip.

This process yields a long, mirrorsmooth ribbon free from contamination and essentially ready for solar cell fabrication. Thus, unlike other processes, costly slicing, lapping and polishing processes are not required.

Dr. Muss said both the web growth process and subsequent cell processing are amenable to automation. Westinghouse has been able to achieve cell conversion efficiencies of 15.5 per cent, a very critical factor in determining the overall economics of a solar photovoltaic system.
"Since 1975, the programme has progressed from conceptual design of furnaces through implementation of furnace hardware to laboratory demonstration of web growth at successively greater growth speeds and widths," Dr. Muss said. "For example, early web was typically one centimetre wide and was grown at one centimetre per minute rates."
"Recently," he said, "widths up to four centimetres were achieved. Our analysis indicates that an area output rate of 25 square centimetres per minute will be required for silicon web
to meet the cost goal of 50 cents per watt. We expect to achieve this output rate in the laboratory in 1979."

Solar photovoltaic cell costs, not including other required system components, have recently averaged \$US 12 to SUS20 per watt, more than 10 times the cost of electricity generated by conventional means. "The major obstacles to be overcome to substantially lower the costs of these cells are the achievement of an output rate of 25 square centimetres per minute and the development of automated web growth systems capable of continuous operation for periods up to a few days," Dr. Muss said.
"With further development and engineering, and given cell efficiency of more than 15 per cent, our analyses indicate that the 1986 JPL price allocation for sheet production can be reached or bettered with silicon dendritic web," Dr. Muss said.

Synergistic Beer Drinking

At the time of writing, the December session is still a week away so we are unable to report on the evening's events. To refresh your memories, the ETI staff are available in person to talk about anything, electronic or otherwise, on the second Wednesday of the month at the Bayswater Hotel, in Bayswater Road, Rushcutters Bay (just through the King's Cross tunnel, on the left by the Rushcutter Bowl). We'd be delighted to see you and have a yarn over a beer January's session will be on Wednesday, 10th January. Previous sessions were marked by meagre public attendance, but we are glad to say that everyone who was there had a ball. See you there?

Computer Telex System

A new general purpose system developed by Arbat UK is based on DEC
PDP-11 minicomputers and offers a number of new features to subscribers. Intelex automatically answers incoming calls and dials the outgoing ones when it is ready. If a certain subscriber being called has more than one Telex number, the system uses a learning algorithm to discover which one is most likely to answer quickly, and will dial that number first.

The system can also maintain files of information concerning the people and organisations likely to be addressed; up to 999 group messages with up to 99 names in each group can be held, with up to 9 message priorities. The system can also generate amended versions of an original message and route them to the appropriate correspondents.

EUY10E Mosaic Printer

The prices referred to in the Philips Mosaic Printer advertisement in the November 1978 issue, on page 116, were incorrect due to fluctuations in the exchange rate of Japanese currency. The correct prices are available on application to Philips Electronics Components and Materials.

ETI/Unitrex Calculator Contest

The November contest didn't fool many of you - almost everyone realised that the items for sale were house numbers at 58 cents each. Our winner for this month is Mr P H Bell of Ingleburn 2565 who will receive a Unitrex Calculator.

This month's problem was submitted by Mr E Dixon of Mereweather 2291, and goes like this: Using the sixteen numbers $5,6,7,8,9,10,11,12,13$, $14,15,16,42,43,44,45$, make a four by four square of these numbers such that any four numbers that are in a straight line or are adjacent either at the corners, the middle four or the left or right side middle four add up to 75 .

Seal an empty envelope, write your answer on the back of it, and send it to: Unitrex Calculator Contest (January), ETI Magazine, 15 Boundary Street, Rushcutters Bay, NSW 2011. The closing date is Friday, 2 Feburary 1979.

Errata

Tape Slide Synchroniser ETI 553 On the overlay on page 62 of the October 78 issue, the IC regulator IC1 is shown in the wrong polarity on the component overlay. The correct orientation is with the IC rotated through 180°.

Digital Stopwatch ETL 590

An improvement in operation of the oscillator can be obtained by reducing R6 from 1 k to 100 ohms. If non-microswitch type pushbuttons are used, add a $1 \mu \mathrm{~F}$ capacitor between pin 8 (+ve end) and pin 7 of IC15.

S 100 VDU ETI 640

Some readers have experienced difficulties with the divider stage IC38, in which all stages of the counter may not reset correctly. A suggested fix is to cut the track between pin 11 of IC38 and the lower end of diodes D8, 9 and 10 on the top side of the board and install a 100 k resistor between these two points. This will have the effect of stretching the reset pulse. An alternative cure is to replace IC38 with a Philips type HEF4040.

tu-sound

Hi-Fi sound from your TV

Studio Electronics unique unit enables a high-quality sound signal to be derived from a television receiver and fed into your hi-fi system without making any connections to the TV-set. The Studio Electronics 800 system extracts the audio signal from the $5,5 \mathrm{MHz}$ sound intercarrier signal by means of a pickup coil requiring no electrical connection to the set. This system picks up the sound signal for whatever channel the TV is tuned to so that no retuning is required when the channel is changed. The absence of connections to the TV ensures safety with no chance of high voltage shocks or warranty and contract problems with new or rented sets.

studio elearimonias frin

NSDUCER SYSTEM

DIMENSIONS: $100 \times 60 \times 55 \mathrm{~mm}$

PO Box 1055, Burwood North, 2134 Australia.
Phone (02) 747-5686. Cable Studiotron, Sydney.

Aulio-Technica announces a creative new start tovarivd better sound.

Every "live" recording has an excitement all its own. You must capture sound that will never be heard exactly the same again. And in some cases the recording is literally a once-in-a-lifetime chance. With no opportunity to remake the tape or disc.
Your creativity, your knowledge and experience are on the line. Now is when you appreciate the precision of Audio-Technica microphones. Performance is consistent. With results that help you extend your personal standards.

Audio-Technica gives you a choice of superb new electret condenser or moving coil dynamic microphones. A choice of omnidirectional or cardioid (unidirectional) pickup patterns. With smooth, extended response that complements the finest recorders. Audio-Technica microphones look, sound, and act very, very professional.
Add more than a little creative excitement in your life, with Audio-Technica microphones, today.

Tandy Books for Electronics Expertise

DATA BOOKS

Digital Integrated Circuits. Complete specs. Covers Series $54 / 74,54 \mathrm{H} / 74 \mathrm{H}, 54 \mathrm{~L} / 74 \mathrm{~L}, 74 \mathrm{~S}$, 930,9000 and 10,000 interface circuits, fulure products, AC test circults and wave-forms. 62.1370.
3.95

Voltage Regulator Handbook. How to select a three-terminal regulator. Also heat sink selection and design, power transformer and filter specs. 62.1371.
...... 2.95
Linear Integrated Circuits. Covers voltage regulators, operational amplifiers, voltage comparators/buffers, transistor/diode arrays, more. With glossary, dimenslons. 62.1372.
3.95

Linear Applications. Fully indexed and crossreferenced. Considers both munolithic and hybrid circuits. Subject index with 1200 references to text.

62.1373.

2.95

Linear Applications. Vol2. The latest data sheets, application briefs and articles. Index and cross-reference gulde for rapid location of Information. 62-1374.
2.95

CMOS Integrated Circuits. Covers 74C series. CD4000 with complete data sheets, easy-to-use cross-reference guide and appli. cations. 62-1375.
Memory Data Book. Complete information on MOS and bipolar memory components, systems, application notes and support circuits. An Indispensable reference lool.
62.1376.
3.95

Intel 8080/8085 Programming Manual. Descrlbes programming with Intel's assembly language. Primarily a reference manual. Includes programming tips for beginn. ing programmer. 62-1377.
Intel Memory Design Handbook. Explains use of Intel's memory components and support circults in system application and system environment. Companion to Data Catalog, below. 62-1378.
.3 .95
Intel Data Catalog. 928 pages of complete specifications on most of Intel standard component, memory system, storage devices and microcomputer related products. 62.1379.

COMPUTER BOOKS

Understanding Calculator Math. Contains the basic information, formulas, facts and mathematical tools needed to discover the full capabilities of hand-held calculators. 62-2009.
Understanding Digital Electronics. Explains a wide range of digital electronic devices, circuits and systems-what they are, what they do and how they can be used. 62-2010.
2.50

BASIC Computer Programming. Gives Introduction to computers, how to write computer programs and discusses protessional computer applications.
62 -2015.
BASIC Computer Language. 232 pages of programmed instruction and user programs. Teaches you the BASIC computer language and starts you toward becoming a competent programmer.
$62 \cdot 2016$.
Understanding Digital Computers. An easyreading programmed course on digital computer basics. Instruction for the layman with basic rules, chapter reviews, problem and anwer checkpoints. 62-2027.

CB.SWL.HAM

CBer's Handy Atlas/Dictionary. Almost 1000 listings of radio jargon, slang, technical terms, 10 -codes. Q-signals. Up-to-date atlas of CB channels. 62-2026.................. 1.25
Shortwave Listener's Guide. Lists stations by country, city, call letters, frequency, power, transmission times. With log. 128 pages. 62-2032.
2.25

CB.SWL.HAM Log Book. Keep an accurate record of stations heard. Tables for recording frequency, call letters, date, lime. 64 pages.
62-2034.
.1 .75
CB.SWL.HAM MinI-Log. Compact, spiral. bound book keeps a permanent record of stations received. With same tables as log book, above. Easy to use. 50 pages.

62.2036

\qquad
From 5 Watts to 1000. A programmed course to take you from CB to Ham radio in easy-tounderstand seclions. Theory, test questions, tlps to learn code, more. 62-2056.

ELECTRONICS STUDY

Practical Electronics. Vol.2. Introduction to bread boards, perf box construction, PC
boards. Includes projects for making practical applications. 62-2028.
Understanding Solid-State Electronics. 12 lessons self-leaching course in semiconductor theory by Texas instruments Learning Centre. 242 pages. 62-2035.
Practical Electronics. Vol. 1. Simple to understand approach to DC circuits and theory. Gives questions (and answers) to make learning easier. Illustrated.
62 -2037.
Electronics Data Book. Handy reference for electronics information-formulas, laws, math and more. 112 pages.
62-2040.
Electronics Dictionary. Definitions and illustrations for more than 4800 electronics terms. Expands your electronic $\$$ vocabulary. 112 pages. 62-2047.
1.50

Math for the Electronics Student. How to solve problems in circuits, inductlon, capacitance, RMS peak power, power factor, resonance. 112 pages. 62-2057.
1.50

GENERAL

Guide to Stereo High Fidellty. Covers component hi.fi, loudspeakers, ampllifiers, record-playing and tape equipment. 4. channel sound, assembling a hiff system. 175 pages. 62-2029.
1.75

Guide to VOM's and VTVM's. Tells how to service radio. TV, hi-ft, Amateur and CB radios, more. Step-by-step directions. 96 pages. 62.2039.
Introduction to Antennas. Explains how CB, TV, radio, shortwave antennas are designed. How to choose and instalt the antenna best for your needs. 128 pages.
62-2051..
1.50

Building Speaker Enclosures. Gel exira value by building your own speaker system-bass. reflex, infinite baffle, plus many more deslgns. 96 pages. $62 \cdot 2055 . . .$. 1.25

Dictionary of Electronics

Contains the latest terms in virtually every field of electronics and computers. Includes pronunclation guide, semiconductor symbols and abbreviations, schematic symbols, the entire Greek alphabet.
68.1030 .

We try to convince you you need an oscilloscope.

LET'S FACE IT, compared to some other pursuits, electronics isn't (necess. arily) more expensive, it just has a strange balance of payments; ie, what you need to buy to get you going. But it's worth it! We want to encourage you to think about how you're going to develop your interest, so let's try to help with some philosophy. We'll check out what the electronics enthusiast needs to enjoy him/herself, and compare this to other activities in an effort to get you going.

The Basics

What are the tools of the electronics person? The basic tools are very modest: screwdrivers, pliers, soldering iron, wire strippers and a few odds and ends. Fifty dollars and you'd have that about covered. But, and it's a big but, you won't have much fun. You can construct but you can't see what you're doing - electrically that is. Yes, there's really nothing for it, sooner or later you are going to feel you want, absolutely need some test equipment. Here's the problem though, many wonder how they can justify the expense of buying something which is a) so exotic and relatively unusual and b) is not even used for construction but just for seeing what you're doing.

Objection a) is easy to answer. If you're special enough to desire a meter or scope there's nothing exotic about it. Objection (b) is tougher to handle. Look at the Sunday mechanic. His couple of hundred dollars invested in tools is used directly to fix or improve his car. And the photographer, his major investment is in the basic picture making tool, the camera. But the poor beginning electronics enthusiast with only a soldering iron is about as well equipped as a photographer whose camera has no viewfinder.

What it all comes down to is that it's time to stop regarding meters and scopes as costly accessories, and start looking upon them as time saving, enjoyment enhancing, educational essentials.

What do you really want to do? Probably you've got the idea you'd like to try whipping up a circuit, perhaps one of our designs, or from somewhere

else. But what happens? (and how many of us have had this happen?) You get the project together and it DOESN'T WORK. You check it through by eye but don't come up with any wiring mistakes. Are the ICs burned out, transistors on the fritz? Short circuit somewhere? Are the terminals on that pot really the way you guessed? Is that signal getting through?

So after a few years you end up with a big box of dead projects, and your family and friends tolerate your failures. (Which makes your expenditures in electronics even more difficult). How can you financially justify a meter or multihundred dollar scope to fix a $\$ 30.00$ project? You can't! Why not just get it (them) for your own satisfaction -- that's justifiable. As we said they are essentials, not accessories.

A satisfied electronics enthusiast sees his hobby as observing interesting things on his scope, enabling him to nurse his projects to life, rather than simply building projects from exact designs and
being lucky enough to get them working first time.

The Benefits

What you get with a set of test equip. ment is of course the pleasure of seeing what you're doing and getting your projects working and adjusted properly. But there are other benefits too. With test equipment you can fearlessly repair radios, TVs, auto electrical systems, appliances, etc, etc. If at present you don't have the knowledge, there's nothing better than a meter and scope to help you learn, with a diagram and perhaps a good book. Fixing is funl Anything can be returned to working order - the challenge is in doing it.

Testing

All testing is done to check that a circuit is working properly, to adjust it so that it does, or to find out why it doesn't. If a problem exists you proceed to observing a particular point

Use A Scope

in the circuit where the defect is noticeable. Based on how this point misbehaves compared to proper operation you formulate a theory as to what could cause this mis-operation. Then you devise a test to see if you are correct, perhaps check another location in the circuit, etc. If the result is positive continue along the lines of your theory. If not, modify your theory.

Each test is an observation, to be compared with what you expect to find. Thus you need instruments that let you observe, and a means of establishing expected conditions. Many circuits need no external signals to provide their own expected conditions, such as say a light flasher, while a radio uses easily available radio waves as input. Other equip. ment, for example an audio amp, requires an input signal to operate fully and thus be tested fully.

From the range of circuits one encounters, it appears most logical to acquire the basic observational equipment first, and leave the signal generators (input condition establishers) until later. Usually a make-do signal source can be rigged up in any case.

Observational Equipment

We are of course back to the multimeter and oscilloscope, plus a few others. The most important factors which pertain to this equipment are that it must not significantly affect circuit operation, and it must of course give you a reasonably good picture of what's going on.

The observing machine should provide you with the information you need. This will very much determine what kind of test equipment you purchase in each class.

Multimeters

You are quite likely to be faced with a selection of multimeters from the $\$ 30.00$ analog (needle) meter to $\$ 200.00$ digital meters - how do you choose? You ask - what instrument best reflects my projected needs? After basic considerations such as ranges, portability, etc, have narrowed the field, you end up with two major factors versus dollars. The first factor is input impedance. Without any amplifying electronics in an analog VOM, the input impedance is typically 10 k per volt, satisfactory for a large number of applications, but not high enough to just stick your probe anywhere without a care. With buffering electronics in either an analog or digital meter, impedance is usually a satisfactory straight 10 M ohm. The other factor, accuracy

and resolution, usually comes proportional to dollars. You probably need far less than you think. In fact, as a guess, probably 90% of all measurements you are likely to make need no better than 10% accuracy! Look at it this way most circuits are designed to work with 10% tolerance components, even the AC line voltage may vary from 230 V to 250 V . Usually if a voltage is within 10% nothing much is wrong. There are of course exceptions such as TTL power supplies. But the point is that to buy $.01 \%$ accuracy is probably not useful, 1% is quite adequate. In analog meters (which have been in use for years without complaint) just how accurately can you read it anyhow? Figure it out as a percentage!

Oscilloscope

Have you ever been out in snow on a bright day and been blinded by the light? What a feeling of relief you experience when you put on a pair of sunglasses. That's the same feeling you get with your first oscilloscope. You can see.

What do you see? Most obviously you can see the shape of the waveform, but the oscilloscope is also an important measuring instrument. It is capable of reading out with reasonable accuracy and resolution (5\%) on both amplitude and time axes. What you get as price increases are features which relate to convenience of use, and which increase the accuracy and range of measurement. We study these features in more detail below.

More Metres?

How about frequency, capacitance and inductance; do you need to measure them? Probably not, if you do you can measure them all on the scope.

In the case of frequency you can use the time scale of a triggered scope to find this to probably 2 to 5% accuracy, often close enough. Capacitance and inductance can both be measured using a signal generator and series resistance to figure out the impedance of the component, from which actual L or C can be calculated. If you have to measure a lot of F, L or C or need great accuracy then get the appropriate meter.

Logic Probes?

There are a variety of logic probes about with one, four, many inputs. A wide range of designs tells you such information as the logic state of one point, the logic state of many points simultaneously, the logic state of one point for the last n clock cycles, the logic state of all pins of a particular IC etc. It's best to wait and see what your specific needs are before buying one of these. You can do the job with a scope (which will also tell you if you have any " $1 / 2$ " logic states) but logic probes are designed to ease the job.

In fact, some troubles that are likely to be encountered, especially in microcomputers, are much better handled with an initial poke about with the scope, followed by a custom circuit employing handfuls of LEDs some CMOS latches and a breadboard!

Signal Sources?

A basic sine, square, triangle wave generator can be invaluable as a source of known signals. You'll probably want to be able to set frequency, amplitude and DC offset voltage easily and accurately, and have a sufficient range. Beyond that signal generators start getting specialized.

At a pinch you can build for about \$1 a CMOS oscillator to give a square wave output from 0 to $15 \mathrm{~V}, 1 \mathrm{~Hz}$ to 2 MHz . This will get you by in many situations, audio, rf, digital, and very cheaply. You need a suitable scope to "calibrate" it.

In fact there are many simple circuits that will generate a signal for you. The key is that a "signal generator" is really only useful if you know what it's generating. This either costs you money to buy a commercial generator, or means you must have a scope to observe the signal from your experimental generator. It seems more and more that the scope is the essential instrument! It is.

Specialized signal generators include audio types capable of sweeping up and down the audio spectrum (hi-fi test
equipment) RF generators for radio and TV, picture pattern and colour pattern generators for TV and so forth. They generally make easier things that would otherwise be possible but tedious without them.

Input Impedance

As with multimeters the input impedance is important, but most scopes are satisfactory. Typically this is 1 M ohm resistive and a capacitive load of about 35 pF. Special scope probes may also be obtained for various tasks to reduce even further the effects of loading.

Triggering

Probably the most differentiating feature between scopes is the means used to stabilize the display. As the electron beam scans across the screen it is deflected up and down by the signal being monitored.

When the end of the trace is reached the electron beam is quickly returned to the start position and the trace is again started. The beam is of course blanked during the "return" sweep.

This process happens so many times a second that the eye cannot see individual traces. With a repetitive input signal, it is desired that each subsequent trace draws exactly over the previous trace, to present the eye with a stationary picture. If this does not occur the waveform will appear to drift sideways, or worse yet may be completely unobservable. So how do you coordinate the sweep with the input signal?

The first method would be to have the sweep oscillator running freely, and hand tune it to give a stable display, a very tedious approach. The second method is called "synchronization", whereby the input signal "influences" the sweep frequency approximately, then the sweep oscillator "locks on" to the input to provide a stable display. while the input signal doesn't vary too much in frequency. The main drawbacks of synchronized sweep are that it only locks over a limited range of frequency (you couldn't observe clearly the signal from an audio sweep signal generator for instance), and you have no means of figuring out the time scaling directly from the scope. If you want to see what the time scale is (say how many $\mathrm{cm} / \mathrm{ms}$ the beam covers) you must add to the input a reference oscillator signal and work it out from that.
"Triggered" sweep solves most of the problems. The sweep is not generated by an oscillator, but instead by a constant slope ramp generator. At first the ramp is at its initial value, holding the beam off to the left of the screen. Then a particular condition occurs in the input signal, (perhaps it exceeds a certain voltage/ which triggers the ramp
generator, sweeping the beam across the screen at a constant (known) rate, which you have selected.

At the end of the trace the beam returns and the trigger circuitry awaits a recurrence of the particular condition, to start the beam off again.

Because the particular condition occurs at the same point in the wave each time, each successive trace will be exactly "on top of" the last one, yielding a stationary picture. In addition, since the sweep rate is known the time scale can be read directly from the scope. If the signal frequency should vary, the picture will appear to compress or expand horizontally but still be perfectly visible.

The particular triggering condition may be an adjustable positive or negative voltage, or slope, and many also be automatically taken care of by the scope.

Sweep Speed And Delay

Having already established the virtues of triggered sweep with its ability to allow a direct read-off on the horizontal time scale, what other factors are there?

Our example scopes both have calibrated sweep speeds in "1-2-5" steps from $1 \mu \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{~s} / \mathrm{cm}$. In addition there is an "expansion" mode available, which will "blow up" the horizontal scale by 5 (245 only) or 10 (both) times' Effectively the horizontal sweep speed extends up to $.1 \mathrm{us} / \mathrm{cm}$. This expansion mode gets around another problem, discussed below.

The sweep speed is further adjustable between calibrated speeds for occasions where you want to fit a wave form into a particular number of squares on the graticule, such as for easy measuirng of duty cycle.

This feature is also useful in a case where one has say a repeating 8 pulse sequence, and the triggering mechanism cannot distinguish between pulses. One merely adjusts the sweep speed to fit 8 pulses on the display, then the trigger acts on the 9 th (first repeated) pulse.

A further problem is encountered when trying to display a waveform such as relatively narrow but widely spaced pulses in reasonable detail.

An example would be a 1μ s pulse recurring every $20 \mu \mathrm{~s}$. The trouble is that the trigger will operate on the pulse, but by the time the sweep actually starts some of the $1 \mu \mathrm{~s}$ pulse will have been lost. What would be ideal is a trigger that happened before the event, an impossibility of course.

Various fancy schemes have been tried to delay the signal to the display with respect to the trigger. The least expensive solution however, is to use the expansion feature. In this case you reduce the sweep speed to allow the

Use A Scope

display of a second complete pulse with normal sweep width. Then expand to ten times. (This means that the sweep is actually ten times the width of the screen, but only a portion is visible). Ajust the horizontal positioning control to locate the pulse as desired. Effectively you are using ten times the sweep speed, and triggering using a preceding pulse and adjustable time'delay.

In fact, some scopes incorporate an adjustable time delay on the trigger for exactly this reason, and then they do not need an expansion mode. This is an improvement because the expansion mode display sometimes tends to be dimmer and less well focussed.

Particularly with digital signals, less so with audio or TV signals, you are likely to find the triggered scope more useful than the older synchronized type.

Dual Trace

Naturally two traces are better than one, but not just because you can see twice as many traces. The important extra capability this gives you is the ability to see the time relationship between two (or even three) waveforms. Since both traces are triggered from the same signal, points on both waves at the same horizontal position are occuring at the same time. This is very useful for understanding causes and effects that may be only tens of nanoseconds apart.

The dual trace also of course has the convenience of displaying two signals at once such as input and output to an amplifier, perhaps to see how distortion varies with input signal level.

There are three methods of generating the two traces. The first, most obvious and most expensive way is to have two electron guns, with individual deflection plates for each beam, this is known as "dual beam". The second method is to have a single beam draw one trace, then the other "alternating" between the two, but drawing a com-

plete trace each time. In the third method the beam draws both traces in one sweep by alternating very quickly between traces. In this "chopped" mode the beam may draw say .1 mm of the top trace, then .1 mm of the bottom one, then back to the top, etc.

Most moderate price dual trace scopes give you a choice of the alternate and chopped modes (you need both to cover all sweep rates) or automatically select the mode for you.

Input Channels

There is usually a switch which provides you with AC or DC coupled input, or shorts the input (but not the probe!) to ground to position the trace.

At the high frequency end, the important characteristics are the "bandwidth" and the "rise time". The bandwidth is defined as that frequency at which a sine wave display would be reduced in amplitude by 3 dB (.707) from its lower frequency size. The rise time is the time between 10% and 90% points on a square wave of a specified size (usually 75% of the scope graticule) assuming a "perfect" square wave input. The rise time is approximately equal to the reciprocal of 2.8 times the frequency, ie: $T R=1 /(2.8 \times B W)$, in seconds and hertz. Thus, these two factors are not always both quoted.

In order to check the calibration of the vertical amps a calibrated signal generator is often provided.

An additional capability with many scopes (not just dual trace models) is the X versus Y mode, where the vertical channel operates as before, but the second input drives the horizontal sweep rather than the normal sweep oscillator. This capability is used for comparing two signals ("lissajous" figures) and it's also useful for using the scope as a curve tracer for semiconductors etc.

While X versus Y is available on many single trace scopes, the horizontal channel usually has limited versatility.

Z Axis

Most oscilloscopes have a facility for modulating the brightness of the trace, which is useful for showing markers, and can even be used for slow scan TV.

Last Details

The last few factors relating to choice of scopes are those such as battery power (somewhat rare), service support, choice of connectors, ruggedness of case and so forth.

So how about enjoying yourself. A scope can be a very worthwhile investment, for education, business or entertainment.

The BWD 540 (above) is an Australian-made high performance dual trace oscilloscope.
This Tektronix storage oscilloscope can 'capture' a non-repetitive waveform and display it continuously.

THE AUSTRALIAN CB BOOK - $i t$'s the one Australian CBers have been waiting for! Compiled by the editor and staff of CB Australia, this book is the most important publication for CBers yet published in this country. We hope you come to regard it as the 'bible' of the Australian CB scene. It is backed by the technical expertise of its sister publication Electronics Today International.

Author, Roger Harrison, is a freelance technical journalist with many years experience in electronics and communications. His highly regarded technical articles have been published world wide in several languages.

Australian $C B$ is written in a language that the ordinary person interested in CB can understand. Its 22 chapters cover virtually every aspect of CB in Australia, from how to read rig specs to how to install antennas to what UHF is all about.

Our latest project book. Simple Projects Vol 2 is a collection of the most popular of our simpler projects together in one convenient book. Contents include:Induction balance metal detector, Train controller, Telephone bell extender, Photographic strobe, Transistor tester, Selecta-game, Touch switch, Code practice oscillator, Car alarm, Auto amp, Breakdown beacon, ETI mini-organ, Accentuated beat metronome, FM antenna. Look for Simple Projects Vol 2 - at your newsagents next month. Recommended retail price is $\$ 2.95$ or you can order directly from Electronics Today, 15 Boundary Street, Rushcutters Bay. 2021. (Add 45 cents for post and packing).

RIACS

New high quality range for single and three-phase power control.

This comprehensive range offers a choice of commutation characteristics at most current and voltage levels. They are all recommended for new equipment designs, but for applications in the 40A region, attention is particularly drawn to the BTW41-G and BTW41-H series in the SOT-80 "Tripak" encapsulation. Basic data is given in the accompanying chart.

For further information contact Philips Electronic Components \& Materials or their distributors.

Philips Electronic Components and Materials,
P.O. Box 50, Lane Cove.
N.S.W. 2066

PH: 4270888

(1) Fer derathg curves see indivioual data sheets. The figures in brackets lotiowing the avgide rating show the -aval of the preceding furn oft.

AVAILABLE THROUGHOUT AUSTRALIA FROM

AND
 BR

PHILIPS

We want you to have the best

DILITAL ITLLTITTETER ARLEC DMM 10

Features

- Large $3 / \mathrm{B}^{\prime \prime}(9.5 \mathrm{~mm})$ LED Numerals
- Automatic Decimal Point
- 3 Digit 0-999 Display
- Instantaneous Readóut
- Zero Locked
- 7 MEGOHM Input Impedance
- 12 Measuring Ranges
- Over-range Indication
- Overload Protected
- 1\% Accuracy

Supplied complete with:

1. Rechargeable Nicad Batteries
2. Combined AC Adaptor \& Battery Charger
3. Connector for charging from auto battery
4. Test Prods
5. Operating instructions
6. 12 month guarantee

A Heavy Duty Carrying Case is available as an optional extra.

SEE THEM AT YOUR LOCAL ELECTRONICS STORE OR THE A + R ELECTRONICS BRANCH IN YOUR STATE.

QUALITY PRODUCTS

DESKGNED \& MANUFACTUR:ED N AUSTPALLA BY A+R ELECTRONICS a memger of the a a r-Soanar electronics group 30 Lexton Road, Box Hill, Victoria

BUILD MUSIC AND SOUTD

Expand your talent with the SH1 synthesizer; let it take you into areas previously reserved for musicians. Roland, the world's largest maker of electronic musical equipment, now provides you with a comprehensive operator's manual which will show you how to enjoy and understand the never-ending creative possibilities.

Simply hook up the SH1 with your hi-fi system and play your favourite electronic, pop or orchestral sounds - or sound effects like surf, rain, wind, etc.
$\$ 750$

SH-1

	KEYBOAAD (32 kevs $2-1 / 2$ actaves)
	VCO (vollage controlted osciliator)
	Modulalor
	Autobend Depth
	Autobend Trme (8.360
	VCO Range (32,$16 ; 8 ; 4 ; 2)$
	Wavelorm ($1, \mathrm{n}$
-	Pulsewndth Modulation (Mir- 50%)
-	PWM Mode Switch
	(Env-1/ManualLFO)
	Sub-oscillator
-	$1 \text { oct Down } 12 \text { oct }$
	AUDIO MIXER
	VCO
	Sub-oscillator
	Noise Generator
	Ext Sig
	Overioad Indicat
	noise generator
	WhitelPink Selector
	HIGH
	Cutoh Frequency Coniral (25 Hz .5 KHz)
	VCF (Vollage Controled
-	Cutoht Frequency Control (5
	Resonance (Min-SeH Oscillation)
	ENV. 1 Comerol Depth
	odulator

- Transpose Switch (LMMH) - Bender Leval Bender Sensitiviy (VCO. VCF - CONNECTION JACKS - Output Lavel Swich (LMMM) - Prones Jack (8 ofrm sterea) - Phones Output Leved Switch
- External ingul Jack
- External Incul Jack - External Control Votage inour External Conirol Votage input
Jack (1 V/1 Oct)
External Gata Voltage incut - External Gate Voltage input
Jack (ON with +7.5 or over) Jack (ON with +7.5 V or ove - Keyboard Control Vollage - Keybuard Gate Outout Jack LOFF-OV. ON. 14 VI
POWER CONSUMPION:
- OIMENSIONS: 610(W) « $370(\mathrm{D}) \times 135(\mathrm{H}) \mathrm{mm}$. 24.0W $x 148(\mathrm{D}) \times 5.3(\mathrm{H})$ in - WEIGHT: $6.4 \mathrm{~kg}, 14 \mathrm{lbs}$ Connection Cora

Super Fal Sound from a New Super Fal Sound
240 Bloct Finer
-Specifications are subyect to change without notice.

Write or call for more information.

Roland Corporation (Australia) Pty. Ltd. 13 Chard Road, Brookvale, N.S.W. 2100. Telephone (02) 9383911.

Garrard MRM 101

GORDON KING examines the new Garrard Music Recovery Module for ETI. This machine is designed to remove the transient noise created by damaged grooves on an LP. How effective is it and how does it work? Read on

THIS INTERESTING BRITISH innovation is a small, self. contained, mains-powered unit designed for connecting between the left and right outputs of a magnetic pickup and the left and right auxiliary or tuner inputs of a hi-fi amplifier. The unit processes the signals passing through it so that the disconcerting clicks produced by badly scratched records are virtually eliminated. In other words, the unit can be regarded as a record 'scratch remover'.

The basic principle of operation is fairly straightforward. The clicks are processed to form large amplitude pulses which are then applied to an electro-optical fader, which, at the precise moment of the clicks, severely attenuates both audio channels, thereby exchanging the clicks for very short periods of 'silence'. Record clicks have a fast rise-time and the effective slewing-rate is determined by the primary parameters of the cartridge, which are the effective tip mass, compliance and, to some extent, the mechanical resistance or damping of the cartridge.

Provided that the attenuation is large enough, that it switches on and switches off swiftly enough just to straddle the periods of the clicks and that is is accurately synchronised to the occurrence of the clicks in the audio channels, then the effect is singularly dramatic - the loss of information during the time of the attenuation appears to be of little subjective moment.

The effect is akin to tape dropouts, but it appears to be less affected by the accompanying S / N ratio impairment of these.

Experimental work has suggested that provided the period of program loss or attenuation does not exceed about 10 ms , then the result is not unduly obtrusive subjectively. The attenuation period of the MRM-101 is a trifle above 2 ms hence the gaps come and go unnoticed.

Built to A Standard

The unit is built into a shallow enclosure and the front forms a brushed aluminium fascia carrying three controls and three light emitting diodes (LEDs). One control is for power on/off, another for suppressor on/off and the third provides a continuous threshold adjustment for the suppressor action. In use, this is set for the best subjective improvement in reproduction.

If the control is too far advanced music peaks as well as scratch clicks may be processed; if insufficiently advanced only very large amplitude scratch clicks will be processed. It is easy to determine the most desirable setting because one of the LEDs flashes each time a scratch is detected. Thus, when playing a record of given mutilation the control is slowly turned up until the suppressor activity LED flashes on all the significant scratches yet remains unaffected by highfrequency music peaks. Another LED merely glows when the mains is switched on, while the third LED signifies that the suppressor mode switch is on.

The rear is equipped with 'phono' type and DIN input and output sockets, making it is a simple matter to connect

Flg. 1 (above). The block diagram of the Garrard click eliminator, MRM101. The pickup amplification and equalisation stages were found to give a very high quality signal output. Note the use of a 4136 quad op-amp.

Fig. 2 (right). RIAA equalisation curve for the unit. Channel balance was an excellent 0.25 dB I
the unit to virtually any contemporary hi-fi amplifier. There is sufficient output to drive a power amplifier direct, but to control the volume this would need its own volume control. Not all power amplifiers are equipped with a volume control, so it is a pity that Garrard did not see fit to include an output gain control. When driving from the unit direct to our power amplifier high quality reproduction was achieved.

Operations

Operation of the unit can be appreciated from the diagram of fig. 1. This is partly schematic and partly in simplified block format. With the suppressor off, the signal is directed from the output of the front-end, which is a partly equalised preamplifier composed of $\mathrm{Q} 1 . \mathrm{Q} 4$, to the output buffer amplifier (RC4136DB), which provides the remainder of the RIAA equalisation.

Equalisation of the front-end is provided by the usual frequency-selective feedback arrangement which gives the 'bass boost' requirements of 3180 and $318 \mu \mathrm{~s}$. The $75 \mu \mathrm{~s}$ de-emphasis equalisation is provided by the 51 k resistor and in5 capacitor in the feedback path of the output buffer. The circuit as a whole is also engineered to cater for the more recent IEC-98/4 specification corresponding to a 20 Hz additional turnover, equivalent to a timeconstant of $7950 \mu \mathrm{~s}$.

A Gain Gained

Front-end gain is about 34 dB at middle frequencies and an extra 1.6 dB is provided by the output buffer. The circuit has some desirable aspects, including the differential input stage Q1, 2 and the 'Darlington' stage Q3, 4 which provides a high input impedance and low output impedance from Q4 emitter. Operating in the 'suppressor off' mode extremely good quality pickup signals are obtained.

The split equalisation, where the de-emphasis is provided at the output, helps to provide a high S / N ratio, and the

circuit overall demonstrates an input overload threshold of about 37 dB at 1 kHz ref. 2 mV input.

Accuracy of the overall RIAA equalisation is revealed by the pen chart response in fig. 2. This is maintained within 0.25 dB between the left and right channels over the entire spectrum. With the suppressor on the accuracy is almost the same, but our sample did exhibit a very mild error round 15 kHz which was subsequently proved to be caused by a poor tolerance component. The tolerance in this area is being tightened by the manufacturer.

To the onset of peak clipping the amplifier is capable of providing an output of 9 V RMS at middle and low frequencies, with adequate reserve up to 20 kHz resulting in an output slewing rate of round $0.15 \mathrm{~V} / \mu \mathrm{s}$, which will accommodate all disc material plaved on top-flight pickups. With the suppressor active the output is reduced by approximately 10 dB , but this is still more than adequate, even when driving direct to a power amplifier. The measured S / N ratio was 75 dB (CCIR/ARM weighting) ref. 7 mV RMS input

Lines of Frequency

The spectrogram in fig. 3 gives an excellent impression of the spectra purity with a 200 Hz signal of 2 V RMS output level. Ripple components are below our measuring floor of -90 dB ,

MXR

Digital Delay

Expanding the
 Boundaries of Creativity

The MXR.DigitalDelay is a self-contained audlo delay line whichutilizes sophisticated technology to achieve a new standard of professionatauablity performance. The culmination of an intensive deșign program, the MXR Digital Delay is unparallelediln versatility, ease of operation, and creative'application.
Although the MXR Digital Delay is capable olta wide variety of effects, the basic tunct oh of the unit is quite straightforward. The input signal isporocessed through circuitn which delays the signal by aspocific amount of time. It is then mixed back with the dry or undelayed signal at the output of the delay. The effect produced will depend $u p o n$ the amount of delay time chosen. The basiceffects that can be obtained by using appropfiate portions of the wide delay ringe provided by the MXR DigitaiDelay include dilscrete echoes, vocal doubling, and hard reverberation. In'addition to these basic effects, the MXR.DigitalMelay contains asssociated_circuitry which allows such unique éffects as flanging, pitch alterations 'vibrato, pitch beriding) frequency modiulation ahd infinite (non-detertorating) repeat-hold.
The MXR Digital Delay employs digital random access memory to produce a time-delayed signal. This techinique, dérived from computer technology, ropresentsia departure from previousshitt register methods. The analog input signal is cotiverted to digital form, stored in the memory circuity and removedat some désignated fater time: It is then converted back to analog form and led to the output.

This.method provides the user with the advantages of a wider usable deläy ranige, more precise control of delay time, and preservation-of signât quality'The MXR. Digital Delay makes available delay times ranging from 0.08 m séc. to 320 msec (1 second $=1000 \mathrm{msec}$.), fully vanable, without excessivė-noise or-mechảniçal relfability problems. This delay range is expandable to 1280 msec ., in increments of 320 msecs by means otup to three addltional plug-in'memory boards. These boards are availabte from $\mathrm{M} \times R$ and are easily installed by the user.
The MXR Digital Delay is designed for a wide variety of applications including recording, P.A. and amplified musicaldinstruments. The unit is rack-mountable for studio installation, and an optiona road case is available for onstage use by the traveling musician.

For more information see your MXR dealer. The Music Distillery, 503 Pittwater Rogd, Brookvale, NSW. 2100 (02) 938-2372, 938-4095.

Professional Products Group
and the only harmonic of significance is the 2 nd at -79 dB , corresponding to 0.0112% !! With the suppressor active the distortion is greater, as shown by the spectrogram in fig. 4 , again at 2 V RMS output. The 2 nd harmonic again predominates, but this time it is $-50 \mathrm{~dB}(0.3 \%)$. The 3rd harmonic is down at $-59 \mathrm{~dB}(0.112 \%)$, while all subsequent harmonics are at levels of insignificance.
The relatively high value of 2 nd harmonic distortion is not disconcerting. Indeed, recent tests have suggested that a controlled amount of even-order non-linearity can, in fact, enhance rather than detract from the reproduction.
There seems to be a tendency for it to 'disguise' the heavy odd-order distortion carried by some program signal sources, including gramophone records, and that this can lead to improved auditioning of some highly specified transistor amplifiers - owing to the resulting 'valve type sound', no doubt!

Circuit Examination

Looking now at the circuit in fig. 1 with the suppressor active, it will be seen that the signal from the front-end is directed two ways. One way is to delay line (TDA1022) and the other way is to the detector/comparator ($2 \times$ RC $41360 B$ and NE555V).
The detector recognises the whole waveform of a scratch and isolates it from the peaks of the recorded music. Two monostables (one in the NE555V and the other the bipolar transistor 25) are switched by the scratches to generate pulses of about 3 ms duration and 10 V amplitude (shown on the diagram). These pulses are then caused to operate LEDs 1 and 2, which are optically coupled to two pairs of light dependent resistors (LORs). One pair relates to the right channel and the other pair to the left channel. Just one channel is shown in the diagram.
The LDRs associated with the other channel are drawn in broken line, as also are the inputs and output of the other channel.
Each pair of LDRs forms an attenuator (called a fader) and is arranged to control the level of the audio signal emanating from the delay line prior to the signal arriving at the first buffer (RC4136DB). This part of the circuit is deliberately simplified for the sake of description, but in practice the degree of attenuation amounts to some 50 dB in the audio signal channels each time a pulse occurs.
Now, since it takes a little time for the pulses fully to de velop, the signals in the audio channels proper need to be delayed slightly so that the scratch pulse on the music signal arrives at the fader at exactly the same time as the pulse created by the detector and associated circuits.

Hold it a Minute

The delay is provided by a 256 -stage TDA1022, which is two-phase-clocked by a pair of ICs, HEF4011 and HEF40B. The clock is running at 85 kHz , and the overlap of the two associated waveforms (shown in the diagram) ensures the required delay time. The net result is that each time a scratch click occurs the audio channels are faded by about 50 dB for a period a shade over 2 ms .
This straddles the time of the 'real' scratch click, thereby sliminating it.
LED3 is the suppressor activity indicator on the fascia which, being in series with a fader LED, flashes in sympathy with the suppressor action.
The detector circuit includes auto and manual threshold control, while a filter in the amplifier IC, RC4136DB, following the delay line eliminates the spikes and spurious signals

Fig. 3 Spectrogram of the 200 Hz drive signal, suppressor switched out.

Fig. 4. Spectrogram of the 200 Hz drive signal with the suppressor active.
produced by the delay line action. It should be noted that although the maximum clipping output is less in the suppressor mode than in the direct mode, the gain of the amplifier sections temains the same in both modes.
It is thus possible to achieve A / B comparisons without level change by switching between the two modes.

Successful

The sample unit has been operating very successfully for several months under typical domestic conditions in our test hi-fi system. It certainly removes the very disconcerting staccato clicks caused by badly scratched records.
It does not, however, remove the general background noise from worn or dirty records.
Such noises occur in almost continuous manner, so advancing the threshold control to achieve a response to these noises would lead to the elimination of a substantial proportion of the music.
Operated as the designers intended, the unit constitutes a valuable item of record playing hardware which, at the probable selling price of $\$ 190$ or so, would soon pay for itself, records costing what they do today.
In spite of the rise in distortion with the suppressor active,

FHONE

PROFESSIONAL AUDIO EQUIPMENT

FHONE MONO/STEREO GRAPHIC EQUALIZER
the new 'Fhone' 20 element h octave equalizer (25 Hz to 19.2KHz) IS A SOPHISTICATED ELECTROWIC UNIT, DEVELOPED AFTER INTENSIVE RESEARCH INTO TODAY'S PROFESSIONAL REOUIREMENTS, DESIGNED TO PLAY AN IHTEGRAL PART IN RECORDING STUDKS, SONND. REINFORCEMENT AND HI-EI EQUIPMENT

- balanced and/or unbalanced input/outputs.
- 14 dB CUT and bOOST ($\pm 1 \mathrm{~dB}$).
- CONVENIENT CENTRE Stop SLIDE CONTROLS
- signal to nojse better than -80dba.
- output level tis dism.
- OPTICAL LED NU
- optional mood crain cabiuet for hi-EI use. - choIce of silver or black brushed face finish.

 TTTIIITH:

FHONE DELUXE DISCO

DESTGNED FOR RELIABILITY, APPEARANCE AND GUTSY PERFOHMANCE, WITH UNIOHE ACOUSTIC

- 250w rms power miplifier.

250W RMS POWER RMPLIFIER. VERTICAL OR RORIZONTAL SPEAKER UNITS; EACH

3 wiy tntcruar mustc moderated neout

- outlets for external zight shoh
(600N PER CHANNEL).
RAP AROUND CONSOLE
3 CHANNEL AUDIO MIXER - CHANNEL A,
CHANNEL B, MICROPHONE.
cueat for on chahnez a ore.g. tape deck,
ted ve dispiay of mixer ou
HEADPHONE CUE PROVISIONS
2 I AI RMS HEADPHONE CUE AMPLIFIER
CROSS FADE SLIDE CONTROL.
CROSS FADE AYPASS SNITCUES.
fitted with shure m55e macnetic cartriddes.
(4 fay electrowically crossed untts also available)

the reproduction is very satisfying provided the threshold control is not over-advanced.
In the suppressor off mode, the unit can be regarded as a topflight RIAA-equalised preamplifier of potentially high audio output which could, if required, be connected direct to a power amplifier, thereby bypassing the circuits and tone controls of conventional preamplifiers, which are regarded by some enthusiasts as an impairment to 'musicality'.

Cable Feedback

Although acoustical feedback (below the howl-round threshold) is currently being blamed for one aspect of adverse auditioning of some record decks, we have recently isolated other, probably more important, causes of auditioning differences.
We have discovered that signal from the power amplifier section can get back to the high gain pickup input via a common impedance or by magnetic induction lfrom the loud-
speaker cables, for example) or electrostatic coupling somewhere.
The degree of response to the delayed spurious signals of this nature can be as great as, if not greater than, the spurious and delayed signals attributable to mild acoustical feedback!
Perhaps this is one reason why the 'special' loudspeaker and source cables are receiving acclaim, because the improved shielding of these cables is reducing the amount of signal backcoupling.
During experiments with the MRM101 we found that by using this unit for disc signal amplification the degree of backcoupling was substantially reduced with respect to certain integrated power amplifiers. Food for thought at least . . .
Garrard are represented in Australia by Studio Electronics Pty Ltd, Box 1055, Burwood North. NSW 2134, who will supply further information on request.

SOUND BRIEFS

Servo Tone Arm

Sony has developed a new electronically controlled tone arm using servo mechanisms instead of counterweights and springs to apply tracking and antiskating forces. Motion-sensing transducers generate signals which enable the servos to compensate for arm-cartridge resonances and record warps. Production is believed to have commenced - or at least be about to. Price with turntable is expected to be $\$ 750-$ $\$ 1,000$.

Mini Audio

Expect to see a number of companies producing mini-size audio components. Technics have already produced such a range - shown at the 1978 CES in Sydney meanwhile Pioneer, Yamaha and Sanyo are all reported to be developing such equipment themselves. Philips are also preparing to launch their $110 \mathrm{~mm}\left(41 / 3^{\prime \prime}\right)$ super-fí digital minidisc.
AGS IIas Strathearn Agency

Strathearn Audio Ltd (Belfast Northern Ireland) has appointed AGS Electronics in Sydney as their sole distributor in Australia.

Products to be marketed here initially include Strathearn's budget-priced ST 400 turntable, their high-technology SM2000 turntable and the recently introduced Twenty-one Thousand speaker system.

This speaker system has a very unusual mid-range high frequency driver which uses a lightweight Mylar membrane stretched across a moulded frame. A conductive (aluminium) strip is bonded to the membrane, and the magnetic field provided by rows of bar magnets on either side of the frame. As the membrane is driven uniformly over its entire radiating surface - from 500 Hz to beyond 20 kHz , phase remains constant throughout this range.

The system uses two low frequency enclosures plus two of the mid-range/high frequency units described above.

Jaycar 'Clef'
 49-NOTE 'CLEF' STRING ENSEMBLE

.new Jaycar Cier String Ensemble

CALL IN FOR DEMONSTRATION!

By special arrangement with Clef Products of U.K., Jaycar is now the authorised Australian and New Zealand distributor of thls exciting new keyboard instrument. The Clef String Ensemble is a 49 note, fully polyphonic instrument that utillses modern solid state delay lines to simulate the multi-string or chorus situation that exists within the string section of an orchestra.

This kit features professional quality roller tinned PCB's with full component overlay and high quality components.

Complete kit
. $\$ 343.48$ tax free
$\$ 395.00$ tax paid
P\&P $\$ 7.50$

FEATURES:

- Keyboard split facility.
- Transposition switch.
- Upper voice controls for string 1 ,

String 2, woodwind and brass.

- Lower voice controls for string 1, 2 \& 3.
- Variable envelope.
- Expression foot pedal.

§N•NEW•NEW•NEW•NEW

jascar

PTY PO Box K39, Haymarket, NSW. 2000 I.TO 405 Sussex Street, Sydney, Tel: 211-5077

NEW IEALAND READERS

THE ELECTRONICS CENTRE - NOW OPEN - 179 HOBSON ST, AUCKLAND The one-stop components shop

Stockists of:

```
RESISTORS
CAPACITORS
    DIODES
    TRANSISTORS
    TL
LINEAR
```

 CMOS 7 SEGMENT DISPLAYS
 PLUS - too many to list - all devices by NATIONAL TEXAS, FAIRCHILD.

SWITCHES POTENTIOMETERS POWER SUPPLIES AERIALS MULTIMETERS SOLERING IRONS IC SOCKETS
CASES \& CABINEIS
CABLE \& WIRE SPEAKERS KNOBS TRANSFORMERS WIRE WRAP TOOLS

Tank Battle with GI AY-3-8710.
Chips available, AY-3-8500, AY-3-8550, AY-3-8710 etc.
PLUS A HUGE RANGE OF KITS.

MUSICOLOUR - Colour Organ - let there be light in your mussic.

RADAR DETECTORS Super Orbit, built-up and kitsets.

To: ORBIT ELECTRONICS LTD., PO Box 7176, Wellesley Street, AUCKLAND, 1.

PROFESSIONAL Nashville, the Center of Country Music, is Stanton Country,too!

Kitty Puckett checks out 45 rpm stamper, while auditioning one at $331 / 3 \mathrm{rpm}$.

The Nashville Production Co., uses Stanton exclusively throughout its two Disc Cutting Studios. Naturally, they are mostly involved with Country Music, but they also get into Pop and Rock.

John Eberle, Studio Manager, states that they use the Stanton Calibrated 681A "for cutting system calibration, including level and frequency response" and they use the Calibrated 681 Triple-E in their Disc Cutting operation with plans to soon move up to the new Professional Calibration Standard, Stanton's 881S.

Each Stanton 681 series and 881 S cartridge, is guaranteed to meet its specifications within exacting limits, and each one boasts the most meaningful warranty ... an individually calibrated test result is packed with each unit.

Whether your usage involves recording, broadcasting, or home entertainment, your choice should be the choice of the Professionals . . . The Stanton Calibrated Cartridge.

And remember, you can't get the best out of your Stanton Cartridge unless you use a genuine Stanton Stylus.

Sole Australian Distributors

WA. Head Office: 156 Railway Pde., Leederville 6007. Phone 3812930. N.S.W. Office: 7 Jordan Rd., Wahroongah 2076. Phone 4872543.

The MH1001/PO3 manufactured by Varo is the extremely reliable 32KV Silicon Voltage Tripler chosen by many leading TV manufacturers in America, Europe and Australia for their colour TV production.

Soanar Electronics Pty. Ltd. now have substantial stocks of this Tripler available for use as direct replacements or substitutes in the repair or servicing of television sets.

The Varo MH1001/PO3 replaces Philips, Ero, Roederstein, Procon, AEG, Siemens and Origin Triplers and can be used in the following brands of CTV receivers:

Philips Kriesler Philco Korting Siemens Healing Telefunken Schaube Lorenz Norge Blaupunkt ITC HMV/EMI Luxor Graetz AWA/Thorn Nordmende Barko Saba Rank Pye Luxor Grundig Decca Autovox

Remember the name! VARO MH1001/P03 Voltage Tripler

By stocking one 'universal' type Tripler, you can reduce your inventory and save time, space and costs.
What is more, Soanar can provide circuits for utilising the MH1001/PO3 in those earlier model CTVs, as well.

Available in every state. Just phone us.

Writing

ABOUT A THIRD of the articles published in ETI are written by outside contributors. Some of these contributors are full-time technical writers, others write in their spare time and might send in just one article a year. Some are academics who, like our special correspondent Associate Professor Sydenham, appreciate that it is possible to write for a popular magazine like ours without losing status.

Most published articles are commissioned. Every now and again we'll publish an unsolicited article but that's rare. If you think you've got a good idea for an article, it's best to telephone ETI's editor (Les Bell: (02) 33.4282) and tell him what you have in mind. If the matter seems of interest he'll probably suggest you send in a synopsis together with something you've previously had published - or at least a few sample paragraphs of whatever you have in mind.

All magazines have various criteria for accepting or rejecting outside material. Conventions we at ETI require our contributors to conform to are:

1. You must know what you're writing about. If we have to check out the basics of your article then it's quicker, easier and cheaper to write it ourselves!
2. Unless you are VERY, VERY GOOD your copy must be typewritten using double spacing and wide margins. That's even more important to us than a contributor's odd spelling or
grammatical error.
3. DONT get too hung up about grammatical errors. Grammar is largely linguistic good manners. If you're a real slob it'll probably show we in your writing! (Minor slobbery
4. We use the Systeme Internationale, except for the odd unit which slips through. We expect contributors to do at least as well.
5. Photographs, where applicable, must be in focus. Ideally they should also be of high contrast, black and white, printed on gloss paper. Generally we, cannot reproduce previously published pix - firstly the copyright almost certainly belongs to someone other than the contributor - secondly, unless they are printed exactly the same size, Moire fringe patterns will be formed as one set of dots doesn't quite coincide with another.
6. Line drawings must be similar in style to those used throughout the magazine. Circuit drawings are almost always redrawn by our staff artists.

Constructional Project Articles

Constructional projects are occasionally accepted. This type of contribution poses unusual problems. To a really experienced professional design engineer, the actual circuit design and development is the easy bit. Most of the cost and effort lies in preparing that design for publication.

We are always interested in hearing from prospective project contributors. And we pay very well indeed for the material which we accept. But please believe there's a very great deal more to this part of the magazine than sitting down with a soldering iron and a handfull of bits.

Again, before getting down to serious writing it will pay to ring the editor and discuss the proposed project.

What's it Worth?

With the exception of press releases, contributed material is always paid for. The rate varies. It depends on the amount of work that has gone into the article - naturally qualified by how much we feel readers will value/enjoy it. And it also depends on the amount of work we need to do to it ourselves before it can be published.

Press Releases

With very few exceptions, technical press releases from public relations companies are so incrediblyjncompetent and inept that one of these days we're going to print a page-full as they are received just so the agencies' clients and
our readers will believe it themselves!
There are about three good technical agencies in Australia. If you care enough about your press releases you probably know who they are. If you are not using one of these agencies then we suggest you write your own press releases.

Our rules for press releases are these:
a) Please don't put everything in upper case (capitals). Especially don't use upper case everytime you mention the product name or characteristics.
b) Don't keep plugging the manufacturer's name.
c) Write - 'the manufacturer claims

An example of copy which has been quickly typed and then sub-edited for typesetting.

PRIOM $\times 28 \frac{k}{2}$ ems justified with UNIIBC S/4'' and key worde in PRIOB sccetronece Ue S / μ - SERTO TOTAE ARM - UNIBC bold bold Jsony has developed a new electronically controlled tone orm using servo mechabisms instead of counterweights and sprines to opply trecking trexe and antisketing forces. motion-sensing transducers generate signals which enoble the the servos to surxiex compensate for arm-cartridge resonences and record warps. Production is hetioun Price with turntsble regien $\$ 550-\$ 1000$. YC S/H-mint aUDIO - UNIBC 7 Lxpect to see number of companies Dold producing mini-size sudio components. Technics hove olready priduced such o range - shown st the 1978 cEs is Pydney - midn whin Pioneer, Yamaha and Sanyo ant are oll reprat reported to be developing smich equipment themselves. Philips ore also preparing to lounch their bold. $110 \mathrm{~mm}\left(4 \mathrm{1} / 3^{\prime \prime}\right)$ super-fi digital minidisc. AGENCT - UNIIBC J Strathearn Audio Itd (Belfast Northern Ireland) h8s appointed AGS el ctronicsids their sole distribubtr in Austrolio. [Products to be marketed bere initially include 9krativix Strathearn's budget-priced ST 400 turntable, bolk their high-technolagy SM2000 turntable and the

that the product has etc'. Don't say, 'the product has'. We can't print a statement like that as our readers may think that ETI has made the statement.
d) Most people want to know what a product is and if they can use it . clear, factual, helpful information is more likely to be read rather than lists of specs that the reader mightn't understand.
e) Do please include an address to which enquiries may be addressed - or wherefrom goods may be purchased.

We don't expect drawings to be done to this standard - just clear roughs wIII do.

CALCULATORS

from TEXAS INSTRUMENTS

THE ULTRASLIM
NS 108 by National Semiconductor. For details see Sept. '78 ETI.

Excl. S/Tax

BMC-1212PD, 12 Digit Display Printer Excl. S/Tax \$108.70. Incl. S/Tax $\$ 125.00$
TRADE ENQUIRIES WELCOME

DIGITAL MULTIMETERS
Sinclair Digital Multimeters DM235

FEATURES:

-31/2 digit resolution Large, bright, wide angla LED display reading to ± 1999 Automatic polarity selection o Industry standard 10M ohms input impedance 0.5 percent of reading basic accuracy ofull multimeter facilities including AC current - Resistance measurement up to 20 M ohms. Oirect reading of semi-conducto forward voltages at 5 different currents oSimple, unambiguous controls with readings always in volts, mA or k ohms. Selection of controls with reanings always in voits, mA or k ohms. Selection of all functions from a single input terminal pair Automatic overrange indication Automatic decimal point placement Operatlon from disposable or rechargeable cells, or from AC adapter/charger - Faclity for battery condition test.

Six functions In 26 ranges

DC Volts - 1 mV to 1000 V ; AC Volis - 1 mV to 750 V ; DC Current - 1 uA to 1A; AC Current - 1 UA to 1A; Resistance - 1 ohm to 20 M ohms; Diode test -0.1 UA to 1 mA ; 10 M ohms Input impedance.
Reading rate: 2 Y/ per second
Temperature coenticlont: less than 0.05 degrees C of applicable accuracy specification.
Dimenslons: $10^{\prime \prime} \times 5.8^{\prime \prime} \times 1.6^{\prime \prime}(225 \times 148 \times 40 \mathrm{~mm})$
Woight: Less than $1 \mathrm{k} / \mathrm{lbs}$ (640 gms)
Sockots: Standard 4 mm for resilient plugs, $7,{ }^{6 \prime \prime}(19 \mathrm{~mm})$ spacing Power Requlraments: Four ' C ' or R14, size olsposable cells, or approved AC adaptor or Sinclair rechargeable cetl pack
Supplied Complete with test leads and prods, and operator's instruction manual
Options A/C adaptor/charger units for
240 V ; Rechargeable battery pack; Eveready carrying case with neck strap and lead stowage compartment; 30 kV High voltage probe.

SAVE AT LEAST \$50

It's got AM \& FM radio plus stereo casserte: dual power (mains or batteries) means you can use it wherever you lixe - even down alent model for over $\$ 200$. You reap the benefit of Dick's Incredible bulk buying overseas plus DUTY FREE prices. Savel \rightarrow $-\sin -6$ $-\ln$ Cat A. 4020
$\$ 1.00$ OFF 7 Segment display

Play chess with a computer: Cat $\times-1250,1$,

229 ${ }^{5}$ 4 49

Something for the holidays? Play a game of chess - with a computerl Various levels of 'hardness mean you CAN win if you're good enough. And now, save a whopping $\$ 49.50$ - was $\$ 299$! Save $\$ \$ \$$ CASSETTE LTRRARY
 050 \$ ${ }_{\text {C. } 3800}$ BOX OF 6 UNITS.
Protect your valuable cassettest Store them in this handy library unit - either 30 or 48 depending on whether you use the cases. The units interlock, and can fasten on wall with screws supplied. Bargain storage!

SAVE $\$ 6^{10}$
SAVE \$15 ${ }^{25}$ on tantalum capacitors
You know how useful Tag Tantalum Pack of capacitors are - and usually how expensive they are - around 40 cents
each! \quad So how much would a pack of 50 of $\$$ the most used values cost? $\$ 0.00$? Here are 50 PRIME SPEC tantalum capacitors at less than $1 / 4$ normal
price! Buy now (in bulk) and save!

 resistors
And here's a special computer-selected Pacis of pack of prime spec. high quality
carbon film resistors - Ideal for use in projects, as service replacements, etc, etc.
Normally these resistors sell for 4 C each - so a pack of 300 should sell for $\$ 12.00$. These are less than half that
$\$ 90$

Yes! This top name Weller cordless iron is now reduced - we've rationalised the packaging and now supply onl the bits you really need - so you
save. In-built re-chargeable cells

CAR \$ SAVER

Mechanics charge a fortune these days: save CASH by it's so easy with these aids!

Right: Auto tune-up analyzer
checks most electrical functions including RPM \& dwell angle. Pays for itself in no

SCOOP PURCHASE OF TINY DIGITAL ALARM CLOCKS

Amazing miniaturisation! This ultra-tiny digital alarm clock is ideal for appointment reminders, parking meters, etc etc etc.
Runs on two small batteries for thousands of hours - contains thousands of transistors. Slips easily into shirt pocket - complete with dust case and vinyl slip-in case.
Buy direct from the importer and save -
NO DUTY on this incredible unit.

TRY THESE OUT!

TIC CASE
Millions of epplications and as this price you can afford to experimentl Motorbike kill switches, car borinet $\&$ boot alarms, merchandise alarms, 'tils' mechanisms on games to name but a few. Is 'off' only in horizontal position. Incrediblel

Watci mils ypica

AND FIND OUT WHAT YOU MISSED
Each month all of our stores feature an outstanding special which is actually BELOW COST! N.B. Specials are strictly while store stocks last. Don't miss out!

LAST MONHI:

PLESSEY SPEAKER ($5 \times 3^{\prime \prime}$, 15 ohm) FOR 38c - NORMALLY $\$ 1.50$
SAVLNG S1. 12
WHAT'S THIS MONTH'S SPECIAL? CALL IN AND FIND OUT YOURSELF!

STOP PRESS!
Our new DUTY FREE STORE will be open in HONG KONG shortly. A new deal for Australian travellers: HONG KONG (duty free) prices with AUSTRALIAN guarantees!

NOTE: Prices and stock availability could change between publication deadline and on-sale date due to circumstances beyond our control. Please check with our stores for latest availability and prices.

PARTS FOR NEW KITS

```
CAR STEREO BOOSTER AMPLIFIER ISEe January EAI
```



```
SEPARATE PARTS
PC Board (only)
TA7214P IC
PLAYMASTER AM/FM TUNER (See NOV/DEC EA)
Complete wit. Including Instructions
Pre wrred and aligned tuner module
Set of & PC Boardh
Sgonsl steength meter
Tuning meter centre zero
```

Most othet atectronic parts for this project in stock
MODEL TRAIN CONTROLLER (See October EA)
Not produced as a kit - all par twayailable from stoc
PCB only..
Zippy box
Cat. H 8355
Zippy box
2N 3055 transistor
Cat. $\mathrm{H}-2752$
Cat 2.2145
2N 3055 transistor
Cat. 2.2145
UNIVERSAL MOVIE MIXER (See SeptemtreI EA)
Complete kit, including instructionsCat, K. 3492
SEPARATE PARTS:
PC Board (only)Cot. H 8354
50k A curve 45 mm slidet pot
50. A curve 45 mm slidet pot Cat. A- 1980
Knobs to sult slider pot Cat. H. 3780
FET INPUT AC-DC VOLTMETER (See Septemter EA)
Not produced as a special kith all parts available ex shock:
1 mA MRA-658 panel meter Cat. H-835
Fabricate your own meter scale using the Scotchcal process
8005 black Scotchcal ohoto-sensitive aluminium .. Cat, H. 5694
CA. 3140 FET op amp
VARI WIPER Mik 2 (See Septemier ETI)
Not produced as ofit most parts available from stoc
Relay.
Cat $\$ 7125$
Clo6YI SCR 2-4315
UPGRADED $40 / 200 \mathrm{MHz}$ FREQ COUNTER (See August EA)
Same style as previous kr , but new circultry means h is easier to
build, set up and is more sensitive. Basic counter is 40 MHz -
by adding a single 95 N 90 IC the range is extended to 200 MHz .
Complete kit for $\mathbf{~} 0 \mathrm{MH}_{2}$, inc instructons Cat. K- 3437
$95 \mathrm{H90} \mathrm{IC}$ to extend range to 200 MHzat. 2.5360
SEPARATE PARTS:
PC Boards (set of two high quallty boards) Cat. M 8346
MC-10116L IC (inpie differential amplifier) ...
MM. 5369 M IC (oscillator - divider)
74 C 926 IC (4 digit countel)Cat. 2.5414
3.579545 MH crystal (new low price)
Cat. 2.5781
LT. 3037 segment display $\mathbf{Z} 4103$
All other componenss are normal stock lines of all of our stores
NEW 10 GAME TV GAME KIT (See July EA)
Car. K 3491
SEPARATE PARTS:
Cat. $\mathrm{H}-8344$
Car K 6040
PCB (oniy)
Fully built audlo modulator
AY. 38600 IC
Cat Z-6852
TANK TV GAME (Soe Ocrober ETI)
COMplete kit, including instructions
Cat. K-3475
SEPARATE PARTS:
......... . - Cat. M88620
Fully buile af modulator
Cat. $2-6856$
Cat. $K 6040$
Fully buili AF modwator
Fully bullt audio modulato
Cat. K 6640

DICK SMITH ELECTRONICS Unmen

SYDNEY 125 York Street, SYONEY. Ph. 290.3371 147 Hume Hwv, CHULLORA. Ph. 642.8922 162 Pacilic Mwy, GORE HILL. Ph. 439 - 5311 30 Grose Street, PARRAMATTA. Ph. 683.1133

 MAIL ORDERS P.0. Box 7a7, Grows Nest, N. .w. 2065. Post and packing extra. Dealers across Australia.

SHOPS OPE S SAM to 5.30PM (Syturday 9 AM - 12 noun)
BRISBANE $1 / R$ Houn earlien. ANY TEAMS OFFEREO ARE TO APPROVEO APPLICANTS ONLY Miny lium suatutice from thr
Dich Smith Electionics Centies at
GRACE BROS
Brian Bambach Electronics Sound Components O:G Sales Langman's Sound Centre Sumner Electronics $\begin{array}{ll}\text { GM Electronics } & 99 \text { Frumaurice St. Wagga NSW. Ph } 21.3044 \\ \text { Tritogy Elec. Supplies } & 40 \text { Pronces Hwy Farry Meadowy NSW Ph } 83.1215\end{array}$ Crystal TV Rentals Piy Ltd 66 Crystal St. Broken Hill NSW. Ph 6897

[^0]Citcom Electronics
ADS Efectronics
Advanced Electronics Aero Electronics Murchesson's Comm. Centre Gavter CB Centre Altronics Hocks TV Rentals

Hopkin's Arcade, West St, M8 iss OLD. Ph 434.791 312 Oxley Ave, Margate OLD. Ph 204.1276
5a The Quadrant. Launceston TAS. Ph 31.7075
123a Bathurst S8, Hobart TAS. Ph 34.8232
5 Elizabert St. Mr Gambier SA. Ph 256.404 51 Hillier Road, Evanston SA. Ph 222.149 105 Stirling Ss, Perth WA. Ph 328.1599
87 Hannan St, Kalgoo lie WA. Ph 211.906

2550 wneer canarina THE LOEICAL CHIICE

LEVEL A Price $\$ 299.00$
 NORMAL PRICES EA VDU

Described in EA Feb 78 a Hardware VDU 16 lines by 32 Characters
78UT4 KEYBOARO ENCDDER KIT
32.50

Described in EA April 78 ASCII Encoder \& Uart for Serial 1/0
KB04 KEYBOARD KIT
59.50

NEW RELEASE

RA 1000 MICROPROCESSOR CONTROLLED CRT/TERMINAL FULLY ASSEMBLED/TESTED
 \$325.00

At last! a versatile, low cost terminal for hobby computer users The RA 1000 operates with any monitor or modified TV set offers full keyboard facilities and produces serial ASC11 ready for most microprocessor systems.
The RA1000 uses a SC/MP II microprocessor to control keyboard scanning and VDU update. Internal EPROM program storage makes possible maximum versatility because a simple PROM changeover produces various options such as baud rate selection, alternate scrolling formats, lower case, limited graphics and even baudot operation.

Features:

Full information keyboard (self contained)
110/220 baud operation (easily altered)
64 character, 16 line screen.
x, y cursor addressing (for table updates etc.)
ASC11 bell facility built in.
HORIZONTAL TAB
RUBOUT
CLEAR SCREEN
CRYSTAL CONTROLLED TIME BASE
SELF CONTAINED POWER SUPPLY
ATTRACTIVE ABS CASE WITH METAL BASE.

SECI Low Cost Cassette Interface

\$24.50
For the bulk storage of programmes onto tape the SECI kit is ideal. Based on the Kansas City Format the SECI operates reliably from below 110 baud to 1200 baud.
The SECI kit comprises double sided P.C.B. all components and a test tape for easy alignment.

A 55 Key ASR33 Format keyboard, suitable all micro's
EA 2650 CPU KIT 55.00

1K ROM, 1K RAM, Kit expandable to 4 K RAM, A great beginners kit.
TRANSFORMER
17.50

Suitable low profile transformer for micro's.
CASE
24.50

Low profile case as per Electronics Australia.
GAMES PAK 1
12.50

Listing of ten games suitable for use with this system.
PROGRAMMING COURSE 12.50
Write your own programs after only
a weeks study with this course.

LEVEL B Price $\$ 499.00$ NORMAL PRICES RA 1000
 $\$ 325.00$
 Made and tested CRT terminal - see across page under new releases.
 KT9500
 115.00

Full CPU, 1 K ROM, $21 / 0$ PORTS, TTY
and RS232 inputs, easy expansion.
TRANSFDRMER
22.00

S100 Designed outputs are +5 @ 10 AMPS +12 and - 12 @ 1 AMP.
SECI
24.50

Fast Cassette Interface capable of rates up to 1200 Baud.
GAMES PAK 1
12.50

Listing of Ten Games lots of fun for all ages.
PROGRAMMING COURSE
12.50

Learn to write your own programmes
an easy to follow course.

LEVEL C Price $\$ 699.00$ NORMAL PRICES

KB04 KEYBOARD

$\$ 59.50$
55 Key ASR 33 format ASCII Encodable.
Ideal kit for any system.
78UT4
Keyboard Encoder/Uart, 90 key encoder
32.50
with serial input and output.
KT9500
115.00

Full CPU, 1 K ROM, $21 / 0$ PORTS, TTY
and RS232 inputs, easy expansion.
DG640 VDU
149.50

Software controlled, memory map, 16×64
characters, 64×128 graphics
RSMB
35.00

A Motherboard for Ramsticks decodes
16K of RAM, crystal clock
RAMSTICKS 2K VERSION
198.00

4 Ramsticks comprising 8K of RAM
allows system to use basic.
SECI
24.50

A Cassette interface can use rates up to 1200
baud to dump and load.
EPS 100
55.00

A $5 v$ @ 10 AMP power supply also giving + 12 and -12v@ 1 AMP.
BASIC
29.50

4 K medium size basic, 10 digit floating point packing and more.
PROGRAMMING COURSE
Learn machine language and write your programs after only a week.

Project 141

tocic Thiccer

Debug complex logic circuitry with this unit.

WHEN USING AN oscilloscope to examine or fault find digital circuitry, it is often desirable to see what happens just before a pulse or edge occurs. An example of this is when measuring the propagation delay in a ripple counter. Here it is easy to trigger on the last output but the edge of the counter input which initiated the change in the output may have occurred over 100 ns earlier. Even with the delay line built into modern oscilloscopes the edge is too early to see.

Triggering on the input waveform allows this edge to be seen but if the output pulse occurs only once every thousand or so pulses it will not be seen. With this unit, the output of all the stages in the divider can be examined and a pulse can be generated anywhere in the cycle. By selecting a pulse very close to, but before, the edge in question and using it to trigger the oscilloscope (use ext trigger) both the clock waveform and output waveform can be seen.

With the advent of microprocessors it has become increasingly difficult to fault find as things happen (e.g. the CE input to a memory may go low) only when a particular address is given. As the address bus is always in motion it is almost impossible to trigger the scope on any one address. Again with this unit the address bus is interrogated along with the necessary write or read lines, and its output can be used to trigger the oscilloscope only when the correct sequencer is received.

SPECIFICATION - ETI 141

Modes

No. of inputs
Loading
address
clock
Pulse extension mono
Pulse indication
Minimum pulse detectable
Propagation delay
Trigger (synchronous)
Set up time (synchronous) address to clock

Output

Power requriement

Asynchronous or synchronous
12 address, 1 clock
0.4 UL (TTL) 0.4 UL (TTL)

10 ms
LED
$<40 \mathrm{~ns}$
$<45 \mathrm{~ns}$
positive or negative edge of clock input

<40 ns

logical " 1 " when input agrees with switch setting and/or clock (synchronous only)
+5 V @ 50 mA

Project 141

Fig. 1. Circuit diagram of the Logic Trigger.

PARTS LIST - ETI 141

Resistors \quad all $1 / 2 W, 5 \%$R1-R12 $\ldots . .47 k$R13 $\ldots \ldots . .39 k$R14. 180RR15......1kR16.......27k	

Capacitors
C1,2 $4 \mu 725 \mathrm{~V}$ electro C3-C5 $33 \mu 16 \mathrm{~V}$ tantalum

Semiconductors
IC1-IC3 74LS86
IC4-IC674LS02
1C7....... 74LS30
C8 74 LS74
LED $1 \ldots$ Red LED

Miscelaneous

PC board ETI 141
Twelve 3 position slide switches
Two 2 position slide switches
Front panel
Box tolsuit

HOW IT WORKS - ETI 141

The twelve inputs are compared to the levels set on the slide switches SW1-SW12 by the exclusive OR gates ICI-IC3. These 1Cs have a high output only if the two inputs differ. If they are the same, either both low or both high, the output will be low. If the two inputs are joined together, as when the switches are in the don't care position, the output will always be low.

The outputs from the exclusive $O R$ gates are combined in pairs by the NOR gates IC4-IC6. If the 12 input signals match the preset selection, the output of all 6 NOR gates will be high. If any one is not in agreement with the selection one or more of the NOR gates will have a low output.

These NOR gate outputs are combined by IC7 which is an eight input NAND gate. The output of this gate will low only if all 12 inputs match. The output of this IC is inverted by IC4/d to provide the asynchsonous output.

This output also triggers the monostable formed by IC6/c and IC6/d. This gives a 10 ms long pulse to light the LED indicating a pulse was received. If it is a steady state signal the LED will stay on.

The output of the NAND gate, IC7, also joins the data input of IC8 (D type flip flop). This IC is toggled on the positive edge of the clock waveform transfering the data to the output. This is the synchronous output. To allow for either positive or negative synchronization an inverter is used on the clock input and either polarity can be selected by SWI3.

Fig. 2 Overlay of the PCB

Fig. 3 PCB pattern shown full size.

Project 141

Photo showing how the slide switches are wired prior to installation. While our photo shows them on an assembled pc board it is best if they are wired before the board is assembled.

Construction

We mounted all the components on the pc board including the switches. The only difficult (fiddly) bit is the wiring of the three position slide switches which have to be preassembled before fitting to the pcb. The wiring is shown in fig.3.

To aid this we have provided 12 holes in the pcb the size of the toggle of the switches; if the switches are initially placed upside down in these holes the board will act as a template to provide the correct spacing. We have also used two wires of the second pole of the switch to provide mechanical support. While only a single pole switch is needed the only ones readily available (from Dick Smith) are two pole.

The swtiches can now be mated to the pc board with the two longitudinal wires being terminated in the holes provided at the end of the switch bank.

hi.fi. \& electronics (formerly kitsets)

Everything for the electronic enthusiast
To celebrate the opening of our 2 stores we are having a SALE on ALL capacitors for the month of January or until sold out

2 STORES:

SYDNEY
657 Pittwater Rd, Dee Why, NSW.
Tel: 982-7500

BRISBANE
293 St. Pauls Tce,
Fortitude Valley, QLD.
Tel: 52-8391.

OFF

TRADE ENQUIRIES WELCOME

RELIABLE SOAR DIGITAL MULTIMETERS

ME-521 DX 3½ DIGIT LCD DISPLAY

3122 DIGIT LCD DISPLAY

$31 / 2$ DIGIT $3 / 4^{\prime \prime}$ HIGH LCD WITH MODE DISPLAY

Digital Multimeter at an Analog price! Send for detailed specifications and compare before buying Avallable from: NSW; David Reid Electronics, 516-3544. Radio Despatch Service, 211-0191. Electronics (Distributors), 636-6052. Martin De Launay, 29-5834. Standard Components, 660-6066. VIC: Radio Parts, 329-7888. Stewart Electronics, 543-3733. Arlin Instruments, 569-6984. SA: Protronics, 212-3111. WA: Reserve Electronics, 328-3116. QLD; Wilber Sales, 391-5136.

AMPEC ENGINEERING CO. Tel: (02) 818-1166.

SUPER SPECIALS
BD 139 - 50c ea
BD $140-50 \mathrm{c}$ ea
MJ2955 - 80c
2N3055-75C
BC 557/8/9-20c ea.
10741 's for $\$ 2.80$

BC 547/8/9 - 15c ea.
10555 Timers for $\$ 2.80$

XLP-3.32
XLR-LNE-11C
XLR-LNE-32
Weller cordiess soldering iron kit model WC100DKW - includes bat-
teries, solder. 4 interchangeable tuos battery charger and instructions for only $\$ 29.50$.

		$\begin{aligned} & \text { 74LS19120 } \\ & \text { 74LS192 } \end{aligned}$	4072... 40	
7400........................... 20	$74157 .1 .10 ~$	74LS193.................. 1.20	4074........................... 40	
7401................................. 25	$74160 .1 .55 ~$	74LS194................... 1.20	4076........................ 1.85	85
7402........................... 28	74164....................... 1.55	74LS195 1.20	4077 40	
7403............................ 28	74165...................... 1.55	74LS196 1.20	4078 40	
7404.......................... 37	74173...................... 2.75	74LS221 1.20	4081 40	309.......................... 1.50
7405.......................... 37	74175...................... 1.65	74LS2531.85	4082 40	317.......................... 2.90
7406............................ 50	74180...................... 1.35	74LS279..................... 65	4510......................... 1.30	323........................... 8.25
7407........................... 50	74192....................... 1.40	74LS365..................... 80	4511 1.30	325................................. 2.60
7408.......................... 34	74193....................... 1.40	74LS367 80	4518 1.30	723............................ 55
7409........................... 34	$74221 . . .11 .50 ~$	74LS368 80	4520 1.30	7805......................... 90
7410.......................... 20	74367...................... 1.40		4528....................... 1.20	7806........................ 1.30
7411 37			4555........................1.20	7808........................ 1.30
7413......................... 54			14553....................... 7.50	7812.............................. 90
7414 90	450		14584.......................1.25	7815........................ 1.30
7416.......................... 60	74LS00 30		$74 \mathrm{C00}$........................ 40	7818............................. 1.30
7417.......................... 60	$\text { 74LSO0 } 30$	4000............................ 40	$74 \mathrm{C02}$........................ 40	7824........................... 1.30
	74LSO2 30	4001........................... 25	$74 \mathrm{CO4}$ $74 \mathrm{C08}$	7905.......................... 1.50
	74LS03 30	4002................................. 25		7912...........................1.50
7426 45	74LS04 35	4006...............................1.40		7915..........................1.50
7427......................... 45	74LS05 35		$74 \mathrm{C14} \ldots1 .90$	78L05...................... 50
7430 30	74LS08 30	$4008 \ldots .1 .25 ~$	74C48 2.55	78L12........................ 50
7432 43	74LS09 30	4011........................... 25	$74 C 73 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .1 .1 .20$	78L15........................... 50
	74LS10......................... 30	4012............................... 25	74C75 _.................1.1.20	79L05............................... 85
7438............................ 50	74LS11 30	4013.......................... 55	74C761.35	79L12......................... 85
7440.......................... 30	74LS12 30	4014........................ 1.35	74C90 _.................... 2.25	79L15......................... 85
7441 1.50	74LS141.20	4015.......................1.20	74C93 2.25	
7442 …...................... 70	74LS20 30	4016........................... 50	74C1751.85	
7447......................... 60	74LS21 30	4017........................ 1.40	74C1922.25	
7448 60	74LS27 30	4018.......................1.40	74C193 2.25	
7450........................... 35	74LS28 40	4019.......................... 75		
7451 35	74LS30 30	4020........................1.60		
7453.......................... 35	74LS32 33	40211.40	5	FND507 C/A 1.70
7454 30	74LS37 45	4022........................1.60		FND 357C/C1.40
7460........................... 35	74LS38 45	4023........................... 25	301............................ 35	FNO 500C/C.............. 1.40
7470........................... 65	74LS40 30	4024........................... 90	307............................. 65	Red LED...................... 22
7472.......................... 45	74LS421.20	4025........................... 40	$308 . ~ 1 . ~ 35 ~$	Green LED 35
7473.......................... 60	74LS73 1.20	4027........................... 80	311 85	Yellow LED 35
7474.......................... 65	74LS74 50	4028.........................1.25		
7475........................... 65	74LS75 70	$4029 .1 .90$	339 90	
7476........................... 45	74LS78 50	4030 40	349......................... 2.25	5
7480......................... 1.25	74LS851.50	4040 1.30	356......................... 1.65	50
7483........................ 1.25	74LS86 50	4041........................ 1.25	380.......................... 1.20	
7485........................ 1.45	74LS901.20	4042........................ 1.25		
7486.......................... 65	74LS921.20	4043........................ 1.50	382..................................2.00	IN41486c-5c/100
7490.......................... 35	74LS931.20	4044........................ 1.50	386.......................... 1.95	IN4004 $\ldots \ldots \ldots$............9c
7491....................... 1.00	74LS95 1.50	4046......................... 1.95	555................................. 35	IN5625 5A 400V45c
7492.......................... 75	74LS109 50	4049.......................... 60	556............................... 85	
7493........................... 35	74LS113..................... 55	4050.......................... 60	565.......................... 1.95	
7494.........................1.10	74LS114 55	4051......................... 1.20	$566 . ~ 2.50 ~$	
7495........................... 95	74LS138 1.20	4052......................... 1.20	567........................... 2.65	
$74100 .2 .45$	74LS151 1.20	4053........................1.20	709........................... 75	
74107......................... 65	74LS1541.60	4060 2.65	723(VR) 55	SOCNE
	74LS157 90	4066......................... 1.00	741 35	
74123....................... 60	74LS1631.20	4068............................ 40	747.......................... 1.25	
74132...................... 1.25	74LS164 1.30	4069 35	3900........................... 90	8 PIN DIL_.................... 25
74150.......................1.80	74LS174 1.00	4070.......................... 40	3909........................ 1.25	14 PIN DIL.................. 33
74151 1.10	74LS175 1.00	4071 40	CA3130.................... 1.95	16 PIN OIL................... 35

Also in stock Multimeters, relays, veroboard, solder, solderwick, soldering irons, transformers. All components brand new by top companies. Prices current till end of February.

ROD IRVING ELECTRONICS

Shop 499, High Street, Northcote. Vic. 3070. Ph (03) 489-8131. Open Mon-Thurs 8 am - 5.30 pm , Fri $8 \mathrm{am}-7 \mathrm{pm}$. Sat $9 \mathrm{am}-1 \mathrm{pm}$. Mail Orders: PO Box 135, Northcote. Vic.3070. Minimum 75c post and pack. Send 30 c stamp for free condensed catalogue.

Project 143
Curve Tracer
Display the dynamic characteristics of a variety of semi conductor devices with our curve tracer. Design by J. H. Adams.

THIS DESIGN WILL allow the dynamic voltage current characteristics of diodes and transistors to be displayed on the screen of a DC 'scope capable of taking an external X input.

The performance of the unit will not be up to that of a commercial machine. However the unit will give a good indication of the dynamic performance of a wide range of semiconductor devices (as the photograph shows) at a price that is a fraction of commercial equipment.

Construction of the curve tracer is straightforward. Mount all the components on the PCB according to the overlay. The internal layout of our prototype is shown in the photographs. The unit is mains powered

and a battery supply is not suitable for this circuit.

Initially try the curve tracer with a high gain npn transistor, a BC108 will be ideal, Connect it to one of the tracer's sockets and connect the unit to the 'scope. Set the Y gain on the 'scope at maximum and set up the maximum required level of collector voltage by adjusting RV1. RV2 will control the number of steps displayed on the screen. The X sensitivity of the 'scope should be 1 V per division.

The performance of the unit is degraded by the slight drop in the DC potential on Cl during the 10 ms sweep and the slight effect of the 100 R sampling resistor, in that its volt drop is included in the observed collector potential.

Fig. 1. Full circuit dlagram of the curve tracer.

HOW IT WORKS - ETI 143

The principles of the full circuit can perhaps be best explained by consideration of a simpler form of the circuit. Figs. 2 and 3 show circuits for investigating the dynamic characteristics of a diode and transistor (at fixed base current) respectively.

The 'diode circuit' will, unless an inverter is available, produce a trace that will appear upside down.

Operation of this circuit is quite straight forward. RV1 allows the peak value of the AC supply to be adjusted. This is then applied to the device under test via a current limiting resistor as well as to the X input of the 'scope. The current flow in the device at any time is proportional to the voltage developed across a low value sampling resistor in the current path. This voltage is fed to the Y input of scope.

The simple transistor tester functions in much the same way. RV1 allows the base current to be adjusted within the range 10 uA to 100 mA .

The characteristics of an N-Channel FET (2N3819) may also be examined with this basic building block. The output characteristics are displayed for a gate vol tage selected by RV1. Transfer characteristics (gate voltage vs. Drain Current) may be shown by transferring lead X to the gate terminal and joining the $1000 \mu \mathrm{~F}$ capacitor to the 15 V supply (observing the change in polarity).

Moving now to the full circuit of Fig. 1 that allows a far more informative display providing, as it does, simultaneous displays of the characteristic curves for several equally spaced values of base current.

The circuit operates as follows: Every 10 ms the collector supply swings up and back, over a half cycle of the full-wave rectified supply. At the end of each half cycle, there is a short period during which
the supply potential is below about 0.6 V , and during this time, Q3 turns off, sending a pulse from its collector into the charge store C1 C2 D3 D2. Each pulse increases the potential in Cl by approximately 0.2 V . This would go on until the potential on C 1 and 20 V were if not for Q2, the little known and much misdescribed programmable unijunction transistor, PUT. This device is the semiconductor version of a neon lamp, insulating up to a certain p.d. and conducting heavily at potentials above this breakdown value, but with the added advantage that, through a third terminal, this breakdown potential is programmable over quite a wide range. Varying this control potential through the setting of VR2 sets the number of steps that will occur before the potential on Cl is great enough to make Q2 fire, reducing the capacitor's potential to approximately 0.6 V and so re-starting the sweep sequence.

The tracer can hardly be expected to match all the performance of a commercial curve tracer, the prices of which range into thousands of dollars. There are errors, due to the slight droop in d.c. potential on C1, and hence in base current, during the 10 ms sweep, and due to the slight effect of the 100R sampling resistor, in that its volt drop is included in the observed collector potential, but as can be seen, these are quite insignificant as regards the final display.

A suitable transistor for the device under test is any reasonably high gain npn transistor, e.g. BC108. VR1 controls the maximum collector voltage, whilst VR2 sets the number of sweeps displayed. With/ the values given, the difference in base current between one step and the next is approximately given by:
$\frac{1}{5 R} \mu \mathrm{~A}$, where R is in megohms.

Fig. 2. Simple diode tester.

Fig. 3. Fixed current transistor tester.

Fig. 4. Circuit for investigating FET transfer characteristics.

electronices today

BIMDERS

HOLDS

12 COPIES
OF ETI
Protect and file your back issues of Electronics Today with these attractive binders. Price $\$ 4.50$ plus postage and packing (90 c NSW, $\$ 2.00$ other states)

Write enclosing chequelpostal notelmoney order to:

SUBSCRIPTION DEPARTMENT,
 ELECTRONICS TODAY INTERNATIONAL,
 3rd Floor, 15 Boundary Street,

Rushcutters Bay, NSW. 2011.

Gain Control Part 1

> Tim Orr continues his occasional series of circuits, methods and explanations with a detailed look at how gain can be controlled by another electronic signal, be it squarewave, sinewave or voice signal. This leads to some interesting circuits from ducks to filters!

THERE ARE MANY cases in signal processing where the control of the gain is necessary. Some common examples are automatic volume controls in cassette recorders and in the IF sections of radio receivers. Also in professional audio equipment there is a whole range of compressor, expander, limiter and noise gate devices which find great use in recording and broadcast studios. Maybe you have wondered how the volume of the music drops when the DJ starts to talk and then fades up again when he stops. This process known as voice over or "ducking", uses voltage control of gain.

Noise reduction systems such as dolby and dbx employ voltage controlled amplifiers. Syathesisers and sound processors obtain effects such as ring modulation, automatic panning, frequency shifting, dynamic filtering, tremolo and envelope shaping also by the use of this technique.

Gaining Gain

There is a wide variety of methods which can be used to obtain the gain control. This can te anything from constructing the variable gain element yourself from basic parts,
to buying ICs or modules designed specifically to solve your particular problem. Generally the solution is some sort of compromise, because unfortunately the problem of making high performance controlled gain cells (multipliers), is rather difficult and therefore the ICs tend to be rather expensive.

However with a bit of care a cost effective solution can usually be produced.

A good example is the AGC in a transistor radio. The transistors in the IF section have an h fe that varies widely with collector current. Thus, by sticking three transistors in series it is possible to vary their overall gain by about $40 \mathrm{~dB},(x 100)$, merely by controlling their collector currents. The AGC stops the audio output of the radio from varying as the radio reception conditions alter.

Electronic Multipliers

When it is required to control the level of one signal with that of another, an electronic multiplier is used. This process is analogous to arithmetic multiplication. If input A is positive, fig. 1, and input B is positive, then the product (the output), will also be positive. If A goes negative then

Fig. 1, left: the principle behind electronic multipliers. The graph shows the poss/ble outputs for a variety of combinations of input polarities.
Fig. 2, above: internal workings of a CA3080, an Operational Tranconductance Amplifier.
the product will be negative. If both A and B are negative then the product will be positive thus preserving the arithmetic rules.

If A and B are limited to be only one sign each then the multiplier is known as a one quadrant multiplier. This is the product can only be in one quadrant. If A can be both tve and ve, and B only of one sign then the multiplier is known as a two quadrant multiplier. This is what is called an amplitude modulator. The audio signal which is bipolar is A and the control voltage is B.

If A and B can be both +ve and -ve, the product can lie anywhere in the four quadrants and hence the multiplier is known as a four quadrant multiplier. This type of device is found in frequency shifters and ring modulators.

CA3080 - An OTA!

The CA3080 is a two quadrant multiplier, or to give it its full title, it is an Operational Transconductance Amplifier. It has a differential input and a single quadrant current input known as I ABC ((amplifier bias current), fig. 2. The differential transistor pair is used to steer the I $A B C$ current between the two transistors $Q 2$. There is a region where the input differential voltage is linearly proportional to the percentage of current steered between the two transistors. This voltage region is fairly small, being about 20 mV , but using the CA3080 in this area then a reasonably linear 2 quadrant multiplier can be obtained.

What has happened is that the $I_{A B C}$ current has been multiplied by the input voltage. The produce is the difference between the two collector currents. This difference is extracted by the use of mirrors, current mirrors that is. The current mirrors can be attached to either the +ve or the -ve supply rail.

A current mirror has two input terminals, whatever current flows into one flows into the other - hence the term 'current mirror'.

What we want to do is take the difference between the collector currents of Q1 and Q2. I 1 is reflected from mirror Y and then from mirror X and then appears at the output. $\mathrm{I}_{\mathrm{C} 2}$ is reflected from mirror Z and then appears at the output. The two currents are subtracted from each other and the output current is thus ($1_{C_{2}}-I_{C_{1}}$). which is the product of $I_{A B C} \times V_{m} \times K$, where K is a constant. Note that the I $A B C$ current is also reflected from a current inirror on the negative rail.

The CA3080 is a low cost two quadrant multiplier and can be used to perform a wide variety of multiplication functions. The linearity of the device holds true for I ABC variations of over three decades. When using this device keep I ABC below 0.5 mA .

VCA Using CA3046 Array

The CA3046 is an array of 5 transistors which are all well matched and relatively cheap. 03, 4 forms the differential transistor pair, IC1 controls the current and IC2 extracts the differential output current and turns it into an output voltage. The audio input is inserted into the base of Q3 but also connected to this node is the emitter of Q2. Q2 and $\mathbf{0} 5$ serve to predistort the input signal, but they distort the signal the opposite way to which the multiplier distorts it. This is known as distortion cancelling, and it allows a larger signal leval to be applied to the multiplier for the same percentage of distortion at the output. The larger input signal allows a higher signal to noise ratio to be obtained. Transistor Q1 is used to bias the bases of Q2,5 to a suitable operating region.

Stereo Voice Over (Ducking) Circuit for Disco Unit

The circuit operation is as follows. The microphone signal comes via VR1. This pot sets the sensitivity of the circuit to the microphone signal. If it is too sensitive the unit will be 'ducking' every time the DJ breathes. IC5 is an amplifier and filter. The filter has been specifically tailored to fit the characteristics of speech, thus making the ducking unit less sensitive to spurious noise. IC2, 3 forms a precision full wave rectifier, the output of which is low pass filtered and then fed to IC4. This wave form is the envelope of the microphone input signal.

IC4 is a peak, negative going, voltage detector with a gain of x 5. When the DJ begins to speak, IC4 goes negative and in doing so pulls the base of G 1 negative. When the DJ stops speaking the base of $G 1$ rises back towards 0 V with a time constant determined by CA or CA + CB.

This is the release time and it controls the speed with which the faded down music comes back to full volume. $G 1$ is an emitter follower and is job is to rob current from the gain cells in the NE 570.

This current sets the volume of the iwo music channels. When the base of G 1 is pulled down to the negative rail, the amount of robbed current is maximum, and when no current flows into pins 1 and 16 of the NE570 and all of it flows into 91 , then both nusic channels are turned off.

To set up PR1, put a large signal into the microphone channel, set RV2 so that it is a short circuit and then adjust PR1 so that the two music channels just close off. PR 2 and PR3 should be adjusted so that pins 7 and 10 Of the NE 570 are both +6 V .

Clever Fuzz Box

Fuzz boxes are used by guitarists to produce harmonic distortion and sustain. If you want to produce only the distortion, but to retain the original envelope of the signal then this is the circuit
for you.

IC1 is a 2:1 compressor as described previosuly. This produces a relatively high level signal which then drives IC2, which is a $\times 50$ amplifier with diode clamping. IC 2 produces the
distorted (fuzz) found distorted (fuzz) found. This is then fed into the IC3 gain cell, the
output of which drives the op amp. This gain cell is driven by the rectified original signal (low pass filtered at 1 k 5 Hz), so that the distorted sound is given the envelope characteristics of the original sound.

If a fuzz sustain sound is required rather than a dynamic fuzz then IC3 could be modified (by the inclusion of a clamped high gain amplifier driving pin 15) so that it acts as a low level expander. This will squelch the noise at the end of the fuzz period.

Track and Hold

In this example the CA3080 is used as a current controlled switch. When the control voltage is high, $I_{A B C}$ is maximum, $(0,44$ mA) and the OTA gain is maximum. The voltage at pin 2 of IC1 adjusts itself so that it is the same as that on pin 3, this being due to the 100 per cent feedback via the high input impedance voltage follower IC2. When the control voltage is OV, IAsc is zero and hence the gain of the OTA is zero. Therefore no current comes out of its output and so the voltage at the output of IC2 remains frozen (Hold mode). The maximum differential input voltage is 5 V and this must not be exceeded. The capacitor C should be selected to suit the speed of the operation.

$0 \equiv-6 V$
$1 \equiv+6 V$

A	B	C	0	$G A I N$
1	0	0	0	$0 d B$
0	1	0	0	$-6 d B$
0	0	1	0	$-12 d B$
0	0	0	1	$-18 d B$

POWERED BY $\pm 6 V$
NOTE
IC1 is 4016
IC2 is 741

Voltaqe Controlled (Switched) Attenuator

The CD4016 is a quad analogue transmission gate. That is, it is a quad voltage controlled switch. When the control is high the switch is ON, having an effective resistance of about 400R. When the control is low the switch is off and ot looks like a 100 M resistor. Thus by using 4016 switches it is possible to 'Switch' the voltage gain of an amplifier. The resistors in this example are selected to give 6 dB changes in gain.

Filter

A state varlable filter produces three outputs: highpass, bandpass, and lowpass. It is thus a very versatile filter structure, even more so if the resonant frequency can be varied. This frequency is linearly proportional to the gain of the two integrators in the filter. Two CA3080's, (IC2, 4) have been used to provide the variable gain, the resonant frequency being proportional to the current $I_{\text {asc }}$. Using 741 op amps for IC3 a control range of 100 to 1, (resonant frequency) can be obtained. If CA3140's are used instead of 741^{\prime}. then this range can be extended to nearly 10,000 to 1.

HE

ON SALE NOW AT YOUR NEWSAGENT - \$3.95

.. the book Australian CBers have been waiting for !
We've collected almost everything you've always wanted to know about CB radio. Here it is. All in one place!

How to buy and install a rig, how to work interstate on 'skip', what UHF CB is like, how to build simple station accessories - this book covers the whole range of CB activites. It is backed by the technical expertise, and draws on the experience of, the staff of CB Australia magazine and its sister publication, Electronics Today International.
'Australian CB' is the most important publication for CBers yet published. We hope you come to regard it as the 'bible' of the Australian CB scene.

Author, Roger Harrison, is a freelance technical journalist with many years experience in electronics and communications. His highly regarded technical articles have been published world-wide in several languages. Roger is one of Australia's best known 'hams' and has operated from such exotic locations as Antarctica and Cocos Island.

CONTENTS

What's this CB radio all about anyway?

- The history of CB in Australia.

Rig terms explained

- Don't be a SWR galah - use your meter sensibly.
The how, when and why of $D X$ and skip working.
- When the neighbours cut your coax.
- You've got the questions - we've got the answers.
- Moving on-the world beyond 27 MHz .
- CB mains power supply.
- SWR meter to build.
- CREST - CB for safety.
- Guide to the NCRA.
- Two hundred unusual names for CB clubs.

Getting your CB licence

- UHF CB - the truth.
- Installing a rig in your vehicle.
- How to operate.
- How to handle the ratbags.
- A guided tour through the accessories jungle.
- All about antennas.

Base stations can be fun

PROGRAMMING WITH. A high level language interpreter is much easier than programming in absolute machine code, but most interpreters themselves occupy several thousand bytes of RAM. Yet more memory is needed for the user program written in the high level language. This usually restricts people whose microcomputers have only a limited amount of memory to machine code programming.

To help such people explore the world of interpreters, over the past few months I have written a small one for the $8080 / 8085 / Z 80$ family of microprocessors. It has taken this long because it has been mainly done in short bursts, much of the work being carried out on trams in order to make profitable use of what is otherwise wasted commuting time. Early attempts were based on minimal implementations of BASIC, and were not very successful. While it is possible to fit an integer-only small BASIC into about 1000 bytes the very nature of BASIC does not lend itself to much more shrinking without becoming of very little use at all. Rethinking the problem I decided that the language I wanted had to be small enough to be able to be entered manually, if necessary, whenever you wanted to use it. Also quite reasonable user programs should be able to be run in a pittance of memory. I also decided that it should be coded in a reasonably straightforward way so it should permit users to try out their own additions without having to make any major changes to my code. I gave myself a budget of 256 bytes for the whole interpreter including its text editor and set about seeing how much could be achieved in that. The answer may well surprise you.

I have taken much inspiration from the CAI language PILOT which really lends itself to compact versions. Naturally I have had to omit quite a bit that the full PILOT offers, but I have added a few things too.

Enough background. Here then is a finished product lit works), a not too difficult exercise in reading a machine language program (see how it works) and a project for you to add to and modify as much as you like (make it work your way). Since this is not PILOT I have had to find another name for it. As this has been my Small Interpretive MicroProcessor Language Experiment, I have called my language SIMPLE.

Just what is SIMPLE?

If one is not careful confusion will arise because there are actually two things both of which are named SIMPLE. First, there is the actual SIMPLE interpreter which is an 8080 machine language program. This interpreter receives the instructions that actually make it do something in a special language also called SIMPLE. It is this SIMPLE language which will be described in this first part of the article and examples given of its use. A source listing of the actual interpreter and a description of what makes it tick is the subject of the second
part, along with some hints on implementing the SIMPLE interpreter on other microprocessors.

For ease of reading for the rest of this first part, Simple means the SIMPLE language unless otherwise stated.

The SIMPLE Language

Simple consists of two basic types of things, commands and statements. Commands are things that are to be done at once while statements are things to be stored away to be done (executed) at some later time, A sequence of statements is called the user's program.

Simple has only five commands. One of these causes the interpreter to start executing the user's program that has been previously stored away. The other four are all to do with entering the user's program and correcting it if it does not do what you want. It is probably better to first consider what statements are available to you, the programmer, and come back later to see just how to get these statements stored in memory.

Simple is a line orientated language, that is the stored program is divided into a series of lines. A line is any group of characters between two carriage returns. Starting at the beginning of the program the first line consists of all the characters up to and including the first carriage return. The second line is all the characters after this carriage return up to and including the next carriage return and so on. There can be one or more statements on a line and statements may themselves consist of one or more characters. The first letter of every statement is called the key letter and serves to identify the kind of statement. Now let's meet some statements.

Six Fundamental Statements

The Type Statement (T)

This must start with a T and then may be followed by any collection of characters you like except $*, \%, \#, \$, \leftarrow-$ and $\&$. It must end with a carriage return. The effect of this statement when encountered as part of a user's program is to print everything after the key letter T up to the carriage return at the end of the statement.
For example (in the following a carriage return is indicated by (CR)),
T THIS IS THE FIRST LINE (CR)
T THIS IS THE SECOND. (CR)

would produce

THIS IS THE FIRST LINE
THIS IS THE SECOND.

The Accept Statement (A)

This is complete with just an A. It causes a single character to be accepted from the operator and stored internally in the last input character buffer.

simple

The Match Statement (M)

The key letter M must be directly followed by another character. This character is compared with the last character input in response to an ACCEPT statement. If they are the same an internal flag is set to. "YES". if they are not the flag is set to "NO".

The Yes Statement (Y)

This is complete with just a Y . When encountered the state of the YES/NO flag is inspected. If it is set to "YES" the statement directly after the Y is executed, but if it is set to "NO" all the rest of the statements after the Y on this line are passed over and the next statement executed is the first statement on the following line.

The No Statement (N)

This is like the Y statement above, except that now only if the flag is set to "NO" will the statement directly after the N be executed, otherwise execution continues with the next line.

The End Statement (E)

This is complete in itself and causes execution of the user's program to be stopped and the Simple Interpreter to sit and wait for a command. When an E statement is found an E is always typed automatically to tell the operator that the end of the user's program has been reached. (Note that the user program pointer (of which more later) is reset to the beginning of the user program when an end statement is executed.)
To illustrate all of the statements so far consider the following (each line finishes with a carriage return, but these are not shown for ease of reading):-

$$
\begin{aligned}
& \text { T PLEASE TYPE ME A Q } \\
& \text { A } \\
& \text { MO } \\
& \text { YT - THANK YOU } \\
& \text { NT - IS NOT A O! }
\end{aligned}
$$

E

The first line causes a message to be typed requesting the operator to reply with a ' Q '. The second line accepts a character and the third matches it to see if it is a ' Q '. If it is, the 'yes' flag is set and so the 'thank you' message is typed. Since the 'yes' and 'no' flags cannot be set at once, in this case the program skips the next line and ends. If it was not a ' Q^{\prime} ' that was entered the match statement would have given a 'No' answer and so the complaint would have been typed and then the program would end at the E statement. The actual output from the program would be linput from the operator is underlined here just to identify it):-

```
Case 1.
    PLEASE TYPE ME A Q 
    Q - THANK YOU
```

```
Case 2.
    PLEASE TYPE ME A O
    R
```


More Statements - Jumps and Subroutines

The example above is reasonably trivial deliberately to make it easy to follow and far more complex things can be done with just the six statements introduced so far. However, the power of the language is increased enormously as soon as jumps are introduced. Both backward and forward jumps and subroutine calls are allowed. Subroutines may not be nested, in other words a subroutine may not call another subroutine or itself.

It did not seem worthwhile to permit more than one level of subroutine, but if you disagree you can reasonably easily modify the machine code interpreter to permit this. I doubt it will still fit into 256 bytes though.
Both jumping and subroutining require some way to identify the destination and the special character * is reserved for this purpose. This is known as a marker and the first one starting from the beginning of the program is marker one. The next one is marker two and so on. It is optional, if you wish, to precede an * by its number when entering the program. This can help you to understand the program flow. Thus you could enter 3^{*} for the third marker and 4* for the fourth, or you could delete the 3 and 4. It makes no difference to user program execution. Up to nine markers may be used in a program.

The Jump Statement (J)

The marker number must directly follow the J, for example J3. This would transfer control to the statement directly following the third occurrence of an "in the user's program. This can be anywhere at all, at the beginning, middle or end of line.

The Subroutine Statement (S)

Exactly as J above except that the address of the statement after the subroutine call is saved before control is passed to the statement after the target *.

The Return Statement (R)

Complete in itself as just an R. Used at the end of a subroutine to return to the statement after the S statement that brought us to this subroutine.

More things you may do

In Simple it is easy and usually desirable to put more than one statement on a line. No special character is required to separate the statements, but it is advisable to use one to improve the readability of the program. Because of the way Simple has been written any character that comes before A in the ASCII character set and which has not already been allocated some other special function may be used. Thus you could use a space, a comma or a colon to name but three. See Table 1 for the full range of printing characters open to you to use as statement separators. Any number or combination of these may be used between statements to improve program readability. One restriction on using multiple statements on a line; a type (T) statement must be the last one to appear on its line.
To further help improve program readability a comment statement has been introduced. This consists of a leading C followed by anything at all. The line is always skipped over on program execution, but will be printed when you list the program. There is no point putting any further statements on a line after a comment statement as Simple will never see them.
Putting more than one statement on a line is more than a convenience; it also permits more complex checks than just the single character match. Suppose you wish to check if the operator has given one of a number of possible answers. This can be done by using the fact that a Y or N comment, if not met, causes the whole of the rest of the line to be skipped. See program 1 which uses this in practice in the third line. In all the program examples shown operator input has been underlined in the sample run for clarity. The $\&$ at the beginning of each line of the listing is the command which causes that line to be printed (more of the commands later). If an A has been entered it is matched and the first No test is failed and the program skips to line four arriving with the Yes flag set. If it was not an A a match to E is tried, only if

```
14 T TYPE ME A LETTER
    A \(\mathrm{NA}, \mathrm{NHE}, \mathrm{NMI}\), , NACO, NitL
    UT 15 A WOWEL
    NT IS MOT A VONE
    TOU YOU WANT TO TRY RUAIN? IF SO TYPE Y
    A, T
AV, VJI
    \({ }_{\mathrm{E}}^{\mathrm{M}} \mathrm{H}\),
    tyFe me a letter
    IS NOT A VOWEL
    DO VOU WANT TO TRY MGAIN? IF 50 TYFE Y
    I
    YPE ME A LETTER
    4 IS VOWEL
    RO YOU WANT TO TRU AUAIN? IF 50 TYPE Y
1. T PLEASE ENTER A LETTER EXCEFT A OR 2
    H.
MA, NHI
    MH, NMZ
Yij4
        115
        IS THE MEXT LETTER
        IS THE PREVIOUS LETIER
    - X, \(, R, R=R\)
    - X,D,D,X,R
    * ti shio not a or z
\#f PLEASE ENTER A LETTER EXCEPT A OK z
IS THE NEXT LETTER
T5 THE PREVIUUS LETTE
PLEASE ENTER A LETTER EXCEPT A OR 2
- s salo not a or a
    PLEASE ENTER A LETTER EXCEPTA IIR Z
```

that fails is a match to 1 tried and so on. At line four the yes flag is set if the character entered is any one of the vowels, $\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}$ or U . This program shows a conditioned jump being used back to the start of the program in line eight.
It is also easy to test multi-letter answers. See program 2. Here the first letter input is matched in line three to T. If this match fails no further testing is done although two other letters are accepted. Only if the correct three letters are entered in the correct order will the yes flag be set at line eight.
For an example of a program which uses subroutines (although it could be written without them) see program 3. This program forms an infinite loop; once started the program can only be stopped by resetting the computer - not usually desirable.

Yet More Statements

The statements introduced so far do not permit you to do anything more with the single character response to an accept statement than match it against one or more approved answers. Simple also lets you save (keep) and recall (get) characters for later use. There are nine storage locations set aside for you to use as single character memories and these are identified by the characters 1 to 9 as explained below.

The Keep Statement (K)

The memory number must directly follow the K with no other character in between, e.g. K3. The contents of the last character entered buffer are copied into memory 3 replacing what was there. The contents of the last character entered buffer are unaltered.

The Get Statement (G)

Again, the memory number must directly follow the key letter G, e.g. G3. The contents of memory 3 replace the contents of the last character entered buffer. The contents of memory location 3 are not altered.
When a character is entered in response to an accept statement it is automatically printed on the terminal as it is put in the last character entered buffer. Now that we can keep and get previously entered characters it is desirable to be able to print whatever character might be stored in the last character buffer at any time. This is done with the P command.

```
        T PLENSE SFELL THE WORD FOR 2 FOR ME
        T (HINT IT HAS 3 LETTERS)
&| A,MT,म\dot{H},\mathrm{ vMIW}
        A,WHO,YT IS CORRECT
    VE
        T IS NOT RIOHT,SORRY, IF YOU WARIT TO
        T TRY AGAIN PRESS Y
    A,T
    14V,451
    E
```

胃 PLEASE SPELL THE WORD FOR 2 FOR ME
THINT IT HAS 3 LEETTERS, FUR 2 FOR ME
LOO IS NOT RIGHT, SORRY IF YOU WANT TO
TOD IS NOT RIGHT, SOR
TRY MGAIN PRESS
THU IS CORRECT

Program 3
Spelling program.
Program 1 (left).
Vowel test.

Program 2 llower
left). Alphabet program.

The Print Command (P)

Complete in itself as just P. Causes the current contents of the last character entered buffer to be printed on the terminal.

Even More Statements Still!

As you will have noticed, so far simple is a mathematical simpleton. There is one group of statements which let you do some very limited maths; sufficient for counting tries or playing some games. Simple has a built-in counter which you may load (L), increment (I) or decrement (D). You also need to be able to inspect the counter contents at any time to see if they have reached some special value. This is achieved by providing an exchange (X) statement, a statement which opens far more scope than might at first appear. X swaps the counter contents for the contents of the last character input buffer note this is a swap not a copy, so no information is destroyed. Once X has been issued the counter contents may be matched to some special value (using M), kept (using K) and/or printed (using P). The counter and last character input can be replaced in their normal places by a second X statement.
Also the X statement, used with the I or D statements, permits a user response to be cycled up or down. The G and X statements together allow the current counter contents to be replaced by some value previously stored away. These features will be used considerably in the examples at the end of this part.

The Load Counter Statement (L)

The character immediately following the L is placed into the counter replacing what was there. For example, L7 loads the counter with the character 7.

The Increment Statement (I)

Complete in itself. Causes the counter contents to be increased by one.

The Decrement Statement (D)

Complete in itself. Causes the counter contents to be decreased by one.

The Exchange Statement (X)

Complete in itself. Causes the counter contents to be exchanged with the contents of the last character entered buffer.

A few more bits and pieces

Simple was also designed for you to add on to without any major changes to the interpreter source code. This is done through the U or User statement. Until you change two bytes in the source code this will be flagged as an error. More on using this U statement in the second part of this article.
In fact a number of things can be wrong with a Simple program; you might use an illegal key letter or refer to a non-existent memory register for example. If Simple finds such a problem it stops execution, prints a ?, prints the very statement which has caused the trouble, prints the rest of the current line and then reverts to the command mode, sets

simple

the entry pointer to the beginning of the user program and waits for you to do something about it. Another possible error is to try to type a line of more than 64 characters. After Simple has typed 64 characters without finding a carriage return, it prints a ? and reverts to the command code.

The Command Mode

Having now discussed the statements you have available when writing a program in Simple, it is time to describe how to get a program into the user memory space and how to start executing it.
The text editor provided as part of the total Simple interpreter is of necessity fairly limited. There are five printing characters reserved for it; anything else entered will be treated as something to be put into the user's program. Characters are put sequentially into the user's program area at the position of the entry pointer using one byte of storage per character. If you enter an incorrect character, entering back space $(\leftarrow$ or control H) will remove the last character. A number of back spaces can be used to remove a string of incorrect characters.
At any time you can return the entry pointer to the beginning of the user's program area by entering \#. An \& causes the next line of program in the memory starting at the current position of the entry pointer to be displayed on the terminal and the entry pointer moved to the start of the following line. You can replace a line for one of equal or shorter length by going to the start (\#) and displaying (with \&'s) up to the line before the one you wish to replace. Then type the new line ending with a \% instead of a carriage return. Any characters left from the old line will be erased for you. This also lets you erase a superfluous line if you wish; you do not type in a new line, just enter \%.
To run a program enter \# to get back to the start (assuming you want to start at the beginning - you may start anywhere you wish), and then enter \$ to start the program executing. Provided you end your program with an E command, after execution is finished control will be returned to the command mode. An error always brings you back to the command code.

Simple Examples

As mentioned before, Simple is not a mathematical tool while you can do multi-digit arithmetic on it, it is not easy. However, you can do a wide range of things involving logic trees and/or alphanumeric character manipulations. To conclude this section I give some more examples. The examples are each in two parts; first a listing of the program itself (produced using the \& command described above) and then a sample output from the program. For clarity all input from the operator is underlined. You will notice that I have used the optional features of writing a Simple program to make these listings look tidy. Remember if you wish to save memory space you can eliminate all blanks, commas and the number before each marker.

The fourth program shows a simple game of NIM. In this version the computer is unbeatable, but a more complex one can be produced which gives the operator a chancel The fifth (a more complicated program) shows an alphabetic version of HI-LO in which you have to guess the mystery letter from the 'too high' or 'too low' clues. It is almost always possible to get to the answer in five tries - here you are only given four. Note the way of selecting the 'unknown' number based on responses from the user. Unfortunately, there was no room

```
NY/NJ2
```

\& TYN START OFF WITH 13 MATCHES AND TANE TURNS
T REMOUING 1,2 OR 3 MATCHES. THE PERSON TO HAV
22* T THERE ARE NOW 13 MATCHES
2* ${ }^{\text {J4 }}$
J3. J4, $\mathrm{X}, \mathrm{P}, \mathrm{X}, \mathrm{T}$ MATCHES LEFT
23* X, P, X, T MATCHES LEFT
14* THOW MANY DO YOU TAKE?
AM, TM NM2,NHI
NT, NMI NTMI I OR 2 OR 3 PLEASE
NT ${ }_{N}$
C having got their number we work dut ours
MI,HT 1 TAKE 3
M2, YT TAKE
M2,YT TAKE
M.O.O. O, CHE WON?
O, O, D, O,C WE WON? SUMP TO FIFTH MARKER
J $3, C$ OTHERWISE BACK FOR NEXT ROUND
5* ${ }^{2}$ I WIN - WANT ANOTMER LAPFIE? (Y OR W)
* ${ }^{2}, T$
t oh well. geen nice playino you:
\#\% DO YOU LANT INSTRUCTIONS? Y OR N
${ }^{4}$ ine start off hith 13 matehes ano tane turns
REMOVING 1.2 UR 3 MATCHES. THE PERSON TO HAVE
TO TAKE THE LAST MATCH LOSES. YOU GO FIRST
THERE ARE HOW 13 MATCHES
THENE MARE NOW DOU TAKE?
${ }^{3}$ HOW TMEE ।
9 MATCHES LEFT
HON MANY DO YOU TAKE?
\pm EITHER I OR 2 OR 3 PLEASL
HOH IIANY DO YOU TAKE?
- TAKE 2
5 MATCHES LEFT
HOW MANY DO YOU TAKE?
- 1 TAKE 3
1 WIN - WANT ANOTHER UIMIUE? (Y OR N
foh well. geen nice flavino you:
if flemse give me 3 different letters
Program 5. HI-LO.
ETI-THAHK YOL
Your guess?
H- 15 TuO LO
S- is 100 HIOH
YYUR GUESS?
E-15 100 HICH
-Your UuESS?
$\frac{1}{4}$ TRIS CONPECT IN
$\frac{1}{4}$ TRIE 5 :
WANT ANOTHER GAFIE? (Y Of N.
Y Y YUR UUEES?
E- $\$ 3$ TOGI LOW
YOUR SUESS?
Q - is rov Low
YOUR SUESE?

- - IS 700 law
VOUR GUESS?
\therefore - IS TOO HIGH
YOU HAVE HITS \& TRIES,
WHIS THE CURRECT ANSWER
LE

```
C GET 3 CHARACTERS TO FORM CORRECT ANSHER
    PLEASE GIVE ME 3 OIFFERENT LETTERS
    A,KI,A,KI,A,KZ,T - TMARMK YOI,
    - MORK OUT COPGECT ANSLER AND SET NO UE TRIES TO
    G WORK OUT COPFECT ANSWER AND
    G1,X,02,57,G3,X,S7, X, 14, Le, X,K5
    CGSE IF THEY HANE
    TS WDU HAVE HHN A TRIES.
    H,P,T WAS THE CORRECT ANSWER
I IWANT ANOTHER GANE? (Y UR N
    A=NY,YS!
    CE GET THEIR GUESS, CHANGE PI,RZ,RJ TO GET A DIFFERENT
    C CONRECT AHSWER HEXT TIME PUT THEIR GUESS IN COUNTER
        GMD CORRECT ANSNER IN LHST CMMFETEER INPUT GUFFER
    T YOUR GUESS
```



```
    WORK OUT OUR REPLY RY CYCLINE EACH CMARACTER DOUN
    C TO A AMG SEEING WHICH GETS TNERE FIRST
    M&, &JG
    X.MA, UT - 15 T00 60W
    4J2
    0.X.0.35
W,NM,NT - 15 100 HIGH
    NTL2
    G5,F%T TRIES!
    45,F
        \3}\mathrm{ subfOUTINE TO CYCLE COUNTER UF WHILE ERINGINIG THE
    C LASTP CHARACTER ENTEREO EUFFER IOWHI}10
7* MA,YR
X.NH2,X,YL
1,8,0,J.J
```


MAD MAL'S END ' 0 ' 78 INTHETRADE © MADMALS ENOD CLEANON Now Spoce needed for ' 79 stocks SEND SAE FOR LISTS OF......resistors from te, 5 w , 10w from 10¢, capacitors frem 2_{5} tronsistorss from 10 c , diodeds foom 4f, transfirmers from \$1, Aedi Prom 2ac, plogs a jocks from sit dectros nom $3_{s,}$ speokers tom 5 a, yates, eht tranies tan 12. pots fram 5 , knods from 5 e. relays from 50\&. do hardwon crectrical a proyessicnol pert TOO MAWY ITEYS TO LLST BER
 CHARCING CARTRIDCE 9 . 9 .

 Orders MPl Wisisus

PUEH-BUTTEN TVNERS
evens sint synchrodyne tumer
50 PLASTIC POT-WASNERS
${ }^{2}$

12 POT NUTS © WASAERS $\$ 1$ Standan brass mifs, otc.
VALVE OUTPUT TRANS
General Aurpose raplocemint

 SEMICONDUCTORS
 NR 60 600 PIV 25 A 75 C ITT or STC TAIOB 10 WOtt $\$ 6.50$ 258357 Tos Germanium
VJ148 100 V 10A Bridge $\$ 3.76$ TIC4 40 V 600 mA SCR 20 5025 RED LED 25 c MPF102 or MPF105 Fets 75
4 Pin dil sockets
${ }_{6}$ Pin Dil pil soucs
16 pin DIL PLUGS 5 TO3 MICA WASHERS 5 \& TuS MOUNTING KITS Lnclues evico Insowich S. wroms, nuto S1 Moncywent MicRoiwitch uppliee
 TRAMSISTOR RADO REPAIR KIT

 (fin 220YAC RELAY (103n 32 Am contaots

ELECTROLYTIC CANS 3.300 uF 50 yw

TURNTPELES BRANDV atMADPRIĆSE

BSR CHANGERS-NEN, COMPLETE, WITM STERSO CART., Huge Purchose-fullsinap 3 sped, II"plotter owiy $13.6 Y$ 2.5A POWER SUPPLY KIT PEsention $\$ 1$ seoep puchore siniog
NOMLSONE-EYED
(o) SpEcIALS

等 WAy MnT Matorive tito cion
 Ninoor PM Arrill

 Ism artoor

 2
 30M nems thear chabl $\$$ 3 2usw idirion switicu 5 for $\$ 1$

 ${ }^{2}$

TRANIMATE

by heppis

2 TRANSISTOR

 TUNABLE RFPRE-AMPLIFIEK PRE-AMPLIFIEK
Sole
price
pulls in weak and
distant gtations
to rodio-Tumes BOTER
7"x5" CAR
SPEAKERS
$\$ 3.504 \Omega$ Nin

$11 \cdot 50^{\sin }$
EVERY MAIL OROCR OVER $\$ 25$ receives FREE \$ 2.0 NSWW Jackpot Lottery ncine SENT TO YOU WITH YOOR ORDER
simple
SMALL INTERPRETIVE MICROPROCESSUR LANGUAGE EXPERIMENT

WRITTEN EV TIN HENOTLASS
OOCTOEER IOPS
BICTOGER 1998
BUERSIUN $2.1 / 2510.78 ~$
ifirst tell the assembler inere the frogran is to start
neoe

$8121 c 623$
912377
012423
0125 FE00
0127 CC5301

-12acs

the frogran ppoper starts here

-THIS IS THE LMASTER text EOIT routine

StART	LXI SPML	H, yprog	, POINT HAL TO THE START DF THE USER PROGEAM AREA - STACK NILL START JUST EELON THE UISER PROGRAM
TLOOP	$\operatorname{LPI}_{\text {PUSH }}$	D. TLOOP	TLOOP MOQRESS TO DAE AM ONTO THE TOP OF THE STACK THIS LETS US RETURN TO TLOOF
	$\begin{aligned} & C A L L \\ & D C X \\ & C F J \\ & R Z \end{aligned}$	$\begin{aligned} & C I \\ & H \\ & S F N \end{aligned}$	WITH A RETURN ITSTRUCTION GET (ANO ECMO) A CHAFACTEF IN CASE IT IS EACKSPACE WAS IT RACKSPACE (5F)? VES, WE HAVE ALREMCH DOME THE NECESSARY CORPECTION, SO EACK
	INX	H	JTO TLWO FUR TME NEXT CHAPACTE IT
	$\operatorname{sur}_{\sqrt{2}}$	TYPE	they here WAS IT :? SEES SO DISPLA: NEXT LINE ANO
	${ }_{J Z}^{W N R}$	$\stackrel{A}{P A C}$	WAS 17 \% (25 H)? YES, 60 FMO ANO RETURN TO TLUOP FROM THE PAE RQUTINE
	$\begin{aligned} & I N R \\ & J Z \\ & I N R \\ & I N \end{aligned}$	${ }_{\text {EXECTI }}$ Start	IWAS IT: (2UH)? -YES, EXECUTE TME USER FROGRAM :WAS IT " (2.3H)? YE5, BACK TO STMAT-5TACK
			CLEANED UF AUTDHATICALLY GY TWE IFIRST THO INSTRUCTIONS!

IF IT WAS NONE OF THESE IT MIST HAVE EEEN A CHARACTER
TO PUT INTO THE USER PROGRAM. REFORE WE CAN MO THIS WE MUST RFSTORE THE CHARTCTER THE WAW IT WAS WHEN WE FIRST
IOOT IT FROM THE ROUTNE CI - BOT IT FROM THE ROUTINE CI

AOL MOV INX	$\begin{aligned} & 23 \mathrm{H} \\ & \mathrm{M}, \mathrm{~A} \\ & \mathrm{H} \end{aligned}$	RESTORE IT AS IT WAS IPUT IT INTO USER PROGRAM -AND FOINT TO NEXT SEUUENTIAL ILOCATION IN USER PROGRAM AREA
- IF THAT. WAS A CARRAGE; NOIN SEND A LINE FEEO		RETURN (CR) WE JUST PUT RWAY WE (LF) TO KEEP THE TERMINAL MAPPY
CPI	POH	- NAS IT CR?
c2	PIF	IF SO PYFE A LF
RET		SNOTE-THIS MUST BE A CALL
RET		IFOR THE NEXT CHARACTER TLOOP

, THAT IS TIE ENO OF TIE NASTER TEXT EDIT ROUTIME,

- MOW FOR THE MAIN SUSROUTINES THAT THE MASTER SROUTIHE CALLS. IN CASE YOU HSSH TO MODJFY THE A ABOVE NOTE THAT TME INTERFRETER (EXEC) ALSO RE FOUND AS PART OF THE INTERPRETER

THE PAO ROUTTNE-IT MUST PRECEEO THE COM ROUTIHE AAS IT 'FALLS THRDUGH TO IT'
PADE THE USER PROGRAM APE IF ENTEREC HITH D ZORS SEH IT
-LOCATION FOINTED TO EV HEL ANE FADS IIF TO EUT NOT
INELUDING TIE EIRST LDEATION IN INHICH IT EIPDE F CR. A
CR AND LF ARE THEN SENT TO THE TEPMINAL IF ON ENTRY D
SGON THE LOFAS THE CONTENTS OF THE USER PROGRAN AREA
UNTIL IH CR IS FOLHDO THIS CR SS TYFED ANC THEN A LE IS IS
ALSO TYFED. IN ALL CASES THERE IS A SAFTV COUIT IF 64
IN FURCE-IF GA CMARACTERS HAVE UEEN TYFED OR PADOEC
$\begin{aligned} & \text { AWITHOUT A GR BEING FOUNO A ? IS TYPEO MNO THE } \\ & \text { IRUUTINE ARORTS TO START }\end{aligned}$

ONOTE- THE LAST INSTRUCTION DOES NOT AFFECT THE STATE JOF THE CARRV FLAG SO IF THE LAST INSTRUCTIUN

WAS DONE TME TEXT ONE WON Tे SE

ITHIS IS THE START OF THE IWTERFRETER MAIN ROUTINE
IHAEN WE ARRIVE RT EXEC WE HAVE THE MOORESS OF TLOOF SON THE TBP DF THE STACK ANO THE ADORESS AT WHJCH WE IWISH TU START EXECUTION OF THE USER PROGRAM IH HAL OALL THE OTHER REGISTERS ARE AS VE゙T UNDEFINED, BUT IWILL HAVE THE FOLLONJNG USES. -
TE = MARERER COUNTER OR FRINTAPAD FLAG
IE $=$ USER COUNTER
IB
B $=$ RESULT OF LAST NATCH (AF =VES, $D=N O$)
$i C=$ LAST CHARACTER THAT WAS INFUT IN RESPONSE TO AN
ACCENT COMHAND
IFIRET WE LOSE TME AODRESS OF TLOOP FROM THE TGP IOF THE STALK HS WE MO LONGER NEED IT.
015A OI

NUW WE FUT THE ROQRESS OF EXEC MHIO THE TOF OF THE -STACK WITHOUT ALTERING ANW REGISTERS. THIS LETS US NE ORN TO EXEC SY A SIMPLE RETURN INSTRUCTIOR. ;TO EXEC AS WE USE UP THE ADDNE:S GETTING TMERE
EXEC PUSH 'H EXEC PUT H\&L ONTO STACK
$\begin{array}{ll}\text { PUSH 'H } & \text { IPUT HEL ONTU STACKK } \\ \text { LXI } \\ \text { XTHL } & \text { H, EXEC BUUT ROORESS UF EXEC IN HAL }\end{array}$
 INK H SPRGRAM AREA
CFI ' 2 ' NEXT TIME ROUNO
JNC ERROR, 2 OK ANYTHITU EEYOND THAT
SUI 'A JERFOR! --SUSTRACT ASCII A
S SUSTRACT ASCII A
i IGNORE IT IF IT NAS < A
inUTE, IT CUULO HAVE BECN. A CF, A MAPAER (*)
AHN OFTIONAL SIATEMENT DEL INEATOR OR EVEN
OA NUMEER PUT TN EV SONE OTHER LINE ORIENTEO TEXT
EOITOR. IN ANY CASE WE DON'T WANT TO KPUOH ABOUT IT -AT THE NOMENT SO WE JUST JUMP OVER IT.
WE NUIV HAVE TME IMOENTIFYIMG KEY LETTER FROM IWHICH IASCII H HAS EEEN SUBTRACTEO IN REGISTER A WE LIOK IUP II: A TAELE SHANTING AT TEASE TO FINO THE LEAST - SIGNIFICANF SVTE OF THE ANCRESS OF THE SURROUTINE JHISH PERFORMS THE ACTHAL STATEMENT. AS THE WHOLE INTGRFKETER F 1 IS IN ZSG SYTES WE ALREAOW KNOH THE
IMUST SIGMIFIGAN: SVFE

FUSH	H	SHE PEEC A LITTLE ROOM
X:	H, TGAEE	- AMGRESS UF E:RST ENTFY
ACO		- IN TAELE TG HEL
ACO	\llcorner	AOO L TO THE SEY LETTEK IN NI IWIHICH IS IN THE RANUE FROM , $A=1$ TO $\mathrm{H}=: 5$
MOV	L.A	- NLW HGL MAS THE ADORESS
		-IF THE ENTRY WE WFNT
Now	L.M	MON MAL HAS THE ADORESS OF
		, THE SUEFDUTINE WE WANT
XTHL		, PUT IHIS OW TO THE TOP OF
		THE STACF ONC RESTORE THE
-		SRIGIONAL M ML ALL AT OMCE
		, ANQ DFF TO THE MOMPESE IWHICH

THE NEXT 25 EVTES LLWFAIN THE LENSY SIGNPFICANT THE ACTION RGOUNE TO THE HC TUALL PERFLRM
 THE FORM NOC 2SE WHICH ANPEARS EELON 15 A WAV DF TELLTNG NY ASSENGLEE TO GNLY USE THE LEAST - SIGIFICANT 8 EITS OF THE NODRES:

Electronics Today International - January 1979

Write your modified I/O routines here.

to build a random number generator into Simple, but the form used in this program makes it hard to predict ahead from turn to turn.

The sixth and last example is really a pair of programs, an enciphering program and a deciphering program. For a moment diverting slightly into ciphers, the simplest cipher is one in which every letter in the plain text message is swapped for another. A letter (say e) is always replaced by the same alternative letter (say k). In other words, we always use the same enciphering alphabet. The characteristic features of the language are not altered - for example, in English, ' e ' is the most common letter, with a, $0, i, t, n, r, s$ and h also occurring frequently. On the other hand, j, h, q, x and z occur rarely. If a letter follows a vowel four-fifths of the time and only appears before it one-fifth, the letter is probably n. The combination th and he are common, but ht and eh are rare. From these and other characteristic relationships the cipher can quite readily be broken.

In our cipher we change the enciphering alphabet after every character - the previous cipher letter guiding us to which of the many possible enciphering alphabets to use next. Our program is an electronic version of a combination of the twin rotating discs described by Leon Battista Alberti in 1466

```
T WHANT IS TME KEY?
    A,X, C ORIGIONAL KEY TO COUNTER
I START TEXT, TO GET A NENH LINE TYPE
T HT ENU UF IEXF THFE A FULI STOF.
T AFTER ENCH GHARACTER YOU ENTER I WILL
    IIVE YOU THE ENCJPMFREO CHARACTER.
T UIVE YOU THE ENCIPHFREO CHARNCTER
    SPMUE EETWEEN WORDS
    SPMDEE EETWEEN WORDS
|" A, C CHECK FUR A NEW LINE
M+,YT
& CHECK FOR END GF TEXT
M.,ザ
VE
C CVCLE THE COLHTER
* X,MO,X,O,VLZ
C MEDULES THE INFUT CHARACTER 10
ME,X,D,X,NJ2
E FRIMT OUTPUT CHARACTER
X,F
C FRJNT A SPACE
L.S.F GO RNO EMCIPHER MORE
JI. C LO AMO EMCIPHER MORE
T WMAT 15 THE KEV?
A,X, C ORILIONNL NEY TO COUNTER
I STMRT TEXT,IO GET A NEN LINE TYFE A *
    T AT ENO OF TEXT TYPE A FULL STOP
    T AF TER EACH CHARACTER YOU ENTER I WILL
    T GIVE YOU THE DECIPNERED CHARACTER.
    TO MARK THE SPACE BETWEEN WORDS USE
    T AN A SYMBUL
    C START UF OUTER LONP
    A. C CHECA FOR A NEW LINE
M*,YT
YJ!
C CHECK FUR EMO OF TEXT
M!,YT
YE SAWE INFUT CHARACTER FOR NEXT TIME
KI CVCLE THE COUNTER
CM,N,X,O,VLZ
C REDUCE INPUT CHMRACTER TO O
    MG,X,D,X, IIJ2
    C FRINT OUTPUT CMMRRCTER
    X,F,X
    CPRINT A ELANK
    <,X,P G BLANK
    C RESTURE LAST CHARACTER INFUT TO COUNTEA
    C AND THEN SO ANE DECJPHER WOKE
Gl,X,JI
LI NHAT IS THE KEV?
IGTART TEXT, PO GET A WEW LIME TWFE A * 
    AT ENO OF TEXT TYFE A.FULL STOP
    AETER EACH CANRHCTER YOU ENTER & WILL
    GIVE VIU THE ENCIPHERED CMARACTER
    USE FII SHMELL TO REPKENENT THE
    SFACE EETMEEN INRDS
M,
```

```
C PAINT OUTPUT CMARACTER
```

Program 6. Enciphering and deciphering programs.

Hex Value	20	21	22	23	24	25	26	27	28	29	2 A	2 B	2 C	2D	2 E	2 F	30	31	32	33	34	35
ASCII Character		:	-	\%	\$	t	6	,	1)	-	+	,	-	,	1	0	1	2	3	4	5
Counter Value	-16	-15	-14	-13	-12	-11	-16	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5
Simple Usage	t	\downarrow	\checkmark	T	T	T	T	t	\checkmark	\checkmark	M	f	\checkmark	/	\downarrow	t	1	,	1	\downarrow	1	t
Hex Value	36	37	38	39	3A	38	3 C	30	3E	$3 F$	40	41	42	43	44	45	46	47	48	49	4A	4B
ASCII Character	6	7	8	9	!	:	<	-	,	$?$	e	A	B	c	0	E	F	G	H	1	3	K
Counter Value	6	7	8	9	19	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Simple Usage	\checkmark	*	γ	t	\checkmark	\checkmark	\checkmark	\checkmark	γ	\checkmark	\downarrow	K	1	K	K	K	1	K	1	K	K	K
Hex Value	4 C	4D	$4 E$	45	59	51	52	53	54	55	56	57	58	59	5A							
ASCII Character	2	M	N	0	p	2	R	S	T	0	v	w	x	Y	z							
Counter value	28	29	30	31	32	33	34	35	36	37	38	39	49	41	42							
Simple Usace	K	K	K	1	K	I	K	R	K	K	1	1	K	K	1							

Table 1. The ASCII character set between 20 (Hex) and $5 A$ (Hex), equivalent numeric value in the counter and usage in Simple. (σ. may be used as a seperator between statements. $T=$ text editor command. K used key letter. $M=$ marker. I \quad illegal key letter at present.)
and the auto key proposed by Blaise de Vigenere in 1586. A letter may come out as anything - even itself, but rarely comes out the same way twice. The possible characters (both input and output) are the characters in the ASCII character set, between ϕ and Z inclusive (see table 1). As this does not include a space we use an @ for a space. In order to decipher a message, the initial key (which can be any character from this range) must be known - so it is added as the first character of the enciphered text. As you see the phrase Electronics Today International comes out as the unpronounceable
'AV9N:@HS4E18R $\times 8$ N $<=W=109 A M ; A R 2>W:$.'

By using the various Simple statements you can build up bigger and more powerful programs than those shown here. For example, the power that comes from being able to jump (or subroutine) into and out of multiple conditional match statements on a single line has not been explored at all. Try writing a few programs that use a number of logic decisions; you will be surprised how much Simple can do - and remember you can add on extra statements you might want that I have missed out. In the meantime for those of you who enjoy small puzzies you may care to decipher the following message TWA02L7BN8RS38RYCXGX3M3:T ϕ ANX;P.

The answer to this will be given at the end of the article.

simple

SIMPLE - a small interpreter for microprocessors. Part 2.

Dr. Tim Hendtlass, Applied Physics Department, R.M.I.T.
HAVING DEALT WITH the simple language we now turn to the 8080 machine language program given in listing one which interprets and executes any program given to it in Simple language. No doubt your first reaction is surprise that a source listing which produces a mere 254 bytes of object (machine) code should be so long. The main reason for this is that the listing is very heavily commented. Only those lines which have some numbers at the very left-hand side of the line contain anything other than a comment. A comment is anything on a line to the right of a semi-colon ($;$), the assembler pays no attention to comments other than to cause them to be faithfully printed out on the final output. You and I are the sole reasons for these comments, they help us find our way through the program and understand how it works. When I first started writing programs I was lazy and did not comment them, or at least not very much. Returning to a Fast Fourier Transform program two years later to adapt it, I discovered a bitter truth - I just could not understand it. An uncommented source listing is as useful as a complete circuit diagram without any component values, wave-forms or labels of any kind.

So, since the design goal for Simple was to produce an interpreter that others could use, understand and especially modify, the source listing is very heavily commented. The listing has one complete instruction per line in general and each line is commented. In addition each block of instructions is also commented. The other items in a line of output from the assembler can be identified by reference to the line almost at the beginning of the listing which has 0100 at the far left-hand side. All lines which contain more than just comments have first of all a four hex digit address printed. This is the address of the first byte of the machine code for the instruction given further across the line. Next to this address are two, four or six hex characters which made up the one, two or three bytes of machine code for the instruction. After them comes an optional entry, a label (in this case START) - this is to allow symbolic references to addresses whose actual value is not known until the assembly is done. A label, if there is one, must end with a colon (:). Next comes the actual instruction, first the key part and then the optional parameters (if any). Finally comes the comment described earlier. With the Simple language description, many readers with a reasonable knowledge of 8080 mnemonics will now be able to work through the source listing with only minor difficulty at one or two places. However, to help those not so familiar with machine code program listings, let us now take a guided tour of the Simple interpreter.

A guided tour of the Simple interpreter

All the addresses below refer to the source listing given in this article which has been assembled to start at location 100 Hex . All addresses and the machine code are given in hex. The Simple interpreter can be separated into two parts, the small text editor used to enter a Simple language program into memory and the actual interpreter which executes a user program once it has been entered.

The text editor

The text editor occupies from 100 to 159 hex inclusive and is complete in itself except for the single character input and output routines Cl and CO . The H and L registers are used together as a pointer to some place in the user program storage area. Unless the character entered is one of the five special characters ($+, \&, \%, \$$, or \#), it is put into memory at the current position pointed to by H and L . It replaces what was there and H and L are then incremented to point to the next sequential location in the user program area.

When we first come into Simple no register can be assumed to have any particular value and so first of all $(100$, to 103$)$ H and L and the stack pointer are both loaded with the address of the start of the user programme area. On the 8080 the stack pointer is decremented before an item is placed on the stack so that the stack starts at $\emptyset 215$ and works down in memory whereas the user program area starts at $\varnothing 215$ and works up. Note that in 8080 machine code and low byte of an address is sorted before the high byte.

After each character has been processed (except \$) we will want to come back to TLOOP for the next character. If we place the address of TLOOP onto the stack just as a subroutine call would have done, we can return to TLOOP by an 8080 RETURN instruction just as if we were returning from a subroutine. This saves valuable space compared to using a JUMP instruction and is the reason for the instructions from 104 to 107.

The rest of the text editor is straight forward except for the COM routine and the instruction at 127. These will be covered shortly. Remember though that the character in routine (CI) must also echo the character, I have done this by letting Cl 'fall through' to the character out (CO) routine (see 1F3 to 1FD). Note this and the other requirements that Cl and CO must meet (given in the listing just after $1 \mathrm{~F}($) as you will also certainly have to re-write the Cl and CO code to suit your system. There are still 2 spare bytes in this page in case your routines are longer than mine.

The Interpreter

The interpreter's main routine starts at EXEC at 15 BH and causes the next statement (i.e. the one pointed to by the H and L registers) to be processed. After any statement is processed we must come back to EXEC for the next one, unless we just processed an END statement or found an error. In these latter cases we go back to START and into the test editor again. We use the same technique we used in the text
editor to get us easily back to TLOOP in the interpreter, only this time, of course, we put the address of EXEC onto the top of the stack as this is where we want to return to. When we put the EXEC address onto the stack we must not alter any of the 8080's registers, as in the interpreter, unlike the text editor, all of them are used. This takes three instructions and five bytes $(15 \mathrm{BH}$ to 15 FH$)$ compared to the two instructions and four bytes used to get the TLOOP address on the stack.

We then get the key letter of the statement from memory and look to see what kind of statement we have to process, checking to see that it is indeed a legal letter. If the 'letter' comes before ' A ' in the ASCII alphabet it may not be an error as it could be a carriage return, marker (") or a number, all of which are legal, but none of which we want to know about at present. So we skip over it and get the next letter. The fact that EXEC ignores all characters before ASCII ' A ' is important and we make considerable use of this later.

Having got an apparently legal key letter (at 16AH) we look up in a table starting at 173 H to find the address of the subroutine which processes this particular kind of statement. Since the whole of SIMPLE fits into one 256 byte page we only have to look up the least significant byte of the address in the table as the most significant byte is the same throughout. The rest of the machine code consists of the subroutines to process the different statements, all of which occur after the address at which the table is stored - a feature that you may find useful if you decide to expand SIMPLE (see later). Some apparently legal key letters are not actually used, the address that all of these send us to is the address of the ERROR subroutine.

The Interpreter's Subroutines

The subroutines called by the interpreter are fairly straight forward except perhaps TESTY and TESTN which will be covered in a moment. Note that VCOM is used by the KEEP, GET, JUMP and SUBROUTINE routines and it does some more error checking to see that the variable or marker number is a digit between 1 and 9 and reports an error if it is not. One possible error that is not checked for is to see that, if you try to jump to the seventh marker (for example), there are seven "'s in your program. If there are less than seven the Simple interpreter will race off through memory looking for the seventh marker and then try to carry on. The result should be so odd that you will know you have made an errorl The TYPE sub-routine uses the COM routine of the test editor, but otherwise the interpreter's sub-routines are complete in themselves.

Three Points Of Special Note

Simple uses subroutines that 'fall through' from one to another and an example of this can be seen in the COM routine, which starts at 12 DH . Following through this sub-routine you will see that it finally ends at 159 H and that the last thing it does is to print a line feed on the terminal. As we wish at one point $(127 \mathrm{H})$ to print a line feed, but not to do all the rest of COM, we come in at PLF $(153 \mathrm{H})$. In this case there is one difficulty; way up at the start of COM we push the contents of the B and C registers on to the stack and this is normally balanced by the pop just before the final return instruction. One of the subtle bits of coding in SIMPLE concerns how we cope with this POP when we come in at PLF and thus have not done the PUSH. Unelss we take some corrective action we would POP our return address to B and C and immediately get lost. This is why the instruction at 127 H (when we go to PLF) must be a CALL not a JUMP. Using a call pushes an extra address onto the stack (the address of the RET instruction at 012 AH) which is really unwanted information. However, this 'unwanted information is thrown away by the POP B instruction which is itself unwanted when we come in at PLF. So the net result is that everything balances as it should.

Another special point occurs at 1BFH in the interpreter proper. At this point we want to test the state of the YES/NO flag set by the last match statement in Simple. If we are looking for a YES answer we come in at TESTY, if for a NO answer at TESTN. The actual test is carried out at 1 C 1 H , but before this we have to preload A with the desired answer. If we come in at TESTN this is no problem, we exclusive - or the accumulator with itself and thus clear it (NO is represented by zero). However, if we come in at TESTY the processor reads 3EH which is the op-code for MVI A, ... and so it expects the next byte to be what it is supposed to load into A. Thus now the AFH at $1 \mathrm{C} \emptyset$ is taken as data and not as an instruction. The only reasonthat a YES state in the match flag is represented by the rather unusual value of AFH is the fact that Intel chose to use AFH as the machine code for XRA A. Using this way of loading the A register to 'YES' saves several bytes.

The final point of special note again concerns the COM routine. This is used both by the TYPE routine and the PAD routine. In each of these routines it is necessary to take characters one by one from the user program area until a carriage return is found. The only difference is that in one case we type the character and in the other we replace it by a null. We use the D register as a flag to tell us which routine is to be done; this is treated $(137 \mathrm{H}, 138 \mathrm{H})$ in such a way as to set the carry flag if we are to pad and reset it if we are to print. Use is made of the fact that not all instructions alter the state of the carry flag, in particular the 'MVI M, \emptyset^{\prime} ' at 13 CH does not. The carry must have been set at 13 CH (otherwise we would have taken the jump at 139 H) and is still set when we arrive at 13 EH from 13 CH . Therefore in this case we do not make the call to print the character at 13EH. Only if the carry was not set at 139 H do we make this call at 13EH. Thus we either type or pad depending on the state of the carry flag, but never both. You will see that VCOM at 1 E 1 H is also used by two different types of routines and so has been written in such a way as to do two nearly identical tasks at once. Shared routines have been used as Simple has been written to minimise its size rather than to optimise its speed.

Modifying Simple - Without An Assembler

As stated in the introduction, Simple is designed to allow you to add on statements you would like that I have missed out. There are several ways to do this, the simplest is to use the ' U ' or USER statement. To use this the two byte address at 1 F 1 H and IF2H must be altered from the error routine address to the address of the start of your routine. One of the reasons for supplying a version of the Simple interpreter starting at 100 H was to leave the memory below 100 H as one possible memory area for you to experiment in without any risk of getting tangled up in either the stack or the user program area. As long as normal stack operations are followed in your routine (as many 'pushes' as 'pops' for example) and your routine ends with a return instruction it will correctly take you back to EXEC for the next statement. Only the A register may be altered by your routine although, of course, you may temporarily save other registers on the stack. Your routine may have put up to four extra 16 -bit items on the stack at any time without exceeding the space reserved for SIMPLE's stack.

If you want to have more than one extra statement (for example a tape save and a tape load routine) there are also several ways of doing this. One way which does not require you to alter my code is to call your statements U1, U2, etc. Then your routine must check the next character after the ' U ' to see which routine is needed and have a way of branching to that one. If you have access to an assembler you have more scope as it is then easy to change the origin of the program.

Modifying Simple - With An Assembler

The only reason for orgainising Simple to start on a page

simple

boundary are for the ease of the table look up at 16A and for the convenience of anyone wanting to move the whole of SIMPLE to another page by hand as only the most significant byte of each address will need to be changed. If you have an assembler you may use the currently unused key letters (B F, H, O, Q, V and W) by merely changing the program origin so that TBASE is at the start of a page. Then the same look up procedure will enable you to go anywhere in the page starting at TBASE. (Now you know why all sub-routines referenced from the table occur after the table!! This can be done by setting the original origin to $X Y \emptyset \emptyset-73$ where $X Y$ is the page you want TBASE on (e.g. to get TBASE at the start of page 2, set the origin to 18D). Now you have 73 bytes of free space on that page you can branch to - of course, you must also change the user program and storage area origin so there is no conflict. If you change the table look up procedure you can have as much space as you like, of course, but this involves modifying my code.

Modifying SIMPLE - With or Without

Naturally you may use any of the subroutines in SIMPLE as part of your new routine, whether you use an assembler or not - another reason for documenting them fairly fully in the listing. The text editor in SIMPLE is hardly the world's greatest and if you have any other text editor available you might care to use it instead - but if you decide to delete the SIMPLE text editor, remember that the interpreter proper uses the COM routine so that must stay. In defense of Simple's text editor it only accounts for 43 bytes (excluding COM). Even if yours is a line oriented text editor (i.e. requires a line number before each line) don't worry., it will work - EXEC skips over numbers at the start of a line, remember?

Simple On Other Microprocessors

If you use an 8085 or $\mathrm{Z}-80$ or microprocessor Simple will run just as it does on an 8080, but if you do use a $Z-80$ you may use relative jumps instead of absolute (saving one byte a time)
and also use the search instructions to do part of what JLOOP is doing. You also have index registers and a second register bank to use. You may even want to use the block move insttruction to 'beef up' the text editor to permit inserting extra characters into an existing line.

If you use a 6800,6502 or 2650 microprocessor you have equivalents to most of the 8080 instructions used here, but I doubt you can do any one - for - one translation. Because of the different instruction sets you may be able to do some things more simply (e.g. the table look up using index registers). but others may take longer. The 8080 instruction set is fairly register oriented, a useful feature when as here, you can keep most of the 'running' information on the chip. A shortage of internal registers may force you to keep some of this information in extra RAM locations.

If you use a SC/MP the biggest problem you may face is the lack of an obvious external stack. P3 only lets you subroutine one deep, but if you write subroutines to handle an external stack (push, pop, call, return) you should be able to code Simple. Even though you have auto indexing going for you, I doubt you will get it into 256 bytes though.

I would be interested to hear from anyone who writes Simple for another microprocessor - it might become the subject of another article in ETI.

And Finally

Whatever you do with SIMPLE, use it, modify it or just think about it, I wish you fun - after all that is the purpose of a hobby. One last thought; if you do customise it, I suggest you add the word "Revised" to my title of 'Small Interpretive MicroProcessor Language Experiment' - then your version is SIMPLER.

Solution to the enciphering puzzle.
$\frac{10}{I}$ inhat is the kev?
START TEXT, TO GET A HEW LINE TYPE A +
AT ENC OF TEXT TVFE A FULL STOF
AFTER EACH CHARACTER YOU ENTER I WILL
GTVE YOU TME DECJFHERED CHARACTER.
TO) MARK THE SPACE GETWEE.A WORDS USE AN E SMMEOL

electronics today

HOLDS
 12 COPIES
 OF ETI

Protect and file your back issues of Electronics Today with these attractive binders. Price $\$ 4.50$ plus postage and packing (90c NSW, $\$ 2.00$ other states)

Write enclosing cheque/postal note/money order to:
SUBSCRIPTION DEPARTMENT, ELECTRONICS TODAY INTERNATIONAL, 3rd Floor, 15 Boundary Street, Rushcutters Bay, NSW. 2011.

Dick Smith says:
 Just look at this IMCREDIBLE HOME ENTERTAINMENT

 COMPUTER!BE ONE OF THE FIRST TO ENJOY THIS AMAZING COLOUR COMPUTER - CONNECTS TO ANY TV SET. * EDUCATIONAL!

Your children can actually learn or improve mathematics addition, subtraction, multiplication and division right there on the TV screen. It even tells you when you're wrong or right!

*EXCITING!

You can play incred ibly complex games like BLACKJACK!
Imagine: it actually draws your cards, raises the bet, 'pays' you for a win . . . you won't believe it!
*NEW!
Over iwenty thousand sold in the USA since its release a short time ago - now available in limited quantity here in Australia. Don't miss out!

Imagine! For only $\$ 259$ you get a real computer - the heart of this unit is an incredibly powerful Fairchild microcomputer containing thousands of transistors. No, this is not just another TV game this incredible machine has a mind of its own, giving versatility and performance not even thought possible just a few months ago!
Basic price includes the computer console with two inbuilt games (tennis and football), the two 8-way hand control units, an AC
power supply plus a BONUS 'noughts \& crosses' game cartridge.

ADD MORE EXCITEMENT! ALL OF THESE FULL COLOUR CARTRIDGES ARE NOW AVAILABLE!

ONLY

524^{50} EACH.

* Easy terms available!

Gall in today for a demonstration

BLACKJACK Cat X. 1201
You can play the TV (the bank) by yourself or with a par tne Try to break the bank al your home without losing a cent! DESERT FOX Cat X 1203
Try and destroy the desert for without being blown up yourself (tank game) - or try the shooting gallery game on this cartridge. IVAZE Cat X- 1204
Four gieat games. Maze, Jailbreak, Blind-man's-bluff and Trai blaren, Games that will test your skill and give you feal fun. BASEBALL Cat X. 1205
BASEBALL Cat X-1 205
All the skills and thrills of the real game - played in the comfor of your own home. For two players.

SPITFIRE Cat X. 1206

Two garnes: Solo the red baron is hot on your tail, or for two players you try to shoot each other out of the sky.
SPACE WAR Cat X-1207
Can you escape the piercing leser beams? The allens from outer susec are out to get you. Just how good are vou?
MATH OUIZ 1 Cat X- 1208
reach the kids addition and subtraction - of brush up on your
MATH OUIZ 2 Cat X. 1209
MATH OUIZ 2 Cat X. 1209 this cartridge. It poses the problems - it's up to you to come up with the answers

Remove different colou thalls of bricks to become the pintall wizard.
BACKGAMMON Cat X-1213
All the rules of this exciting game are programmed on the cartridge No cheating! Also has Acey Ducey (a variation of Backgammon) TORPEDO ALLEY Cat X. 1211
Sink as many shlps as possible. Or play Robot War - toy and escape the robots by destroying them in oforce field. SONAR SEARCH Cat X-1214 Use your ears to try to sink the enemy's hidden fleet. Hours of fun for everyone.
DODGE IT Cat $\times 1216$
Dodge a varving number of hidden balls to win this game. Tesis your endurancel
Number come and go. But can you remember where they were? A modern version of Kim's game.
MAGIC NUMBERS Cat X-1210
Guess the right digits In the right places to win. You can play the PAG RACE Cat $\times 121$
DRAG RACE Cat $X=1212$ your accelerator and beat your oppon Don't eat dust: stomp on yo

DICK SMTH ELECTRONICS U. Wemenere

SYDNEY 125 York Street, SYONEY. Ph. 290.3377 147 Hume Hwy, CHULLOR A. Ph, 642-8922 162 Pacitic Hwy, GORE HILL. Ph. 439.5311 30 Grose Street, PARRAMATTA. Ph, 683.1133

MELBOURNE 399 Lonstale Street, MELBOURNE. Ph. 67.9834 [656 Bridge Road, RICHMONO. Ph. 42. 1614 BRISBANE 166 Logan Road, BURANOA. Ph. 391-6233 ADELAIDE 203 Wrigh Street, AOELAIDE. Ph. 212. 1952

SHDPS OPEN GAM to 5 30PM BRISBANE 12 How earlier
ANY TERMS DFFERED ARE TD APPADVED APPLICANTS ONL
Meny lines avaiable from the
GRACE BROS

Vector MZ The New Microcomputer For Only $\$ 3950$

Vector Graphic's new super-star Vector MZ, the most powerful complete Z-80 microcomputer on the market today. It has four times the disk storage capacity of other systems - over 630 K bytes formatted enough power to get things done. Also standard is 32 K of directly addressable memory - easily expandable to 64 K .

Expansion is easy with its 18 -slot S-100 motherboard. All Vector Graphic circuit boards (High Resolution Graphics Display, Flashwriter Video Display, Precision Analog Interface and other S-100 compatible boards) can be utilized.

The Vector MZ includes: four MHz Z-80 CPU, two quad-density Micropolis minifloppy disk drives, disk controller board, Bit Streamer I/O board with one serial and two parallel ports, 32 K static RAM, 12 K PROM/RAM board with extended monitor,
complete DOS and extended disk BASIC all standard.

Completely assembled and fully tested as a system, the Vector MZ is ready to go just connect it to a terminal and optional printer and you'll have a complete microsystem.

That's why it makes good sense to see your local dealer and ask for Vector MZ. It also makes good sense to buy Vector MZ now at its low introductory price - $\mathbf{\$ 3 9 5 0}$.

Of all the leading microcomputer companies, Vector Graphic - and only Vector Graphic can make this offer.

Bidirectional Transceiver

A new 8-bit Tri-State bus transceiver from National Semiconductor provides bi-directional drive for bus-oriented microprocessor systems. Offered in a single 20 -pin DIP, the INS8208B device uses low power Schottky technology. The chip has 48 mA drive capability on the B-port (Bus-transceiver) and 16 mA drive capability on the Aport; an additional PNP transistor input on both ports allows reduced input loading.

Typical short-circuit output current is 38 mA for the A-port and 50 mA for the B-port. For 300 pf load, the A to Bport propagation delay is 18 nanoseconds for logical " 0 ", and 16 nanoseconds for logical " 1 " transition.

Each receiver section requires a minimum of 2 volts at only $0.1 \mu \mathrm{~A}$ (typical) for a logical " 1 " signal; logical " 0 " requires 70 uA . The INS8208B has lower power supply requirements than most other available bus transceivers. The power supply requirement will not exceed 130 mA .

For simplified system interconnections, the INS8208B transmitter and receivers, connected as reversed pairs in parallel, are applied to two sets of eight I/O ports. Only two control signals are required - a transmit/ receive signal to enable the transceivers and a chip disable signal which places both sets of ports in a TRI-STATE condition.

The INS8208B is priced at $\$ 4.35$ each in 100 -unit quantities. Delivery is stock to two weeks.

Applied Technology on the Move

 Applied Technology has moved to new, larger premises. Ass from 2 January the company will operate from:Applied Technology Building
1 A Pappison Avenue
Waitara NSW 2077
Announcing the expansion, Owen Hill, Managing Director of Applied

Technology, explained the move was necessary to cope with the enormous growth in business in all areas especially wholesale and mail order divisions. The new complex is equipped with telex and automatic phone facilities and also features a seminar room for microprocessor training.

Applied Technology has developed several exciting products in the microprocessor field applicable to small business systems, educational systems, hobby systems, industrial control and these will be announced over the next few weeks.

Fairchild 'Channel F'

Dick Smith announces that his company will be marketing the Fairchild Video Entertainment Computer. The video computer, known as the Fairchild "Channel F ", is all the rage in the US and Europe.

The refined system II version, now available from Dick Smith stores, Grace Bros. outlets and dealers, is, in fact, a very powerful computer with the equivalent of over 20,000 transistors in it. Rather than a game, the 'Chanel F' is an ever-expanding library of video fun, challenge, entertainment and education.

The educational potential for the machine is staggering. Already the machine will teach children to add, subtract, divide and multiply in a funpacked way. More educational programs are in the pipeline.

Three components make up the 'Channel F' system: your TV set, the Game Console and the plug-in cartridges. The "Videocarts" as they are called, plug into the console like cassettes to change the game. (Some Videocarts have up to 200 game variations in them, not to mention variable options such as variable game speed, elapsed time, etc.) Participants compete via joystick-like individual eight-way hand controllers to get amongst the on-screen action.

Despite its sophistication, it simply

COMPUTER CLUB DIRECTORY

Sydney: Microcomputer Enthusiasts Group, P.O. Box 3, St. Leonards, 2065. Meets at WIA Hall, 14 Atchison St., St. Leonards on the 1st and 3rd Mondays of the month. Melbourne: Microcomputer Club of Melbourne, meets at the Model Railways Hall, opposite Glen Iris Railway Station on the third Saturday of the month at $2 \mathrm{p} . \mathrm{m}$.
Canberra: MICSIG, P.O. Box 118 , Mawson, ACT 2607 or contact Peter Harris on 72 2237. Meets at Building 9 of CCAE, 2nd Tuesday of month at 7.30 p.m.
Newcastle: contact Peter Moylan, Dept. of Electrical Engineering, University of Newcastle, NSW 2308. (049) 68-5256 (work). (049) 523267 (home).
Brisbane: contact Norman Wilson, VK4NP, P.O. Box 81. Albion, Queensland, 4010. Tel. 3566176. New England: New England Computer Club, c/- Union, University of New England, Armidale, NSW 2351. (New club; not restricted to students) Auckland: Auckland Computer Club, P.O. Box 27206, Auckland, N.Z.

Computer clubs are an excellent way of meeting people with the same interests and discovering the kind of problems they've encountered in getting systems 'on the air'. In addition, some clubs run hardware and software courses, and may own some equipment for the use of members. Try one - you'll like it!

If your club is not listed here, please drop us a line, and we'll list you. The same applies if you are interested in starting a club in your area. Also, if established clubs know their programme of forthcoming events, we can publicise them.
plugs into the aerial socket of your TV set and a 240 V outlet with the adaptor provided.

Cost of the 'Channel F' console complete with two resident games, one Videocart, two hand controllers, all leads, 240 V adaptor in presentation gift box is only $\$ 259.00$.

Over seventeen Videocarts are available with over 1,000 game combinations including: Tenpin bowling; Checkers; Casino Blackjack (pontoon); Spitfire ("Curse you, Red Baron!"); How to divide and multiply; How to add and subtract; Backgammon; Baseball, Wargames - naval, land and outer space; Rotot wars; Noughts and Crosses; Hangman; Drag race and many others.

All Videocarts only $\$ 24.50$ each.
For a free demonstration of the fantastic Video Entertainment Computer__call in to any Dick Smith store, Grace Bros. store (except Top Ryde) or participating dealer.

Superboard II

Ohio Scientific, Inc., has just introduced Superboard II, a complete personal computer system contained entirely on only one board. Superboard II was designed specifically with low price and the first-time user in mind. It promises to be the most dramatic price and performance breakthrough to date in the microcomputer industry. Ohio Scientific, with worldwide headquarters in Aurora, Ohio, is one of the top manufacturers of complete micorcomputer systems for everyone from the beginning computer hobbyist right up to business and OEM applications.

Superboard II's unique single-board construction and custom LSI micro circuits result in large cost savings without sacrificing system capabilities or performance. In fact, it has more features and higher performance than some home or personal computers that are selling today for up to $\$ 2,000$. It's more powerful than computer systems that cost over $\$ 20,000$ in the early 1970's.

The broad range of Superboard II features includes 8 K of BASIC-in-ROM,
up to 8 K of static RAM, an ultra-fast 6502 microprocessor, a full 53 -key computer keyboard with upper/lower case and user programmability, a video display interface with graphics, and a Kansas City standard audio cassette interface, plus full machine code monitor and I/O utilities in ROM. The BASIC-in-ROM is full-feature BASIC that runs faster than currently available personal computers and all 8080 -based business computers. The video display is direct access with 1 K of dedicated memory in addition to user memory. This display has upper case, lower case, graphics, and gaming characters for an effective screen resolution of up to 256 $\times 256$ points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30 x 30 characters.

Available options include an expander board that features 24 K of additonal static RAM, dual minifloppy interface port adapter for
printer and modem, and an Ohio Scientific 48 line expansion interface. Also available is an assembler/editor and extended machine code monitor, as well as a complete software library.

Ohio Scientific's Superb oard II was designed for the first-time hobbyist, student, or serious computer user so it comes without a power supply or case. Any +5 volt DC 3 amp supply powers it up. The superboard II packs in a lot of personal computing for an extremely low retail price of $\$ 279$ in the US.

Superboard II is also available as the Challenger $1 P$ complete with power supply (on the same board) and case for only $\$ 349$. (Export prices for either model are slightly higher.)

For details on where to buy Superboard II or Challenger 1 P , or for complete information on other Ohio Scientific microcomputer systems write: Systems Automation Pty Ltd, 26 Clark Street, St Leonards, NSW 2065.

Centaur Industries THE S100 SPECIALISTS
 PO Box 37243, Winnellie, N.T. 5789.
 29 Meigs Cr, Stuart Park. Tel (089) 81-2505.

SEATTLE COMPUTER PRODUCTS, INC.

S-100 static RAM. Top quality assembled and tested boards backed by a full year's warranty - will work in any known S-100 system: no clocks, no refresh, no problems with DMA peripherals, no "hidden gotchas"!

16 k -250 ns	\$439	$8 k-450 \mathrm{~ns}$	249
$16 \mathrm{k}-450 \mathrm{~ns}$	399	4k expansion kit (450 ns)	83
$8 \mathrm{k}-250$ ns	279	4k expansion kit 450 ns)	93

GUARANTEED FOR ONE FULL YEAR

S.D. SYSTEMS

Top quality S-100 kits at unbeatable prices (also available assembled and tested). All boards feature sockets for all ICs, and first quality plated-through PCBs

$Z 80$ STARTER KIT

The ideal choice for the beginner, this is a complete $\mathbf{Z 8 0}$
system on a board. Includes 1 k siaric RAM with sockets for another 1 k , powerful 2 k ZBUG monitor, extra PROM socket PLUS on-board PROM programmer. There's also a Kansas City standard cassette interface, hex keyboard and six digit display, twelve command keys, four counter/timer channels, two eight-bit parallel $1 / 0$ ports, and room for you to expand: a generous $21 / 2^{\prime \prime} \times 8^{\prime \prime \prime}$ wire-wrap area for custom circuitry AND S-100 INTERFACE WITH POSITIONS FOR TWO S-100 EDGE CONNECTORS ON BOARD.
Comprehensive documentation including full operating and programming guides. Power requirements: +5 v at $1 \mathrm{~A},+25 \mathrm{v}$ at 30 ma . (for PROM programming). ALL THESE FEATURES FOR ONLY
$\$ 249$

assembled and tested $\$ 399$

SBC-100 SINGLE BOARD COMPUTER - much more than just a CPU board, it combines the 280 CPU with 1k RAM, four PROM sockets for 4 k or 8 k of ROM storage, fully programmable synchronous/asynchronous serial I/0 (RS232 or 20 ma. current loop), parallel input and output ports, 4 counter/timer channels and 4 vectored Interrupts
Replaces 3 or 4 boards in many systems!
PRICES REDUCED: KIT
assembled and tested $\$ 369$
VERSAFLOPPY FLOPPY OISC CONTROLLER - Controls both $8^{\prime \prime}$ standard and 5 " minifloppies. Directly controls Shugart SA-400, SA-800; Persci 70 and 277; MFE $700 / 750$ and CDC 9404/9406. Listings of control software are included in the price. THE BEST VALUE IN FLOPPY DISC CONTROLLERS
assembled and tesied 239

SHUGART FLOPPY DISC DRIVES

SOFTWARE

CP/M disc operating system - the industry standard, complete with $8080 / 280$ assembler and BASIC-E plus editor and utllities, on $5^{\prime \prime}$ or $8^{\prime \prime}$ floppy disc ... $\$ 125$ Versafloppy control on 2758
SD Monitor on 2716
50
.75
280 Disc based assembler
.70

LOW COST CASSETTE INTERFACE

Kansas Cliy $2400 / 1200 \mathrm{~Hz}, 300$ Baud. Comes partly assembled with oscillator and phase locked loop pre-tuned for trouble-free assembly. Mates with either 22 pin edge connector of 8 pin Molex connector
$\$ 19.95$

NEW RELEASES:

VDB-8024 VIDEO DISPLAY BOARD - Full 80×24 character display, complete cursor control, forward and reverse scroll, blinking, underline, reverse and field protect.

Controlled by a dedlcated on-board Z80, it includes keyboard power and signal interface, plus both compósite and separate video and sync. KIT PRICE

S-100 EDGE CONNECTORS - Imsal type, gold plated to sult Starter Kh and our motherboards

Z80B CPU BOARD

assembled and tested $\$ 235$

EXPANDOPROM BOARD - Takes elther 2708 or 2716 EPROMS for up to 32 k . Comes complete with all support chips and sockets etc. (EPROMS not included). KIT PRICE
assembled and tested 189
EXPANDORAM - High density dynamic RAM, compatible with SD Systems $\mathbf{Z 8 0}$ CPU boards and the Versafloppy controller. Designed to work with 8080 and 8085 CPUs as well, these boards come in 32 k and 64 k models, which can be purchased partly populated for later expansion if needed

32 k model (uses 4115 RAM) - 64 k model (uses 4116 RAM)

Sl2e	Kit	A\&T	Size	Kit	A8T
$8 k$	$\$ 199$	$\$ 379$	$16 k$	$\$ 499$	$\$ 595$
$16 k$	299	449	$32 k$	689	849
$24 k$	399	519	$48 k$	869	1099
$32 k$	475	599	$64 k$	1049	1299

MEMTECH CO.

MEMTECH ARITHMETIC PROCESSOR INTERFACE

This unique product brings the number crunching power of the fabulous AM9511 arithmetc processing chip to the S-100 computer user. Full 32 bit floating point multiply in as little as 42 us. - and a full complement of transcendental functions, all far faster than soffware routines.
Also available is BASIC-M, a modiffed BASIC-E on CP/M compatible diskette which takes full advantage of the APU performance.

APU interface (without 9511 chip) $\$ 159$ assombled and testeds 179
APU interface with 2 MHz 9511 .. $\$ 385$
assembled and tested \$399
APU with $4 \mathrm{MHz} 9511 \quad$. $\$ 4$
assembled and testod $\$ 499$
BASIC-M on $8^{\prime \prime}$ CP/M format
floppy disc
$\$ 29$
Avallable soon: modifled verslons of CP/M compatible FORTRAN and PASCAL compllers

CENTAUR INDUSTRIES

CENTAUR S-100 POWER SUPPLY

Professional quality power supply with rugged, generously rated transformer, top grade filter capacitors (the ones NASA use!), fully fused, transient protected, AC line filter - gives +8 v at $22 \mathrm{~A} . \pm 16 \mathrm{v}$ at 3 A, AND +28 v at 3 A for floppy discs and/or PROM programming supplies
\$349
(Power supplles shlpped frelght collect)
STRUCTURED SYSTEMS GROUP - Quality business-oriented soffware designed for use under the CP/M operating system.
CBASIC - Runs on any 8080 or $\mathbf{Z 8 0}$ system with 20 K or more and CP/M. Powerful disc access features - random and sequential files including variable length records. Enhanced control structures (WHILE . . WEND, optional ELSE clause and STATEMENT LIST improvements to the if statement), source library facility, machine language routine ilnkage, powertul PRINT USING, 14 BCD digit arlitmetic for accurate financial calculations, and many more powerful features make this the BASIC for business applications. CBASIC is a compiler, so your programs run faster, use less memory, and are much more secure against software piracy
ON 8° CP/M FORMAT DISKETTE WITH USER MANUAL
$\$ 99.95$
OSORT - Runs on any CP/M system. A full disc sort/merge package - easy to use and very flexible.
ON $8^{\prime \prime}$ CP/M FORMAT DISKETTE WITH USER MANUAL
NAD - A complete name and address database system with a number of powerfui user options. Requires CP/M, 32k and a 132 column printer -it can select records on any field including a user-definable field - print mailing labels - many powerful uses can be easilv programmed.
ON $8^{\prime \prime}$ CP/M FORNAT UISKETTE WITH USER MANUAL $\$ 79$
WAMECO, INC: OMB-12 S-100 MOTHERBOARD - 13 slot motherboard complete whith all parts and connectors. Features extensive ground piane and termination of all signal lines, $1 / 0$ area with 3 regulated voltages.
KIT PRICE

assembled and tested $\$ 145$

Add 15 percent sales tax where applicable - we pay postage on pre-paid orders orders accepted pre-paid or COD. Dealer enquirles Invited.

Other lines in stock include: Battery chargers and adaptors, instrument cases and boxes, audio and TV leads-plugs-sockets, Dmm's, potentiometers, switches, stylii, transformers, PHILIPS Speakers and System kits, vast range of Records and Cassettes. We are also Dealers for AIWA quality HI-FI products. Prices current till February 28.

Project 720

144mHzum05 Power Rmplifiter

This first practical project design for a VMOS RF PA, by Roger Harrison VK2ZTB and Phil Wait VK2ZZQ, shows these devices have a number of advantages over bipolar amplifiers.

THE LATEST DEVELOPMENT to emerge from the semiconductor research establishments is the VMOS FET. This device seems set to rapidly revolutionise many areas of solidstate technology, particularly fast switching/high current applications such as line drivers, optical data transmission, memory drivers, DC/DC converters and so on. However, VMOS devices also have unique advantages in communications circuitry. These are:

1. They can be used in any class of operation (A to D) due to the advantages of enhancement-mode operation.
2. They have excellent linear transfer characteristics. Fifth order intermodulation distortion figures are typically eight to ten dB better than bipolars.
3. The drain temperature coefficient has a negative characteristic which prevents thermal runaway. VMOS devices may be easily paralleled and will current share automatically. 4. VMOS devices have no minority carrier storage time thus allowing efficient class D operation as switch. ing times are up to 200 times faster than bipolar devices and there are no switching transients.
4. They are, by virtue of their construction, protected against infinite VSWR problems.
5. They have a high source-drain breakdown voltage.
6. They have low gate-drain feedback capacitance. This characteristic particularly suits VHF/UHF operation.
7. Low noise figure: 2.5 dB is typical. A power amplifier can be used as a low-level amp as well.

Specification - ETI 720

Saturated output power: V_{d} of 24 volts -16 watts (13.5 watts specified)
V_{d} of 36 volts -22 watts (21 watts specified)
Power Gain: $\quad V_{d}$ of 24 volts -11.2 dB at 10 watts output (10 dB @ 200 MHz specified)
V_{d} of 36 volts -11 dB at 18 watts output.
Efficiency:
Input VSWR:
53\%
less than 1.5:1.
The prototype was unconditionally stable without neutralisation.

Fig. 1. Circuit diagram of the VMOS Power Ampllfier.
9. Wide bandwidth and uniformity of characteristics across frequency range.
10. Higher gain than bipolars of equivalent power dissipation rating. 11. Input and output impedances generally higher than equivalent bipolar devices making matching easier.
High power MOS devices were pioneered in the mid-1960's by RCA laboratories who managed to produce an amplifier that delivered up to 14 watts at 10 MHz . The Russians next achieved 1 watt at frequencies up to 100 MHz .

Recently DMOS (double-diffused MOS) was developed in Japan and commercially produced by Signetics.

The performance of these early types of MOS technology has been surpassed by VMOS which can offer higher power levels by virtue of its inherent improved thermal transfer in the chip construction.

Several companies have developed VMOS devices for communications
applications. These are; Westinghouse, Siliconix and the Communications Transistor Corporation. Other companies, such as Fairchild, have confined their interests to fast switching devices.

The Project

The amplifier described here will produce 10 watts output on the amateur two-metre band from a drive of less than one watt, using a 24 volt dc power supply. It can be operated in either class AB or C modes for SSB or FM applications. At a supply voltage of 36 volts (recommended maximum) the prototype delivered 22 watts of RF power driven by around two watts.

The amplifier was unconditionally stable and required no neutralisation, although the manufacturer recommended it. Typical efficiency should be greater than 50\%, comparable to bipolar designs for this power level.

The device used is a Siliconix VMP-4, obtained through the Sydney agents, IRH Components, with some considerable delay between order and delivery.

NOTE: The bias and neutralisation components are not shown on the overlay. Neutralisation was not found to be necessary on the prototype.

If bias is required for linear operation R1 should be fed to the bias supply and this point by-passed through C3.

Fig. 2. Component Overlay.

We hope this article contributes to a considerable shortening of the delay in future. The VMP-4 costs around $\$ 20$, although this may fluctuate due to exchange rate variations and price movements.

The circuit is shown in Figure 1. Conventional matching was employed with values calculated from data given in reference 1 . Input and output impedances of the VMP-4, S_{11} and S_{22} respectively, were taken from the manufacturer's data sheet.

The neutralisation circuit, as recommended by Siliconix, shown in the circuit, was found to be unnecessary on the prototype and could probably be left out in many cases. If your amplifer proves to be unstable it may be added after construction and testing as it is quite a simple matter.

For class $A B$ operation, bias is applied from a simple zener regulator through a pot. and resistor to the base (no messy base chokes!).

In class Coperation, the $4 k 7$ base resistor is simply earthed. RF Chokes RFC1-RFC2 are 1 uH miniature moulded chokes.

The VMP-4 is an SOE (stripline-opposed-emitter) package device with flange, rather than stud, mounting.

Construction

The amplifier is constructed on an ETI715 printed circuit board. All components are mounted on the copper side
of the board. Commence construction by drilling two holes diagonally opposite the transistor mounting hole, as shown in figure 2 and the photograph, to clear the mounting bolts for the transistor flange. A small file should be used to elongate the holes.

Drill two holes in the heatsink to accommodate the transistor flange securing bolts.

Next, carefully solder the VMP-4 to the copper side of the pc board taking care that the orientation is correct: gate to the input side, drain to the output side.

All the minor components may then be soldered to the board. Wind and mount the two coils L1 and L2 last.

Take care when mounting the pc board assembly to the heatsink. Secure the VFET flange-mounting bolts first. These could be tapped into the heatsink (as we did with the prototype) or secured by nuts through the other side of the heatsink.

The pc board should be secured, and at the same time grounded to, the heatsink by two bolts. These were placed at each end of the pc board, simply for convenience, and a suitable number of washers placed between the pc board and the heatsink so that the pc board was firmly secured without placing strain on the VFET leads.

Input and output switching, if required, may be effected by diode switching (as detailed in reference 4),

Project 720

or a carrier-operated-relay circuit (see reference 5).

Tunẹ Up and Test

Once construction is completed, and you have checked that all is correct, testing can commence.

A variable supply with a current lim. iting facility is suggested for initial test and tune up. Bias is not necessary at this stage.

Connect the output to a dummy load and some RF power measuring device. Apply supply voltage and then drive power. Tune for maximum RF output! This should correspond with a peak in drain current. If 'funny' things happen here then suspect positive feedback and install neutralisation.

It's dead simple. However, take care not to grossly overdrive the device VFETS do not take kindly to this sort of abuse. Becoming the owner of a fourlegged stripline fuse can be a chastening experience!

For class AB linear operation, bias should be set to provide about 100 mA quiescent drain current, subsequently adjusted for best performance.

Some adjustment of the input network was required on the prototype suggesting that the input impedance, S_{11}, of the particular VMP- 4 was lower than indicated on the data sheet.

Conclusion

This project proved exceptionally easy to build and its performance very impressive. Other VMOS devices should be available soon from CTC who are marketing a range with output powers from 10 W to 100 W (see ETI, March 1978, page 92).

One obvious application of a VMOS amplifier takes advantage of its excellent small- and large-signal characteristics. One could construct a unilateral mast-head amplifier with the supply voltage fed up the centre-conductor of the feedline coax. With a bit of cunning PIN-diode switching the device would serve as a power amplifier on transmit and a low-noise preamp on receive. A hand-held low power transceiver such as a Ken KP202, or a low power thomebrew) transverter/transceiver would then combine to make quite a powerful base station. Less expensive coax, having a higher loss than could normally be tolerated (like RG58), could be used at a saving approaching the cost of the amplifjer in many cases.

This project is but a starting point.

	Characteristic	Min	Typ	Max	Unit
BVDSS	Drain-Source Breakdown	60			\checkmark
${ }^{\text {I }}$ ((on)	ON-State Drain Current	400	600		mA
gfs	Forward Transconductance	170	240		m 25
Coss	Common-Source Output Capacitance		34	37	pF
Ciss	Common-Source Input Capacitance		32	35	
Crss	Reverse Transfer Capacitance		4.8	6.5	
G_{ps}	Common-Source Power Gain	10			dB
NF	Small Signal Spot Noise Figure		2.5		

Coil Windjng Details - ETI 720

L1 L2 L3.	5 turns 18 B+S (19 SWG) tinned copper wire 6 mm inside dia. 10 mm long. . 3 turns 18 B+S (19 SWG) tinned copper wire 6 mm inside dja. 6 mm long. . 4 turns 26 B+S $(27$ SWG) enamelled wire wound on Neoside L1010 former with F29 slug.

References

1. "VFETS for Everyone", by Wally Parsons, ETI January 1978, pp. 37. 41; and February 1978, pp. 53-58.
2. "Matching Network Designs with Computer Solutions", by Frank Davis, Motorola Applications Note AN-267.
3. "Solid State RF Power Amplifiers". by Roger Harrison VK2ZTB and Phil Wait VK2ZZQ, from Proceeding of the Symposium of Future Amateur Communications Techniques (FACT). May 20-21, 1978.
4. "VHF Power Amplifiers", by Roger Harrison VK2ZTB and Phil Wait VK2ZZQ, ETI November 1977 (part 1).
5. "VHF Power Amplifiers", by Roger Harrison VK2ZTB and Phil Wait VK2ZZO, ETI February 1978 (part 3).

Last minute exhortation! We launched the ETI/ Computerland Software Contest back in April, and since then it seems to have stimulated considerable interest but, frankly, not as many entries as we'd hoped. For this reason, we have decided to set back the closing date of the contest to the 19th of January 1979, and encourage readers to send in their recent software efforts. They don't have to be very complex; quite short programs could well 'scoop the pool'.

We really aren't looking for professional-style brilliance, just software that works and can be used by people to do something with their computers.

The type of applications software we're seeking can be anything from a spelling or arithmetic demonstration program or a mortgage repayment program to the kind of sophisticated software we list here:

* Mailing list processor. * Calendar/clock/reminder list.
* Address/telephone file. * Chequebook balancing program.
* Point of sale terminal. * Applications to help the handicapped.
- Recipe file.
- Inventory control.
- Small business accounting package.
* Computer communications set.
- Circuit analysis. * Amateur radio station control.
* Music synthesis. * Burglar alarm with police notification.

The idea is to get your computer doing something that is in some way useful. The only stipulation we'd like to make is that software must be written either in BASIC or in the form of a well-annotated assembly language listing for one of the popular microprocessors such as Z.80, 8080, 6800,6502 and 2650. This means that we stand some chance of running your software to check it out. For the same reason, specialised hardware should be kept to an absolute minimum.

The criteria the judges will use to decide upon the winning entries will be: the value of the softwareto the user; its complexity, i.e. the size of the program;
the 'elegance' of the software; the degree of 'human engineering' in the design of software features; and the quality, amount and presentation of the documentation supplied. It is likely that other factors will also influence the judges to some extent, as different criteria will apply in varying degree to different programs. The judges will be Dr R Graham, of NSW Institute of Technology, Rudi Hoess, of Computerland, and Collyn Rivers and Les Bell of ETI.

The prizes? Overall first prize is a Cromemco ZPU Z-80 CPU card while the second prize winner will receive a Vector Graphics 8 K RAM kit. Third prize is a Vector Graphics 260×260 graphic display generator and fourth prize is a PROM/RAM card from Vector Graphics. In addition, each of the prizewinners will receive a two year airmail subscription to the US computer magazine of their choice and a two year subscription to ETI.

There will also be three special prize categories the awards for 'Best Documentation' and 'Most Original Application' will each be a two year subscription package, while the 'Most Marketable Software' winner will, subject to agreement, be marketed on a royalty basis. In addition, the winning entries will be published in ETI, and payment for this will be made at our usual (excellent!) rates.

With the promise of all these super prizes, fame, and fortune, it's well worth while tidying up some of the software you've written recently, writing it up and sending it in. You've got nothing to lose and a whole lot to gain!

The closing date for the contest is now Friday, 19th January 1979, which should give plenty time to 'polish up' existing programs. The winners will be announced in the March or April 1979 issue of ETI, but if (as we hope) there is a lot of entries to be checked this may be delayed.

ELECTROCRAFT
 PTY. LTD.

68 Whiting Street, Artarmon, 2064 Telephone 438-4308. 438-3266

TELEVISION
Complete range of Aerials - Fly Leads - Splitters - Baluns - Plugs etc.

MASTING

8^{\prime} to 15^{\prime}. Telescopic masts (Not self supporting). $20^{\prime} \$ 23.55,30^{\circ} \$ 37.60,40^{\prime} \$ 51.30,50^{\prime} \$ 66.00$.

FIELD STRENGTH METER

For TV T.E.S. Mc 661 40-480 MHz continuous in 6 ranges, battery operated in leather case. $\$ 257.60$
TV ANTENNA'S
Hills outar fringe CA. 16 phase array 48.28Hills 215 (Australias best selling high gain 8 el antenna at a new low
price)
25 .20
Hilis EFC. 3 (The best of the colour 75 ohm antennas very high gain, good anti-ghosting)
62.41
62.41

antenna)| antenna) |
| :--- |
| $3100300-75$ ohm local anti ghosting 27.98 |Channelmaster $3100300-75 \mathrm{ohm}$ local anti ghosting27.96

Belling Lee pluasBelling Lee plugs0.80
Belling Lee Coaxial wall sockets. 1.75
45.00
Ecrat
Hills MH 1 Masthead 300 ohms 61.00
FM ANTENMA'S
Channeimaster 5 EL. H. Gain 19.68Hills FM1 Local...Hills 3533 el Met11.72
Matchmaster FMG/2 Seml fringe 21.51
Matchmaster FMG/6 Outer fringe 40.93

CB EQUIPMENT SWR \& POWER METER

Specifications: Maximum handling power, 100 W . SWR indication, $1: 1$ to 3:1. Frequency range, 3.5 to 150 MHz . $\$ 16.20$.

GB TM/13 U.H.F. CB Beam 15dB forward gain (Ref Dipole) 465 to $477 \mathrm{MHz} \$ 35.95$.

GB $1 / 4$ wave spiral tuned base station aerlal, good skip work. SWR 1.1.1

Rotators C.D.E. ARXL Fully approved $\$ 124.14$
CB27 Belling Lee Helical whip, 5° complete with base and 3.6 M of cable. $\$ 18$.

BULLD YOUR OWH CB POWER SUPPLY. Ferguson transformers 240 V to $18 \mathrm{~V}, 60 \mathrm{VA} .3 .3 \mathrm{~A} \$ 8.50$. Metal boxes, L200mm, W135mm, H 70 mm , Black vinyl covered. Holes drilied on chassis for transformers $\mathbf{\$ 3 . 5 0}$.
Regulators complate with circuit GH78 CB 13.8v 2.2A.........2.94

Please enclose min. $\$ 2$ postage with all orders.
WE ARE THE EXPERTS - 30 YEARS IN THE ANTENNA BUSINESS

TRADE \& WHOLESALE SUPPLIES
Open Mon. to Fri. 8-5. Sat. 8.30-12.

NEW BOORS

Just a few of the thousands In stock. Call in or write. Prices subject to fluctuation - correct at tlme of going to press. Mail orders by return.
ARRL Handbook 1979 Edition.
Order now to secure your copy
from advance shipment.
RSGB Handbook
Vol 1.
$\$ 21.85$
Vol 2 Wuide to the World's broare complete tions.. 512.95 World OX Guide - Companion to World Radio TV Handbook due July/August - Reserve your copy now.

AMERICAN RADIO RELAY LEAGUE
A course in radio fundamentals............................. $\$ 7.20$
AARL Antenna Handbook...
Electronics Data Book
$\$ 7.20$
$\$ 8.20$
FM and Repeater for the radto amateur20
Getting to know oscar from the ground up $\$ 5.60$
Hints and KInks for the Radlo Amateur, new ed $\$ 8.00$
Learning to work with Integrated Circults.......... $\$ 4.00$
Radio Amateur's License Manual.
Radio Amateur's VHF Manual

Solid State Design for the Radio Amateur
Special Communications Techniques for the Radlo Amateur
Understanding Amateur Radio.
Coll Winding Calculator: LCIF

RADIO SOCIETY GREAT BRITAIN

Amateur Radlo Techniques Hawker.
Gulde to Amateur Radio Hawker $\$ 8.20$ Radio Daie Reference Book 4th ed. 1977 . $\$ 9.35$ Test Equipment for the Radio Amateur - new 2nd edition $1978 . ~$ 117

RECENT POPULAR TITLES

Amateur Radio Theory Course - Ameco........... $\$ 7.80$ Australian Radlo Amateur Calibook 1977. Beam Antenna Handbook, Orr.
Be Your Own Telovision Repairman Best of Byte Vol. 1.
Best of Creative Computi.. $\$ 15.95$
Best of Creatve Computing Vol 1\$15.95
Bullding Hi-Fi Speaker Systems 2 $\$ 15.95$
Hiong Hi-Fi Speaker Systems ...
Cublcal Quad Antennas, Orr.
Ham \& CB Antenna Dimenston C.......................... $\$ 6.75$
Charts, Noll $\quad \$ 3.90$ stalling TV \& FM Antennas, Sands....... $\$ 6.50$
introduction to Microcomputers
Vol 0 - Beginners Book, Adam Osborne $\$ 12.55$ Vol 1 - Basic Concepis, Adam Osborne $\$ 12.55$
Vol 2 - Some Real Prod Vol 2 - Some Real Products, Adam Osborne. $\$ 21.55$ 8080 Programming for Logic Design, Adam Os-
borne.
borne.. $\$ 11.80$
Japanese Radlo, Recorder Tape Player - Schematic
Servicing Manual....................................... $\$ 9.90$
Low 8 Medlum Frequency Radio Scrap Book -
Low \& Medlum Frequency Radlo Scrap Book - Ham
Magazines - Byte: Interface Age: Kllobaud: Personal
Computing: each .. $\$ 4.00$
Radio Handbook, Orr, New 20th edition \$24.40 Reference Data for Radio Engineers.................... \$37.50
Semiconductor general-purpose replacements, a Sams publication.. $\$ 2025$ Servicing Electronic Organs - Tab.................... $\$ 13.95$
73 Dipole \& Long wire Antennas, Noll 73 Vertical Beam \& Triangle Antennas, Noll $\$ 7.50$ TTL Cookbook, Lancaster
Transistor Substitution Handbook, 15th ad...........................
$\mathbf{~}$
$\mathbf{\$ 1 2}$
$\$ 5.70$
Tube Substtution Handbook, 20th ed.............. $\$ 5.65$

MAIL OROERS BY RETURN
PLEASE ADD 90c per parcel postage (Vic) \$1 70 per parcel interstate
TECHNICAL BOOK \& MAGAZINE CO. 295-299 Swanston St. MELBOURNE 3000

Ph. 6633951

1e-1! PRODUCTS

SR 30
Socket Recess Cup to fit hole size 27 mm

SR 35E
Grille 142 mm $\times 36 \mathrm{~mm}$

SR38E Bar Bandle $10 \frac{1}{2^{\prime \prime}} \times 6^{\prime \prime}$

hole size $48 \mathrm{~m} \times 105 \mathrm{~mm}$

SR70E
SR32 Foot
Castor Cup
$38 \mathrm{~mm} \times 15 \mathrm{~mm}$
Phone 102) 560-3488 for free catalogue.
Available from:
HOLDEN WASP INTERNATIONAL
PO Box 532, Marrickville, 2204. 39
Chalder St, Marrickville, NSW. 2204

TEXAS INSTRUMENTS AUSTRALIA LIMITED

TI-DM

We are distributors for these famous products and we are looking for retailers in NSW.
We have the full range of Tl instruments with extremely good wholesale and bulk purchase prices.

Contact:
GEORGE TYMOC
UNION SHOP
BLDG 4, THOMAS ST,
ULTIMO, 2007. Ph 212-1444.

PORTABLE DIGITAL MULTIMETERS

Volksmeters with LCD readout that operate in direct sunlight.

FEATURES

- Automatic polarity, decimal and overload indication.
- Weight, 9.2 ounces
- No zero adjustment and no full scale ohms adjustment
- Large LCD readout for easy reading without interpolation.
- Size, 1.9" H x 2.7" W x $4.0^{\prime \prime} \mathrm{D}$.
- Parts and labour guaranteed for one year.
- Operating temperature range, 0 to 45 deg . C.
- Input voltage protection in the ohms and current modes.

TIIE TROUSBE

\qquad EL TAPE

Project 813

Rare Truck Game

We're not really taking a gamble with this game - we know you'll like the project!

THE DESIRE TO place bets upon almost any event, from the outcome of the Melbourne Cup to the likelihood of life on other planets, is a deep seated one in many Australians. That old joke about the guy who bet his friend a couple of quid that he can give up gambling for a week would not be amusing but for the fact that it were so near the truth.

Three Way Bet

Bets fall into a number of different categories. They may be made on disagreements of fact ('I bet mine's bigger than yours'), about events capable of being modified by skill or lack of it ('I bet I can get mine further than yours'), or bets made upon random events (the mind bogglesl).

It is this latter type of bet, the toss of a coin, cut of a card or spin of a roulette wheel, that is probably the most popular form of gambling amongst groups of people our race track game provides an exciting means of indulging in this type of activity.

The game is really a development of the well known 'heads or tails' type of game, but whereas most games of this sort are visually unexciting, the race track game more than makes up for any shortcomings in this area!

They're In The LED

When the game's reset button is pressed all the LEDs are off and the 'horses' line up at the starting post. Now is the time to choose a horse and place bets if you wish.

Releasing the button starts the action

Project 813

should not be placed in circuit until LEDs are hard wired to the PCB and the interconnection information is given in Tables 1 and 2. Note that LEDs 37 V and 38 have their cathodes taken to 0 V
via R6 and R7 and not directly to via $R 6$ and R7 and not directly to
ground as the rest.
The value of R1 should be selected to give the best display on the race track. A value somewhere between 4M7 and 10 M should suit.
Now is the time to turn on, place
your bets and probably lose your shirt.
with the circles or LEDs representing
the 'horses' starting to flash as first one horse then the other takes the lead. As each horse completes a lap the appropriate lap LED lights. The first horse to cross the finish line lights his 'win'

LED and halts the racing horses. If lady
luck did not smile on you this time, pressing the reset button gives her, and you another chance.

Mount all the components on the PCB as indicated in our overlay diagram. We recommend that sockets are used for ICs 1-6 as these are CMOS devices and will be clocked as the first positive pulse is generated by IC1/1 and IC1/2. Which the state of IC2's outputs.

In general as the two oscillators are out of phase the counters will appear to be
clocked in a random manner. A further clocked in a random manner. A because while a 4017 is normally clocked with positive going pulses at the clock input with enable held low, it is possible for it to enable while clock is high. Thus occasion-
ally IC2 will act as a clock.
At the end of a lap a pulse is generated IC3 or IC5 and is used to advance the lap

The game ends on the ninth lap when the ' 9 ' output of either lap counter goes high. This turns on either Q1 or Q2 and The signal from either ' 9 ' output is ORed by diodes and this signal used to halt the game by disabling the slow running
oscillator.
 on two of the NOR gates in the 4001 quad and ICI/4) runs at a high frequency and its output is fed to the input of one half of a 4013 Dual D type flip-flop. The device oscillator by two and provides two signals that are 180° out of phase at its Q and Q outputs. These signals enable either
their enable input is held low. and IC1/2 runs at a lower speed and is arranged to provide a non-unity mark space ratio, in fact a very short "high" This non-unity mark space ratio is achieved by the inclusion of D1 in the oscillator's timing network. This second oscillator can described below.

> Circuit action is as follows. PB1 is closed and this resets all the counters to zero as well as inhibiting the slow running oscillator. Upon releasing PB1, IC3 or IC5

HOW IT WORKS - ETI 813

- \qquad

Project 813

Fast dependable mail order service Prime devices at low prices THE ELECTRONIC MAILBOX P.O. BOX 97 PENNNANT HILLS N.S.W. 2120

1. PROVEN QUALITY * prime factory devices, money back guarantee.
2. SAME DAY SHIPMENT * all orders cleared within 24 hours of receipt. Immediate credit or refund out of stock items.

MICROPROCESSOR CHIPS	
All devices s complete wi	upplied th data.
$2802 \mathrm{MC} / \mathrm{S}$	\$29.95
PIO for 280	\$15.95
CTC for 280	\$15.95
2650A	\$19.75
260 PIPBUG	\$17.25
SC/MP 11	\$12.75
8080A	\$12.75
6800	\$22.50

OPTOELECTRONICS

FND500 .5" C/C . . \$1.25
FND $507.5^{\circ \prime}$ C/A.. . $\$ 1.50$ FND $357.3^{\prime \prime} \mathrm{C} / \mathrm{C}$. . $\$ 1.30$ RED LED. . $\mathbf{2}^{\prime \prime \prime} \cdot \mathbf{5}$ for $\$ 1.00$ GREEN LED
YELLOW LED 35

Y/4 RESISTORS

Full E12 range from

10HM to 10MEG
Each decade includes:
1.0. 1.2. 1.5. 1.8. 2.2. 2.7, 3.3, 3.9. 4.7. 5.6, $6.8,8.2$

MEMORY IC'S	
2101256×4 STATIC RAM. $\$ 3.75$	
2114 4K STATIC. 2 for $\$ 19.95$	
$4116250 N S$ DYNAAAIC	C. \$22.00
RYSTALS	
	.000Mhz 7.95
($\pm .005 \%$ @ $25^{\circ} \mathrm{C}$)	6.000Mhz 7.95
1.000Mhz 7.95	10.000Mhz. . . . 7.95
1.843Mhz 7.95	12.000 Mhz . . . 7.95
2.000Mhx 7.95	18.000Mhz. . . . 7.95
$4.000 \mathrm{Mhz} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.	20.000Mhz. . . . 7.95

MEMORY IC'S
2101256×4 STATIC RAM. \$3.75
2102.4 1K STATIC. $\$ 1.45$
2114 4K STATIC. 2 for $\$ 19.95$
CRYSTALS
(土.005\%@25C) 6.000Mhz 7.95

$1.000 \mathrm{Mhz} \ldots 7$
$1.843 \mathrm{Mhz} \ldots 7.95$
$10.000 \mathrm{Mhz} . . .$.

2.000Mhz 7.95 18.000Mhz. 7.95
4.000Mhz 7.95 20.000Mhz. 7.95

PLEASE ALLOW $\$ 2.00$ postage and handling on all orders.

ETl data sheet

мCM68IOA MOTOROLA

128×8-BIT STATIC RANDOM ACCESS MEMORY

The MCM6810A is a byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in byte increments. Memory expansion is provided through multiple Chip Select inputs.

- Organized as 128 Bytes of 8 Bits
- Sratic Operation
- Bi-Directional Three-State Data Input/Output
- Six Chip Select Inputs (Four Active Low. Two Active High)
- Single 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350$ ns - MCM6810AL1 450 ns - MCM6810AL

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMENDED OPERATION CONDITIONS. Exposure to higher than recomended voltages for extended periods of time could affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

| Parameter | Symbol | Min | Nom | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $V_{C C}$ | 4.75 | 5.0 | 5.25 | Vdc |
| Input High Voltage | $V_{\text {IH }}$ | 2.0 | - | 5.25 | $V_{d c}$ |
| Input Low Voltage | $V_{\text {IL }}$ | -0.3 | - | 0.8 | Vdc |

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Current }\left(A_{n}, R / W, C S_{n}, \overline{C S}_{n}\right) \\ & \quad\left(V_{\text {in }}=0.105 .25 \mathrm{~V}\right) \end{aligned}$	1 in	-	-	2.5	μ Adc
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	VOH	2.4	-	-	Voc
Output Low Voltage ($1 \mathrm{OL}=1.6 \mathrm{~mA}$)	VOL	-	-	0.4	Vdc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \text { (CS }=0.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} 102.4 \mathrm{~V} \text {) } \end{aligned}$	'LO	-	-	10	$\mu \mathrm{Adc}$
Supply Current $\begin{array}{r} \left(V_{C C}=5.25 \mathrm{~V} \text {, all other pins grounded, } \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \mathrm{MCM6810AL} \\ \text { MCM6810AL1 } \end{array}$	${ }^{\prime} \mathrm{Cc}$	-	-	$\begin{aligned} & 70 \\ & 80 \end{aligned}$	mAdc

CAPACITANCE $\|=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$. periodically sampled rather than 100% rested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pf
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to static voltages or electric fields; however, it is advisable that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

READ CYCLE

Characteristic	Symbol	MCM6810AL		MCM6810ALI		Unit
		Min	Max	Min	Max	
Read Cycle Time	Scyal(1)	450	-	350	-	ns
Access Time	tace	-	450	-	350	ns
Address Setup Time	$t_{\text {as }}$	20	-	20	-	ns
Address Hold Time	IAH	0	-	0	-	ns
Data Delay Time (Read)	${ }^{\text {t D DR }}$	-	230	-	180	ns
Read to Select Delay Time	tres	0	-	0	-	ns
Data Hold from Address	${ }^{\text {I DHA }}$	10	-	10	-	ns
Output Hold Time	t_{H}	10	-	10	-	ns
Data Hold from Write	tUHW	10	80	10	60	ns

WRITE CYCLE

Characteristic	Symbol	MCM6810AL		MCM6810AL1		Unit
		Min	Max	Min	Max	
Write Cycle Time	${ }_{\text {tcyc (W) }}$	450	-	350	-	ns
Address Setup Time	tas	20	-	20	-	ns
Address Hold Time	${ }^{\text {t }}$ A H	0	-	0	-	ns
Chip Select Pulse Width	${ }^{\text {'CS }}$	300	-	250	-	ns
Write to Chip Select Delay Time	WCS	0	-	0	-	ns
Data Setup Time (Write)	${ }^{\text {t }}$ (${ }^{\text {ch }}$	190	-	150	-	ns
Input Hold Time	${ }_{\text {t }}^{\text {H }}$	10	-	10	-	ns

discount COMPONENTS

10 RED LEDS	\$1.50
7805.............	...90c
7812	.90c
LM317K	\$2.90
TIL209	.18c
10 BC547	\$1.20
IN4003	.7c
IN4002.	7 c

100 RED LEDS	\$13.00	10 74LS00	. 22.00
104016	.. 84.50	10 UA301.	. 83.30
6 LUG TAG STRIPS	.5c	4N28	\$1.00
309K	. 51.50	4 N29	\$1.10
10 GREEN LEDS	\$2.90	107490	. $\$ 3.00$
10 YELLOW LEDS.	. $\$ 2.90$	1074123	\$5.00
104011.	. $\$ 2.00$	10 741..........	. 52.90
		$\begin{aligned} & \text { LED CLIPS. } \\ & 10723 \end{aligned}$	2c

ULTRASONIC TRANSDUCERS	
边	-
ZEEERS	
triacs	
DIACS	
CLOCK MODULES	
MM1099	
MICRO'S	

ETI 417		\$1.80
ETI 445		\$1.50
ETI 446		\$1.90
ETI 449		\$1.50
ETT 450A		\$1.90
ETI 450 B		\$1.90
ETI 480		\$2.20
ETI 480PS		\$2.20
ETI 481M		\$2.00
ETI 481PS		\$2.50
ETI 483.		\$2.20
ETI 484		\$3.90
ETI 485		\$2.90
ETI 486		\$2.90
ETI 528		\$2.20
ETI 541		\$2.20
ETI 51		\$2.20
ETI 583		\$2.20
ETI 585R		\$1.60
ETI 585T		\$1.40
ETI 586.		\$2.30
ETI 603		\$2.50
ETI 604		\$1.60
ETI 635		\$2.90
ETI 708		\$1.90
ETI 713		
ETI 714		\$1.90
RESISTOI		
\% watt Metal Glaze.	1-99	100-999
1 otm to 1 M (E12 values)...........	3 c	2.5 c
1.2 m - 10 m (carbon) -.....ano......	5 c	4 c
1 wett carbon		
1 ohm to 19.	8 c	7 c
5 watt		
1 ohm io 100 ohm	. 40	. 35
TANTALUMS Resi		
	1.5	10-99
.1, 15, 22, .33, .47, .68uf (all 35V)	. 25	. 20
1uF 35 V	. 25	. 20
2.2uF 25 V	. 23	. 20
2.2uF 35V	. 25	. 20
3.30F 25V	. 25	. 20
4.7uf 35V	. 25	22
6.80 f 35 V	. 30	25
10uf 16 V	. 25	23
10uf 35V	. 30	28
15uF 16V 30	. 25
15uF 35V	. 50	. 45
22uf 16 V	. 38	. 35
47uf 16V	. 65	. 60
$680 \mathrm{c}^{16 \mathrm{~V}}$	1.20	1.10
100uF 6.3 V	. 70	. 65
MINIATURE TR!		
0.1 watt. ${ }^{\prime \prime}$ " spacing		
100, 250, 500, 1K, 2K, 5K, 10K,	20	. 17
25K, 50K, 100K, 250K, 500K, 1M...	20	$.17$

I C SOCKETS

0	1.9	10 up
8 Pin DIL	25	23
14 Pin DIL	33	30
16 Pin DIL	35	30
18 Pin DIL	55	50
24 Pin DIL	90	85
40 Pin DIL	1.40	1.20
28 Pin DIL	1.20	1.10

POTENTIOMETERS

25 watt notary carbon single gang. Log or Lin. 100K, 250K, 500K, 1M, 3M (Lin) ... 50

CERAMICS

10pF to 680 pF
820 pF io. 0015 uF E12 Values
include 30 c postage for Iree catelogue.

ELECTROLYTICS

(1-9				10 up
4.7 UF	25v	PCB	0.08	0.07
10 uF	25v	PCB	0.09	0.08
10 UF	50 V	PCB	0.10	0.09
22 UF	16v	PCB	0.08	0.07
22 UF	$35 v$	PCB	0.10	0.09
33 UF	16v	PCB	0.09	0.08
33 UF	50 V	PCB	0.11	0.10
47 UF	16 v	PC8	0.10	0.09
47 UF	35v	PC8	0.12	0.11
100 UF	10 V	PCB	0.11	0.10
100 UF	16v	PCB	0.12	0.11
220 UF	25v	PCB	0.15	0.14
470 UF	16v	PCB	0.17	0.16
1000 UF	25v	PCB	0.38	0.36
2500 UF	50 v	Axial	1.95	1.85
2200 UF	$25 v$	PCB	0.55	0.90
6800 uF	50 v	LUG	4.75	
5600 UF	40 V	PC8	2.90	
4700 UF	$35 v$	Axial	2.10	
		ITS		
ETI 480 100W Modul- Kit				
Includes	$k \mathrm{Br}$. $\$ 19.75$
ETI 4805	ule			
Includes	$k \mathrm{Br}$	ket		\$16.00
12 volt Electronic SIren Kita				
1. "Whip				. 88.00
3. "Flying Saucer"... $\$ 8.00$				
Horn Speaker to suit.. $\$ 8.50$				

SILICON VALLEY

Products in stock. Also avallable mall order as per the Sillicon Valley catalogue and price llst.

Also in stock: Multimeters, relays, veroboard, solder, solderwick, soldering irons, transformers. All components brand new by top companies. Prices current till end of February.

ROD IRVING ELECTRONICS

Shop 499, High Street, Northcote, Vic 3070. Ph (03) 489 8131. Open Mon-Thurs 9.00-5.30, Sat 9.00-1.00. Mail Orders: P0 Box 135, Northcote Vic. 3070, Minimum 75c post and pack. Send 30c stamp for free condensed catalogue.

HITS FOR
 ETIPROJECTS

WE GET MANY enquiries from readers wanting to know where they can get kits for the projects we publish.

We have only listed the projects published in the last two We have only listed the projects published in the last two used as an index, even though kits are not available for some of them (as far as we know). We will repeatla complete list every $6-12$ months depending on space limitations. Any companies not included in this list should phone Jan Collins on 334282.

Key To Companies

A Applled Technology Pty Ltd, 109 Hunter Street, Hornsby NSW 2077
C J R Components, PO Box 128, Eastwood NSW 2122
D Dick Smith Electronics P/L, PO Box 747. Crows Nest NSW 2065
E All Electronic Components, 118 Lonsdale Street, Melbourne Vic 3000
J Jaycar Piy Lid, PO Box K39, Haymarket, NSW 2000
K S M Electronics, 10 Stafford Court, Doncaster East, Vic 3109
M Mode Electronics, PO 8ox 365, Mascot NSW 2020
N Nebula Electronics Pty Ltd, 15 Boundary Street. Rushcutters Bay NSW 2011
O Orbit Electronics, PO Box 7176, Auckland, New Zealand
P Pre.Pac Electronics, 718 Parramatta Road, Croydon NSW 2132
R Rod Irving, PO Box 135, Northcote Vic 3070
T Townsville Electronic Centre, 281 E Charters Towers Road, Rising Sun Arcade. Townsville Old 4812
\checkmark Silicon Valley, 23 Chandos Street. St Leonards NSW 2065

Project Electronics

Test Equipment

132. . . . Experimenter's

133. . . . Phase Meter Apr 77 . .E		
134.	Ture RMS Voltmeter	Aug 77
	. Digital Panel Meter	Oct 77.
136. Lnear Scale Capaci		
	Meter	Mar 78
137	Audio Oscillator	May 78
138.	Audio Wattmeter.	Nov 78
139.	.SWR/Power Meter	May 78
140.		
		Mar 78
Simple Projects		
243.	Bip Beacon.	Apr 77
244.	. Alarm Alarm	Feb 77
245.	White Line Follower	Nov 77
246.	.Rain Alarm	Apr 78
248.	. Simple 12V to 22V	
	Converter.	Jul 78

Motorists' Projects

MEM－2

16K Static RAM Board

S－100，fully buffered， with PHANTOM and bank addressing capabilities， can be addressed at 4 K boundaries．

250ns Kit
$\$ 285.00$
450 ns Kit
250ns A\＆T
$\$ 350.00$
$450 \mathrm{~ns} \mathrm{~A} A T$
$\$ 325.00$

EPROM BOARD
 of 1702 ）

${ }_{2716 \text { J }}{ }^{2716}$（uses 2708 or 2716）

MIC
F8
F8
280 12
280A
CDP1802
6502
6800
6802
8008.1
8035
8035.8
$8080 A$
8085
TMS99
$8080 A$
B212
8214
8216
8224
8224.4
8226
8228
8238
USRT
S2350
UARTS
AY5．10
AY5．10
TR $1602 B$
TMS60
IM6403
BAUD
MC144
14411
6800 P
KIM SUPPORT OEVICES
6502
6520
6522
6530
6530
6530.002
6530.002
6530003
6530.004
6530.004
6530.005

CHARACTER GENERATORS
2513 Upper $(-12+5)$
2513 Uoper（ 15 volt）
2513 Lower（ 5 volt）
MCM6571A down sc
MCM65
PROMS
17024
2708
$2716(5+121$ TI
2716
$275)$ INTEL
$2716\binom{5 v}{2758}$ INTEL
OVNAMIC RAMS
416D／4116（250ns）
$2104 / 4096$
TMS4027／4096（300ns） STATIC RAMS
21 LO2 4550 ns
21 L 02 （250ns）
2101.1
2111.1
21112.1
FLOPPY DISK

CONTROLLERS
1771801
KEYBOARD CHIPS
AY5．2376
MM5740 $\$ 59.95$
$\$ 69.95$
$\$ 16.95$

$\$ 16.95$ $\$ 20.00$ $\$ 25.00$
 $\$ 20.00$ $\$ 25.00$ 17.95

$\$ 11.95$
$\$ 16.95$
$\$ 16.95$
$\$ 25.00$
$\$ 12.95$

EXPANDOR＇S BLACK BOX PRINTER

This 64－character ASCII impact printer with 80 －column capability is portable and uses standard 81／2＂paper and regular typewriter ribbon．Base，cover and parallel interface are included．Assembled and complete with manual and documentation．
only
$\$ 430.00$
（ 90 day manufacturer＇s warranty）
TRS－80 Interface Cable for Black Box Printer

with mating connectors：$\$ 48.00$
（must be used with expansion module，$+8 \mathrm{v} / 1$ amp power
supply required）．
Power Supply for TRS $-80 /$ Black Box Printer $-\frac{}{\$ 49.00}$

DYNAMIC RAM BOAPDS EXPANDABLE TO 64K 32K VERSION • KITS
Uses 4115 （8Kx1，250ns）
Dynamic RAM＇s，can be
expanded in 8 K increments up to 32 K ．

$8 K$	$\$ 199.00$
16 K	$\$ 255.00$
24 K	$\$ 310.00$
32 K	$\$ 369.00$

64K VERSION－KITS
Uses 4116 （ $16 \mathrm{~K} \times 1,250 \mathrm{~ns}$ ）
Dynamic RAM＇s，can be
expanded in 16 K increments up to 64 K ．

$16 K$	$\$ 292.00$
$32 K$	$\$ 432.00$
$48 K$	$\$ 578.00$
$64 K$	$\$ 721.00$

S－100 MOTHER BOARDS
JADE 6－SLOT
Kit $\$ 41.95$
Assembled \＆Tested $\$ 56,95$
Bare Board $\$ 24.95$
9－SLOT＂LITTLE MOTHER＂
Kit
Assembled \＆Tested
Bare Board $\$ 35.00$
13－SLOT＂QUIET MOTHER＂
Kit $\quad \$ 95.00$
Assm．\＆Tested $\quad \$ 110.00$
Bare Board $\$ 40.00$
22－SLOT＂STREAKER＂
Assm．\＆Tested $\$ 149.00$

STATIC RAM

SPECIALS

2114＇s，low power（ 1024×4 ）
$450 \mathrm{~ns} \quad 8.00 \quad 6.95 \quad 5.50$
$\frac{250}{T M S} \frac{9.00}{8.00}-\frac{6.50}{4 M 5257}$

450 ns	8.00	7.50	6.50

$\frac{250 \mathrm{~ns}}{4200 \mathrm{~A}}-\frac{9.95}{(4 \mathrm{~K} \times 1}-\frac{8.75}{200 \mathrm{~ns})}-8.00$

9.95	8.50	8.00
+		

STATIC RAM BOARDS
JADE 8K
Kits： $450 \mathrm{~ns} \quad \$ 125.95$ 250ns $\quad \$ 149.75$

Assembled \＆Tested $450 \mathrm{~ns} \quad \$ 139.75$ 250ns $\quad \$ 169.75$ Bare Board：$\$ 25.00$
16K－Uses $21 \overline{14}$＇s Tlow powert
Assembled \＆Tested：
RAM 16 （ 250 ns ）$\$ 375.00$
RAM 16B（450ns）$\$ 325.00$
T6K with memory management Assembled \＆Tested：

RAM 65 （ 250 ns ）$\$ 390.00$
RAM65B（ 450 ns ）$\$ 350.00$ 32K Static
Assembled \＆Tested：

250 ns	$\$ 795.00$
450 ns	$\$ 725.00$
250 ns Kit	$\$ 575.00$

上ュロை PARALLEL／SERIAL INTERFACE
S－100 compatible， 2 serial
1／O ports， 1 parallel $1 / 0$.
Kit JG－P／S \＄124．95
Ass．\＆Tested
JG．P／SA
$\$ 179.95$
Bare Board
$\$ 30.00$

TA1013

Computer Products

4901 W．ROSECRANS AVENUE
Department＂E＂
HAWTHORNE，CALIF． 90250 U．S．A．

Telephone： （213）679－3313 Telex：
18.1823

Oiscounts available at OEM quantitles．All prices above are quoted U．S．\＄F．O．B．Hawthorne，Calif．，U．S．A．To expedite shipments please include international money order or bankers check payable against any U．S．Dank in U．S．\＄，or use your Barclay，Access or and signature）．Add 20% of total order for postage，expiration date

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice．
 4116＇s
8 for $\$ 85.00$ （16Kxl，200ns）
includes dip plugs and instructions
＊TRS－80 Kit \star
（16Kxl，300ns）
includes connectors and
instructions
$\$ 90.00$
TADDEI 8080A
Kit $\$ 100.00$
Assm．\＆Tested $\$ 149.95$ Bare Board
$\$ 30,00$

UL 101370

with provisions for ONBOARO
2708 and POWER ON JUMP

2． MHz	
Kit	\＄135．00
Assm．\＆Tested	\＄185．00
Kit $\quad 4 \mathrm{MHz}$	
Assm．\＆Tested	\＄199．95
Bare Board	\＄35．00

TADIコ
VIDEO INTERFACE
S． 100 Compatible Serlal
Interface with Sockets Included．
Kit
Assm．\＆Tested
$\$ 117.95$
$\$ 159.95$
Bare Board with $\$ 3.95$
manual
\＄35．00
FLOPPY DISK INTERFACE
JADE FLOPPY DISK（Tarbell board）
Kit
Assm．\＆Tested
$\$ 175.00$
$\$ 250.00$ S．O．Computer Products Versa Floppy
Kit
$\$ 159.95$
$\$ 189.95$

DISK DRIVES

MINI DISK DRIVE $\$ 295.00$
Model B51 by Micro Peripherals，Inc． will operate in either single density （ 125 KB ，unformatted）or double den－ sity（ 250 KB ，unformatted）modes，up to 40 tracks，with a track－to－track access time of only 5 ms ．

SA801R
$\$ 495.00$
Shugart single－sided 8 In．floppy disk drive．

DM 2700－S

VERBATIM FLOPPY

DISKS

51／4 in．Minidiskettes

Soft sector，10－sector， or 16 －sector
$\$ 4.40$ each or box of 10 for $\$ 40.00$

8 in．Standard Floppy Disks

Soft Sector
$\$ 4.75$ each
10 for $\$ 42.50$

Steve Thurlow of the ARDXC, fills in those gaps in the dial.

LISTENERS WHO TUNE beyond the confines of the international HF broadcasting bands will discover a fascinating world of AM, SSB, morse code and radioteletype signals transmitted by government and commercial utilities or agencies. A Utility is any station other than those concerned with Broadcasting, Amateur or CB activities.

Thousands of these stations transmit voice signals so it is not essential to have a knowledge of the morse code to participate in or enjoy Ute DXing, although it could help when hunting the rarer stations. The major requirement to become 'active' is the possession of a full coverage communications receiver that is equipped with a BFO to resolve SSB and CW signals.

As you may well know, a large majority of the broadcasting stations will verify correct reports; however when dealing with Utilities we have a different picture altogether. There is no far flung audience scattered around the globe for these stations to satisfy, so they would not be unduly worried if they did not receive reports; but fortunately for us many are happy to oblige us with an attractive OSL card, including our own OTC and VNG. Others may answer by letter, and others still verify by completing the relevant details on a prepared card forwarded to the station by the DXer.

When sending reports to Utility stations it is of paramount importance that the law is implicitly obeyed at all times; not to do so could bring a penalty in the courts or even confiscation of equipment. In general the regulations state "you must not in any manner whatsoever make use of, or divulge to another person, the contents or any portion of the text of a message". The time, date, frequency and callsigns heard are ample for checking purposes by the station receiving a verification request.

There are three categories of Utility station; these are Fixed or point-topoint stations operating radio links between two permanent locations on land, Aeronautical stations which are the airports and aircraft in flight, and Maritime stations which are the coast stations and ships at sea.

Fixed Stations

Among the most common of these
stations are the world wide networks operated by such major companies as American Telephone and Telegraph Company, Cable and Wireless, France Cable and Radio, ITT and RCA. Australia's international communications are the responsibility of OTC, which may often be heard transmitting from its Doonside station to the ANARE Antarctic bases and our near neighbours in the South Pacific. All these stations can be easily identified by a preliminary transmission which may sound something like "This is a test transmission from a station of ... located in" which more often than not will be on SSB; this is known as a "voice mirror" (VM). Others still will transmit a short melody called a "melody mirror" (MM). In practice fixed stations operate duplex, that is, two stations of a link use different frequencies; and if secrecy is desired for "live" traffic this is effected by the use of a scrambling device known as condition " A ".

The major HF Fixed bands where these stations will be heard are:

$4000-4063$	$5060-5250$
$5730-5950$	$6765-7000$
$7300-8195$	$9040-9500$
$9775-9995$	$10100-11175$
$11400-11700$	$11975-12330$
$13360-14000$	$14350-14990$
$15450-16460$	$17360-17700$
$18030-19990$	$20010-21000$
$21750-21850$	$22720-23200$

In addition fixed stations will also be found in other bands where they operate on a shared basis with additional services.

The novice Ute DXer is fortunate that here in Australia we have, in the Outpost Radiocommunications Service, what is perhaps the world's largest HF network; this is a facility enabling isolated people in the remote interior to maintain contact with civilisation. These outposts are controlled by base stations of the Royal Flying Doctor Service, OTC and Telecom Australia. All stations operate on SSB, and in addition the evening frequency of 2021.5 kHz they are sometimes audible during the day on the following networks:

Royal Flying Doctor Service

VJB Derby	5301.5	6926.5	
VJJC Broken Hill	4056.5	6921.5	
VJD Alice Springs	5371.5	6951.5	
VJI Mount Isa	5111.5	6966.5	
VJJ Charleville	4046.5	6846.5	
VJJ Cairns	5866.5	7466.5	
VJO Kalgoorlie	5361.5	6826.5	
VJT Carnarvon	4046.5	6891.5	
VKF WVndham	5301.5	6946.5	
VKJ Meekatharra	5261.5	6881.5	
VKL Port Hedland	4031.5	6961.5	
VNZ Port Augusta	5146.5	6891.5	
OTC			
VIE Esperance	3394.5	6771.5	
VIH Hobart	5356.5		

Utility Dxing

Department of Commerce
 NATIONAL BUREAU OF STANDARDS
 RADIO STATION WWVH

KAUAI, HAWAII

```
2.5 MHz-21\mp@subsup{1}{}{\circ}5\mp@subsup{9}{}{\circ}3\mp@subsup{1}{}{\prime\prime}\textrm{N},15\mp@subsup{9}{}{\circ}4\mp@subsup{6}{}{\prime}0\mp@subsup{4}{}{\prime\prime}\textrm{W}
5.0 MHz-21\mp@subsup{1}{}{\circ}5\mp@subsup{9}{}{\prime}2\mp@subsup{1}{}{\prime\prime}\textrm{N},15\mp@subsup{9}{}{\circ}4\mp@subsup{5}{}{\prime}5\mp@subsup{6}{}{\prime\prime}\textrm{W}\quad15.0\textrm{MHz}-2\mp@subsup{1}{}{\circ}5\mp@subsup{9}{}{\prime}2\mp@subsup{6}{}{\prime\prime}\textrm{N},15\mp@subsup{9}{}{\circ}4\mp@subsup{6}{}{\prime}0\mp@subsup{0}{}{\prime\prime}\textrm{W}
20.0 MHz-21' 59' 24'" N, 159 4 45' 58'' W
```

This is to confirm your reception report of WWVH
on $\quad 5 \& 10 \quad \mathrm{MHz}$.
Serial \# 39

Complete description of Services af NBS Radia Stotions given in Special Publicotion 236 Available from Government Printing Office-25c

VIN Geraldton	4441.5
VIO Broome	4981.5
VIR Rockhampton	5766.5
VIT Townsville	5021.5

TELECOM AUSTRALIA

VJY Darwin
6841.56976 .5

Another familiar signal is the "feeder" program beamed by international broadcasters such as the BBC and VOA to distant stations for subsequent relay to the intended audience. Radio Australia
has such a service to its Carnarvon station for retransmission to Asian listeners, and has during recent times been monitored on 6865, 9210, 9450, 12190, 12290, 15870, 16220, 18215 and 18760 kHz .

Aeronautical Stations

Of all the bands reserved for aeronautical communications you will find the most active are the 5,6 and 8 MHz bands, so this is where to start listening if you want to hear the ground-airground transmissions of airports and air-
craft in flight. The full complement of HF frequency bands allocated to this service are:

$2850-3025$	$3400-3500$
$5480-5730$	$6525-6765$
$8815-9040$	$10005-10100$
$11175-11400$	$13200-13360$
$15010-15100$	$17900-18060$

You will not hear, any landings or takeoffs because these communications are conducted in the VHF range; however you will be able to pick up domestic and international aircraft when they are flying enroute between destinations. Domestic aircraft use frequencies assigned to their area of operations as follows:

$$
\begin{aligned}
& \text { Northeastern area (QLD) } \\
& 3460653365758896 \\
& \text { Southeastern area (NSW, VIC) } \\
& 3008549865758938 \\
& \text { Western area (NT, SA, WA) } \\
& 3418 \quad 6610 \quad 89528938
\end{aligned}
$$

In addition, airports close to boundaries are equipped with adjacent area frequencies, and may also be heard working each other for liaison purposes. International flights use route frequencies, and on a single channel you can hear stations thousands of miles apart working the one aircraft.

Aircraft arriving at Sydney from the Pacific can be heard on 2945,5638 , and 8847. These frequencies are also held by Auckland, Nandi and Honolulu. Darwin and Perth arrivals use 2987, 5673 and 8868, as do also Djakarta and Singapore

The Overseas Telecommunications Commission (Australia) has pleasure in confirming your reception of the following transmission:-
SERVICE: SHIP/SHORE ON DEMAND.
CALL SIGN:....VIS9
EMMISSION:...A3h.
TRANSMITTER POWER : . . . 10 KW
AERIAL TYPE: OMNI. DIRECTIONAL

AERIAL BEARING

FREQUENCY: 8757.6 KHz
O.T.C., the Australian national body responsible for telecommunications services between Australia and other countries, and between Australia's external territories and shipping, thanks you for your report on its transmission and conveys best wishes.

for aircraft from or traversing Asia. Indian Ocean flights arriving at Perth use 3481 and 6561; early morning listeners will find these channels are shared with Bombay, Nairobi, Salisbury and Johannesburg.

Domestic aircraft may be recognised by the use of the last three letters of their registration as their callsign. An aircraft with the registration VH-BMD will identify as Bravo Mike Delta. Overseas carriers invariably use flight numbers and a name associated with the airline, such as Qantas 4 and Speedbird 888 (British Airways).

Other aeronautical signals regularly heard are the VOLMET broadcasts by major airports detailing weather conditions at selected landing sites in their immediate area. Transmissions are on a rotating basis with other regional stations in AM. Australia's only VOLMET station at Kingsford Smith Airport identifies as Sydney VOLMET. and transmits on the hour and half-hour on 3432,6680 and 10017 kHz . On the same frequencies at five minute intervals you may also hear Calcutta, Bangkok, Karachi and Singapore. In the Pacific area coverage is provided by Oakland, Tokyo, Hong Kong, Honolulu and Anchorage who broadcast in that order on 2980,5519 and 8913 kHz .

Maritime Stations

These are the coast stations and all ships afloat from the tiny radio-equipped craft in inland waters to liners and huge tankers on the high seas.

The 2 MHz band where $A M$ is used is primarily for the use of vessels in coastal waters, while ships further afield operate on 4 MHz and above where SSB is the only voice communication permitted. The full range of HF maritime frequency bands are:

$$
\begin{array}{rr}
2065-2107 & 2170-2300 \\
4063-4438 & 6200-6525 \\
8195-8815 & 12330-13200 \\
16460-17360 & 22000-22720
\end{array}
$$

Just like the 'fixed' services, maritime stations operate duplex, but here the similarity ends. After contact has been initially established on a common calling frequency, communications are then conducted on a system of 'paired' working frequencies where both are permanently linked together. An exception to this is the 2 MHz band where 2201 kHz is used simplex for all traffic. OTC's coast stations transmit routine broadcasts and traffic for ships from $7.9 \mathrm{am}, 12.2 \mathrm{pm}$ and 4.7 pm local time on the following frequencies:

AUSTRALIAN RADIO DX CLUB

RECEPTION REPORT RFCEISED CHECKED AND VERIFIT IRIQUVVCI 512 khz POH: SOC WOTES D.AT:-... 22-10-67 TMI _0857 isic RI:MARAS TAMBUA advising VIS ofveTS then:RTJA

Common	Coast	Ship		
Calling				
frequency				Station
:---				
Working				
frequency	\quad	Station		
:---				
Working				
frequency				

Ocean forecasts by Oakland and Miami are usually well received, as are also signals from the few coast stations transmitting voice mirrors at Athens, Goteborg, Rome and St. Lys.

Standard Frequency and Time Signal Stations

These stations are perhaps the most well-known of the Utilities to the shortwave listener, and will readily verify correct reports by OSL card. Telecom Australia's VNG station at Lyndhurst may be heard on any two of its 4500 ,

7500 and 12000 kHz transmissions around the clock with voice announcements each quarter hour. The US stations WWV at Fort Collins and WWVH at Kauai broadcast each minute, and their comprehensive program provides information on sunspot activity and propagation conditions.
For further information write to: The Australian Radio DX Club, P.O. Box 227, Box Hill, Victoria 3128.

REFERENCES

Telecom Australia's "Australian Table of Frequency Allocations".
Telecom Australia's "Outpost Radiocommunications Stations". Dept of Air Tpt "En Route Charts". OTC's "Small Ships Service" sheet. Aeronautical Radio Incorporated (ARINC) Route Charts.

Raoul Island
Kermadec Group
South Pacific Ocean Confirming your Reception Report dated 10 th March that this Station, on a frequency of $5225 / 4600 \mathrm{Mhz} \mathrm{k} / \mathrm{cs}$ was working with Station ZLZ 51 at the time stated in your report.

Transmifter Collins

The best speaker kit is a system designed by Electro-Voice that allows you to choose your own level of performance; from a studio monitor to a modest bookshelf system, from a wide selection of woofers, tweeters, mid-range drivers and crossovers.
The Electro-Voice provides detailed plans on how to construct the enclosures designed specifically for the drivers you chose.
Only Electro-Volce gives you all the options. But, then, Electro-Voice is known for their superb quality speakers - not for kits.
To get your component speaker catalogue and construction plans package, just send $\$ 1.00$ to Electro-Voice Australia Pty. Ltd., 174 Taren Point Road, Taren Point, NSW. 2229.

Electro:Voice
a gultar company

ELECTRONIC SUPPLIES
318 Huntingdale Road, Huntingdale, 3166 Cnr of Hume Street Telephone: 543-4826

KENWOOD

KA3700 Amp $\$ 185$
KA5700 Amp $\$ 310$
KR2090 Tuner-Amp .. $\$ 277$
KT5500 Tuner \qquad \$215
KD2000 B/D Turn/T .. $\$ 199$
KD2070 D/D Turn/T .. $\$ 249$
KX530 F/L Deck $\$ 280$
LS-30 SP Boxes $\$ 148$
LS-550 SP Boxes $\$ 237$
LS-660 SP Boxes $\$ 377$
STEREO RACKS FROM $\$ 49$

Complete Hi-FI Range Avallable

Compare Our Component Prices

IN41486c ea.	100uf 16V............12C
1W Zeners 25 c ea	47 f 10 V10c
Pots70c өа	4.7uf 10V...............8c
Leds 18 c ea	10uf 150V............ 18 C
Trimpots........... 25 c ea	2200 f 16V 35
741 IC 40 c ea	Solder Pack...........50c
555 Timers 40c ea	Solderwick $\$ 2.30$
PCB from40c pce	Ferric clor $\$ 2.40$
Multimaters from . \$13.50	IC sockets from 35 c
Hook Up...... 9 c per m	Transformers .best prices
Speaker cable . 18 c per m	
OPEN FRIDAY NIGI	
TILL 9 AND SATUR	
MORNING	welco

${ }_{w}$ I S SODSIG
 COMPUTER BITS

47 Birch Street,
BANKSTOWN. NSW. 2200.
A DIVISION OF AUTOMATION STATHAM PTY. LTD.
(02) 709-4144. Telex AA26770.

Trade Enquiries Welcome.

SUPERB KITS from DENMARK

JOSTYKIT is the largest leading manufacturer of electronic kits in Scandinavia. Almost all the kits from JOSTYKIT can be supplemented with attractive "Module" boxes of Scandinavian design, which will satisfy the damanding customer.
JOSTYKIT's engineers, technicians and educational experts are continuously developing new advanced and reliable electronic kits which can be constructed without any great technical know-how. Even large and intricate projects can be constructed with JOSTYKIT, all kits are supplied with instruction booklets which include a small course on assembling and soldering . a great help for beginners.
The instruction booklets are divided in such a way that the simples t components are assembled first. Every single component, construction and assembly examples are shown on drawings easily understood by everyone. For those with special technical interests each instruction booklet ends up by describing function and diagram. You'll always learn something when you construct a kit from JOSTYKIT. JOSTYKIT's one-year guarantee is an extra safeguard for you.

> I
> RECEIVERS AMPLIFIERS PWR. SUPPLIES TRANSMITTERS

8 Many others !

AT465 3 CIIANNEL LIGHT SHOW
Turn your music into light! Simply connect to the audio output terminals of your amplifier and this quality kit does the rest for you. Have your own DISCO!

Kit AT465
$\$ 64.00$

AT468 4 CHANNEL LIGHT SHOW
Thls superb kit drives 4 lights up to 400 w each from the audio amplifier output.
Kit AT468
$\$ 75.00$
Complete Chassis Kit and Knobs B3265
$\$ 48.00$
AT365 3 CHANNEL LIGHT SIIOW
This quality kit uses microphone Input instead of connection to the audio output of the amplifier. Singing, clapping will all effect the light show! 1500 w max
Kit AT365
$\$ 69.00$
Complete Chassis Kit and Knobs B3265
$\$ 48.00$
IIF 325 -2 QUALITY FM TUNER MODULE
High quality kit with good sensitivity and low distortion. With this kit all coilwinding is already done for you.

Kit HF 325-2
$\$ 79.00$
Stereo decoder Hl:330
$\$ 24.00$

HF310 FM RECEIVER
Popular FM tuner 87.5 - $108 \mathrm{M} / 1 \mathrm{z}$ with 60 dB signal to noise ratio and low harmonic distortlon.

Kit HF310
$\$ 49.00$
Stereo decoder if 310
$\$ 24.00$
HF330 STEREO DECODER
Gives $40-45 \mathrm{~dB}$ channel separation, Just add to a good quality FM receiver.
Kit HF330
$\$ 24.00$
HF65 FM TRANSMITTER 60.148 MHz
Will run 5 w output with heat sink. Ideal for signal testing or for a miniature transmitter which could be received on a standard FM receiver.

Kit HF6S
59.00

NT4IS LAB POWER SUPPLY $0-30 \mathrm{~V}$
I amp well-regulated supply for professional use. Complete with box and transformer.
Kit NT4 15
$\$ 128.00$
AT 347 ELECTRONIC ROULETTE
Roulette Kit with 10 light diodes. It slowly unrolls and stops at a random digit. Complete with box and attractive panel display
Kit AT347 . $\$ 54.00$

HF6I MEDIUM WAVE RECEIVER
$540-1600 \mathrm{KH}$ receiver complete with ferrite coil antenna
Kit IIF61
$\$ 19.00$
AF 300 AUDIO AMPLIFIER - 3 WATTS
A real work-horse, this universal power amp. has a wide range of applications such as car radio, record players and small receivers. Due to its well designed electronic circuit the AF 300 can be used over wide voltage ranges without deterioration of the specification parameters.

Kil AF 300
AF340 40 WATT AUDIO AMPLIFIER MODULE
High quality $20-20,000 \mathrm{~Hz}, 37 \mathrm{w}$ RMS with low distortion.

HF395 RF: PREAMPLIFIER
Gain 30 dB to $20 \mathrm{MHz}, 10 \mathrm{~dB}$ to 100 MHz and 5 dB to 225 MHz . Ideal to boost reception on short-wave receivers.
Kit Hi:395
HF385 VHF/UHF ANTENNA PREAMP
Superb quality with two aerial inputs and one down lead which simultaneously sup. plied current from the power supply. l'req. range $40-250 \mathrm{MHz}$ and $400-820 \mathrm{MHz}$ gain $9-18 \mathrm{~dB}$ depending on frequency

Kı 385
Box B850
$\$ 30.00$
Box 8850
$\$ 6.00$
NT 300 LABORATORY POWER SUPPLY $2-30 \mathrm{~V}$
High quality supply, regulated $2-30 \mathrm{~V}$ de at 2 amps with overload protection. Complete with box and transformer
Kit NT300
$\$ 110.00$
III:305 AMATEUR BAND 2 m CONVERTER
Converts 2 mFM down to the FM band $88-108 \mathrm{MHz}$
Kit iffen
$\$ 28.00$
Optional Squelch Unit
$\$ 25.00$

AT320 ALL ROUND AC/DC REGULATOR

This kit is a control unit with almost incredible possibilties. Use it as a touch control, burgler alarm, timer, heat/cold regulation. Power supply is built in.

Kit 320
 high quality

STATE OF THE ART TECHNOLOGY

Plus	these beginners kits	
JK01	GENERAL PURPOSEAMP 0.5w	\$18.00
JK02	MICROPIIONE AMPLIFIER	\$19.00
JK03	SINE WAVE GLENERATOR $\mathbf{2 0 - 2 0 0 0 0 ~} \mathbf{~ I z}$	\$30.00
JK04	FM TUNER 88.108 MHz	\$30.00
JK05	27 MHz RECEIVER	\$33.00
JK06	27 MHz TRANSMITTER	\$29.00
JK07	DUAL TONE DECODER FOR R/C MODELS	\$43.00
JK08	240vac LIGHT OPERATED RELAY	\$20.00
JK09	SIREN KIT incl. SPEAKER	\$19.00
JK10	PHOTOGRAPHIC TIMER 240vac	\$23.00
JK101	BURGLAR ALARM KIT	\$55.00

MAIL ORDERS enclose $\$ 1$ 10 W VICOM

68 EASTERN RD, SOUTH MELBOURNE, VIC. 3205. PH (03) 699.6700

© $\mathrm{F}=\mathrm{NWOOD}$ GMDTEUR COMMUNILDTIOLS EqUIPMEII

THE KENWOOD TS-820

The Trio-Kenwood Corporation has developed another professional type SSB transceiver, the TS-820, backed by our many years of successful experience and know-how, as well as the most advanced electronic technology. This newly developed transceiver is designed to cover a wide range of frequencies, from 1.8 to 29.7 MHz , providing the upmost in performance. It features an accurate dial comparable with a frequency counter and provides trouble-free, easy operation.

WHENEVER YOU WANT TO MOVE UP - KENWOOD HAS THE WAY

TL-922 HF LINEAR AMPLIFIER 160-10 METER 2kW PEP INPUT

Your nearest Kenwood dealer will be happy to give you more information on the entire Kenwood range of amateur communications equipment. Contact him direct or write to us at:-

Kenwood's TS120V Surprises Dealers

At a recent dealer release conducted by Melbourne firm Vicom, the gathering was amazed by the superb technical performance of the TS 120 V . Many of those present were technically well. qualified to give the transceiver a critical appraisal. Biggest surprise was the rig's performance in the sensitivity and selectivity areas.

The transceiver was still able to 'hear' a signal generator at $0.075 \mu \mathrm{~V}$ (about -130 dBm) across all bands 3.5 to 30 MHz ! Coupled with this a 7 mV signal 4 kHz off frequency could not be heard on the receive frequency - that's a rejection ratio of almost 100 dB !

From the enthusiasm shown by the dealers, the TSI 20 V looks set to become a real winner.

Technical Standards for Amateur Equipment

The Australian Government, through the Postal and Telecommunications Department, is considering introducing a minimum standard for spurious and harmonic radiations for amateur radio equipment.

The standard is included in a draft Amateur Radio Handbook which has been distributed to the Wireless Institute of Australia for comment. The proposed specification calls for out-of-band radiations to be at least 45 dB down from the fundamental radiation for both commercial and home-constructed equipment.

Melbourne amateur equipment importer/dealers, have made a submission to the Postal and Telecommunications Department suggesting that the standard should be set at -40 dB otherwise "Australian amateurs will be deprived of any commercial equipment"

Vicom, whilst agreeing in principle with the establishment of standards, urged P \& T to base their specifications for high frequency equipment on the American Fee standard, when this is implemented. A spokesman for Vicom said that "Practically all ham equip. ment is specifically designed for the USA market and manufacturers would
probably not bother with the smaller Australian market if unreasonable parameters were set.
"The 45 dB standard is even tougher than some P \& T commercial specifications such as the Flying Doctor and maritime services."

However, Vicom felt that manufacturers and importers had a responsibility to ensure that their equipment met the manufacturer's specification which generally was 40 dB .

Looking at the major transceivers available on the Australian amateur market, the manufacturer's specifications indicate that none would meet the proposed P \& T standard. Have a look at this list:

	Spurious	Harmonics
TS120V	-40 dB	-
TS520S	-40 dB	-
TS820S	-60 dB	-40 dB
FT101E	-40 dB	-
FT301	-40 dB	-
FT901DM	-40 dB	-
FT-7	-40 dB	-
ATLAS210/215	-40 dB	-
IC701	-60 dB	-40 dB

Now, m甲st manufacturer's specifications do preface their figures with "better than" or "less than", indicating that figures quoted in the specification are minimum with some margin for parameter spread. In the light of this, a specification of -45 dB for spurious emissions (including harmonics) may not really be all that draconian. However, looking at figures obtained from tests conducted for ETI, on some popular amateur transceivers, many would easily meet the proposed specifications . . but others would not. For example, the same FT-7 transceiver submitted for review measured 52 dB down on the second harmonic while the FT901DM tested measured only -42 dB on the first harmonic.

It seems not unreasonable then, that when setting a specification in this area, some four to six dB of margin should be allowed.

Is the proposed -45 dB specification on spurious emissions too drastic?

Perhaps a range of tests and some debate on the issue would spread considerable light on the question and any possible answer.
(Note: The Drake TR-7 specification for harmonic emissions quotes "better than 45 dB down" and would appear to be the only current transceiver to meet the proposed spec. However, it is not 'generally available' in Australia at present).

WIA Auction

The Auction Sale conducted for the Institute by the NSW Division on Saturday 28th October was very successful both in terms of the value of goods for sale and the money raised. Despite the poor weather conditions an estimated 600 plus attended.

All the items for the auction had been donated by the Dick Smith Group. Items included a wide range of shop soiled lines, samples etc, all of which were sold on the day.
$\$ 3500$ was raised and goes to the Institute to be used nationally in assisting the education of future members of the Amateur Radio Service.

Tim, VK2ZTM thanks the many helpers who assisted on the day and also Terry, VK2TQ. an excellent Auctioneer.

Geelong Radio and Electronics Society

The Geelong Radio and Electronics Society, VK3ANR, has recently been livened up by the formation of two groups, an RF group and an AF group. The Society has ordered a scope, a signal generator, a GDO and some general tools for the use of members.

A printed circuit board workshop is now operating using presensitised board and excellent results are being achieved. AOCP, LAOCP and NAOCP classes are held free of charge to members on Mondays at 7.30 pm and Syllabus meetings are held on Thrusdays at 8.00 pm . Visitors are welcome at the Rooms on the Breakwater Road, Belmont Common, Geelong.

All correspondence should be addressed to Geelong Radio and Electronics Society, PO Box 962, Geelong, 3220.

$S 100$ static Ram and PORT BOARD

S100 STATIC RAM BOARD

16K, 2114's, 450 ns , low power, 4K block addressing, bank select, 4 K block mem. write protect, plated thru holes, solder mask, wait states, Australian made. LOW POWER 16K BOARD, 1.2 AMPS TYP. KIT PRICE, 16K \$346; 8K \$228; 4K \$172. 2114's 450 ns low power 1-15 \$9.00; 16 up P.O.A. 2708's 1-8 \$14.00

S100 I/O PORT BOARD

- 9 Programmable parallel ports (8255) - 1 Programmable serial port (8251) selectable as 20 mA current loop for TTY, RS232 or 5V - Xtal controlled baud rate generator from 75 to 9600 baud . Baud rate switch selected - Fully decoded addressing for ports via Dil switches \bullet Sockets supplied for main chips (5) 3×36 way and 1 $X 10$ way fiat cable sockets - Plated throughholes with solder resist mask - Fibreglass board with gold plated edge connector - Fully buffered with LS chips - Australian made. KIT PRICE $\$ 164$

S100 2708 16K PROM BOARD
Switched 8 K boundries, 1-4 walt cycles, low power schottky chips, sockets on all 2708's, plated thru holes, solder mask. ASSEMBLED \& TESTED \$99.50.

COMPUTER MAIN FRAME: $\$ 100$ or $6800, \$ 166$.

- 11 slot backplane with ground plane, fully card guided - Rack mount or bench top mount o 8 V at 10 AMP plus 16 V and -16 V at 1 AMP power supply, requires regulators for use with 6800 - Anodised alum. (black) with all holes punched $\begin{gathered}\text { Muffin fan and }\end{gathered}$ key operated power switch $17^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep $\times 10^{\prime \prime}$ high S100 8" High o Will suit 6800 D2 kit in 6800 version • Basic frame kit - 5 sockets backplane, all metal work, all card guides Power supply kit - transformer, 1-68,000 MFD \& 2-8000 MFD cap 3bridge rect. etc, All to sult holes punched Accessory kit - fan, key switch, cable, lugs, nuts and screws, grommets.
BASIC FRAME KIT: Rack mount \$166, Bench top mount $\$ 187$ POWER SUPPLY KIT — \$79, ACCESSORY KIT \$46.00. Delivery is F.O.B. IPEC overnight transport
- S100 Wire Wrap with 81LS95 buffer patterns, F/glass board: $\$ 24.50$ - S 100 Extender Board with socket \& labled test points: $\$ 24.50$ - S100 Mother Board, 8 slot, double sided, 7 " $\times 7$ ":
$\$ 24.50$ - S100 Mother Board, 11 slot, $8^{\prime \prime} \times 12^{\prime \prime}$, Double sided: $\$ 36.00$ - S100 sockets, Gold plated w/w: $\$ 8.50$ Number Cruncher Kit uses MM57109 data and software: $\$ 56.00$ - Front Panel Display, address and data bus In hex and binary status leds, 2 port displays, $10^{\prime \prime} \times 8$ ": $\$ 95.00 \bullet$ Paper tape reader kit, 6800 , 80680,2650 , software, 1 only: $\$ 69.50$.
S.M. ELECTRONICS

10 Stafford Crt., Doncaster East, Victoria. 3109.
Box 19, Doncaster East. 3109. Ph (03) 842-3950.
Bullt and tested prices on application.
P \& P \$3.00 Add 15 percent S.T. If applicable

Electronics Today International

4600 and 3600

SYNTHESIZERS

Complete plans for the Electronics Today International 4600 Synthesizer are now available in book form. Many hundreds of these remarkable synthesizers have been built since the series of construction articles started in the October 1973 issue of Electronics Today.
Now the articles have been re-printed in a completely corrected and up-dated form.
The International Synthesizers have gained a reputation as being the most flexible and versatile of electronics instruments available.
They have been built by recording studios, professional musicians, university music departments and as hobby projects.
This book is available now as a limited edition of 2000 copies only.

Send \$12.50 to Electronics Today International, 15 Boundary Street, Rushcutters Bay,2011.

SWL News

All times are in Greenwich Mean Time (GMT), add 11 hours for Australian Eastern Summer Time. All frequencies are given in kiloHertz (kHz).

Broadcasters Switch to 11 Metres

The increasing sunspot count during 1978 has resulted in 2 number of international stations deciding to introduce new frequencies in the littleused 11 metre band. The present sunspot cycle is expected to peak during 1980, when high frequency reception should be at its best.
For the " D ". 78 transmission period which will be in force until March, the Voice of America has introduced three frequencies on 11 metres. 25990 is used by VOA from Delano for broadcasts in English to the Far East each day between 2200 and 0100. 26095 carries English programmes for Oceania between 2200 and 0000 , via a transmitter at Dixon, California.
The third outlet is 26040 , used for English to Africa 1600-2000 daily from Greenville, North Carolina. This frequency may also be used for broadcasts from the United Nations during these hours, for relay of General Assembly or Security Council proceedings.

Radio France International is another station returning to 11 metres as the ionosphere feels the effects of increasing sunspot activity. Recently, Paris added 25620 which is currently audible between 1100 and sign-off at 1400 , carrying the French program.
The Israel Broadcasting Authority at Jerusalem also uses 11 metres, with the English service 1200-1230 followed by French until 1300 on 25605.

Radio Liberty has been one of the few stations to use the 11 metre band consistently in the last year, and programs in Russian via a 10 kilowatt transmitter located at Gloria in Portugal continue to be aired from sign-on at 0800, the frequency being 25690.

There is no doubt that more international broadcasters will switch to the 11 metre band in the near future. This may be seen in March, as the - northern hemisphere winter season approaches and the sunspot count continues to rise, further enhancing conditions for high frequency broadcasting.

Canada Introduces New Service

The winter schedule of Radio Canada International shows a new service to Europe in English, Monday to Friday between 2200 and 2300 . The new segment is called "The World at Six As It Happens" (as it is timed for six o'clock in the evening in Montreal) and is listed for transmission on 11855,9575 , and 5995.

Compiled by Peter Bunn, on behalf of the Australian Radio DX Club (ARDXC).

Other RCI transmissions to Europe include English programs 2000-2030 daily on $17820,15325,11945,11905$ and 5995. The English service to the Middle East is broadcast 0615-0630, and again from 0645-0700 Monday to Friday on 17860 and 15265.

A highlight of Radio Canada International programs is DX Digest, heard every Sunday, in two editions. The African service features DX Digest in the service 1800-1830 on 17760 and 15260.

DX Digest edition 1 is included in the European service at 1900-1930 each Sunday with the second edition heard in the $2000-2030$ program block. Featured every week is Glenn Hauser's DX News Report, and other regular features on DX Digest are the technical nailbag, presenting interviews and items on communications. DX Digest also includes a monthly report on the activities of the Handicapped Aid Program (HAP), a volunteer organization devoted to introducing the hobby of shortwave listening to handicapped people, and giving them any assistance needed to carry on the hobby.

Malta

Malta Calling, the program presented by Maltese Radio over the shortwave relay station at Cyclops, has returned to 5980 after briefly using 6010 for weekly programs in both English and German. The English program is broadcast each Saturday 2045-2115, with the German program aired at the same time on Tuesdays.

Italy

Radio-televisione Italiana (RAI) currently broadcasts daily in English for Japan 2200-2225, using 11905, 9710 and 5990. Evening broadcasts in Italian for Australia may be heard 0830-0930 on $21690,17780,15340$, 11810 and 9580 . The morning program for Australian listeners is on the air 2050-2130 in Italian on 11800, 9575 and 7290.

Sweden

Relays of the Radio Sweden home service programs on single sideband (SSB) via a transmitter at Varberg continue during period "D"-"78. The programs, all in Swedish, may be heard on LSB (lower sideband) as follows:

0500-0830 on 17777.5 ;
0930-1600 on 21557.5 ;
1600-1800 on 17787.5;
$1800-2000$ on 15192.5
and from $2000-2130$ on 11952.5
Correct reception reports of these broadcasts will earn the listener a special verification card. Reports are wanted by the Swedish Telecommunications Administration (STA), S-123, 86 Farsta, Sweden.

[^1]
TELEVISION REPLACEMENTS
 NEW YEAR SPECIALS

REAR 139 UNION ROAD, SURREY HILLS, VIC. 3127. PHONE: 89-1019.
Prices include sales tax.
Please allow for frelght.

ONLY $\mathbf{5 3 . 7 2}$
TVR 1
An atractive, versarile, moulded case which is suttable for housing a wide range of electronic equipment, eg: © POWER SUPPLIES • SIGNAL GENERATORS - DIGITAL CLOCKS - AMPLIFIERS • TUNERS otc. Overall dimenslons: $5 \%^{\prime \prime} \times 51 /{ }^{\prime \prime} \times 2 \%$

SCOPE 240V 60 WATT IRON
Automatic temperature controlled, change temp-
erature without changing tips. Try it now!

ONLY
$\$ 29.95$

Whith free matching ZB5O Blob Board and leaflet describing. 9 circutts.

Build your projects on thls remarkable, resusable Breadboard, it you wish to make them permanent, transfor them to the matching Blob Board.
$\$ 8.12$

HAMS, see the TM 13 Amateur UHF Beam Antenna Basic specifications, olectrical:
Nominal Impedance 50 ohms
ONLY \$28.75
Power Handling Cap........... 5 Watts Input TerminationCo-Axial
V.S.W.R................ess than 1.3:1

Bandwidth 10 percent Forward Gain.... 115 do (Ret. Oipole)
Mochantcal:
Rugged, but lightweight aluminium construction, elipsoidal boom shape combines strength with accurate element alignment, point of gravity mounting for optimum use with masthead rotator.

Non Linear Systems Mini Oscilloscope \$379.50

GENERAL ELECTRONIC SERVICES PTY. LTD.
99 Alexander Street, Crows Nest, NSW. 2065.
Phone: 439-2488, 439-2399. Cables: SERVO SYDNEY
Telex: 25486 AB SERVO.

Brisbane: 277-4311
Melbourne: 598-9207, 598-5622.
Newcastle: 69-1625.
Perth: 325-5722.

	c,	LEDS: $\$ 12$ a 100 , $\$ 110$ a 1000 or 17 c each, 10 for $\$ 1.50$. LEDS superb 5 mm red well difused wide viewing angte.Qually mtg. clips 5 c ea. $\$ 4$ a 100 .	
	$\begin{aligned} & \text { ELECTROCAPS } \\ & \text { (LPRTIGHTY) } \\ & \text { (Der } 100 \text { prices in brackets) } \end{aligned}$		
		Potentiometers: $\mathbf{3 8 \mathrm { c }}$ ead rotary carb IInear $500 \mathrm{Ohm}^{12 \mathrm{~K},} 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}$, shafts) Log:'soc ea except no 500 Ohm . or 2 M Trimpots: 15 c ea 100 Ohm to 2 M	
		RENER DIODES: ${ }^{15 \mathrm{l}}$ - each $400 \mathrm{~mW} 5 \%$ E24 Values 3 V 8033 V	
		for special lists (eg. $\$ 26$ a 1,00 pots plus tax if appilc.)	
DS \$12/100	2c RESISTORS - our 2 year old price still current. Opposition hoped we would go broke but our price remains at 2 Ce ea. Onm to 10 M 46 W 5\% E12 carb. 	Koep electronics a hobby and not a luxury, compara our prices and buy from us. Same day turnaround service funless swamped). All goods top quallty and now. So minimum order. One P/P charge of 45 e regardless of quallity. Advert current 3 months for late readers.	
P.O. BOX 33, CORAMBA NSW. 2466.			

New UHF Antenna

Melbourne firm, KT Electronics, are marketing a locally-made UHF CB antenna. Designated the KT 500, it is described as a gain antenna and provides omnidirectional radiation, vertically polarised. It requires no tuning and has a low SWR across the whole 40 UHF channels.

The antenna may be mounted as a base or mobile antenna and comes complete with 15 metres of high quality RG8 coax cable. A spécial Belling-Lee compatible connector is provided on the end of the coax to suit the Philips FM320 antenna connector.

For further information, contact KT Electronics, 16 Railway Cr., Broadmeadows, Vic., phone (03) 309-4549. Trade enquiries welcome.

JD Frequency Monitor

One of the handiest things for an enthusiast or a technician to have around the shack or workshop is a digital frequency meter. The JD-5050 is an economically-priced, high performance digital frequency counter that will measure frequencies between 10 kHz and 50 MHz . It has good sensitivity as it will measure signals as low as 100 mW in a coaxial line, yet will stand up to 50 W of RF power.

The meter is designed to operate in the 'through-line' mode, connected in a coaxial transmission line, but may also be used in the usual fashion and a coax lead with clip connectors is provided for this purpose.

The JD-5050 features a five-digit LED display and is powered from a nominal 12 Vdc source ($8-14 \mathrm{~V}$ range). Power consumption is a mere 250 mA .

The JD-5050 frequency monitor is imported and marketed in Australia by IFTA, 1 Greville Street, Randwick (P.O. Box 21 Bondi Beach 2026); phone (02) 665-8211.

Heavy Duty Power Supply

The Transwest heavy duty power supply is distributed by IFTA in most states and is intended for applications involving mains operation of any dcoperated equipment requiring a nominal 13.8 V dc supply - CB rigs, cassette recorders etc.

The supply has a fully-regulated output at 13.8 volts and is rated to deliver 4 amps at 50 percent duty cycle, 7 amps on peaks. It is electricity authority approved (approval number W/2014) and has dc output terminals located on the rear panel. This is convenient when using a mobile rig as a base station as their dc power leads
are always led out from the rear. Having the de power leads run behind the equipment helps maintain a tidy installation.

For further information, there is a review in the December issue of CB Australia. You could also contact IFTA at 1 Greville Street, Randwick, NSW 2031; phone (02) 665-8211 or through PO Box 21 Bondi Beach 2026.

Turner Mic

Turner's M $+2 / \mathrm{U}$ mobile mic features a preamp with a gain of 15 dB , adjustable, powered by a 7 -volt mercury battery. Housed in an attractive blue and grey

Cycolac plastic case, this rugged mic comes complete with a matching blue curly-cord

The $\mathrm{M}+2 / \mathrm{U}$ is designed to deliver stable performance in high temperature and humidity situations. The mic cartridge is a ceramic type and the unit provides a frequency response of 300 to 3000 Hz covering the voice frequency range. Battery drain of the preamp is just under 1 mA and battery life expected is around six months.

For further information on the $\mathrm{M}+2 / \mathrm{U}$, contact the John Barry Group, 105 Reserve Rd, Artarmon, NSW 2064 phone (02) 439-6955 or through PO Box 199, Artarmon 2064.

Top: The JD frequency meter.
Right: Transwest's 7 A power supply.
Bottom: The omnidirectional vertically polarised UHF antenna from KT Elctronics.

DICK WOODS ELECTRONICS
 77 EDGEWORTH DAVID AVENUE, HORNSBY, NSW. 2077. Ph 487-3111.

DIGITAL MULTIMETERS
SOAR ME-523
illustrated

SOAR ME-522
109.00 SOAR ME-523 FLUKE 8020A.

'APEM' Minl Toggle Switches	
SINGLE POLE	OFF-ON .. 0.90
	ON-ON
	ON-OFF-ON 1.05
	MOM-OFF-MOM ……...................1.35
	OFF-ON
	ON-ON .-................................... 1.30

1C Sockers, 8 to 40 pin from 1c Sockets. wire wrap from. 12 way, 2 screw connectors. Resistors. Y/W, 1 ohm to 15 megohm $5 \mathrm{~W}, 0.47 \mathrm{ohm}$ to 10 ohm . Capacitors, Electroyytic axial from Electrolytice PCB from
Tag Tantalum.
${ }^{8}$ Bitpolars 2.2 io 10 Mmo Coramle dise from

0.80
0.70

\square | 0.45 |
| :--- |
| 0.18 | $\begin{array}{r}1.0 .18 \\ +.0 .40 \\ \hline 0.18\end{array}$ 0.45

0.18

PLESSEY-FOSTER

 LOUDSPEAKERSCome and inspect the complete range.

ALL PRICES INCLUDE TAX - P \& P EXTRA
When it comes to electronics, come to

CUSTOMERS PLEASE NOTE!

DICK WOODS ELECTRONICS IS NOW OWNED AND OPERATED BY . . .

DWELL PTY. LTD.
Retail/Wholesale Electronics

AUDIO ENGINEERING \& PRODUCTION

SCHOOL OF BASIC ELECTRONICS

FANTASTIC OFFER!!!

THE LATEST TECHNOLOGY 100 STEP PROGRAMMABLE SCIENTIFIC CALCULATOR

WHILE STOCKS LAST

AUSTRALIA'S HOTTEST SELLING DIGITAL PRODUCTS
14 Freight Road, Tullamarine.
Melbourne. 3043. PH: 03-338-7223

Please send me my model 2000
Programmable Calculator.

Name \qquad
Address

Postcode

I enclose $\$ 29.95$ plus $\$ 2.00$ post and handling

The Ionospheric Prediction Service have kindly developed propagation predictions for us, in the form of a computer printout, which we can reproduce directly. These predictions are known as GRAFEX and contain a lot more information than those we published previously.

The left hand vertical column of each printout lists the frequency, in MHz , for each horizontal row of characters. Each vertical column of characters represents one hour, commencing at 00 UT on the left-most column going to 23 UT on the extreme right column.

Each printout is for a particular path, named at the bottom. The month to which the predictions apply, the mean path distance and the great circle bear-
ing are also listed beneath each printout.

A variety of up to ten characters may appear on the printout and their meanings are listed in the table reproduced here.

The form of the GRAFEX predictions allows the indication of several 'modes' of propagation. The first mode is that requiring the least number of 'hops'. This will mean two hops on paths of length 4000 to 6000 km or so, three hops on paths around 7000 to 10,000 km in length, and so on. The second mode for a path will be the next integral number of hops that may be required to propagate a signal over the path.

Thus, the second mode for paths A blank means no propagation is possible by a normal first or second mode.
. A dot Indicates that propagation is possible but probably on less than 50\% of the days of the month. This normally applies for the first F mode but under some circumstances the first mode may not be propagated because the layer is too low (usually for hops greater than 3000 kilometres) in which case the symbol applies to the second mode.

- \% Propagation is possible between 50% and 90% of the days of the month. It should be noted that the median F MUF for each hour lies between the lowest ' . ' and the highest - \%' for that hour.
'F' Propagation is possible by the first F mode on at least 90% of the days of the month unless there is a severe ionospheric disturbance. For frequencies on the highest ' F ' for the hour the probability is 90% but this will increase slightly on lower frequencies.
' E ' Propagation is possible by the first E mode and on less than 50% of days by the first F mode. This symbol overrides '. "if present.
"p' Propagation is possible by the first E mode and between 50\% and 90\% of days by the first F modes. This symbol overrides ' $\%$ '.
' \mathbf{B} ' Propagation is possible by the first \mathbf{E} mode and by the first F mode on more than 90% of the days. This symbol overrides ' F '.
$\mathrm{M}^{\text {e }} \quad$ Propagation is possible by both the first and second F modes. The strongest mode is normally the first mode but the vertical aerial pattern may influence the mode received. It should be noted that the second F mode MUF is just about the highest frequency showing ' M '.
'S' Propagation is not possible by the first mode but it is possible by the second mode. It should be remembered that propagation may be possible by other modes, e.g.: the thind F or mixed E and F modes at these frequencies. This symbol does not occur very often.
' A ' High absorption i.e.: above the ALF but probably too close to it for good communication.
' X ' Complex mixture of modes including the second E mode (the vertical angles of the first F and the second E modes are often very close).

East Coast - South
Africa (also serves South Central)

East Coast - North Africa (also serves South Central)

East Coast - South
America (also serves
South Central)

East Coast - North
America (also NE and South Central)

WHERE IN MELBOURNE DO YOU PAY MUCH LESS FOR YOUR COMPONENTS

NOW AVAILABLE EX STOCK:

The new SINCLAIR DM 235 Digital Multimeter.

Large $31 / 2$ diglt display reading to plus/minus 1999. Six functions in 26 ranges. DC volts, 1 mV to 1000 V , AC volts, 1 mV to 750 V . DC current, 1uA to 1A. AC current, 1uA to 1A Resistance, 1 ohm to 20 M ohms. Diode test, 0.14 A to 1 mA . Impedance, 10 M ohms. 12 month guarantee. P\&P \$2.

only $\$ 145$ inct lax. (5132 axe exempl)

Also available; The ideal pocket size digital multimeter, the SINCLAIR PDM 35 , for only
$\$ 61.50$ incl. tax
(556 tax exempt) P\&P $\$ 2$.
We also stock Soar, Sanwa and Arlec multimeters and Trio oscilloscopes, signal generators, etc.

- Phillips AD12 K 12 TK 3 way $12^{\prime \prime} 40$ watt speaker kits, complete, $\$ 279.50$ pr inc tax.
- Phillips AD 8 K 403 way $8^{\prime \prime} 40$ watt speaker kits, complete, $\$ 195$ pr inc tax.
- Philips AD 8K 302 way 8 " 30 watt speaker kits, complete, $\$ 137.50$ pr inc tax.
- Phillips ADO 160 T8 stereo tweeter kits incl crossover caps, \$26.75 pr inc tax.
- Large range of Philips, Plessey-Foster and CTS speakers In stock.
- Phillps EUY-10E 023LE Tape Printers, $\$ 75$ ea inc tax.
- South West Tech Keyboard kits, $\$ 85$ ea inc tax.
- Micro Honeywell Hall Effect Keyboards, \$120 ea inc tax.
- Daneva Keyboards (63 keys) $\$ 45$ ea inc tax.

WE NOW STOCK a huge range of semiconductors (incl micro chips) by all leading manufacturers at most competitive prices. Also a full range of capacitors, resistors, plugs, sockets, cables, connectors, instrument cases, transformers, Vero and Blob board, Continental breadboard, ETI and EA project boards, Chart Pak, potentiometers, in fact, just about everything electronic at Melbourne's leading electronic centre.

Make sure you visit our 'BARGAIN BAR' where you'll find:

- Transformers from 20c ea. - Resistors from 1c ea.
- Capacitors from 2c ea. - Pots from 5c ea.
- Dlodes from 3c ea. - Transistors from 5c ea.

Pius lats of other goodies at similar low, low prices.
Send 30 c stamp for cataloque. All components can be supplied tax exempt through our new wholesale divislon, Ellistronics Wholesale P/L. 289 LATROBE ST, MELBOURNE 3000 Phone (03) 602-3282

THE AUSTRALIAN CB BOOK - it's the one Australian CBers havè been waiting for! Compiled by the editor and staff of CB Australia, this book is the most important publication for CBers yet published in this country. We hope you come to regard it as the 'bible' of the Australian CB scene. It is backed by the technical expertise of its sister publication Electronics Today International.

Author, Roger Harrison, is a freelance technical journalist with many years experience in electronics and communications. His highly regarded technical articles have been published world wide in several languages.

Australian CB is written in a language that the ordinary person interested in CB can understand. Its 22 chapters cover virtually every aspect of CB in Australia, from how to read rig specs to how to install antennas to what UHF is all about.

ON SALE NOW AT YOUR NEWSAGENT - $\$ 3.95$

Winimat

send your ad to ETI MiniMart, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

WE'LL PRINT your 24 words (maximum) totally free of charge. Copy must be with us by the 1st of the month preceding the month of issue. Please, please write or preferably type your adverts clearly.

CONDITIONS

Name and address plus phone number (if required) must be included within the 24 words allowed. Reasonable abbreviations, such as 25 Wrms, count as one word.
Private adverts only will be accepted. Please let'us know if you find a commercial enterprise using this service.

Every effort will be made to publish all adverts received - however, no responsibility for so doing is accepted or implied.

Adverts must relate to electronics or audio - general adverts cannot be accepted.

FOR sale: BWO 539 C dual trace 20 MHz oscilloscope, near brand new, plus two probes. Sell \$450. Lawrie Elkin, Ringwood, NSW. Phone: (02) 870-7074 AH.

TEXAS Instruments Programmer for sale. Brand new, unused, perfect working order. Ring (03) 299-1712 and ask for James.

SELL: 4 IBM Selectric Golfball I/O printers. Contact: Accountant, Pipelines Authority of SA, PO Box 53, Glenside, SA 5065, phone: (08) 79-7891.

AUSTRALIAN Radio DX Club, for shortwave and mediumwave DXers. Monthly magazine published. Write for details with 30 cent stamp to - PO Box 67 Highett, Vic 3190 or PO Box 79, Narrabeen, NSW 2101.

TRS -80 computer as new with 16 K of memory, programs, etc. Save $\$ 138$ on Tandy's price, or swap for $4 K$ system with cash adjust. Will trade suitable S 100 boards, R Stein 750-4623 or 799-4151, Belmore.

MOTOROLA MEK6800 D2 kit, assembled, tested and working, including on-board memory expansion and bus buffers, $\$ 285$. Phone: (02) 440-8343 AH.

AUSTRALIAN and overseas tape friends can be found by joining the "Australian Tape Makers Society". Technical advice, Round Robins, Playback journal, etc. For details contact, Secretary, 212 Trafalgar Avenue, Umina Beach, NSW, 2257 (043) 41-2175.

SELL: Keyboard for ETI 4600 Synth, patchboard and pins for above. Used but ok. Write: G J Walker, RD2 Upper Moutere, Nelson, New Zealand.

WANTED owners handbook for HP65 calculator will buy or pay for photocopy. Write to 1 McLeod, 4/43 Currawong St, Ingleburn. phone: (02) 602.8222 business hours.

FOR sale magazines EA '67-77, ETI'71-'77, PE '67.77, Pop.E. '68-74. PW'69-'77. Best offer. Ring (02) 982-4043.

SELL: Realistic DX 160 receiver, 150 kHz 30 MHz . As new, with handbook and original box. \$140, phone: (07) 349-3412.

SELL: 6 m FM MR6A $\$ 30.00,10 \mathrm{~m}$ FM MR6A $\$ 20.00$, IC202 with OSCAR $\$ 155,2 \mathrm{~m}$ 8 ele Hy-Gain Yagi $\$ 25,432 / 144$ converter -XTAL \$10. Dave Burger, Penshurst, 3289.

REGULATED protected P/S 10V/3A \$15. 10V/7.5A $\$ 25,20 \mathrm{~V} / 5 \mathrm{~A} \$ 25,24 \mathrm{~V} / 7.5 \mathrm{~A} \$ 35$. circuit diagrams. P Hadgraft, 17 Paxton St, Holland Park, Qld 4121 (07) 224-2244, AH (07) 397-3751.

SELL: EA Miniscamp $\$ 115$, EA 2650 mini system 1 K ROM 1 K RAM $\$ 125$, both built and working with manufacturers documentation, Philip Butler (03) 93-3927.

TRANSFORMERS: $240 \mathrm{~V} \cdot 24 \mathrm{~V}, 1 \mathrm{kVA}$ in mounting boxes with circuit protaction. Also $240 \mathrm{~V}-110 \mathrm{~V}$ up to 1.5 kVA . All cheap. 827.3778 (preferably morning or late nights).

SOUND Technology 1000A/1100A FM alignment system, broadcast option. Current cost $\$ 3300$. Only 1 hours use. Sell $\$ 2000$. All packaging and instructions complete. Phone: (02) 913-2606.

SC/MP evaluation kit - fully built and tested. Perfect condition, full documentation and software, originally $\$ 85$. Sell for $\$ 69$ ONO. D A Fulcher, 41 Mackenzie St, Homebush, 2140, 76-5369.

TRS-80 users club formation interested parties write address below. Incl details programs for sale or swap. (SAE for reply) VK2BBD. 128 A Booralie Rd, Duffys Forest NSW 2084.

WANTED SC/MP technical description for Miniscamp: New price plus postage paid write E H Plunkett, 7 Hill St, Eugowra, 2806.

PRACTICAL Wireless June 1948 to May 1950 mint condition will sell best offer. Phone: Harry AH (004) 46-1115, PO Box 166, Savage River, Tas.

SELL Realistic SX190 Comm RX $\mathbf{3 . 5 - 2 7} \mathbf{M H z}$ with FM strip $\$ 200$, Shibaden Video recorder inbuile $9^{\prime \prime}$ monitor plus tapes, new heads $\$ 450$, Whitaker, 30 Kingswood Drive, Dingley, Vic 3172, (03) 551-1367.

SELL ACT-1A VDU with RS 232 interface, 6 months old $\$ 400$, ring $A H(02) 4383037$. Wollstonecraft, NSW.

FOR sale. Sanyo half inch videotape 2400 foot high energy. $\$ 12.50$ per reel or ten for \$100. J Floyd, Box 123, Beecroft, NSW 2119.
SELL minicomp based 2650 MPU sockets for CMOS devices expandable see EA Nov manual included \$100, 1 Orchard Street, Toowong. Brisbane, Old.

SELL 16ch Mixer ETI design-modified for edge connectors, Single PCB per ch, Over load PCB. All PCBs built up inc Attenuator switches. 2 spare channels. All pots, switches, LEDs, 16 VU meters Transformer etc, etc. $\$ 600$ Ph (02) 334282 (BUS) Simon Bracken.
WANTED: Fell's Guide - "Operating Short" wave Radio" . C J Vlahos; and other books . How Learn Build Radios, J K Aitken, 78 Minnamurra Road, Gorakan, NSW 2263. phone: (043) 92-1 101.

SELL Technics RSI 500 brand new in box \$1295. Nakamichi 610 Mixer $\$ 650$, Nakamichi 620 amp $\$ 750$. Burwood Victoria 288-8439.

THE Recording Society of Australia meets monthly for demonstrations, life recordings, etc., for further information or syllabus ring or write to Don Patrick, 36 Argyle St, Macleod, Vic 3085. Phone: (03) 459-1717.

SELL: Radiotelephone transceiver (AWASS220) 6-channel 2 -freq simplex $2-15 \mathrm{MHz}$ SSB/AM 100-Watt (PEP) 12 V supply plus accessories tech/info. Suitable fixed mobile or maritime $\$ 450$. Phone: Bob (02) 997-1693.

FOR sale. 43 copies of Radio and Television 1943-1960. Best offer, C Beach (08) 380-7014.

ETI 632 VDU ASCII keyboard. Cassette interface. Baby 2650 plus documentation. Built \& working. $\$ 360$. J Horvath, 83 Winbourne St East, West Ryde (02) $85-4856$ evenings.

WANTED one channel $4+5 \mathrm{~A}$ combined television aerial. Mr James, RD 2, Takapau, Hawkes Bay, New Zealand.
WANTED: Shortwave receiver for many bands, prefer cheaper set needing repair, J K Aitken, 78 Minnamurra Road, Gorokan (Wyong-Toukley) NSW 2263, phone: (043) 92-1101.

POWER supplies: -90 V to +30 V at 1 A , for $\$ 20$. +5 V and -5 V at $50 \mathrm{~A}, \$ 45$. Kris McLean 682-4015, 6/34 The Irongate, Granville, NSW 2142.

HAM Kenwood TS8205 coupler HC500 SWR switch RC Handbook \$990, 93-1459, H Brabin, 4/69 Evans Street, Harbord, NSW.

WANTED HP or Keithley probe type DMM also circuit diagram haltronics 140 A DFM. Peter Harle (02) 602-7179, Liverpool, NSW. PHILIPS amplifier. Balance, treble, bass, volume, pick/up, tape, tuner, record. 30W, 240 V . Excellent condition. \$40 ONO. 32 Davidson Road, Attadale, Perth, WA, phone: (09) 330-3164.

SELL: Nelson-Jones stereo, FM push-button tuner. Factory tuned MKI THD . $4 \%,-50 \mathrm{~dB}$ (Mono), $11 \mu \mathrm{v}$ limiting $0.2 \mu \mathrm{v}$, S80. AH (062) 51-3353, PO Box 915, Canberra City, 2601.
RPN Calculator sell NS 4640 advanced scient/ stat 3 mem .10 Dig +2 Dig exp, LED disp. rechargable (charger + access inc) $\$ 55+p$ \& p -D Ray, 330 Station St. Thornbury 3071 (103) 44.5641.

ECONOMIC DIGITAL CONTROL PTY. LTD. Announce their PRE-OPENING SALE

ECONOMIC DIGITAL CONTROL PTY. LTD.

P.O. BOX 817, CROWS NEST, 2065. NSW

ET(590 Digital Stopwatch

	Tax free	Tax paid
Complete kit.	\$62.00	\$71.55
Hamlin LCD display	\$17.50	\$20.13
4056 decoders.	\$1.80	\$2.07
4060 divider.	. $\$ 1.70$	\$1.96
4518 dual counter	. $\$ 1.70$	\$ 1.96
4011 quad NAND.	\$0.30	\$0.35
4016 analog switch	\$0.80	\$0.92
4027 dual JK FF	. $\$ 1.00$	\$1.15
4093 quad schmitt	. $\$ 0.80$	\$0.92
1.6384 MHz Xtal	\$10.00	\$11.50

Please add $\$ 2.00$ for postage and handling

ETI 588 Light Dimmers

Tax free Tax paid
10 Amp module, kit . . . : $\$ 60.00 \$ 69.00$
10 Amp module, built . . . \$90.00 \$103.00
20 Amp module, kit $\$ 69.00 \$ 79.35$
20 Amp module, built . . . $\$ 99.00$ \$113.85 5 way housing less wiring $\$ 135.00 \$ 155.25$ 10 way control desk, kit . . \$125.00 \$143.75 10 way control desk, built \$185.00 \$212.75 20 way control desk, kit . . $\$ 195.00$ \$224.25 20 way control desk, built. $\$ 275.00$ \$316.25
Please allow 5% for freight unless freight on. Any excess will be refurided.

Ideas for experimenters

Abstract

These pages are intended primarily as a source of ideas. As far as reasonably possible all material has been checked for feasibility, component availability etc, but the circuits have not necessarily been built and tested in our laboratory. Because of the nature of the information in this section we cannot enter into any correspondence about any of the circuits, nor can we produce constructional details. Electronics Today is always seeking material for these pages. All published material is paid for - generally at a rate of $\$ 5$ to $\$ 7$ per item.

Peak Level Indicator

The diagram shows a simple monstable multivibrator with a LED which is normally lit, but will be briefly extinguished if the input exceeds a preset (by RV1) level. A possible application is to monitor the output voltage across a loudspeaker, when the LED will flicker with large signals.

v	5	10	15	20	25	30	35
$R 3 k \Omega$	$5 \cdot 6 k$	$9 \cdot 1 k$	$12 k$	$15 k$	$16 k$	$18 k$	$22 k$

Speaker Power Indicator

This circuit will indicate the peak level of an input signal applied to a speaker. It is primarily intended as a fail safe device when connected to an amplifier of higher power rating than the speaker.

The circuit is unique in that no separate DC power supply is required since the circuitry operates from the input voltage to the speaker.

R5 isolates the amplifier's output stage from possible fault conditions in the circuit. D1 to D4 full wave rectify the input signal and the resulting DC is used to supply the op amp.

The 741 is used as a comparator a reference voltage being obtained from across ZD3 and fed into the inverting input of the op-amp. The non inverting input samples the rectified input signal. When a peak is fed into the circuit the

IC's output goes high and the led flashes ZD1 prevents the LED turning on when the output of IC1 is low due to the output being unable to go less than 1.5 V above earth under these circumstances. ZD2 defines the upper limit of the op amp's supply voltage in the presence of large transients whilst R2 is the current limit resistor. It should be obvious that the level at which the led lights is dependent upon the value of R3. The accompanying table shows the value required for the component for different input powers across an 8 ohm load. If different load values are to be used for the speaker the value of R3 can be determined from the equation,
$R 3=1.4 \sqrt{ } P R-3.3 k \Omega$
$P=$ Pout
$R=$ load in Ω

ELECTRONIC AGENCIES OF
$15 \quad 117$ PaRRAMATTA RD.

CONCORD $2137 \quad 7476472$
are proud to announce a few of their
OPENING SUPER SPECIALS FOR JANUARY
$12^{\prime \prime}$ 3way Phiips Speaker Kit only $\$ 289.00$ Pair AD12K12, consisting of ADI2K12 SK spasker kif \$ 200 pair \& ADI2KI2TK timber kit - $\$ 89$ pair 8" 3 way Philips Speaker Kit only \$ 205.00 pair AD8K30, consisting of ADBK 30 SK speaker kl 个-\$141-45 pair \& A08K 30 TK timber Kit- $863 \cdot 55$ poir Everything is supplied in these speaker kits absolutely nothing extra to buy to complete them. You will need a screwdriver and scissors. Full details of these kits can be supplied NO charge on your request

AD 016078 I" high fidelity Philips tweeter- 813.00 AD 5060/S08 5"high fidelity Philips M/Range \$18.00 ea
AD 8066 /W8 8 " high fidelity 40 w woofer- $\$ 22.00$ AD $12100 / \mathrm{W} 8 \quad 12^{\prime \prime}$ high fidelity 40 W woofer $-\$ 59.00$ ADF $500 / 4500 / 8$ Philips cros sover network -\$50-00 pair
ADF600/4000/8 Philips crossover network -
$\$ 69.00$ (includes leads, fastons and at fenuators) Austenna 8 element TV aerial $406 / 10-826.00$ suitable even in Sydncy fringe areas Austenna Starfire TV aerial CC TFA $-\$ 39.00$ Completely anodised $75 \mathrm{chm} / 300 \mathrm{ohm}$-excellent for colour

Burglar Alarm Module - only- $\$ 16.00$ has N. Qand N.C. circuits - 12 vD.C.

We also sell pressure mats- 814
Covered reeds and magne ts $\mathbf{- 8 1 . 9 0}$ pair
Window tape $-\$ 3-90$ roll
SP key switches $-\$ 4.99$ Ea
Sirens - \$ 22 - 50
Horn speakers - 59.50 ea.
5 sec - 20 min timer - $514-95$

UHF CB Philips FM 320 - This is a once only "SPECIAD" - WG don't have to detail the excellent reports that this set has had - a full 40 CHANNELS. For January only | 8 |
| :---: |
| $249-00$. | Normal selling price $\$ 330.00$ SAVE 881.00

We slock a full range of electronic
parts, hi fi accessories, CB accessories, test equipment etc.
JUST RING or WRITE for a quote Ask for Bill EDGE

ELECTRONIC ACENCIES

$115-117$ PARRAMATTA RD CONCORD
7476472
MAIL ORDER: PO BOX 1005 BURWOOD NTH. 2134
ALL EXPENSIVE AND LARGE ITEMS SENT FREIGMT ON: LESS EXPENSIVE AND SMAILER ITEMS ADD 5\% FOR POSY A PASKING.

ALARMS

Comprehensive Burglar Alarm SCR Alarms
Car Radio Protector
Fire Alarm, Simple

AMPLIFIERS \&

PREAMPLIFIERS
Non-Inverting Amplifier
AC Amplifier
AC Amplifire, Simple
Voltage Follower
Flexible Response
HIZ, Hi Gain Amplifier Voltage Controlled Amplifier Recording Plckup
Direct Coupled Power
CMOS Power Booster
Photocell Amplifiers
12 Volt PA System
Class A Amplifier
Clipper Preamp
Headphone Amplifler Op-Amp Circults, Standard

SIGNAL PROCESSORS

Track and Hold Circuit Track and Hold, Simple ADSR Envelope Shaper
Frequency Doubler
Frequency to Voltage Converter Frequency Meter, A nalogue Digital to Analogue Convertor Schmitt Trigger, Without Hysteresis Schmitt Trigger, Simple Pulse Lengthener, Optical

SIGNAL GENERATORS

Square Wave, Low Frequency
Square Wave Generator Monostable Multivibrator Triangular Waveform Generator Marker Generator Voltage and Frequency Calibrator VCO. Simple
Voltage Controlled Oscllator
Sine Wave Oscillator
Tone Burst Generator
Thermistor Oscillator
Theremin
Exponential Waveform Generator

FILTERS

Loudness Contral
Rumble Filter, Switchable VCF, Cheap
CMOS Filters
Voltage Controlled Filter
Tone Control, Active
Tone Control Circuit

SPECIAL EFFECTS

Organ, Simple
Warbling Alarm

Triac Slave Controller Light Show, Simple DC Lamp intensity Train Speed Control Temperature Controller

POWER SUPPLIES

Current Source, Drift Free Constant Current, High Voltage Output Voltage, Adjustment High Voltage, Variable Regulator Switched Output Dual PSU
Mobile Power Supply
Converting Single to Dual
Op-Amp Supply
Low Ripple PSU
Zener Assistance
Crowbar, Simple
Low Voltage, Short Protection
Low Ripple at Low Current
30 Volt Regulators
Standard Configurations

TEST

FET Testing, Static
Diode Tester
Ammeter, Wide Range
Millivaltmeter, Audio
DC Probe, 100000 Megohm
Measuring RMS with a DVM Logic Indicator, Audible Transformer-Pnductor Tester Puise Catcher Probe
JFET Test, Quick
DIGITAL
Data Selector. Two Way 7 Segment Improvement 3 Chip Die
Hex to 7 Segment
Binary Calculator
TTL Kever
ASCil Keyboard
Counter-Display Module Clock Generator, Multiphase Windicator Self-Clear LED Counter

AUTOMOBILE

Fuel Gauge, Digita
Immobilisation, Automobile

Ideas for experimenters

Brake Fluid Indicator

This circuit indicates by means of a warning light and a buzzer when the fluid in the tank of a braking system is getting low.

Normally both electrodes are immersed in the brake fluid, and the bases of 01 and Q2 are at ground
potential (the fluid makes a connection between the electrodes and the brake cylinder which is connected to the car chassis). If the fluid level should fall, and either of the electrodes becomes dry, Q1 and Q2 will turn on which will turn on Q3 and Q4 and the alarm will be energised.

BCD Tone Generator

When one of the binary codes in the table is set up on the data inputs, a corresponding preset connected to IC1 and 2 will be grounded, and the unijunction will start to oscillate. The frequency of oscillation depending on which output of the ICs is grounded.

If the 18 presets are tuned to form a chromatic scale and the inputs interfaced to your MPU data bus - hey presto you have a simple MPU controlled organ!

for electronic units and all types of mounting...

- Decade Counting Units to 1 Hz .
- Wide Band Amplifier for your counter, 1 MV sensitivity, band width $1-250 \mathrm{MHz}$.

Manufacturers of

PIEZO ELECTRIC CRYSTALS
Contractors to Federal and State
Government Departments.
REPRESENTATIAVES:
NSW: Hose \& Equipment Co. P/L, 11 Salisbury St, Botany. 2019. Ph 666-8144.
SA: Rogers Electronics, 65 Magill Rd, Stepney. 5069.
Ph (08) 42-6666.
QLD: Fred Hoe \& Sons P/L 246 Evans Rd, Salisbury North. Brisbane. Ph 277-4311
WA: Westest Electronics, 71 Jean St, Hamilton Hill. 6161 (Mail only) Ph (09) 337-6393.
TAS: Dilmond Instruments. PO Box 219, Bellerive. Hobart Ph 479-47-9077.

Send SAE for new catalogue or quote for your requirements.

Ideas for experimenters

Temperature Control

This circuit provides full phase proportion control of a heater, infrared lamp etc, uses no expensive transformers for its own power, and is extremely sensitive.

The LM3911 sensor is connected to the circuit via a 3 core cable, and enclosed in a rubber sleeve to enable it to be used as a probe. The output of the LM3911 varies by $10 \mathrm{mV} / \mathrm{C}$ and the minute change is amplified by the
741. Any increase in temperature will increase the output of the 741 which will lower the base current through Q1 and so reducing the constant charge current with temperature will alter the time taken for the UJT to fire, changing the phase angle of the power to the load.

The 5 k lin pot is set to the temperature required and is linear over its entire range. The upper and lower limits of this control can be changed by adjusting the 100 k presets.

Temperature to Frequency Converter

This circuit uses the fact that when fed from a constant current source, the forward voltage of a silicon diode varies with temperature, in a reasonable linear way.

Diode D1, and resistor R2 form a potential divider, fed from the constant current source. As the temperature rises
the forward voltage of D1 falls tending to turn Q1 off. The output voltage from Q1 will thus rise, and this is used as the control voltage for the CMOS VCO. With the values shown, the device gave an increase of just under $3 \mathrm{HzC}^{-1}$ (between 0 C and 60 C) giving a frequency of 470 Hz at 0 C .
(4) FRG -7

RECEIVER

for amateurs. novices and
short-wave
listeners

Latest model includes line-tune adjustment
MANUFACTURER'S TECHNICAL DATA

- Electronic band changing
- $0.5-29.9 \mathrm{MHz}$ continuous coverage
- Uses Wadley loop (drift cancellation circuit) to derive synthesized hetrodyne oscillator signal.
- LSB, USB, AM and CW
- Frequency readout belter than 10 KHz (readable to 5 KHz).
- Stability within 500 HZ during any 30 -minute period after warm-up
- Better than 0.7 V for 10 dBS N/SSB and CW. Better than 2 V for 10 dB S N/N AM
- Selectivity 3 KHz at $-6 \mathrm{~dB}, 7 \mathrm{KHz}$ at -50 dB .
- Inpui impedance high $0.5-1.6 \mathrm{MHZ}$ $50-75$ ohm $1.6-29.9 \mathrm{MHz}$
- 234 V AC $50-60 \mathrm{~Hz}$ or 12 V DC external.
- Internal dry cell operation optional.
- Size $340 \mathrm{~mm} \times 153 \mathrm{~mm} \times 285 \mathrm{~mm}$.
- Price $\$ 389.00$
- YAESU FRG 7 internal battery holder for 8 size ' D ' cells, $\$ 10$.
- Prices include S/tax, freight extra Prices and Specs subiect to change.
Explore the wonderful world of shortwave listening.
Hear broadcast stations amateurs. ships, aircraft and morse code from stations all over the globe.
Provides an introduction into many aspects of electronics and communications. CBers upgrade and widen your scope of operation. The FRG-7 will provide the means of listening to the amateur bands so that you can get the "feel" of amateur "ham" radio.
You can tune into the morse practice transmissions and broadcasts conducted by the Wireless Institute of Australia: the Radio Amateurs representative Society in Australia.
Write for a descriptive brochure.
Remember. BAIL has been the authorised agent for the YAESU MUSEN CO LTD since 1963. Our experience gathered over these yearyears. and a lifelong participation in electronics. places us in a superior position to handle warranty, after sales service and advice on the wide range of Yaesu amateur radio equipment.
Avoid unauthorised handlers of equipment as it generally results in the supply of non-export 110 V sets with 2 -core AC power cables. instruction manuals printed in Japanese. lack of service etc. Consult us for advice on your requirements in the field of short-wave listening and amateur ràdio
For further information call or write to the Amateur radio specialists. Australian YAESU Agents sinee 1963.
60 Shannon St., Box Hill North
ELECTRONIC Vic.. 3129
SERVICES
Pn 892213

CAMPBELLTOWN HI-FI 107 Macquarie Ave,
Campbelltown, NSW 2560 Open all day Saturday
Ph. (046) 25-6067

The HI 1501 is a rugged, compact, portable instrument and is virtually immune to failure caused by excessive fields or physical abuse. It consists of a lightweight instrument package connected to a unique detection probe by a shielded cable.

For addilional information call or write:
Reg Geary \& Associates

276 Highett Rd, Highett, Vic. Phone (03) 553-1935

Modular Computer systems is OVERSTOCKED!!

- 2758 INTEL $1 \mathrm{k} \times 8$ EPROMS, pin compatible with $2708,5 \mathrm{v}$
supply, 1-7 \$26.45, 8 up $\$ 22.50$.
- 74LS138 3 to 8 decoders $\$ 1.20$.
- TEXAS 16 pin Medium profile sockets (Gold) 29c.
- MC7805 regulators \$1.26, Heatsinks 34c.

7400 ICs 26c.

- Tantalum Caps. 35v .47uF 20c.

Post and packing $\$ 1.00$
MODULAR GOMPUTER SYSTEMS
P.O. Box 103, Round Corner, Sydney. 2158. (Trade supplled)

RADCOM

 constructorcomponents

EVERYTHING FOR THE CONSTRUCTOR AT ONE SHOP AT PRICES TO SUIT YOUR BUDGET

SPECIAL!

Make your own PCB's with our super kit.

ONLY \$8.50

SILIEON VAILEY STOCKISTS

- CAPACITORS -
- RESISTORS -- POTS
- SWITCHES -
- PLUGS -
- SOCKETS -
- PANEL LAMPS -
- TRANSISTORS
- DIODES -
- BOXES -
- LEDS -
- IC's -

Try us for the hard-to-get components

Block Capacitors Silver Micas High Voltage etc, etc

Trading hours from 1st Jan '79 WEEKDAYS: $9 \mathrm{am}-5.45 \mathrm{pm}$ SATURDAYS: 9am - 12 noon TRADE ENQUIRIES WELCOME

Cnr. Eldridge \& Willfox Rds BANKSTOWN, NSW 709-4706

alefironios totay

READERS' LETTERS
No charge for replies but a foolscap-size stamped addressed envelope must be enclosed. Project queries can only be answered if related to item as published. We cannot assist if project is modified nor if components are otherwise than specified.
We regret we cannot answer readers' enquiries by telephone.
MICROFILM
Microfiche editions of this publication are available by annual subscription from Microsystems Pty Ltd, PO Box 188, North Sydney, NSW. 2060.

SUBSCRIPTIONS AND BACK ISSUES

ETI subscriptions cost $\$ 19.00$ per year (inc. postage) within Australia. Cost elsewhere is $\$ 24.60$ linc. postage - surface mail). Airmail rates on application.
Back issues cost $\$ 1.25$ each plus 45 cents post and packing.
We can supply only the following issues.
1976: Nov., Dec. 1977: All issues except Jan. Feb. March. 1978: All issues,
Photostats are available of any article ever published in ETI. We charge a flat $\$ 1.00$ regardless of page quantity from any one issue of ETI. Thus if the article is in three issues the cost is $\$ 3.00$ Send orders to address below.
Binders $\$ 4.50$ plus 90 c post NSW, $\$ 2.00$ other States
COPYRIGHT
The contents of Electronics Today Intemational and associated publications is fully protected by the Commonwealth Copyright Act (1968).
Copyright extends to all written material, photographs, drawings, circuit diagrams and printed circuit boards. Although any form of reproduction is a breach of copyright, we are not concerned about individuals constructing projects for their own private use, nor by pop groups (for example) constructing one or more items for use in connection with their performances.
Commercial organisations should note that no project or part project described in Electronies Today International or associated publications may be offered for sale, or sold, in substantially or fully assembled form, unless a licence has been specifically obtained so to do from the publishers, Modern Magazines (Holdings) Ltd or from the copyright holders.

LIABILITY

Whilst every effort has been made to ensure that all constructional projects referred to in this edition will operate as indicated efficiently and properly and that all necessary components to manufacture the same will be avallable, no responsibility whatsoever is accepted in respect of the failure for any reason at all of the project to operate effectively or at all whether due to any fault in design or otherwise and no responsibility is accepted for the failure to obtain any component parts in respect of any such project. Further, no responsibility is accepted in respect of any injury or damage caused by any fault in the design of any such project as aforesaid.

A MODERN MAGAZINES PUBLICATION

PRODUCTION

Art Director:
Assembly:
Production Manager:
Subscriptions \& Circulation:
Project Design:
Acoustical Consultants:

Clive Davis
Bill Crump/Simon Bracken
Bob Izzard
John Oxenford
Nebula Electronics
Louis A. Challis \& Assoc.

Sydney:	Modern Magazines	Perth:	Aubrey Barker, 133 St. George's Terrace, Perth. 6000.
	Bob Taylor (Manager), Geoff Petschler (NSW Manager), 15		
	Boundary St., Rushcutters Bay 2011. Tel: 33-4282.	Hobart:	H.W. Lincone, 23 Lord St. Sandy Bay. Tasmania. 700
Melbourne:	Modern Magazines	Tokyo:	Genzo Uchida, Bancho Media Service, 15 Sanyeicho,
	Tom Bray (Manager), Poppe		
	Davis, Suite 24, 553 St.		Shintuku-Ku, Tokyo 160.
	Kilda Rd, Melbourne.	London:	Electronics Today International, 25-27 Oxford St, London.
	Tel: 51-9836.		
Brisbane:	Modern Magazines		WIR 1RF. Tel: 01-434-1781/2. Elmatex International, PO Box 34607. Los Angeles, CA. 90034. Tel: (213) 8218581 . Telex: 181059 (EImatexint USA)
	Geoff Horne, 60 Montanus	U.S.A.:	
	Drive, Bellbowrie, Qld. 4070.		
	Tel: 2026229.		
Adelaide:	Harry Hastwell Media		
	399 Glen Osmond Rd, Glen		
	Osmond, S.A. 5064.		
	Tel: 79-1869.		

ADVERTISERS INDEX

Audlo Engirreers. 4
Advanced Comṕuter Products. 60
A \& R Soanar 20,30
Applied Technology 36
Adcola 10
Ampec Engineering 41
Automation Statham 92
BSR. 6
Bright Star Crystals. 109
Bail Electronics 111
Centaur Industries 69
Campbelltown Hi-FI 112
Convoy98
Dick Woods Electronlcs 100
Dick Smith Electronics. 65
DR Hi-FI. 41
Electronic Mallbox 83
Ellistronics. 104
Electrocraft 76
Electro-Volce Aust 92
Electronic Agencies 107
Emona Enterprises 33
Economic Digital Control 106
Fhone Audio 26
General Electronic Services 2, 115
Harmonix Acoustlx. 21
Holden Wasp Industries 76
C's Unllmited 110
JW Dicker 66
Jaycar Pty Ltd. 28
Jade Computer Products 88
Maurice Chapman Aust. 11
Modular Computer Systems 112
National Panasonic Aust 116
Non-Linear Systems 77
Nebula Electronlcs 106
Orblt Electronics 28
Professional Products 24
Phllips Elcoma. 19
Pennywise Peripherals 106
Rave Electronics 100
Roland Australia 20
Radlo Parts Group 51
Rod Irving Electronlcs 42, 86
Radcom Pty Ltd 112
Reg Geary \& Assoc 101
Sheen Electronics. 101
Studio Electronics 10
SM Electronics 96
Shool of Basic Electronlcs 100
Stanton Magnetics 29
Tandy 12
Trio-Kenwood Aust. 94
Tasman Electronics. 70
TV Replacements 98
Tech Book \& MagazIne Co. 76
Texas Instruments 77
Vicom. 93
Vesco Electronics. 92

THEJCCRECEIVER.

Every bit as revolutionary as they look, and then some.

In our case, looks are never deceiving. Because all our new DC integrated stereo receivers combine unprecedented, revolutionary styling with unique electronic design features that reflect JVC's more than 50 years' experience in audio development and innovation.

DC Power Amplifier Design

All four new JVC receivers feature DC amplifier circuitry. They offer virtually distortion-free performance (0.03% THD) throughout the entire audible spectrum. As a result, the sound you hear is clearer, cleaner and crisper. In addition, your speakers are protected with the Triple Power Protection circuit and you can monitor output wattage with dual power meters. Choose from 120 , 85,60 and 35 watts/ channel.*
SEA all the way All four receivers offer JVC's exclusive built-in SEA five-zone graphic equalizer for more complete control of

the music spectrum than conventional tone controls. You can attenuate or accentuate any of five separate musical bands, and as an added feature, we've incorporated a special button so that the SEA circuit can be switched to your

Pushbutton Source Selectors

A horizontal panel of pushbuttons provides total control over all functions.
And brilliantly illuminated LEDs instantly indicate the program source. Professionaltype slider controls set volume and balance. Combine all these exclusive features with high sensitivity and tuning precision, thumb control tuning wheel and accurate dual-metering and you'll see just how revolutionary the new JVC DC integrated stereo receivers are. Play one at your JVC dealer soon.

For details on all JVC Hi-Fi Equipment, write to JVC Advisory Service,
Box 307, North Ryde, N.S.W. 2113.

For pure Hi-Fi entertainment!

JVE

 the right choice

RS-9900US. Two components for one reason: Toutperiorm all other cassette decks.

Audio enthusiasts the world over have come to expect exciting innovations from Technics. The RS-9900US is one of them. Unlike other cassette decks it is a 'cassette system'-the separation of the sensitive amplifier electronics from the mechanical tape transport to obtain optimum performance from each.
Features in the transport unit include a closed loop, doublecapstan, 3-motor drive to provide snooth tape travel and closest tape-to-head contact; pitch control of $\pm 5 \%$ and full IC logic control of all transport functions to ensure tape safety when switching modes. The true 3 -head system permits professional-type tape/source monitoring.

Outstanding among the amplifier unit's many features is the fixed plus variable calibration controls for equalisation lines, and Dolby: record and playback levels. Complete with peak reading meters of studio standards, Dolby* noise reduction circuitry and a built-in $400 \mathrm{~Hz} / 8 \mathrm{kHz}$ test oscillator for level calibration and head azimuth adjustments.
An evaluation of the Technics RS-9900US capabilities will provide the answer to any contradictions about cassette equipment performance.
*Under licence fróm Dolby Laboratories Inc. PTechnics

[^0]: 78 Brisbane Si Tamworth NSW Ph 66-1363
 44 Brown Road, Newcastle NSW. Ph 691.222 GM Electronics $\quad 44$ Brown Road, Newcastle NSW. Ph 691.222 Lismore Kirronics \quad Magellan St \& Bruxner Hwy Lismore NSW Ph 878.361

 68 William St. Gosford NSW. Ph 24.7246 Shop 15. Treasure island, Coffs Harbour Jetiy NSW. Ph 521.570 95 Mitchell Street. Bendigo VIC. Ph 43.1977.

[^1]: Compiled by the Australian Radio DX Club (ARDXC). For further information regarding shortwave radio and ARDXC's activities, write to either PO Box 67 Highett, Vic. 3190, or to PO Box 79, Narrabeen, NSW 2101, with a 30c stamp.

