

A PUBLICATION OF THE RCA TUBE DIVISION

Vol. 14, No. 2

July-August. 1954

Components for Pi-Coupled Amplifiers

By

Mack Seybold,* W2RYI

Most of the references on this subject present dota for the determination of values of the components for pi-coupled amplifiers in terms of curves or formulos. To simplify the design procedure for the amateur, W2RYI has compiled this data in easy-to-use tabular form.

The use of a pi network to couple the plate of an rf amplifier tube to the antenna provides several advantages over the use of a conventional parallel-tuned, inductively-coupled tank circuit. The ease with which a multiband transmitter employing a pi-network tank circuit with rotary or tapped coils can be operated on several bands, in addition to its harmonicattenuation feature, has made this circuit appealing to designers of amateur transmitters. The circuit is also popular because front-panel controls can be used to compensate for reasonably large variations in transmission-line reactance.

The function of the pi network is to match a transmission line having relatively low characteristic impedance to the plate of a tube which must "see" a relatively high resistive load to produce optimum power output. *Table I* lists the estimated plate loads for the various operating conditions of several popular tubes used in amateur transmitters. To determine the plate load for a given tube type, refer to *Table I* and select the operating

*RCA Tube Div., Harrison, N. J.

condition that most closely fits your requirements; the estimated plate-load value for that operating condition is given in the last column in the table. The exact load for tubes not listed in *Table I* can be determined from a set of complicated calculations; however, a good approximation can be made with the formula:

Estimated Plate Load (ohms)
$$= \frac{E_b}{2I_b}$$

where E_b is the plate supply voltage, and I_b is the dc plate current in ma.

The estimated plate load is then used as the key to Table II. This table lists the actual values of the pi-network components for the estimated plate loads; Fig. 1 shows the location of these components in the circuit.

Example

An RCA 6146 is to be used in a 7-Mc, cw transmitter with 750 volts on the plate, and the signal is to be fed to a 50-ohm, coaxial line. Table I shows the estimated plate load to be 3,100 ohms. As shown in the 3,000-ohm column of Table II, 7-Mc operation requires 90 $\mu\mu$ f for C₁, 6.2 μ h for L, and 700 $\mu\mu$ f for C₂.

When a 50-ohm, non-reactive load is applied to the coax output connector, optimum loading at 7 Mc will occur with components approximating the above values. In a practical transmitter, a capacitor of 1,000 $\mu\mu$ f should be used for C₂ so that the loading can be reduced when desirable, and so that compensation can be made for variations in antenna reactance. Capacitor C₁ should be capable of tuning through resonance at 7 Mc; all variations in reactance considered, a capacitance of 150 $\mu\mu$ f would be considered to be a safe design value for C₁.

Recommendations

Design and constructional details for picoupled finals are amply covered in the articles listed in the accompanying bibliography. These articles should be examined thoroughly for ideas and suggestions before construction is begun.

In addition to the many valuable suggestions in the literature on the design of multiband rigs using pi-coupled finals, there are two precautions to be observed: (1) The driver should be a straight-through amplifier employing a conventional tuned tank circuit. (2) The final amplifier should not be operated as a doubler. These recommendations are important because the pi-coupled amplifier, in addition to attenuating harmonics effectively, will pass signals at frequencies below the fundamental more readily than an amplifier employing a parallel-resonant plate circuit. If the low-frequency signals from preceding multiplier stages are not permitted to reach the control grid of a pi-coupled final amplifier, successful operation will be assured.

 Table I

 Estimated Plate Loads for Typical Operating Conditions

1	Tube Type	Service	Emission	E,	Ecg	I _b	Po	Plate Load
				volts	volts	ma	watts	ohms
	813	ICAS CCS CCS ICAS	CW CW CW Phone Phone	2,250 2,000 1,500 2,000 1,600	400 400 300 350 300	220 180 180 200 150	375 275 210 300 180	5,100 5,500 4,200 5,000 5,300
	813's (Parallel)	ICAS ICAS	CW Phone	2,250 2,000	400 350	440 400	750 600	2,600 2,500
	807	ICAS CCS CCS ICAS CCS	CW CW CW Phone Phone	750 600 500 600 475	250 250 250 300 250	100 100 100 100 83	54 40 32 44 28	3,700 3,000 2,500 3,000 2,900
	807's (Parallel)	ICAS ICAS	CW Phone	750 600	2 <i>5</i> 0 300	200 200	108 88	1,900 1,500
	6146	ICAS ICAS CCS ICAS CCS	CW CW CW Phone Phone	750 600 600 600 475	160 180 150 150 135	120 150 112 112 94	70 66 52 52 34	3,100 2,000 2,600 2,600 2,600
	812-A*	ICAS CCS ICAS CCS	CW CW Phone Phone	1,500 1,250 1,250 1,000		173 140 140 115	190 130 130 85	4,300 4,500 4,500 4,300
	4-65A**	CCS CCS CCS CCS	CW CW Phone Phone	1,500 600 1,500 600	250 250 250 250	150 140 120 117	170 54 145 50	5,000 2,100 6,200 2,500
	4-125A/4D21	CCS CCS CCS CCS	CW CW Phone Phone	2,500 2,000 2,000 2,500	350 350 350 350	200 200 150 152	375 275 225 300	6,200 5,000 8,200 6,700
	4-250/5D22	CCS CCS CCS CCS	CW CW Phone Phone	3,000 2,500 3,000 2,500	500 500 400 400	345 300 225 200	800 575 510 375	4,300 4,100 6,700 6,200
	2E26	ICAS CCS ICAS CCS	CW CW Phone Phone	600 500 500 400	185 185 180 160	66 60 54 50	27 20 18 13.5	4,500 4,200 4,600 4,600

"Grid Neutrelization

**Typical operating conditions of higher plate voltages are published, but plate knowlances are too high for convenient pl-network operating.

Fig. 1. Plate circuit for the pi-coupled final. Mount the components so that the connections and "chassis" paths, shown as heavy lines, will be as short as possible.

Estimated Plate Load (ohms)	1,00	0 1,500	2,000	2,500	3,000	3,500	4,000	4,500	5,000	6,000*	NOTES
C ₁ in μμf, 3.5 M 7 14 21 28	ac 52 26 13 8	0 360 0 180 0 90 5 60 5 45	280 140 70 47 35	210 105 52 35 26	180 90 45 31 23	155 76 38 25 19	135 68 34 23 17	120 60 30 20 15	110 56 28 19 14	90 45 23 15 11	The actual capacitance setting for C ₁ equals the value in this table minus the published tube output capacitance. Air gap approx. 10 mils/100 v E _b .
Linµh, 3.5∦ 7 14 21 28	Ac 4.5 2.2 1.1 0.7 0.5	6.5 3.2 1.6 3 1.08 5 0.8	8.5 4.2 2.1 1.38 1.05	10.5 5.2 2.6 1.7 1.28	12.5 6.2 3.1 2.05 1.55	14 7 3.5 2.3 1.7	15.5 7.8 3.9 2.6 1.95	18 9 4.5 3 2.25	20 10 5 3.3 2.5	25 12,5 6.2 4,1 3.1	Inductance values are for a 50-ohm load. For a 70-ohm load, values are approx. 3% higher.
C ₂ in μμf, 3.5 M 7 14 21 28	ic 2,40 1,20 60 40 30	0 2,100 0 1,060 0 530 0 350 0 265	1,800 900 450 300 225	1,550 760 380 250 190	1,400 700 350 230 175	1,250 630 320 210 160	1,100 560 280 185 140	1,000 500 250 165 125	900 460 230 155 115	700 350 175 120 90	For 50-ohm transmission line. Air gap for C2 is approx. 1 mil/100 v E1.
C ₂ in μμf, 3.5 <i>N</i> 7 14 21 28	lc 1,80 90 45 30 22	0 1,500 0 750 0 370 0 250 5 185	1,300 650 320 215 160	1,100 560 280 190 140	1,000 500 250 170 125	900 450 220 145 110	800 400 200 130 100	720 360 180 120 90	640 320 160 110 80	500 250 125 85 65	For 70-ohm transmission line.

Ta	bł	e l		Components	for	Pi-Coupled	Final	Amplifiers
----	----	-----	--	------------	-----	------------	-------	------------

* Values given are approximations. All components shown in Table II are for a Q of 12. For other values of Q, use $\frac{Q_a}{Q_b} = \frac{C_a}{C_b}$ and $\frac{Q_a}{Q_b} = \frac{L_b}{L_a}$. When the estimated plate load is higher than 5,000 ohms, it is recommended that the

components be selected for a circuit Q between 20 and 30.

Bibliography

- "Pi-Network Calculator," Bruene, Electronics, May, 1945.
- "Pi-Network Tank Circuits," Pappenfus and Klippel, CQ, Sept., 1950.
- "Further Notes on Pi and L Networks," Pappenfus and Klippel, CQ, May, 1951.
- "Practical Applications of Pi-Network Tank Circuits for TVI Reduction," Grammer, QST, Jan., 1952.
- "Pi-Network Design Curves," Grammer, QST, April, 1952.
- "Pi-Network Tank Circuits for High Power," Grammer, QST, Oct., 1952.
- "A Wide-Range, High-Power, Pi-Network Final," Farrar, QST, Oct., 1953.
- "Simplified Pi-Network Solutions," Hoefer, CQ, Nov., 1953.

NEW RCA TYPE 80

The RCA type 80 full-wave vacuum rectifier was recently changed over from a size ST-14 bulb to a T-9 bulb, like that used for the 5Y3-GT. This was done in order to utilize RCA's modern tube manufacturing techniques and equipment more effectively, despite declining replacement demand for the type 80.

The basing connections as well as all electrical characteristics and ratings remain unchanged in the new design. Since the new bulb size is smaller than the old one, this new type 80 can be installed in all sockets where the old 80 was used.

or those who refer triades

orld over

р 0 power triodes Check the figures đ requirement , ≷

	PC DC	
dulator bes)	Max Sig. DC Plate Cur (Ma)	*****
ts B Moc	Dic Plate Volts	
For Clar Servi	Type No.	
54	The second	-
naleur Rafi	Plate Dessig. (Watts)	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
Mar. Ar Class	DC Plate Votts	
2	Plate spect	
193	8-8	

AMERI

ì

ADIO CORPORATION

TUBES

Distribu of RCA 1

Tube

Engi ALL ALL

-	T N N	-
Telegrapi	Plate Dissip. (Walts)	22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
Max. An Class (DC Plate Votts	
splifter ce	DC Plate Inped (Weits)	
For R.F. An Servia	Type No	

Devices and arrangements shown or described herein may use patents of RCA or others. Information con-tained herein is furnished without responsibility by RCA for its use and without prejudice to RCA's patent rights.

TMKA From your local RCA distributor, headquarters for **RCA** receiving and power tubes.

RCA HAM TIPS

is published by the **RCA Tube Division**, Harrison, N. J. It is available free of charge from **RCA Distributors**

Joseph Pastor, Jr., W2KCN Editor

> Copyright 1954 Radio Corporation of America

WHEN MAILING PLACE POSTAGE HERE

FORM 3547 REQUESTED